ELECTRONIC COMMUNICATIONS in PROBABILITY

A NOTE ON NEW CLASSES OF INFINITELY DIVISIBLE DISTRIBUTIONS ON \mathbb{R}^{d}

MAKOTO MAEJIMA
Department of Mathematics, Faculty and Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
email: maejima@math.keio.ac.jp
GENTA NAKAHARA
Department of Mathematics, Faculty and Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
email: genta.nakahara@gmail.com

Submitted January 3, 2009, accepted in final form August 19, 2009
AMS 2000 Subject classification: 60E07
Keywords: infinitely divisible distribution on \mathbb{R}^{d}, stochastic integral representation.

Abstract

This paper introduces and studies a family of new classes of infinitely divisible distributions on \mathbb{R}^{d} with two parameters. Depending on parameters, these classes connect the Goldie-SteutelBondesson class and the class of generalized type G distributions, connect the Thorin class and the class M, and connect the class M and the class of generalized type G distributions. These classes are characterized by stochastic integral representations with respect to Lévy processes.

1 Introduction

Let $I\left(\mathbb{R}^{d}\right)$ be the class of all infinitely divisible distributions on $\mathbb{R}^{d} . \widehat{\mu}(z), z \in \mathbb{R}^{d}$, denotes the characteristic function of $\mu \in I\left(\mathbb{R}^{d}\right)$ and $|x|$ denotes the Euclidean norm of $x \in \mathbb{R}^{d}$. We use the Lévy-Khintchine triplet (A, v, γ) of $\mu \in I\left(\mathbb{R}^{d}\right)$ in the sense that

$$
\widehat{\mu}(z)=\exp \left\{-2^{-1}\langle z, A z\rangle+\mathrm{i}\langle\gamma, z\rangle+\int_{\mathbb{R}^{d}}\left(e^{\mathrm{i}\langle z, x\rangle}-1-\mathrm{i}\langle z, x\rangle\left(1+|x|^{2}\right)^{-1}\right) v(d x)\right\}, \quad z \in \mathbb{R}^{d}
$$

where A is a symmetric nonnegative-definite $d \times d$ matrix, $\gamma \in \mathbb{R}^{d}$ and v is a measure (called the Lévy measure) on \mathbb{R}^{d} satisfying

$$
v(\{0\})=0 \text { and } \int_{\mathbb{R}^{d}}\left(|x|^{2} \wedge 1\right) v(d x)<\infty
$$

The following polar decomposition is a basic result on the Lévy measure of $\mu \in I\left(\mathbb{R}^{d}\right)$. Let v be the Lévy measure of some $\mu \in I\left(\mathbb{R}^{d}\right)$ with $0<v\left(\mathbb{R}^{d}\right) \leq \infty$. Then there exist a measure λ on
$S=\left\{x \in \mathbb{R}^{d}:|x|=1\right\}$ with $0<\lambda(S) \leq \infty$ and a family $\left\{v_{\xi}: \xi \in S\right\}$ of measures on $(0, \infty)$ such that $v_{\xi}(B)$ is measurable in ξ for each $B \in \mathscr{B}((0, \infty)), 0<v_{\xi}((0, \infty)) \leq \infty$ for each $\xi \in S$, and

$$
\begin{equation*}
v(B)=\int_{S} \lambda(d \xi) \int_{0}^{\infty} 1_{B}(r \xi) v_{\xi}(d r), B \in \mathscr{B}\left(\mathbb{R}^{d} \backslash\{0\}\right) \tag{1.1}
\end{equation*}
$$

Here λ and $\left\{v_{\xi}\right\}$ are uniquely determined by v up to multiplication of measurable functions $c(\xi)$ and $\frac{1}{c(\xi)}$, respectively, with $0<c(\xi)<\infty$. We say that v has the polar decomposition $\left(\lambda, v_{\xi}\right)$ and v_{ξ} is called the radial component of v. (See, e.g., Barndorff-Nielsen et al. (2006), Lemma 2.1.) A real-valued function f defined on $(0, \infty)$ is said to be completely monotone if it has derivatives $f^{(n)}$ of all orders and for each $n=0,1,2, \ldots,(-1)^{n} f^{(n)}(r) \geq 0, r>0$. Bernstein's theorem says that f on $(0, \infty)$ is completely monotone if and only if there exists a (not necessarily finite) measure Q on $[0, \infty)$ such that $f(r)=\int_{[0, \infty)} e^{-r u} Q(d u)$. (See, e.g., Feller (1966), p.439.)
In this paper, we introduce and study the following classes.
Definition 1.1. (The class $J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$.) Let $\alpha<2$ and $\beta>0$. We say that $\mu \in I\left(\mathbb{R}^{d}\right)$ belongs to the class $J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$ if $v=0$ or $v \neq 0$ and, in case $v \neq 0, v_{\xi}$ in (1.1) has expression

$$
\begin{equation*}
v_{\xi}(d r)=r^{-\alpha-1} g_{\xi}\left(r^{\beta}\right) d r, r>0 \tag{1.2}
\end{equation*}
$$

where $g_{\xi}(x)$ is measurable in ξ, is completely monotone in x on $(0, \infty) \lambda$-a.e. ξ, not identically zero and $\lim _{x \rightarrow \infty} g_{\xi}(x)=0 \lambda$-a.e. ξ.
Remark 1.2. If $\alpha \leq 0$, then automatically $\lim _{x \rightarrow \infty} g_{\xi}(x)=0 \lambda$-a.e. ξ, because of the finiteness of $\int_{|x|>1} v(d x)$. So, when we consider the classes $B\left(\mathbb{R}^{d}\right), G\left(\mathbb{R}^{d}\right), T\left(\mathbb{R}^{d}\right)$ and $M\left(\mathbb{R}^{d}\right)$ appearing later, we do not have to write this condition explicitly.
Remark 1.3. The integrability condition of the Lévy measure $\int_{\mathbb{R}^{d}}\left(|x|^{2} \wedge 1\right) v(d x)<\infty$ implies that

$$
\begin{equation*}
\int_{0}^{\infty}\left(r^{2} \wedge 1\right) r^{-\alpha-1} g_{\xi}\left(r^{\beta}\right) d r<\infty, \lambda \text {-a.e. } \xi \tag{1.3}
\end{equation*}
$$

so we do not have to assume (1.3) in the definition. It is automatically satisfied.
Remark 1.4. The classes $J_{\alpha, 1}\left(\mathbb{R}^{d}\right), \alpha<2$, are studied in Sato (2006b).
Before mentioning our motivation of this study, we state a general result on the relations among the classes $J_{\alpha, \beta}\left(\mathbb{R}^{d}\right), \alpha<2, \beta>0$.
Theorem 1.5. (i) Fix $\alpha<2$ and let $0<\beta_{1}<\beta_{2}$. Then

$$
J_{\alpha, \beta_{1}}\left(\mathbb{R}^{d}\right) \subset J_{\alpha, \beta_{2}}\left(\mathbb{R}^{d}\right)
$$

(ii) Fix $\beta>0$ and let $\alpha_{1}<\alpha_{2}<2$. Then

$$
J_{\alpha_{2}, \beta}\left(\mathbb{R}^{d}\right) \subset J_{\alpha_{1}, \beta}\left(\mathbb{R}^{d}\right)
$$

Proof. For the proof of (i), we need the following lemma.
Lemma 1.6. (See Feller (1966), p.441, Corollary 2.) Let ϕ be a completely monotone function on $(0, \infty)$ and let ψ be a nonnegative function on $(0, \infty)$ whose derivative is completely monotone. Then $\phi(\psi)$ is completely monotone.

Let $h_{\xi}(x)=g_{\xi}\left(x^{\beta_{1} / \beta_{2}}\right), x>0$, where g_{ξ} is the one in (1.2), which is completely monotone on $(0, \infty)$. Since $\psi(x)=x^{\beta_{1} / \beta_{2}}, x>0$, has a completely monotone derivative, it follows from Lemma 1.6 that $h_{\xi}(x)$ is completely monotone. Suppose $\mu \in J_{\alpha, \beta_{1}}\left(\mathbb{R}^{d}\right)$ and let g_{ξ} be the one in (1.2). Since $g_{\xi}\left(r^{\beta_{1}}\right)=h_{\xi}\left(r^{\beta_{2}}\right)$, where h_{ξ} is completely monotone as has been just shown above, we have $\mu \in J_{\alpha, \beta_{2}}\left(\mathbb{R}^{d}\right)$. This proves (i).
To prove (ii), suppose that $\mu \in J_{\alpha_{2}, \beta}\left(\mathbb{R}^{d}\right)$. Then $v_{\xi}(d r)=r^{-\alpha_{2}-1} g_{\xi}\left(r^{\beta}\right) d r, r>0$, as in (1.2), where g_{ξ} is completely monotone on $(0, \infty) \lambda$-a.e. ξ. Note that

$$
h_{\xi}(x)=x^{-\left(\alpha_{2}-\alpha_{1}\right) / \beta} g_{\xi}(x)
$$

is completely monotone, because $x^{-p}, p>0$, is completely monotone and the product of two completely monotone functions is also completely monotone. We now have

$$
v_{\xi}(d r)=r^{-\alpha_{2}-1} g_{\xi}\left(r^{\beta}\right) d r=r^{-\alpha_{1}-1} h_{\xi}\left(r^{\beta}\right) d r
$$

and thus μ also belongs to $J_{\alpha_{1}, \beta}\left(\mathbb{R}^{d}\right)$. This proves (ii).
The motivations for studying the classes $J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$ are the following.
I. The classes connecting the Goldie-Steutel-Bondesson class and the class of generalized type G distributions.

Let $\alpha=-1$ and consider the classes $J_{-1, \beta}\left(\mathbb{R}^{d}\right), \beta>0$. A distribution $\mu \in I\left(\mathbb{R}^{d}\right)$ is said to be of generalized type G if v_{ξ} in (1.2) has expression $v_{\xi}(d r)=g_{\xi}\left(r^{2}\right) d r$ for some completely monotone function g_{ξ} on $(0, \infty)$, and denote by $G\left(\mathbb{R}^{d}\right)$ the class of all generalized type G distributions on \mathbb{R}^{d}. Let $I_{\text {sym }}\left(\mathbb{R}^{d}\right)=\left\{\mu \in I\left(\mathbb{R}^{d}\right): \mu\right.$ is symmetric in the sense that $\left.\mu(B)=\mu(-B), B \in \mathscr{B}\left(\mathbb{R}^{d}\right)\right\}$.
Remark 1.7. A distribution $\mu \in G\left(\mathbb{R}^{d}\right) \cap I_{\text {sym }}\left(\mathbb{R}^{d}\right)$ is a so-called type G distribution, which is, in one dimension, a variance mixture of the standard normal distribution with a positive infinitely divisible mixing distribution.

Remark 1.8. $G\left(\mathbb{R}^{d}\right)=J_{-1,2}\left(\mathbb{R}^{d}\right)$.
Remark 1.9. The Goldie-Steutel-Bondesson class denoted by $B\left(\mathbb{R}^{d}\right)$ is $J_{-1,1}\left(\mathbb{R}^{d}\right)$. (For details on $B\left(\mathbb{R}^{d}\right)$, see Barndorff-Nielsen et al. (2006).)

Therefore, by Theorem 1.5 (i) with $\alpha=-1$, for $1<\beta<2$,

$$
B\left(\mathbb{R}^{d}\right) \subset J_{-1, \beta}\left(\mathbb{R}^{d}\right) \subset G\left(\mathbb{R}^{d}\right)
$$

and hence $\left\{J_{-1, \beta}\left(\mathbb{R}^{d}\right), 1 \leq \beta \leq 2\right\}$ is a family of classes of infinitely divisible distributions on \mathbb{R}^{d} connecting $B\left(\mathbb{R}^{d}\right)$ and $G\left(\mathbb{R}^{d}\right)$ with continuous parameter $\beta \in[1,2]$.
II. The classes connecting the Thorin class and the class $M\left(\mathbb{R}^{d}\right)$.

Let $\alpha=0$ and consider the classes $J_{0, \beta}\left(\mathbb{R}^{d}\right), \beta>0$.
Remark 1.10. The Thorin class denoted by $T\left(\mathbb{R}^{d}\right)$ is $J_{0,1}\left(\mathbb{R}^{d}\right)$. (For details on $T\left(\mathbb{R}^{d}\right)$, see also Barndorff-Nielsen et al. (2006).)
Remark 1.11. The class $M\left(\mathbb{R}^{d}\right)$ is defined by $J_{0,2}\left(\mathbb{R}^{d}\right)$. (The class $M\left(\mathbb{R}^{d}\right) \cap I_{\text {sym }}\left(\mathbb{R}^{d}\right)$ is studied in Aoyama et al. (2008).)

By Theorem 1.5 (i) with $\alpha=0$, for $1<\beta<2$,

$$
T\left(\mathbb{R}^{d}\right) \subset J_{0, \beta}\left(\mathbb{R}^{d}\right) \subset M\left(\mathbb{R}^{d}\right)
$$

and hence $\left\{J_{0, \beta}\left(\mathbb{R}^{d}\right), 1 \leq \beta \leq 2\right\}$ is a family of classes of infinitely divisible distributions on \mathbb{R}^{d} connecting $T\left(\mathbb{R}^{d}\right)$ and $M\left(\mathbb{R}^{d}\right)$ with continuous parameter $\beta \in[1,2]$.
III. The classes connecting the classes $M\left(\mathbb{R}^{d}\right)$ and $G\left(\mathbb{R}^{d}\right)$.

Let $\beta=2$ and consider the classes $J_{\alpha, 2}\left(\mathbb{R}^{d}\right), \alpha<2$. Then, by Theorem 1.5 (ii) with $\beta=2$, for $-1 \leq \alpha \leq 0$

$$
M\left(\mathbb{R}^{d}\right) \subset J_{\alpha, 2}\left(\mathbb{R}^{d}\right) \subset G\left(\mathbb{R}^{d}\right)
$$

and hence $\left\{J_{\alpha, 2}\left(\mathbb{R}^{d}\right),-1 \leq \alpha \leq 0\right\}$ is a family of classes of infinitely divisible distributions on \mathbb{R}^{d} connecting $M\left(\mathbb{R}^{d}\right)$ and $G\left(\mathbb{R}^{d}\right)$ with continuous parameter $\alpha \in[-1,0]$.
IV. The classes connecting the classes $T\left(\mathbb{R}^{d}\right)$ and $B\left(\mathbb{R}^{d}\right)$.

Let $\beta=1$ and consider the classes $J_{\alpha, 1}\left(\mathbb{R}^{d}\right), \alpha<2$. Then, by Theorem 1.5 (ii) with $\beta=1$, for $-1 \leq \alpha \leq 0$

$$
T\left(\mathbb{R}^{d}\right) \subset J_{\alpha, 1}\left(\mathbb{R}^{d}\right) \subset B\left(\mathbb{R}^{d}\right)
$$

and hence $\left\{J_{\alpha, 1}\left(\mathbb{R}^{d}\right),-1 \leq \alpha \leq 0\right\}$ is a family of classes of infinitely divisible distributions on \mathbb{R}^{d} connecting $T\left(\mathbb{R}^{d}\right)$ and $B\left(\mathbb{R}^{d}\right)$ with continuous parameter $\alpha \in[-1,0]$. (This fact is already mentioned in Sato (2006b).)

2 Stochastic integral characterizations for $J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$

The purpose of this paper is to characterize the classes $J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$ by stochastic integral representations. For that, we first define mappings from $I\left(\mathbb{R}^{d}\right)$ into $I\left(\mathbb{R}^{d}\right)$ and investigate the domains of those mappings.
We introduce the following function $G_{\alpha, \beta}(u)$. For $\alpha<2$ and $\beta>0$, let

$$
G_{\alpha, \beta}(u)=\int_{u}^{\infty} x^{-\alpha-1} e^{-x^{\beta}} d x, \quad u \geq 0
$$

and let $G_{\alpha, \beta}^{*}(t)$ be the inverse function of $G_{\alpha, \beta}(u)$, that is, $t=G_{\alpha, \beta}(u)$ if and only if $u=G_{\alpha, \beta}^{*}(t)$. Let $\left\{X_{t}^{(\mu)}\right\}$ be a Lévy process on \mathbb{R}^{d} with the law $\mu \in I\left(\mathbb{R}^{d}\right)$ at $t=1$. We consider the stochastic integrals

$$
\int_{0}^{G_{\alpha, \beta}(0)} G_{\alpha, \beta}^{*}(t) d X_{t}^{(\mu)}, \quad \text { where } \quad G_{\alpha, \beta}(0)= \begin{cases}\beta^{-1} \Gamma\left(-\alpha \beta^{-1}\right), & \text { if } \alpha<0 \\ \infty, & \text { if } \alpha \geq 0\end{cases}
$$

As to the definition of stochastic integrals of non-random measurable functions f which are $\int_{0}^{T} f(t) d X_{t}^{(\mu)}, T<\infty, \mu \in I\left(\mathbb{R}^{d}\right)$, we follow the definition in Sato (2004, 2006a), whose idea is to define a stochastic integral with respect to \mathbb{R}^{d}-valued independently scatted random measure induced by a Lévy process on \mathbb{R}^{d}. The improper stochastic integral $\int_{0}^{\infty} f(t) d X_{t}^{(\mu)}$ is defined as the
limit in probability of $\int_{0}^{T} f(t) d X_{t}^{(\mu)}$ as $T \rightarrow \infty$ whenever the limit exists. See also Sato (2006b). In the following, $\mathscr{L}(X)$ stands for "the law of X ". If we write

$$
\Psi_{\alpha, \beta}(\mu)=\mathscr{L}\left(\int_{0}^{G_{\alpha, \beta}(0)} G_{\alpha, \beta}^{*}(t) d X_{t}^{(\mu)}\right)
$$

then $\Psi_{\alpha, \beta}$ can be considered as a mapping with domain $\mathfrak{D}\left(\Psi_{\alpha, \beta}\right)$ being the class of $\mu \in I\left(\mathbb{R}^{d}\right)$ for which $\int_{0}^{G_{\alpha, \beta}(0)} G_{\alpha, \beta}^{*}(t) d X_{t}^{(\mu)}$ is definable.

Theorem 2.1. If $\alpha<0$, then $\mathfrak{D}\left(\Psi_{\alpha, \beta}\right)=I\left(\mathbb{R}^{d}\right)$.
Proof. By Proposition 3.4 in Sato (2006a), since $G_{\alpha, \beta}(0)<\infty$ for $\alpha<0$, if $\int_{0}^{G_{\alpha, \beta}(0)}\left(G_{\alpha, \beta}^{*}(t)\right)^{2} d t<\infty$, then $\int_{0}^{G_{\alpha, \beta}(0)} G_{\alpha, \beta}^{*}(t) d X_{t}^{(\mu)}$ is well-defined. Actually,

$$
\int_{0}^{G_{\alpha, \beta}(0)}\left(G_{\alpha, \beta}^{*}(t)\right)^{2} d t=-\int_{0}^{\infty} u^{2} d G_{\alpha, \beta}(u)=\int_{0}^{\infty} u^{1-\alpha} e^{-u^{\beta}} d u<\infty
$$

To determine the domain of $\Psi_{\alpha, \beta}, \alpha \geq 0$, we need the following result by Sato (2006b). In the following, $a(t) \sim b(t)$ means that $\lim _{t \rightarrow \infty} a(t) / b(t)=1, a(t) \asymp b(t)$ means that $0<$ $\liminf _{t \rightarrow \infty} a(t) / b(t) \leq \limsup \operatorname{sim}_{t \rightarrow \infty} a(t) / b(t)<\infty$ and $I_{\log }\left(\mathbb{R}^{d}\right)=\left\{\mu \in I\left(\mathbb{R}^{d}\right):\right.$ $\left.\int_{\mathbb{R}^{d}} \log ^{+}|x| \mu(d x)<\infty\right\}$, where $\log ^{+}|x|=(\log |x|) \vee 0$.
Proposition 2.2. (Sato (2006b), Theorems 2.4 and 2.8.) Let $p \geq 0$. Denote

$$
\Phi_{\varphi_{p}}(\mu)=\mathscr{L}\left(\int_{0}^{\infty} \varphi_{p}(t) d X_{t}^{(\mu)}\right)
$$

Suppose that φ_{p} is locally square-integrable with respect to Lebesgue measure on $[0, \infty)$ and satisfies
(1) $\varphi_{0}(t) \asymp e^{-c t}$ as $t \rightarrow \infty$ with some $c>0$,
(2) $\varphi_{p}(t) \asymp t^{-1 / p}$ as $t \rightarrow \infty$ for $p \in(0,1) \cup(1, \infty)$,
(3) $\varphi_{1}(t) \asymp t^{-1}$ as $t \rightarrow \infty$ and for some $t_{0}>0, c>0$ and $\psi(t), \varphi_{1}(t)=t^{-1} \psi(t)$ for $t>t_{0}$ with $\int_{t_{0}}^{\infty} t^{-1} \mid \psi(t)-$ $c \mid d t<\infty$.
Then
(i) If $p=0$, then $\mathfrak{D}\left(\Phi_{\varphi_{0}}\right)=I_{\log }\left(\mathbb{R}^{d}\right)$.
(ii) If $0<p<1$, then $\mathfrak{D}\left(\Phi_{\varphi_{p}}\right)=\left\{\mu \in I\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}}|x|^{p} \mu(d x)<\infty\right\}=: I_{p}\left(\mathbb{R}^{d}\right)$.
(iii) If $p=1$, then $\mathfrak{D}\left(\Phi_{\varphi_{1}}\right)=\left\{\mu \in I\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}}|x| \mu(d x)<\infty\right.$
$\lim _{T \rightarrow \infty} \int_{t_{0}}^{T} t^{-1} d t \int_{|x|>t} x v(d x)$ exists in $\left.\mathbb{R}^{d}, \int_{\mathbb{R}^{d}} x \mu(d x)=0\right\}=: I_{1}^{*}\left(\mathbb{R}^{d}\right)$.
(iv) If $1<p<2$, then $\mathfrak{D}\left(\Phi_{\varphi_{p}}\right)=\left\{\mu \in I\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}}|x|^{p} \mu(d x)<\infty, \int_{\mathbb{R}^{d}} x \mu(d x)=0\right\}$
$=: I_{p}^{0}\left(\mathbb{R}^{d}\right)$.
(v) If $p \geq 2$, then $\mathfrak{D}\left(\Phi_{\varphi_{p}}\right)=\left\{\delta_{0}\right\}$, where δ_{0} is the distribution with the total mass at 0 .

We apply Proposition 2.2 to our problem. First we note that when $\alpha<2, G_{\alpha, \beta}^{*}(t)$ is locally squareintegrable with respect to Lebesgue measure on $[0, \infty)$.

Theorem 2.3. (Case $\alpha=0$.) $\mathfrak{D}\left(\Psi_{0, \beta}\right)=I_{\log }\left(\mathbb{R}^{d}\right)$.
Proof. Note that $t\left(=G_{\alpha, \beta}(u)\right) \uparrow \infty$ if and only if $u\left(=G_{\alpha, \beta}^{*}(t)\right) \downarrow 0$, when $\alpha \geq 0$. It is enough to show that for some $C_{1} \in(0, \infty), u \sim C_{1} e^{-t}$ as $t \rightarrow \infty$. We have

$$
\begin{aligned}
\frac{u}{e^{-t}} & =\frac{u}{\exp \left\{-G_{0, \beta}(u)\right\}}=\exp \left\{G_{0, \beta}(u)+\log u\right\}=\exp \left\{\int_{u}^{\infty} x^{-1} e^{-x^{\beta}} d x+\log u\right\} \\
& =\exp \left\{\beta^{-1} \int_{u^{\beta}}^{\infty} y^{-1} e^{-y} d y-\beta^{-1} \int_{u^{\beta}}^{1} y^{-1} d y\right\} \\
& =\exp \left\{\beta^{-1} \int_{u^{\beta}}^{1} y^{-1}\left(e^{-y}-1\right) d y+\beta^{-1} \int_{1}^{\infty} y^{-1} e^{-y} d y\right\} \rightarrow C_{1},
\end{aligned}
$$

say, as $u \downarrow 0$. Hence $u \sim C_{1} e^{-t}$ as $t \rightarrow \infty$, and the condition (1) of Proposition 2.2 is satisfied. Thus Proposition 2.2 (i) gives us the assertion.

Theorem 2.4. (Case $\alpha \in(0, \infty)$.)
(i) If $0<\alpha<1$, then $\mathfrak{D}\left(\Psi_{\alpha, \beta}\right)=I_{\alpha}\left(\mathbb{R}^{d}\right)$.
(ii) If $\alpha=1$, then $\mathfrak{D}\left(\Psi_{1, \beta}\right)=I_{1}^{*}\left(\mathbb{R}^{d}\right)$.
(iii) If $1<\alpha<2$, then $\mathfrak{D}\left(\Psi_{\alpha, \beta}\right)=I_{\alpha}^{0}\left(\mathbb{R}^{d}\right)$.
(iv) If $\alpha \geq 2$, then $\mathfrak{D}\left(\Psi_{\alpha, \beta}\right)=\left\{\delta_{0}\right\}$.

Proof. (i) and (iii). It is enough to show that $u \sim C_{2} t^{-1 / \alpha}$ as $t \rightarrow \infty$ for some $C_{2} \in(0, \infty)$. We have, as $t \rightarrow \infty$ (equivalently $u \downarrow 0$), for some $C_{3} \in(0, \infty)$,

$$
\frac{u}{t^{-1 / \alpha}}=\frac{u}{\left(G_{\alpha, \beta}(u)\right)^{-1 / \alpha}}=\frac{u}{\left(\beta^{-1} \int_{u^{\beta}}^{\infty} y^{-(\alpha / \beta)-1} e^{-y} d y\right)^{-1 / \alpha}} \sim \frac{u}{\left(C_{3} u^{-\alpha}\right)^{-1 / \alpha}}=C_{3}^{1 / \alpha}=: C_{2}
$$

and the condition (2) of Proposition 2.3 is satisfied. Thus Proposition 2.3 (ii) and (iv) give us the assertions.
(ii). Suppose $\beta \neq 1$. (The case $\beta=1$ is proved in Sato (2006b).) We first have

$$
\begin{aligned}
& G_{1, \beta}(u)=\int_{u}^{\infty} x^{-2} e^{-x^{\beta}} d x=\int_{u}^{\infty} x^{-2} d x+\int_{u}^{\infty} x^{-2}\left(e^{-x^{\beta}}-1\right) d x \\
& \quad=\int_{u}^{\infty} x^{-2} d x+\int_{u}^{1} x^{-2}\left(e^{-x^{\beta}}-1+x^{\beta}\right) d u-\int_{u}^{1} x^{-2+\beta} d x+\int_{1}^{\infty} x^{-2}\left(e^{-x^{\beta}}-1\right) d x \\
& \quad=u^{-1}+(\beta-1)^{-1} u^{-1+\beta}+O(1), u \downarrow 0 .
\end{aligned}
$$

Thus

$$
t=G_{1, \beta}^{*}(t)^{-1}+(\beta-1)^{-1} G_{1, \beta}^{*}(t)^{-1+\beta}+O(1), t \rightarrow \infty
$$

Therefore,

$$
\begin{equation*}
G_{1, \beta}^{*}(t)=t^{-1}+(\beta-1)^{-1} t^{-1} G_{1, \beta}^{*}(t)^{\beta}+O\left(t^{-1} G_{1, \beta}^{*}(t)\right), t \rightarrow \infty \tag{2.1}
\end{equation*}
$$

We have shown in (i) and (iii) that $u \sim C_{2} t^{-1 / \alpha}$, but this is also true for $\alpha=1$. Hence

$$
\begin{equation*}
u=G_{1, \beta}^{*}(t)=C_{2} t^{-1}(1+o(1)), t \rightarrow \infty \tag{2.2}
\end{equation*}
$$

By substituting (2.2) into (2.1), we have

$$
\begin{aligned}
G_{1, \beta}^{*}(t) & =t^{-1}+C_{2}^{\beta}(\beta-1)^{-1} t^{-1-\beta}+t^{-1} a(t), t \rightarrow \infty \\
& =t^{-1}\left(1+C_{2}^{\beta}(\beta-1)^{-1} t^{-\beta}+a(t)\right), t \rightarrow \infty
\end{aligned}
$$

where

$$
a(t)= \begin{cases}o\left(t^{-\beta}\right), t \rightarrow \infty, & \text { when } 0<\beta<1 \\ O\left(t^{-1}\right), t \rightarrow \infty, & \text { when } \beta>1\end{cases}
$$

Thus

$$
G_{1, \beta}^{*}(t)=t^{-1} \psi(t)
$$

where

$$
\psi(t):=1+C_{2}^{\beta}(\beta-1)^{-1} t^{-\beta}+a(t)
$$

and

$$
\int_{1}^{\infty} t^{-1}|\psi(t)-1| d t=\int_{1}^{\infty} t^{-1}\left|C_{2}^{\beta}(\beta-1)^{-1} t^{-\beta}+a(t)\right| d t<\infty
$$

Thus the condition (3) of Proposition 2.2 is satisfied with $t_{0}=1$ and $c=1$, and Proposition 2.2 (iii) gives us the assertion (iii).
(iv) The same as in Sato (2006b).

We now calculate the Lévy measure of $\widetilde{\mu}=\Psi_{\alpha, \beta}(\mu)$, and note that the mapping $\Psi_{\alpha, \beta}$ is one-to-one.
Lemma 2.5. Let $\alpha<2$ and $\beta>0$. Let $\mu \in \mathfrak{D}\left(\Psi_{\alpha, \beta}\right)$ and $\widetilde{\mu}=\Psi_{\alpha, \beta}(\mu)$, and let v and \widetilde{v} be the Lévy measures of μ and $\widetilde{\mu}$, respectively.
(1) We have

$$
\begin{equation*}
\widetilde{v}(B)=\int_{0}^{\infty} v\left(s^{-1} B\right) s^{-\alpha-1} e^{-s^{\beta}} d s, \quad B \in \mathscr{B}\left(\mathbb{R}^{d} \backslash\{0\}\right) . \tag{2.3}
\end{equation*}
$$

(2) If $v \neq 0$, and v has polar decomposition $\left(\lambda, v_{\xi}\right)$, then a polar decomposition of $\widetilde{v}=\left(\tilde{\lambda}, \tilde{v}_{\xi}\right)$ is given by $\widetilde{\lambda}=\lambda$ and $\widetilde{v}_{\xi}(d r)=r^{-\alpha-1} \widetilde{g}_{\xi}\left(r^{\beta}\right) d r$, where

$$
\begin{equation*}
\tilde{g}_{\xi}(u)=\int_{0}^{\infty} r^{\alpha} e^{-u / r^{\beta}} v_{\xi}(d r) \tag{2.4}
\end{equation*}
$$

(3) \tilde{g}_{ξ} in (2.4) satisfies the requirements of g_{ξ} in (1.2).

Proof. Suppose $\mu \in \mathfrak{D}\left(\Psi_{\alpha, \beta}\right)$ and $\widetilde{\mu}=\Psi_{\alpha, \beta}(\mu)$.
(1) We see that (by using Proposition 2.6 of Sato (2006b)),

$$
\begin{aligned}
\widetilde{v}(B) & =\int_{0}^{G_{\alpha, \beta}(0)} d t \int_{\mathbb{R}^{d}} 1_{B}\left(x G_{\alpha, \beta}^{*}(t)\right) v(d x)=-\int_{0}^{\infty} d G_{\alpha, \beta}(s) \int_{\mathbb{R}^{d}} 1_{B}(x s) v(d x) \\
& =\int_{0}^{\infty} s^{-\alpha-1} e^{-s^{\beta}} d s \int_{\mathbb{R}^{d}} 1_{s^{-1} B}(x) v(d x)=\int_{0}^{\infty} v\left(s^{-1} B\right) s^{-\alpha-1} e^{-s^{\beta}} d s,
\end{aligned}
$$

which is (2.3).
(2) Next assume that $v \neq 0$ and v has polar decomposition $\left(\lambda, v_{\xi}\right)$. Then, we have

$$
\begin{aligned}
\widetilde{v}(B) & =\int_{0}^{\infty} s^{-\alpha-1} e^{-s^{\beta}} d s \int_{S} \lambda(d \xi) \int_{0}^{\infty} 1_{s^{-1} B}(r \xi) v_{\xi}(d r) \\
& =\int_{S} \lambda(d \xi) \int_{0}^{\infty} v_{\xi}(d r) r^{-1} \int_{0}^{\infty}(u / r)^{-\alpha-1} e^{-(u / r)^{\beta}} 1_{B}(u \xi) d u \\
& =\int_{S} \lambda(d \xi) \int_{0}^{\infty} 1_{B}(u \xi) u^{-\alpha-1} \widetilde{g}_{\xi}\left(u^{\beta}\right) d u
\end{aligned}
$$

where $\tilde{\lambda}=\lambda$ and

$$
\begin{equation*}
\tilde{g}_{\xi}(u)=\int_{0}^{\infty} r^{\alpha} e^{-u / r^{\beta}} v_{\xi}(d r) \tag{2.5}
\end{equation*}
$$

which is (2.4). The finiteness of \tilde{g}_{ξ} is trivial for $\alpha \leq 0$. For $\alpha>0$, since $\mu \in \mathfrak{D}\left(\Psi_{\alpha, \beta}\right)$, we have that $\int_{\mathbb{R}^{d}}|x|^{\alpha} \mu(d x)<\infty$. When $\alpha>0$, note that $\int_{\mathbb{R}^{d}}|x|^{\alpha} \mu(d x)<\infty$ implies $\int_{1}^{\infty} r^{\alpha} v_{\xi}(d r)<\infty$, (see, e.g. Sato (1999), Theorem 25.3). Hence the integral \widetilde{g}_{ξ} exists.
(3) If we put

$$
\widetilde{Q}(B)=\int_{0}^{\infty} r^{\alpha} 1_{B}\left(r^{-\beta}\right) v_{\xi}(d r)
$$

then it follows that $\widetilde{g}_{\xi}(u)=\int_{0}^{\infty} e^{-u y} \widetilde{Q}(d y)$, and thus \widetilde{g}_{ξ} is completely monotone by Bernstein's theorem. If $\alpha \leq 0$, then automatically $\lim _{u \rightarrow \infty} \widetilde{g}_{\xi}(u)=0 \lambda$-a.e. ξ, since

$$
\infty>\int_{|x|>1} \widetilde{v}(d x)=\int_{S} \lambda(d \xi) \int_{1}^{\infty} u^{-\alpha-1} \widetilde{g}_{\xi}\left(u^{\beta}\right) d u
$$

When $\alpha>0$, since $\int_{1}^{\infty} r^{\alpha} v_{\xi}(d r)<\infty$, the assertion that $\lim _{u \rightarrow \infty} \widetilde{g}_{\xi}(u)=0 \lambda$-a.e. ξ also follows from (2.5) by the dominated convergence theorem.
The proof of the lemma is thus concluded.
Remark 2.6. (2.3) can be written as, by introducing a transformation $\Upsilon_{\alpha, \beta}$ of Lévy measures as $\widetilde{v}=\Upsilon_{\alpha, \beta}(v)$. Then this $\Upsilon_{\alpha, \beta}$ is a generalized Upsilon transformation discussed in Barndorff-Nielsen et al. (2008) with the dilation measure $\tau(d s)=s^{-\alpha-1} e^{-s^{\beta}} d s$.

Theorem 2.7. For each $\alpha<2$ and $\beta>0$, the mapping $\Psi_{\alpha, \beta}$ is one-to-one.
The proof is carried out in the same way as for Proposition 4.1 of Sato (2006b).
We are now ready to discuss stochastic integral characterizations of the classes $J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$, by showing that $\left.J_{\alpha, \beta} \mathbb{R}^{d}\right)$ is the range of the mapping $\Psi_{\alpha, \beta}$. However, in this paper, we restrict ourselves to the case $\alpha<1$, because in the case $1 \leq \alpha<2$, $J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$ is strictly bigger than the range $\Psi_{\alpha, \beta}\left(\mathfrak{D}\left(\Psi_{\alpha, \beta}\right)\right)$ and more deep calculations would be needed. (See, e.g., Sato (2006b) and Maejima et al. (2009).) Also, the classes appearing in our motivation of introducing the classes $J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$ are restricted to the case $\alpha \leq 0$.

Theorem 2.8. Let $\alpha<1$ and $\beta>0$. The range of the mapping $\Psi_{\alpha, \beta}$ equals $J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$, that is,

$$
J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)=\Psi_{\alpha, \beta}\left(\mathfrak{D}\left(\Psi_{\alpha, \beta}\right)\right) .
$$

Remark 2.9. This theorem is already known for $\alpha=-1,0$ and $\beta=1$ in Theorems A and C of Barndorff-Nielsen et al. (2006) and for $\alpha<1$ and $\beta=1$ in Theorem 4.2 of Sato (2006b).

Proof of Theorem 2.8. We first show that $\Psi_{\alpha, \beta}\left(\mathfrak{D}\left(\Psi_{\alpha, \beta}\right)\right) \subset J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$. Suppose $\mu \in \mathfrak{D}\left(\Psi_{\alpha, \beta}\right)$ and $\widetilde{\mu}=\Psi_{\alpha, \beta}(\mu)$, and let v and \widetilde{v} be the Lévy measures of μ and $\widetilde{\mu}$, respectively. Thus, if $v=0$, then $\widetilde{v}=0$ and $\widetilde{\mu} \in J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$. When $v \neq 0$, it follows from Lemma 2.5 that $\widetilde{\mu} \in J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$.
Next we show that $J_{\alpha, \beta}\left(\mathbb{R}^{d}\right) \subset \Psi_{\alpha, \beta}\left(\mathfrak{D}\left(\Psi_{\alpha, \beta}\right)\right)$. Suppose $\tilde{\mu} \in J_{\alpha, \beta}\left(\mathbb{R}^{d}\right)$ with the Lévy-Khintchine triplet $(\widetilde{A}, \tilde{v}, \tilde{\gamma})$. If $\tilde{v}=0$, then $\widetilde{\mu}=\Psi_{\alpha, \beta}(\mu)$ for some $\mu \in \mathfrak{D}\left(\Psi_{\alpha, \beta}\right)$. Thus, suppose that $\widetilde{v} \neq 0$. Then, in a polar decomposition $\left(\tilde{\lambda}, \tilde{v}_{\xi}\right)$ of \widetilde{v}, we have $\widetilde{v}_{\xi}(d r)=r^{-\alpha-1} \widetilde{g}_{\xi}\left(r^{\beta}\right) d r$, where $\tilde{g}_{\xi}(v)$ is completely monotone in $v>0 \widetilde{\lambda}$-a.e. ξ, and is measurable in ξ. Thus by Bernstein's theorem, there are measures \widetilde{Q}_{ξ} on $[0, \infty)$ such that

$$
\tilde{g}_{\xi}(v)=\int_{[0, \infty)} e^{-v u} \widetilde{Q}_{\xi}(d u)
$$

In general, \widetilde{Q}_{ξ} is a measure on $[0, \infty)$, but since $\lim _{v \rightarrow \infty} \widetilde{g}_{\xi}(v)=0 \widetilde{\lambda}^{\text {-a.e. }} \xi, \widetilde{Q}_{\xi}$ does not have a point mass at 0 , and hence \widetilde{Q}_{ξ} is a measure on $(0, \infty)$. We see that

$$
\begin{align*}
\tilde{v}(B) & =\int_{S} \tilde{\lambda}(d \xi) \int_{0}^{\infty} 1_{B}(r \xi) r^{-\alpha-1} \widetilde{g}_{\xi}\left(r^{\beta}\right) d r \tag{2.6}\\
& =\int_{S} \tilde{\lambda}(d \xi) \int_{0}^{\infty} 1_{B}(r \xi) r^{-\alpha-1} d r \int_{0}^{\infty} e^{-r^{\beta}} \widetilde{Q}_{\xi}(d u) .
\end{align*}
$$

Since $\int_{\mathbb{R}^{d}}\left(|x|^{2} \wedge 1\right) \widetilde{v}(d x)<\infty$, we have

$$
\int_{S} \tilde{\lambda}(d \xi) \int_{0}^{1} r^{1-\alpha} d r \int_{1}^{\infty} e^{-r^{\beta} u} \widetilde{Q}_{\xi}(d u)+\int_{S} \tilde{\lambda}(d \xi) \int_{1}^{\infty} r^{-\alpha-1} d r \int_{0}^{1} e^{-r^{\beta} u} \widetilde{Q}_{\xi}(d u)<\infty
$$

Hence, we have, by the change of variables $r \rightarrow v$ by $r^{\beta} u=v$,

$$
\begin{aligned}
& \int_{0}^{1} r^{1-\alpha} d r \int_{1}^{\infty} e^{-r^{\beta} u} \widetilde{Q}_{\xi}(d u)=\int_{1}^{\infty} \widetilde{Q}_{\xi}(d u) \int_{0}^{1} r^{1-\alpha} e^{-r^{\beta} u} d r \\
& \quad=\beta^{-1} \int_{1}^{\infty} u^{(\alpha-2) / \beta} \widetilde{Q}_{\xi}(d u) \int_{0}^{u} v^{-1+(2-\alpha) / \beta} e^{-v} d v \geq C_{4} \int_{1}^{\infty} u^{(\alpha-2) / \beta} \widetilde{Q}_{\xi}(d u)
\end{aligned}
$$

where

$$
C_{4}=\beta^{-1} \int_{0}^{1} v^{-1+(2-\alpha) / \beta} e^{-v} d v \in(0, \infty)
$$

Thus

$$
\begin{equation*}
\int_{S} \tilde{\lambda}(d \xi) \int_{1}^{\infty} u^{(\alpha-2) / \beta} \widetilde{Q}_{\xi}(d u)<\infty \tag{2.7}
\end{equation*}
$$

We also have for any $\alpha<1$,

$$
\begin{equation*}
\int_{1}^{\infty} r^{-\alpha-1} d r \int_{0}^{1} e^{-r^{\beta} u} \widetilde{Q}_{\xi}(d u)=\int_{0}^{1} \widetilde{Q}_{\xi}(d u) \int_{1}^{\infty} r^{-\alpha-1} e^{-r^{\beta} u} d r \tag{2.8}
\end{equation*}
$$

$$
=\beta^{-1} \int_{0}^{1} u^{\alpha / \beta} \widetilde{Q}_{\xi}(d u) \int_{u}^{\infty} v^{-1-(\alpha / \beta)} e^{-v} d v \geq C_{5} \int_{0}^{1} u^{\alpha / \beta} \widetilde{Q}_{\xi}(d u),
$$

where

$$
C_{5}=\beta^{-1} \int_{1}^{\infty} v^{-1-(\alpha / \beta)} e^{-v} d v \in(0, \infty) .
$$

Thus

$$
\begin{equation*}
\int_{S} \tilde{\lambda}(d \xi) \int_{0}^{1} u^{\alpha / \beta} \widetilde{Q}_{\xi}(d u)<\infty \tag{2.9}
\end{equation*}
$$

In addition, if $\alpha=0$, (2.8) is turned out to be

$$
\begin{aligned}
& \int_{1}^{\infty} r^{-1} d r \int_{0}^{1} e^{-r^{\beta} u} \widetilde{Q}_{\xi}(d u)=\beta^{-1} \int_{0}^{1} \widetilde{Q}_{\xi}(d u) \int_{u}^{1} v^{-1} e^{-v} d v \\
& \quad \geq(\beta e)^{-1} \int_{0}^{1} \widetilde{Q}_{\xi}(d u) \int_{u}^{1} v^{-1} d v=(\beta e)^{-1} \int_{0}^{1}(-\log u) \widetilde{Q}_{\xi}(d u)
\end{aligned}
$$

Thus, when $\alpha=0$,

$$
\begin{equation*}
\int_{S} \widetilde{\lambda}(d \xi) \int_{0}^{1}(-\log u) \widetilde{Q}_{\xi}(d u)<\infty \tag{2.10}
\end{equation*}
$$

Furthermore,

$$
\int_{1}^{\infty} r^{-\alpha-1} d r \int_{0}^{1} e^{-r^{\beta} u} \widetilde{Q}(d u) \geq \int_{1}^{\infty} r^{-\alpha-1} e^{-r^{\beta}} d r \int_{0}^{1} \widetilde{Q}_{\xi}(d u)=C_{6} \int_{0}^{1} \widetilde{Q}_{\xi}(d u)
$$

where

$$
C_{6}:=\int_{1}^{\infty} r^{-\alpha-1} e^{-r^{\beta}} d r \in(0, \infty) .
$$

Thus we have

$$
\begin{equation*}
\int_{S} \tilde{\lambda}(d \xi) \int_{0}^{1} \widetilde{Q}_{\xi}(d r)<\infty \tag{2.11}
\end{equation*}
$$

Define

$$
\begin{equation*}
v_{\xi}(B)=\int_{0}^{\infty} u^{\alpha / \beta} 1_{B}\left(u^{-1 / \beta}\right) \widetilde{Q}_{\xi}(d u), \quad B \in \mathscr{B}((0, \infty)) . \tag{2.12}
\end{equation*}
$$

Then, it follows from (2.7) and (2.9) that

$$
\begin{align*}
\int_{S} \tilde{\lambda}(d \xi) & \int_{0}^{\infty}\left(r^{2} \wedge 1\right) v_{\xi}(d r)=\int_{S} \tilde{\lambda}(d \xi) \int_{0}^{\infty} u^{\alpha / \beta}\left(u^{-2 / \beta} \wedge 1\right) \widetilde{Q}_{\xi}(d u) \tag{2.13}\\
& =\int_{S} \tilde{\lambda}(d \xi)\left(\int_{0}^{1} u^{\alpha / \beta} \widetilde{Q}_{\xi}(d u)+\int_{1}^{\infty} u^{(\alpha-2) / \beta} \widetilde{Q}_{\xi}(d u)\right)<\infty
\end{align*}
$$

Define v by

$$
\begin{equation*}
v(B)=\int_{S} \tilde{\lambda}(d \xi) \int_{0}^{\infty} 1_{B}(r \xi) v_{\xi}(d r) \tag{2.14}
\end{equation*}
$$

Then, by (2.13), v is the Lévy measure of some infinitely divisible distribution μ, and μ belongs to $\mathfrak{D}\left(\Psi_{\alpha, \beta}\right)$ and satisfies

$$
\begin{equation*}
\widetilde{v}(B)=\int_{0}^{G_{\alpha, \beta}(0)} v\left(\left(G_{\alpha, \beta}^{*}(t)\right)^{-1} B\right) d t \tag{2.15}
\end{equation*}
$$

To show (2.15), by (2.6), (2.12) and (2.14), we have

$$
\begin{aligned}
\widetilde{v}(B) & =\int_{S} \tilde{\lambda}(d \xi) \int_{0}^{\infty} 1_{B}(r \xi) r^{-\alpha-1} d r \int_{0}^{\infty} e^{-r^{\beta}} u \widetilde{Q}_{\xi}(d u) \\
& =\int_{S} \tilde{\lambda}(d \xi) \int_{0}^{\infty} 1_{B}\left(u^{-1 / \beta} s \xi\right) s^{-\alpha-1} e^{-s^{\beta}} d s \int_{0}^{\infty} u^{\alpha / \beta} \widetilde{Q}_{\xi}(d u) \\
& =\int_{0}^{\infty} s^{-\alpha-1} e^{-s^{\beta}} d s \int_{S} \tilde{\lambda}(d \xi) \int_{0}^{\infty} 1_{B}\left(u^{-1 / \beta} s \xi\right) u^{\alpha / \beta} \widetilde{Q}_{\xi}(d u) \\
& =\int_{0}^{\infty} s^{-\alpha-1} e^{-s^{\beta}} d s \int_{S} \tilde{\lambda}(d \xi) \int_{0}^{\infty} 1_{B}(r s \xi) v_{\xi}(d r) \\
& =\int_{0}^{\infty} s^{-\alpha-1} e^{-s^{\beta}} d s \int_{S} \tilde{\lambda}(d \xi) \int_{0}^{\infty} 1_{s^{-1} B}(r \xi) v_{\xi}(d r) \\
& =\int_{0}^{\infty} v\left(s^{-1} B\right) s^{-\alpha-1} e^{-s^{\beta}} d s=-\int_{0}^{\infty} v\left(s^{-1} B\right) d G_{\alpha, \beta}(s) \\
& =\int_{0}^{G_{\alpha, \beta}(0)} v\left(\left(G_{\alpha, \beta}^{*}(t)\right)^{-1} B\right) d t .
\end{aligned}
$$

To show that $\mu \in \mathfrak{D}\left(\Psi_{\alpha, \beta}\right)$, it is enough to show that $\int_{|x|>1}|x|^{\alpha} v(d x)<\infty$, which is if and only if $\mu \in I_{\alpha}\left(\mathbb{R}^{d}\right)$, when $0<\alpha<1$, and $\int_{|x|>1} \log |x| v(d x)<\infty$, which is if and only if $\mu \in I_{\log }\left(\mathbb{R}^{d}\right)$, when $\alpha=0$, (see Sato (1999), Theorem 25.3). Note that by (2.12) we see, for any nonnegative measurable function f on $(0, \infty)$,

$$
\int_{0}^{\infty} f(r) v_{\xi}(d r)=\int_{0}^{\infty} u^{\alpha / \beta} f\left(u^{-1 / \beta}\right) \widetilde{Q}_{\xi}(d u)
$$

Thus if we choose $f(r)=I[r>1] r^{\alpha}$, where $I[A]$ is the indicator function of the set A, then v in (2.14) satisfies that for $\alpha>0$

$$
\begin{equation*}
\int_{|x|>1}|x|^{\alpha} v(d x)=\int_{S} \tilde{\lambda}(d \xi) \int_{1}^{\infty} r^{\alpha} v_{\xi}(d r)=\int_{S} \tilde{\lambda}(d \xi) \int_{0}^{1} \widetilde{Q}_{\xi}(d u)<\infty \tag{2.16}
\end{equation*}
$$

due to (2.11). When $\alpha=0$,

$$
\begin{align*}
& \int_{|x|>1} \log |x| v(d x)=\int_{S} \tilde{\lambda}(d \xi) \int_{1}^{\infty} \log r v_{\xi}(d r) \tag{2.17}\\
& =\int_{S} \tilde{\lambda}(d \xi) \int_{0}^{1} \log u^{-1 / \beta} \widetilde{Q}_{\xi}(d u)=\beta^{-1} \int_{S} \tilde{\lambda}(d \xi) \int_{0}^{1}(-\log u) \widetilde{Q}_{\xi}(d u)<\infty
\end{align*}
$$

due to (2.10).

Notice again that

$$
\int_{0}^{G_{\alpha, \beta}(0)}\left(G_{\alpha, \beta}^{*}(t)\right)^{2} d t=-\int_{0}^{\infty} u^{2} d G_{\alpha, \beta}(u)=\int_{0}^{\infty} u^{1-\alpha} e^{-u^{\beta}} d u<\infty
$$

Define A and γ by

$$
\begin{equation*}
\widetilde{A}=\left(\int_{0}^{G_{\alpha, \beta}(0)} G_{\alpha, \beta}^{*}(t)^{2} d t\right) A \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\gamma}=\int_{0}^{G_{\alpha, \beta}(0)} G_{\alpha, \beta}^{*}(t) d t\left(\gamma+\int_{\mathbb{R}^{d}} x\left(\frac{1}{1+\left|G_{\alpha, \beta}^{*}(t) x\right|^{2}}-\frac{1}{1+|x|^{2}}\right) v(d x)\right) \tag{2.19}
\end{equation*}
$$

Here we have to check the finiteness of this integral. We first have

$$
\int_{0}^{G_{\alpha, \beta}(0)} G_{\alpha, \beta}^{*}(t) d t=-\int_{0}^{\infty} u d G_{\alpha \cdot \beta}(u)=\int_{0}^{\infty} u^{-\alpha} e^{-u^{\beta}} d u<\infty
$$

since $\alpha<1$. Below, $C_{7}, C_{8} \in(0, \infty)$ are suitable constants. Recall $\alpha<1$. When $\alpha \neq 0$, we have

$$
\begin{align*}
& \int_{0}^{G_{\alpha, \beta}(0)} G_{\alpha, \beta}^{*}(t) d t \int_{\mathbb{R}^{d}}|x|\left|\frac{1}{1+\left|G_{\alpha, \beta}^{*}(t) x\right|^{2}}-\frac{1}{1+|x|^{2}}\right| v(d x) \\
&= \left.\left.\int_{0}^{\infty} u^{-\alpha} e^{-u^{\beta}} d u \int_{\mathbb{R}^{d}}|x|\right|_{1+|u x|^{2}}-\frac{1}{1+|x|^{2}} \right\rvert\, v(d x) \\
& \leq \int_{0}^{\infty} u^{-\alpha}\left(1+u^{2}\right) e^{-u^{\beta}} d u \int_{\mathbb{R}^{d}} \frac{|x|^{3}}{\left(1+|u x|^{2}\right)\left(1+|x|^{2}\right)} v(d x) \\
& \leq \int_{0}^{\infty} u^{-\alpha}\left(1+u^{2}\right) e^{-u^{\beta}} d u \\
& \times\left(\int_{|x| \leq 1}|x|^{2} v(d x)+\int_{|x|>1,|u x| \leq 1}|x| v(d x)+\int_{|x|>1,|u x|>1} \frac{|x|}{|u x|^{2}} v(d x)\right) \\
&= C_{7}+\int_{|x|>1}|x| v(d x) \int_{0}^{1 /|x|} u^{-\alpha}\left(1+u^{2}\right) e^{-u^{\beta}} d u \\
& \quad+\int_{|x|>1} v(d x) \int_{1 /|x|}^{\infty} u^{-\alpha-1}\left(1+u^{2}\right) e^{-u^{\beta}} d u \\
& \leq C_{7}+\int_{|x|>1}|x| v(d x) \int_{0}^{1 /|x|} 2 u^{-\alpha} d u \\
& \quad+\int_{|x|>1} v(d x)\left\{\left(\int_{1 /|x|}^{1}+\int_{1}^{\infty}\right) u^{-\alpha-1}\left(1+u^{2}\right) e^{-u^{\beta}} d u\right\} \\
& \leq C_{7}+2(1-\alpha)^{-1} \int_{|x|>1}^{|x|^{\alpha} v(d x)} \\
& \quad+\int_{|x|>1} v(d x)\left\{\int_{1 /|x|}^{1} 2 u^{-\alpha-1} d u+\int_{1}^{\infty} u^{-\alpha-1}\left(1+u^{2}\right) e^{-u^{\beta}} d u\right\} \tag{2.20}
\end{align*}
$$

$$
\begin{align*}
&=C_{7}+2(1-\alpha)^{-1} \int_{|x|>1}|x|^{\alpha} v(d x) \\
&+\int_{|x|>1} v(d x)\left\{-2 \alpha^{-1}\left(1-|x|^{\alpha}\right)+C_{8}\right\} \\
&=C_{7}+2(1-\alpha)^{-1} \int_{|x|>1}|x|^{\alpha} v(d x) \\
&+2 \alpha^{-1} \int_{|x|>1}|x|^{\alpha} v(d x)+\left(C_{8}-2 \alpha^{-1}\right) \int_{|x|>1} v(d x)<\infty \tag{2.21}
\end{align*}
$$

by (2.16). When $\alpha=0$, since

$$
\int_{1 /|x|}^{1} u^{-\alpha-1} d u=\int_{1 /|x|}^{1} u^{-1} d u=\log |x|
$$

in (2.20), we have

$$
\begin{equation*}
\int_{|x|>1} \log |x| v(d x) \tag{2.22}
\end{equation*}
$$

instead of $\int_{|x|>1}|x|^{\alpha} v(d x)$ in (2.21) in the calculation above. The finiteness of (2.22) is assured by (2.17).
Thus γ can be defined. Hence, if we denote by μ an infinitely divisible distribution having the Lévy-Khintchine triplet (A, v, γ) above, then by (2.15), (2.18) and (2.19), we see that

$$
\tilde{\mu}=\mathscr{L}\left(\int_{0}^{G_{\alpha, \beta}(0)} G_{\alpha, \beta}^{*}(t) d X_{t}^{(\mu)}\right)
$$

concluding that $\tilde{\mu} \in \Psi_{\alpha, \beta}\left(\mathfrak{D}\left(\Psi_{\alpha, \beta}\right)\right)$. This completes the proof.
Acknowledgment The authors greatly appreciate the referee's detailed comments, which improved the paper very much.

References

[1] T. Aoyama, M. Maejima and J. Rosiński (2008). A subclass of type G selfdecomposable distributions, J. Theoret. Probab., 21, 14-34. MR2384471 MR2384471
[2] O.E. Barndorff-Nielsen, M. Maejima and K. Sato (2006). Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations, Bernoulli, 12, 1-33. MR2202318 MR2202318
[3] O.E. Barndorff-Nielsen, J. Rosiński and S. Thorbjørnsen, (2008): General Υ transformations. ALEA Lat. Am. J. Probab. Math. Statist. 4, 131-165. MR2421179 MR2421179
[4] W. Feller (1966). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., John Wiley \& Sons. MR0210154 MR0210154
[5] M. Maejima, M. Matsui and M. Suzuki (2009). Classes of infinitely divisible distributions on \mathbb{R}^{d} related to the class of selfdecomposable distributions, to appear in Tokyo J. Math.
[6] K. Sato (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press. MR1739520 MR1739520
[7] K. Sato (2004) Stochastic integrals in additive processes and application to semi-Lévy processes, Osaka J. Math. 41, 211-236. MR2040073 MR2040073
[8] K. Sato (2006a). Additive processes and stochastic integrals, Illinois J. Math. 50, 825-851. MR2247848 MR2247848
[9] K. Sato (2006b). Two families of improper stochastic integrals with respect to Lévy processes, ALEA Lat. Am. J. Probab. Math. Statist. 1 47-87. MR2235174 MR2235174

