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Abstract

This paper introduces and studies a family of new classes of infinitely divisible distributions on

R
d with two parameters. Depending on parameters, these classes connect the Goldie–Steutel–

Bondesson class and the class of generalized type G distributions, connect the Thorin class and

the class M , and connect the class M and the class of generalized type G distributions. These

classes are characterized by stochastic integral representations with respect to Lévy processes.

1 Introduction

Let I(Rd) be the class of all infinitely divisible distributions on Rd . bµ(z), z ∈ Rd , denotes the

characteristic function of µ ∈ I(Rd) and |x | denotes the Euclidean norm of x ∈ Rd . We use the

Lévy-Khintchine triplet (A,ν ,γ) of µ ∈ I(Rd) in the sense that

bµ(z) = exp

¨
−2−1〈z,Az〉+ i〈γ, z〉+

∫

R
d

�
ei〈z,x〉 − 1− i〈z, x〉(1+ |x |2)−1

�
ν(d x)

«
, z ∈ Rd ,

where A is a symmetric nonnegative-definite d × d matrix, γ ∈ Rd and ν is a measure (called the

Lévy measure) on Rd satisfying

ν({0}) = 0 and

∫

R
d

(|x |2 ∧ 1)ν(d x)<∞.

The following polar decomposition is a basic result on the Lévy measure of µ ∈ I(Rd). Let ν be

the Lévy measure of some µ ∈ I(Rd) with 0 < ν(Rd) ≤ ∞. Then there exist a measure λ on
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S = {x ∈ Rd : |x | = 1} with 0 < λ(S) ≤ ∞ and a family {νξ : ξ ∈ S} of measures on (0,∞) such

that νξ(B) is measurable in ξ for each B ∈B((0,∞)), 0< νξ((0,∞))≤∞ for each ξ ∈ S, and

ν(B) =

∫

S

λ(dξ)

∫ ∞

0

1B(rξ)νξ(dr), B ∈B(Rd \ {0}). (1.1)

Here λ and {νξ} are uniquely determined by ν up to multiplication of measurable functions c(ξ)

and 1

c(ξ)
, respectively, with 0 < c(ξ) <∞. We say that ν has the polar decomposition (λ,νξ) and

νξ is called the radial component of ν . (See, e.g., Barndorff-Nielsen et al. (2006), Lemma 2.1.)

A real-valued function f defined on (0,∞) is said to be completely monotone if it has derivatives

f (n) of all orders and for each n= 0,1,2, ..., (−1)n f (n)(r)≥ 0, r > 0. Bernstein’s theorem says that

f on (0,∞) is completely monotone if and only if there exists a (not necessarily finite) measure Q

on [0,∞) such that f (r) =
∫
[0,∞)

e−ruQ(du). (See, e.g., Feller (1966), p.439.)

In this paper, we introduce and study the following classes.

Definition 1.1. (The class Jα,β (R
d).) Let α < 2 and β > 0. We say that µ ∈ I(Rd) belongs to the

class Jα,β (R
d) if ν = 0 or ν 6= 0 and, in case ν 6= 0, νξ in (1.1) has expression

νξ(dr) = r−α−1 gξ(r
β )dr, r > 0, (1.2)

where gξ(x) is measurable in ξ, is completely monotone in x on (0,∞) λ-a.e.ξ, not identically zero

and limx→∞ gξ(x) = 0 λ-a.e.ξ.

Remark 1.2. If α ≤ 0, then automatically limx→∞ gξ(x) = 0 λ-a.e.ξ, because of the finiteness of∫
|x |>1

ν(d x). So, when we consider the classes B(Rd), G(Rd), T (Rd) and M(Rd) appearing later, we

do not have to write this condition explicitly.

Remark 1.3. The integrability condition of the Lévy measure
∫
R

d (|x |
2 ∧ 1)ν(d x)<∞ implies that

∫ ∞

0

(r2 ∧ 1)r−α−1 gξ(r
β )dr <∞, λ-a.e.ξ, (1.3)

so we do not have to assume (1.3) in the definition. It is automatically satisfied.

Remark 1.4. The classes Jα,1(R
d),α < 2, are studied in Sato (2006b).

Before mentioning our motivation of this study, we state a general result on the relations among

the classes Jα,β (R
d),α < 2,β > 0.

Theorem 1.5. (i) Fix α < 2 and let 0< β1 < β2. Then

Jα,β1
(Rd)⊂ Jα,β2

(Rd).

(ii) Fix β > 0 and let α1 < α2 < 2. Then

Jα2,β (R
d)⊂ Jα1,β (R

d).

Proof. For the proof of (i), we need the following lemma.

Lemma 1.6. (See Feller (1966), p.441, Corollary 2.) Let φ be a completely monotone function on

(0,∞) and let ψ be a nonnegative function on (0,∞) whose derivative is completely monotone. Then

φ(ψ) is completely monotone.
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Let hξ(x) = gξ(x
β1/β2), x > 0, where gξ is the one in (1.2), which is completely monotone on

(0,∞). Since ψ(x) = xβ1/β2 , x > 0, has a completely monotone derivative, it follows from Lemma

1.6 that hξ(x) is completely monotone. Suppose µ ∈ Jα,β1
(Rd) and let gξ be the one in (1.2).

Since gξ(r
β1) = hξ(r

β2), where hξ is completely monotone as has been just shown above, we have

µ ∈ Jα,β2
(Rd). This proves (i).

To prove (ii), suppose that µ ∈ Jα2,β (R
d). Then νξ(dr) = r−α2−1 gξ(r

β )dr, r > 0, as in (1.2),

where gξ is completely monotone on (0,∞) λ-a.e.ξ. Note that

hξ(x) = x−(α2−α1)/β gξ(x)

is completely monotone, because x−p, p > 0, is completely monotone and the product of two

completely monotone functions is also completely monotone. We now have

νξ(dr) = r−α2−1 gξ(r
β )dr = r−α1−1hξ(r

β )dr,

and thus µ also belongs to Jα1,β (R
d). This proves (ii).

The motivations for studying the classes Jα,β (R
d) are the following.

I. The classes connecting the Goldie–Steutel–Bondesson class and the class of generalized type G

distributions.

Let α = −1 and consider the classes J−1,β (R
d), β > 0. A distribution µ ∈ I(Rd) is said to be of

generalized type G if νξ in (1.2) has expression νξ(dr) = gξ(r
2)dr for some completely monotone

function gξ on (0,∞), and denote by G(Rd) the class of all generalized type G distributions on

R
d . Let Isym(R

d) = {µ ∈ I(Rd) : µ is symmetric in the sense that µ(B) = µ(−B), B ∈B(Rd)}.

Remark 1.7. A distribution µ ∈ G(Rd)∩ Isym(R
d) is a so-called type G distribution, which is, in one

dimension, a variance mixture of the standard normal distribution with a positive infinitely divisible

mixing distribution.

Remark 1.8. G(Rd) = J−1,2(R
d).

Remark 1.9. The Goldie-Steutel-Bondesson class denoted by B(Rd) is J−1,1(R
d). (For details on

B(Rd), see Barndorff-Nielsen et al. (2006).)

Therefore, by Theorem 1.5 (i) with α= −1, for 1< β < 2,

B(Rd)⊂ J−1,β (R
d)⊂ G(Rd),

and hence {J−1,β (R
d), 1 ≤ β ≤ 2} is a family of classes of infinitely divisible distributions on Rd

connecting B(Rd) and G(Rd) with continuous parameter β ∈ [1,2].

II. The classes connecting the Thorin class and the class M(Rd).

Let α= 0 and consider the classes J0,β (R
d), β > 0.

Remark 1.10. The Thorin class denoted by T (Rd) is J0,1(R
d). (For details on T (Rd), see also

Barndorff-Nielsen et al. (2006).)

Remark 1.11. The class M(Rd) is defined by J0,2(R
d). (The class M(Rd) ∩ Isym(R

d) is studied in

Aoyama et al. (2008).)
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By Theorem 1.5 (i) with α= 0, for 1< β < 2,

T (Rd)⊂ J0,β (R
d)⊂ M(Rd),

and hence {J0,β (R
d), 1 ≤ β ≤ 2} is a family of classes of infinitely divisible distributions on Rd

connecting T (Rd) and M(Rd) with continuous parameter β ∈ [1,2].

III. The classes connecting the classes M(Rd) and G(Rd).

Let β = 2 and consider the classes Jα,2(R
d), α < 2. Then, by Theorem 1.5 (ii) with β = 2, for

−1≤ α≤ 0

M(Rd)⊂ Jα,2(R
d)⊂ G(Rd),

and hence {Jα,2(R
d),−1 ≤ α ≤ 0} is a family of classes of infinitely divisible distributions on Rd

connecting M(Rd) and G(Rd) with continuous parameter α ∈ [−1,0].

IV. The classes connecting the classes T (Rd) and B(Rd).

Let β = 1 and consider the classes Jα,1(R
d), α < 2. Then, by Theorem 1.5 (ii) with β = 1, for

−1≤ α≤ 0

T (Rd)⊂ Jα,1(R
d)⊂ B(Rd),

and hence {Jα,1(R
d),−1 ≤ α ≤ 0} is a family of classes of infinitely divisible distributions on

R
d connecting T (Rd) and B(Rd) with continuous parameter α ∈ [−1,0]. (This fact is already

mentioned in Sato (2006b).)

2 Stochastic integral characterizations for Jα,β(R
d)

The purpose of this paper is to characterize the classes Jα,β (R
d) by stochastic integral represen-

tations. For that, we first define mappings from I(Rd) into I(Rd) and investigate the domains of

those mappings.

We introduce the following function Gα,β (u). For α < 2 and β > 0, let

Gα,β (u) =

∫ ∞

u

x−α−1e−xβ d x , u≥ 0,

and let G∗
α,β
(t) be the inverse function of Gα,β (u), that is, t = Gα,β (u) if and only if u = G∗

α,β
(t).

Let {X
(µ)
t } be a Lévy process on Rd with the law µ ∈ I(Rd) at t = 1. We consider the stochastic

integrals

∫ Gα,β (0)

0

G∗α,β (t)dX
(µ)
t , where Gα,β (0) =

¨
β−1Γ(−αβ−1), if α < 0,

∞, if α≥ 0.

As to the definition of stochastic integrals of non-random measurable functions f which are∫ T

0
f (t)dX

(µ)
t , T < ∞,µ ∈ I(Rd), we follow the definition in Sato (2004, 2006a), whose idea

is to define a stochastic integral with respect to Rd -valued independently scatted random measure

induced by a Lévy process on Rd . The improper stochastic integral
∫∞

0
f (t)dX

(µ)
t is defined as the
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limit in probability of
∫ T

0
f (t)dX

(µ)
t as T →∞ whenever the limit exists. See also Sato (2006b).

In the following, L (X ) stands for “the law of X ". If we write

Ψα,β (µ) =L

 ∫ Gα,β (0)

0

G∗α,β (t)dX
(µ)
t

!
,

then Ψα,β can be considered as a mapping with domain D(Ψα,β ) being the class of µ ∈ I(Rd) for

which
∫ Gα,β (0)

0
G∗
α,β
(t)dX

(µ)
t is definable.

Theorem 2.1. If α < 0, then D(Ψα,β ) = I(Rd).

Proof. By Proposition 3.4 in Sato (2006a), since Gα,β (0) < ∞ for α < 0, if
∫ Gα,β (0)

0

�
G∗
α,β
(t)
�2

d t <∞, then
∫ Gα,β (0)

0
G∗
α,β
(t)dX

(µ)
t is well-defined. Actually,

∫ Gα,β (0)

0

�
G∗α,β (t)

�2

d t =−

∫ ∞

0

u2dGα,β(u) =

∫ ∞

0

u1−αe−uβ du<∞.

To determine the domain of Ψα,β ,α ≥ 0, we need the following result by Sato (2006b). In

the following, a(t) ∼ b(t) means that limt→∞ a(t)/b(t) = 1, a(t) ≍ b(t) means that 0 <

lim inft→∞ a(t)/b(t) ≤ lim supt→∞ a(t)/b(t) < ∞ and Ilog(R
d) = {µ ∈ I(Rd) :∫

R
d log+ |x |µ(d x)<∞}, where log+ |x |= (log |x |)∨ 0.

Proposition 2.2. (Sato (2006b), Theorems 2.4 and 2.8.) Let p ≥ 0. Denote

Φϕp
(µ) =L

�∫ ∞

0

ϕp(t)dX
(µ)
t

�
.

Suppose that ϕp is locally square-integrable with respect to Lebesgue measure on [0,∞) and satisfies

(1) ϕ0(t)≍ e−c t as t →∞ with some c > 0,

(2) ϕp(t)≍ t−1/p as t →∞ for p ∈ (0,1)∪ (1,∞),

(3)ϕ1(t)≍ t−1 as t →∞ and for some t0 > 0, c > 0 and ψ(t),ϕ1(t) = t−1ψ(t) for t > t0 with
∫∞

t0

t−1|ψ(t)−

c|d t <∞.

Then

(i) If p = 0, then D(Φϕ0
) = Ilog(R

d).

(ii) If 0< p < 1, then D(Φϕp
) = {µ ∈ I(Rd) :

∫
R

d |x |
pµ(d x)<∞}=: Ip(R

d).

(iii) If p = 1, then D(Φϕ1
) = {µ ∈ I(Rd) :

∫
R

d |x |µ(d x)<∞

limT→∞

∫ T

t0

t−1d t
∫
|x |>t

xν(d x) exists in Rd ,
∫
R

d xµ(d x) = 0}=: I∗
1
(Rd).

(iv) If 1< p < 2, then D(Φϕp
) = {µ ∈ I(Rd) :

∫
R

d |x |
pµ(d x)<∞,

∫
R

d xµ(d x) = 0}

=: I0
p
(Rd).

(v) If p ≥ 2, then D(Φϕp
) = {δ0}, where δ0 is the distribution with the total mass at

0.

We apply Proposition 2.2 to our problem. First we note that when α < 2, G∗
α,β
(t) is locally square-

integrable with respect to Lebesgue measure on [0,∞).
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Theorem 2.3. (Case α= 0.) D(Ψ0,β ) = Ilog(R
d).

Proof. Note that t(= Gα,β (u)) ↑ ∞ if and only if u(= G∗
α,β
(t)) ↓ 0, when α ≥ 0. It is enough to

show that for some C1 ∈ (0,∞), u∼ C1e−t as t →∞. We have

u

e−t
=

u

exp{−G0,β (u)}
= exp{G0,β(u) + logu}= exp

¨∫ ∞

u

x−1e−xβ d x + log u

«

= exp

(
β−1

∫ ∞

uβ

y−1e−y d y − β−1

∫ 1

uβ

y−1d y

)

= exp

(
β−1

∫ 1

uβ

y−1(e−y − 1)d y + β−1

∫ ∞

1

y−1e−y d y

)
→ C1,

say, as u ↓ 0. Hence u ∼ C1e−t as t → ∞, and the condition (1) of Proposition 2.2 is satisfied.

Thus Proposition 2.2 (i) gives us the assertion.

Theorem 2.4. (Case α ∈ (0,∞).)

(i) If 0< α < 1, then D(Ψα,β ) = Iα(R
d).

(ii) If α= 1, then D(Ψ1,β ) = I∗
1
(Rd).

(iii) If 1< α < 2, then D(Ψα,β ) = I0
α(R

d).

(iv) If α≥ 2, then D(Ψα,β ) = {δ0}.

Proof. (i) and (iii). It is enough to show that u ∼ C2 t−1/α as t → ∞ for some C2 ∈ (0,∞). We

have, as t →∞ (equivalently u ↓ 0), for some C3 ∈ (0,∞),

u

t−1/α
=

u
�

Gα,β (u)
�−1/α

=
u

�
β−1

∫∞
uβ

y−(α/β)−1e−y d y
�−1/α

∼
u

�
C3u−α

�−1/α
= C

1/α
3 =: C2,

and the condition (2) of Proposition 2.3 is satisfied. Thus Proposition 2.3 (ii) and (iv) give us the

assertions.

(ii). Suppose β 6= 1. (The case β = 1 is proved in Sato (2006b).) We first have

G1,β (u) =

∫ ∞

u

x−2e−xβ d x =

∫ ∞

u

x−2d x +

∫ ∞

u

x−2(e−xβ − 1)d x

=

∫ ∞

u

x−2d x +

∫ 1

u

x−2(e−xβ − 1+ xβ )du−

∫ 1

u

x−2+βd x +

∫ ∞

1

x−2(e−xβ − 1)d x

= u−1 + (β − 1)−1u−1+β +O(1), u ↓ 0.

Thus

t = G∗
1,β(t)

−1 + (β − 1)−1G∗
1,β(t)

−1+β +O(1), t →∞.

Therefore,

G∗
1,β (t) = t−1 + (β − 1)−1 t−1G∗

1,β (t)
β +O(t−1G∗

1,β (t)), t →∞. (2.1)

We have shown in (i) and (iii) that u∼ C2 t−1/α, but this is also true for α= 1. Hence

u= G∗
1,β (t) = C2 t−1(1+ o(1)), t →∞. (2.2)
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By substituting (2.2) into (2.1), we have

G∗
1,β(t) = t−1 + C

β
2 (β − 1)−1 t−1−β + t−1a(t), t →∞,

= t−1
�

1+ C
β
2 (β − 1)−1 t−β + a(t)

�
, t →∞,

where

a(t) =

¨
o(t−β ), t →∞, when 0< β < 1,

O(t−1), t →∞, when β > 1.

Thus

G∗
1,β(t) = t−1ψ(t),

where

ψ(t) := 1+ C
β
2 (β − 1)−1 t−β + a(t),

and ∫ ∞

1

t−1|ψ(t)− 1|d t =

∫ ∞

1

t−1|C
β
2 (β − 1)−1 t−β + a(t)|d t <∞.

Thus the condition (3) of Proposition 2.2 is satisfied with t0 = 1 and c = 1, and Proposition 2.2

(iii) gives us the assertion (iii).

(iv) The same as in Sato (2006b).

We now calculate the Lévy measure of eµ=Ψα,β (µ), and note that the mapping Ψα,β is one-to-one.

Lemma 2.5. Let α < 2 and β > 0. Let µ ∈ D(Ψα,β ) and eµ = Ψα,β (µ), and let ν and eν be the Lévy

measures of µ and eµ, respectively.

(1) We have

eν(B) =
∫ ∞

0

ν(s−1B)s−α−1e−sβ ds, B ∈B(Rd \ {0}). (2.3)

(2) If ν 6= 0, and ν has polar decomposition (λ,νξ), then a polar decomposition of eν = (eλ, eνξ) is

given by eλ= λ and eνξ(dr) = r−α−1egξ(rβ )dr, where

egξ(u) =
∫ ∞

0

rαe−u/rβνξ(dr). (2.4)

(3) egξ in (2.4) satisfies the requirements of gξ in (1.2).

Proof. Suppose µ ∈D(Ψα,β ) and eµ=Ψα,β (µ).

(1) We see that (by using Proposition 2.6 of Sato (2006b)),

eν(B) =
∫ Gα,β (0)

0

d t

∫

R
d

1B(xG∗α,β(t))ν(d x) = −

∫ ∞

0

dGα,β(s)

∫

R
d

1B(xs)ν(d x)

=

∫ ∞

0

s−α−1e−sβ ds

∫

R
d

1s−1B(x)ν(d x) =

∫ ∞

0

ν(s−1B)s−α−1e−sβ ds,

which is (2.3).
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(2) Next assume that ν 6= 0 and ν has polar decomposition (λ,νξ). Then, we have

eν(B) =
∫ ∞

0

s−α−1e−sβ ds

∫

S

λ(dξ)

∫ ∞

0

1s−1B(rξ)νξ(dr)

=

∫

S

λ(dξ)

∫ ∞

0

νξ(dr)r−1

∫ ∞

0

(u/r)−α−1e−(u/r)
β

1B(uξ)du

=

∫

S

λ(dξ)

∫ ∞

0

1B(uξ)u
−α−1egξ(uβ )du,

where eλ= λ and

egξ(u) =
∫ ∞

0

rαe−u/rβνξ(dr), (2.5)

which is (2.4). The finiteness of egξ is trivial for α≤ 0. For α > 0, since µ ∈D(Ψα,β ), we have that∫
R

d |x |
αµ(d x) <∞. When α > 0, note that

∫
R

d |x |
αµ(d x) <∞ implies

∫∞
1

rανξ(dr) <∞, (see,

e.g. Sato (1999), Theorem 25.3). Hence the integral egξ exists.

(3) If we put

eQ(B) =
∫ ∞

0

rα1B(r
−β )νξ(dr),

then it follows that egξ(u) =
∫∞

0
e−uy eQ(d y), and thus egξ is completely monotone by Bernstein’s

theorem. If α≤ 0, then automatically limu→∞ egξ(u) = 0 λ-a.e.ξ, since

∞ >

∫

|x |>1

eν(d x) =

∫

S

λ(dξ)

∫ ∞

1

u−α−1egξ(uβ )du.

When α > 0, since
∫∞

1
rανξ(dr) < ∞, the assertion that limu→∞ egξ(u) = 0 λ-a.e.ξ also follows

from (2.5) by the dominated convergence theorem.

The proof of the lemma is thus concluded.

Remark 2.6. (2.3) can be written as, by introducing a transformation Υα,β of Lévy measures as

eν = Υα,β (ν). Then this Υα,β is a generalized Upsilon transformation discussed in Barndorff-Nielsen

et al. (2008) with the dilation measure τ(ds) = s−α−1e−sβ ds.

Theorem 2.7. For each α < 2 and β > 0, the mapping Ψα,β is one-to-one.

The proof is carried out in the same way as for Proposition 4.1 of Sato (2006b).

We are now ready to discuss stochastic integral characterizations of the classes Jα,β (R
d), by show-

ing that Jα,β (R
d) is the range of the mapping Ψα,β . However, in this paper, we restrict our-

selves to the case α < 1, because in the case 1 ≤ α < 2, Jα,β (R
d) is strictly bigger than the

range Ψα,β (D(Ψα,β )) and more deep calculations would be needed. (See, e.g., Sato (2006b) and

Maejima et al. (2009).) Also, the classes appearing in our motivation of introducing the classes

Jα,β (R
d) are restricted to the case α≤ 0.

Theorem 2.8. Let α < 1 and β > 0. The range of the mapping Ψα,β equals Jα,β (R
d), that is,

Jα,β (R
d) = Ψα,β (D(Ψα,β )).
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Remark 2.9. This theorem is already known for α = −1,0 and β = 1 in Theorems A and C of

Barndorff-Nielsen et al. (2006) and for α < 1 and β = 1 in Theorem 4.2 of Sato (2006b).

Proof of Theorem 2.8. We first show that Ψα,β (D(Ψα,β )) ⊂ Jα,β (R
d). Suppose µ ∈ D(Ψα,β ) and

eµ = Ψα,β (µ), and let ν and eν be the Lévy measures of µ and eµ, respectively. Thus, if ν = 0, then

eν = 0 and eµ ∈ Jα,β (R
d). When ν 6= 0, it follows from Lemma 2.5 that eµ ∈ Jα,β (R

d).

Next we show that Jα,β (R
d) ⊂ Ψα,β (D(Ψα,β )). Suppose eµ ∈ Jα,β (R

d) with the Lévy-Khintchine

triplet (eA, eν ,eγ). If eν = 0, then eµ = Ψα,β (µ) for some µ ∈ D(Ψα,β ). Thus, suppose that eν 6= 0.

Then, in a polar decomposition (eλ, eνξ) of eν , we have eνξ(dr) = r−α−1egξ(rβ )dr, where egξ(v) is

completely monotone in v > 0 eλ-a.e.ξ, and is measurable in ξ. Thus by Bernstein’s theorem,

there are measures eQξ on [0,∞) such that

egξ(v) =
∫

[0,∞)

e−vueQξ(du).

In general, eQξ is a measure on [0,∞), but since limv→∞ egξ(v) = 0 eλ-a.e.ξ, eQξ does not have a

point mass at 0, and hence eQξ is a measure on (0,∞). We see that

eν(B) =
∫

S

eλ(dξ)
∫ ∞

0

1B(rξ)r
−α−1egξ(rβ )dr (2.6)

=

∫

S

eλ(dξ)
∫ ∞

0

1B(rξ)r
−α−1dr

∫ ∞

0

e−rβueQξ(du).

Since
∫
R

d (|x |
2 ∧ 1)eν(d x)<∞, we have

∫

S

eλ(dξ)
∫ 1

0

r1−αdr

∫ ∞

1

e−rβueQξ(du) +

∫

S

eλ(dξ)
∫ ∞

1

r−α−1dr

∫ 1

0

e−rβueQξ(du)<∞.

Hence, we have, by the change of variables r → v by rβu= v,

∫ 1

0

r1−αdr

∫ ∞

1

e−rβueQξ(du) =

∫ ∞

1

eQξ(du)

∫ 1

0

r1−αe−rβudr

= β−1

∫ ∞

1

u(α−2)/β eQξ(du)

∫ u

0

v−1+(2−α)/β e−vdv ≥ C4

∫ ∞

1

u(α−2)/β eQξ(du),

where

C4 = β
−1

∫ 1

0

v−1+(2−α)/β e−vdv ∈ (0,∞).

Thus ∫

S

eλ(dξ)
∫ ∞

1

u(α−2)/β eQξ(du)<∞. (2.7)

We also have for any α < 1,

∫ ∞

1

r−α−1dr

∫ 1

0

e−rβueQξ(du) =

∫ 1

0

eQξ(du)

∫ ∞

1

r−α−1e−rβudr (2.8)
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= β−1

∫ 1

0

uα/β eQξ(du)

∫ ∞

u

v−1−(α/β)e−vdv ≥ C5

∫ 1

0

uα/β eQξ(du),

where

C5 = β
−1

∫ ∞

1

v−1−(α/β)e−vdv ∈ (0,∞).

Thus ∫

S

eλ(dξ)
∫ 1

0

uα/β eQξ(du)<∞. (2.9)

In addition, if α = 0, (2.8) is turned out to be

∫ ∞

1

r−1dr

∫ 1

0

e−rβueQξ(du) = β−1

∫ 1

0

eQξ(du)

∫ 1

u

v−1e−vdv

≥ (βe)−1

∫ 1

0

eQξ(du)

∫ 1

u

v−1dv = (βe)−1

∫ 1

0

(− log u)eQξ(du).

Thus, when α= 0, ∫

S

eλ(dξ)
∫ 1

0

(− log u)eQξ(du)<∞. (2.10)

Furthermore,

∫ ∞

1

r−α−1dr

∫ 1

0

e−rβueQ(du)≥

∫ ∞

1

r−α−1e−rβ dr

∫ 1

0

eQξ(du) = C6

∫ 1

0

eQξ(du),

where

C6 :=

∫ ∞

1

r−α−1e−rβ dr ∈ (0,∞).

Thus we have ∫

S

eλ(dξ)
∫ 1

0

eQξ(dr)<∞. (2.11)

Define

νξ(B) =

∫ ∞

0

uα/β1B

�
u−1/β

� eQξ(du), B ∈B((0,∞)). (2.12)

Then, it follows from (2.7) and (2.9) that

∫

S

eλ(dξ)
∫ ∞

0

(r2 ∧ 1)νξ(dr) =

∫

S

eλ(dξ)
∫ ∞

0

uα/β (u−2/β ∧ 1)eQξ(du) (2.13)

=

∫

S

eλ(dξ)
�∫ 1

0

uα/β eQξ(du) +

∫ ∞

1

u(α−2)/β eQξ(du)

�
<∞.

Define ν by

ν(B) =

∫

S

eλ(dξ)
∫ ∞

0

1B(rξ)νξ(dr). (2.14)
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Then, by (2.13), ν is the Lévy measure of some infinitely divisible distribution µ, and µ belongs to

D(Ψα,β ) and satisfies

eν(B) =
∫ Gα,β (0)

0

ν((G∗α,β(t))
−1B)d t. (2.15)

To show (2.15), by (2.6), (2.12) and (2.14), we have

eν(B) =
∫

S

eλ(dξ)
∫ ∞

0

1B(rξ)r
−α−1dr

∫ ∞

0

e−rβueQξ(du)

=

∫

S

eλ(dξ)
∫ ∞

0

1B(u
−1/β sξ)s−α−1e−sβ ds

∫ ∞

0

uα/β eQξ(du)

=

∫ ∞

0

s−α−1e−sβ ds

∫

S

eλ(dξ)
∫ ∞

0

1B(u
−1/β sξ)uα/β eQξ(du)

=

∫ ∞

0

s−α−1e−sβ ds

∫

S

eλ(dξ)
∫ ∞

0

1B(rsξ)νξ(dr)

=

∫ ∞

0

s−α−1e−sβ ds

∫

S

eλ(dξ)
∫ ∞

0

1s−1B(rξ)νξ(dr)

=

∫ ∞

0

ν(s−1B)s−α−1e−sβ ds =−

∫ ∞

0

ν(s−1B)dGα,β(s)

=

∫ Gα,β (0)

0

ν((G∗α,β(t))
−1B)d t.

To show that µ ∈ D(Ψα,β ), it is enough to show that
∫
|x |>1
|x |αν(d x) < ∞, which is if and only

if µ ∈ Iα(R
d), when 0 < α < 1, and

∫
|x |>1

log |x |ν(d x) <∞, which is if and only if µ ∈ Ilog(R
d),

when α = 0, (see Sato (1999), Theorem 25.3). Note that by (2.12) we see, for any nonnegative

measurable function f on (0,∞),

∫ ∞

0

f (r)νξ(dr) =

∫ ∞

0

uα/β f (u−1/β )eQξ(du).

Thus if we choose f (r) = I[r > 1]rα, where I[A] is the indicator function of the set A, then ν in

(2.14) satisfies that for α > 0

∫

|x |>1

|x |αν(d x) =

∫

S

eλ(dξ)
∫ ∞

1

rανξ(dr) =

∫

S

eλ(dξ)
∫ 1

0

eQξ(du)<∞ (2.16)

due to (2.11). When α = 0,

∫

|x |>1

log |x |ν(d x) =

∫

S

eλ(dξ)
∫ ∞

1

log rνξ(dr) (2.17)

=

∫

S

eλ(dξ)
∫ 1

0

logu−1/β eQξ(du) = β−1

∫

S

eλ(dξ)
∫ 1

0

(− log u)eQξ(du)<∞

due to (2.10).
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Notice again that

∫ Gα,β (0)

0

�
G∗α,β (t)

�2

d t =−

∫ ∞

0

u2dGα,β(u) =

∫ ∞

0

u1−αe−uβ du<∞.

Define A and γ by

eA=
 ∫ Gα,β (0)

0

G∗α,β(t)
2d t

!
A (2.18)

and

eγ=
∫ Gα,β (0)

0

G∗α,β (t)d t

�
γ+

∫

R
d

x

�
1

1+ |G∗
α,β
(t)x |2

−
1

1+ |x |2

�
ν(d x)

�
. (2.19)

Here we have to check the finiteness of this integral. We first have

∫ Gα,β (0)

0

G∗α,β (t)d t =−

∫ ∞

0

udGα.β(u) =

∫ ∞

0

u−αe−uβ du<∞,

since α < 1. Below, C7, C8 ∈ (0,∞) are suitable constants. Recall α < 1. When α 6= 0, we have

∫ Gα,β (0)

0

G∗α,β (t)d t

∫

R
d

|x |

�����
1

1+ |G∗
α,β
(t)x |2

−
1

1+ |x |2

�����ν(d x)

=

∫ ∞

0

u−αe−uβ du

∫

R
d

|x |

����
1

1+ |ux |2
−

1

1+ |x |2

����ν(d x)

≤

∫ ∞

0

u−α(1+ u2)e−uβ du

∫

R
d

|x |3

(1+ |ux |2)(1+ |x |2)
ν(d x)

≤

∫ ∞

0

u−α(1+ u2)e−uβ du

×

 ∫

|x |≤1

|x |2ν(d x) +

∫

|x |>1,|ux |≤1

|x |ν(d x) +

∫

|x |>1,|ux |>1

|x |

|ux |2
ν(d x)

!

= C7 +

∫

|x |>1

|x |ν(d x)

∫ 1/|x |

0

u−α(1+ u2)e−uβ du

+

∫

|x |>1

ν(d x)

∫ ∞

1/|x |

u−α−1(1+ u2)e−uβ du

≤ C7 +

∫

|x |>1

|x |ν(d x)

∫ 1/|x |

0

2u−αdu

+

∫

|x |>1

ν(d x)

( ∫ 1

1/|x |

+

∫ ∞

1

!
u−α−1(1+ u2)e−uβ du

)

≤ C7 + 2(1−α)−1

∫

|x |>1

|x |αν(d x)

+

∫

|x |>1

ν(d x)

(∫ 1

1/|x |

2u−α−1du+

∫ ∞

1

u−α−1(1+ u2)e−uβ du

)
(2.20)
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= C7 + 2(1−α)−1

∫

|x |>1

|x |αν(d x)

+

∫

|x |>1

ν(d x)
¦
−2α−1(1− |x |α) + C8

©

= C7 + 2(1−α)−1

∫

|x |>1

|x |αν(d x)

+ 2α−1

∫

|x |>1

|x |αν(d x) + (C8 − 2α−1)

∫

|x |>1

ν(d x)<∞, (2.21)

by (2.16). When α= 0, since

∫ 1

1/|x |

u−α−1du=

∫ 1

1/|x |

u−1du= log |x |,

in (2.20), we have ∫

|x |>1

log |x |ν(d x) (2.22)

instead of
∫
|x |>1
|x |αν(d x) in (2.21) in the calculation above. The finiteness of (2.22) is assured

by (2.17).

Thus γ can be defined. Hence, if we denote by µ an infinitely divisible distribution having the

Lévy-Khintchine triplet (A,ν ,γ) above, then by (2.15), (2.18) and (2.19), we see that

eµ=L
 ∫ Gα,β (0)

0

G∗α,β (t)dX
(µ)
t

!
,

concluding that eµ ∈Ψα,β (D(Ψα,β )). This completes the proof.
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