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Abstract

We prove the following exponential inequality for a pair of random variables (A, B) with B > 0

satisfying the canonical assumption, E[exp(λA− λ2

2
B2)]≤ 1 for λ ∈ R,
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for x > 0, where 1/p + 1/q = 1 and p ≥ 1. Applying this inequality, we obtain exponential
bounds for the tail probabilities for self-normalized martingale difference sequences. We propose
a method of hypothesis testing for the Lp-norm (p ≥ 1) of A (in particular, martingales) and some
stopping times. We apply this inequality to the stochastic TSP in [0,1]d (d ≥ 2), connected to the
CLT.

1 Introduction

Self-normalized stochastic processes are frequently found in statistical applications. They have the
property of (in the standard form) being unit free and frequently eliminate or weaken moment
assumptions. The prototypical example of a self-normalized process is Student’s t-statistic, which
is used in statistical analysis to test if the mean of a normally distributed sample has a value spec-
ified in a null hypothesis when the standard deviation of the underlying distribution is unknown.
Let {X i : i ≥ 1} be a sequence of i.i.d. normal random variables with mean 0 and variance σ2. The
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sample mean X̄n =
∑n

i=1 X i/n and the sample variance s2
n
=
∑n

i=1(X i− X̄n)
2/(n−1). The t-statistic

Tn =
p

nX̄n/sn has the Student t-distribution of freedom n − 1, which converges to a standard
normal random variable as n→∞. Some limit theorems and moment bounds have been proved
for the t-statistic by observing that Tn is a function of self-normalized sums:

Tn =
Sn/Vn

p

(n− (Sn/Vn)
2)/(n− 1)

,

where Sn =
∑n

i=1 X i and V 2
n
=
∑n

i=1 X 2
i
. The limit distribution of the self-normalized sums Sn/Vn

has been proved by Efron (1969) and Logan et al. (1973). Giné, Götze and Mason (1997) prove
that Tn has a limiting standard normal distribution if and only if X1 is in the domain of attraction
of a normal law by making use of exponential and Lp bounds for the self-normalized sums Sn/Vn.
Since the 1990s, there have been active developments of the probability theory of self-normalized
processes. We refer to de la Peña, Lai and Shao (2009) for the comprehensive review of the state
of the art of the theory and its applications in statistical inference. Here we make a contribution to
this theory by proving a new exponential inequality for self-normalized processes (Theorem 2.1).
We start by considering a pair of random variables (A, B) with B > 0 satisfying the following

Canonical Assumption: E
h

exp
�

λA−
λ2

2
B2
�i

≤ 1, λ ∈ R. (1.1)

This assumption is satisfied by a wide class of stochastic processes, for example, sums of condi-
tionally symmetric random variables (Lemma A.4, de la Peña, Klass and Lai, 2007), discrete-time
martingale difference sequences (Lemma B.1, Bercu and Touati, 2008), and continuous-time (lo-
cal, sup) martingales (§3.5, Karatzas and Shreve, 1991).
De la Peña (1999) proves the following exponential bounds, connected to the law of large numbers
(LLN), for such a pair (A, B):

P(A> x , B2 ≤ y)≤ e−x2/2y , for x ∈ R, y > 0,

and

P

�

A

B2
> x ,

1

B2
≤ y

�

≤ e−x2/2y , for x ∈ R, y > 0.

By the method of mixtures, de la Peña, Klass and Lai (2004) prove the following exponential
bound for such a pair (A, B),

P





|A|
p

2[B2 + (E[B])2]
> x



 ≤
p

2e−x2/2, for x ≥ 0. (1.2)

It is connected to the central limit theorem (CLT) and provides related control on the tail. Here

we will prove a new exponential inequality for |A|/
p

((2q− 1)/q)[B2 + (E[|A|p])2/p] with 1/p+
1/q = 1 and p ≥ 1 (Theorem 2.1), which differs from (1.2) in two aspects. First, (E[B])2 (or
E[B2]) in (1.2) is replaced by (E[|A|p])2/p . Second, when E[A2] = E[B2] or E[|A|] = E[B],
our new inequality improves (1.2). Here we emphasize that one can not remove (E[B])2 in the
denominator of (1.2) to obtain exponential inequalities for the ratio |A|/B with the upper bound
independent of the distribution of B or its moments, see Remark 2.3.
These inequalities have provided moment bounds for a wide class of discrete-time martingales
self-normalized by the square root of the conditional variance. In particular, in de la Peña, Lai and
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Shao (2009), the inequality (1.2) has been applied to prove the necessary upper and lower bounds
in Theorem 8.6 in order to obtain the moderate deviation result for self-normalized U-statistics in
Theorem 8.5, but our new inequality in Theorem 2.1 will provide tighter upper and lower bounds
as in Theorem 8.6 there. Moreover, the inequality (1.2) can be used to test if the expectation of
the quadratic variation of martingales is equal to (or greater than) some specific value. Our new
inequality in Theorem 2.1 provides a method of testing for the Lp-norm of martingales.
For the stochastic Traveling Salesman Problem (TSP) to find the length Tn of the shortest path
connecting n independent points uniformly distributed over [0,1]d (d ≥ 2), Steele (1981) and
Rhee and Talagrand (1987,1989a,1989b) have shown that the random variable Tn is concentrated
around its mean E[Tn] by proving various upper bounds for P(|Tn − E[Tn]| ≥ t) for t > 0 and
d = 2. The inequality in Theorem 2.1 gives us a new inequality for the stochastic TSP over [0,1]d

(d ≥ 2), connected to the CLT; see Theorem 5.1.
The new inequality is presented and proved in §2. Then, it is applied to obtain an exponential
upper bound for the tail probability for self-normalized martingale difference sequences in §3. We
propose a method of hypothesis testing for Lp-norms (p ≥ 1) for martingales and stopping times
in §4. In §5, we present the new inequality for the stochastic TSP.

2 Exponential Inequalities

In this section, we present and prove the new exponential inequality for self-normalized processes.

Theorem 2.1. Let (A, B) be a pair of random variables with B > 0 in the probability space (Ω,F , P)

satisfying the canonical assumption (1.1). Suppose E[|A|p] <∞ for some p ≥ 1. Then for any x > 0
and for q ≥ 1 such that 1/p+ 1/q = 1,
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2q−1 e−x2/2. (2.1)

In particular, if E[A2]<∞,
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Æ

3
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≥ x
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�

2

3

�2/3

x−2/3e−x2/2, for x > 0, (2.2)

and if E[|A|]<∞,

P





|A|
p

2
�

B2 + (E[|A|])2
�

≥ x



≤ 2−1/2 x−1/2e−x2/2, for x > 0. (2.3)

Moreover, if B satisfies E[B2] = E[A2]<∞, the upper bound becomes

min
¦

21/3, (2/3)2/3 x−2/3
©

e−x2/2, for x > 0.

Remark 2.1. When E[A2] = E[B2], the upper bound of the new inequality (2.2) is much tighter than

that of (1.2) (with (E[B])2 replaced by E[B2]). The ratio of the two upper bounds (after rearranging

the constant 2 and 3/2 in the denominators) is x−2/3e−x2/12/
p

2< 1 for x ≥ 1.
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Remark 2.2. It is remarkable that this new inequality does not impose any restrictions on the distri-

bution of A except that the pair (A, B) satisfies the canonical assumption and E[|A|p] <∞ (p ≥ 1),
and that it gives enormous freedom for the choice of B. Moreover, it gives a similar upper bound as

the classic upper bound for A
d
=N (0,σ2):

P

� |A|
σ
≥ x

�

≤
2
p
π

x−1e−x2/2, x > 0,

because by letting B = (E[A2])1/2 in (2.2), we have

P

� |A|
σ
≥ x

�

≤min
¦

21/3, 22/33−1/3 x−2/3
©

e−x2/6, x > 0.

Remark 2.3. We emphasize that it is impossible to remove E[A2] in (2.2) or (E[B])2 in (1.2) to

obtain an exponential bound without knowing the distribution of B or its moments. This is because,

by Theorem 3.3 in de la Peña, Klass and Lai (2004),

E[(|A|/B)2]≤ 1+ x2
0 + E

�

log
�

| log(B ∨ B−1)| ∨ e
��

,

where x0 is some large constant, and Example 2.6 in de la Peña, Klass and Lai (2007) shows that this

upper bound is sharp.

Proof. First of all, we establish the following identity, for any C > 0,
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This holds because by the canonical assumption and Fubini’s Theorem,
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Let G ∈ F by any measurable set. Then, by Markov’s inequality,
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Now, by Hölder’s inequality,
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If E[|A|p]<∞ for p > 1, we can choose C = (E[|A|p])2/p so that for p and q satisfying 1/p+1/q =
1, again by Hölder’s inequality,

E
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��1/p
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This implies that
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1
2q . (2.5)

Now letting G =
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ª

, we obtain
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This will imply (2.1).
When B satisfies E[B2] = E[A2]<∞, we replace the argument in (2.4) by
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which implies that P(G)≤ 21/3e−x2/3 if we choose C = E[B2] and G =

§

|A|p
B2+E[A2]

≥ x

ª

.

We can take limit on both sides of (2.1) by the monotone convergence theorem as q → ∞ (or
p→ 1) to obtain (2.3).

3 Inequalities for Martingale Difference Sequences

Bercu and Touati (2008) prove that martingale difference sequences satisfy the canonical assump-
tion in the form of the following lemma.
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Lemma 3.1. Let {X i : i ≥ 1} be a martingale difference sequence with respect to the filtration

F= {Fn : n≥ 1} and suppose that E[X 2
i
]<∞ for all i ≥ 1. Then for all λ ∈ R,
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λ

n
∑
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X i −
λ2
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n
∑
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X 2
i
+

n
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E[X 2
i
|Fi−1]

!!

 ≤ 1.

By Lemma 3.1 and Theorem 2.1, we obtain the following theorem for martingale difference se-
quences. In time series analysis, Theorem 3.1 can also be used to establish useful bounds for
moving average sequences since they can be regarded as martingale difference sequences.

Theorem 3.1. Let {X i : i ≥ 1} be a martingale difference sequence with respect to the filtration

F = {Fn : n ≥ 1} and suppose that E[X 2
i
] <∞ for all i ≥ 1. Let T be any stopping time with respect

the filtration F and assume T <∞ almost surely. Then for all λ ∈ R,
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!!

 ≤ 1, (3.1)

and for x > 0,
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x−2/3e−x2/2. (3.2)

Proof. We first consider the sequences
∑T∧n

i=1 X i , which can be written as
∑n

i=1 X i1{T≥i}, where
x ∧ y = min{x , y} for x , y ∈ R. Notice that {X i1{T≥i} : i ≥ 1} is also a martingale difference
sequence with respect to the filtration F since E[X i1{T≥i}|Fi−1] = 1{T≥i}E[X i |Fi−1] = 0. And
E[(X i1{T≥i})

2]≤ E[X 2
i
]<∞. So by Lemma 3.1, we have
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i
|Fi−1]1{T≥i}

!!

 ≤ 1,

which implies that

E



exp

 

λ

T∧n
∑

i=1

X i −
λ2

2

 

T∧n
∑

i=1

X 2
i
+

T∧n
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i=1

E[X 2
i
|Fi−1]

!!

 ≤ 1.

Then (3.1) follows by Fatou’s lemma. Thus, we obtain (3.2) from (3.1) and Theorem 2.1.

Remark 3.1. Lemma 8.11 in de la Peña, Lai and Shao (2009) proves that the martingale difference

sequence {X i : i ≥ 1} in Theorem 3.1 satisfies

P





|
∑n

i=1 X i |
p
∑n

i=1(X
2
i
+ E[X 2

i
|Fi−1] + 2E[X 2

i
])
≥ x



 ≤
p

2e−x2/4, (3.3)

for x > 0. Our inequality in (3.2) provides a tighter upper bound than the inequality (3.3) for x ≥ 1.
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Remark 3.2. As a special case when {X i : i ≥ 1} is a sequence of independent random variables with

mean 0 and E[X 2
i
] <∞ for each i, (3.1) and (3.2) hold with E[X 2

i
|Fi−1] replaced by E[X 2

i
]. If, in

addition, σ2 = E[X 2
i
]<∞ for each i, then for x > 0,
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Æ

3
2
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i=1 X 2
i
+σ2T +σ2E[T])

≥ x
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�

2
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�2/3

x−2/3e−x2/2. (3.4)

Lemma 8.8 in de la Peña, Lai and Shao (2009) says that for such a sequence {X i : i ≥ 1},
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|
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i=1 X i |
p

5
∑n

i=1 E[X 2
i
] +
∑n

i=1 X 2
i

≥ x



 ≤
p

2e−x2/8. (3.5)

Our inequality (3.2) provides a tighter upper bound than the inequality (3.5) for large x.

Remark 3.3. Lemma A.4 in de la Peña, Klass and Lai (2007) proves that for a sequence {X i : i ≥ 1}
of conditionally symmetric random variables adapted to the filtration F= {Fi : i ≥ 1},

E



exp
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n
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i=1

X i −
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n
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X 2
i

!

 ≤ 1, λ ∈ R.

By Theorem 2.1, we obtain for x > 0,
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|
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i=1 X i |
Æ

3
2
(
∑n

i=1 X 2
i
+
∑n

i=1 E[X 2
i
])
≥ x





 ≤min
¦

21/3, (2/3)2/3 x−2/3
©

e−x2/2.

4 Applications to Hypothesis Testing

With the new inequality (2.1), we propose a method to test the Lp-norm (p ≥ 1) for a random
variable A. We first choose another positive random variable B such that the pair (A, B) satisfies the
canonical assumption. The null hypothesis is H0 : (E[|A|p])1/p ≥ µ and the alternative hypothesis
is H1 : (E[|A|p])1/p < µ. The null hypothesis will be rejected if

A
q

2q−1
q
(B2 + (E[|A|p])2/p)

≥ xα,

where xα is such that

P









A
q

2q−1
q
(B2 +µ2)

≥ xα









≤ α, and

�

q

2q− 1

�2/3

x
− q

2q−1
α e−x2

α/2 = α.

As a special case when p = 2, we can test the variance of A with mean 0. A useful application is to
test if the Lp-norms of martingales are equal to some specific values.
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4.1 Testing for Stopping Times

For the sequence {X i : i ≥ 1} and the stopping time T in Remark 3.2, the inequality (3.4) can be
used to test if E[T] = a (E[T] ≥ a) for some constant a > 0. The null hypothesis is H0 : E[T] = a

(or E[T] ≥ a) and the alternative hypothesis is H1 : E[T] 6= a (or E[T]< a).

5 Application to the Stochastic TSP

In the stochastic modeling of the TSP, let X1, ..., Xn be i.i.d. uniformly distributed on [0,1]d (d ≥ 2)
and Tn be the shortest closed path through the n random points X1, ..., Xn. It has been shown that
the deviation of Tn from its mean E[Tn] is remarkably small, see Steele (1981) and Rhee and
Talagrand (1987, 1989a, 1989b). In particular, by Azuma’s inequality, we have for n≥ 2,

P(|Tn − E[Tn]| ≥ t)≤
¨

exp(−t2/(C log n)), for d = 2,

exp(−t2/(Cn(d−2)/d)), for d > 2.
(5.1)

for some constant C , see §2.1 in Steele (1997).
It has been shown in Theorem 3 of Steele (1981) that E[(Tn − E[Tn])

k] < ckn(k/2)(1−d/2) for all
k ≥ 1, d ≥ 2 and n ≥ 1, where ck is some positive constant. In particular, Var(Tn) <∞ for all n.
Cerf et al. (1997) did numerical simulation for d = 2 to support that the variable Tn−E[Tn] should
have a Gaussian distribution as n→∞. Here we obtain the following upper bound, connected to
the CLT.

Theorem 5.1. For the stochastic TSP problem,

P







|Tn − E[Tn]|
Æ

3
2
[Var(Tn) +

∑n

i=1(d
2
i
+ E[d2

i
|Fi−1])]

≥ t





 ≤
�

2

3

�2/3

t−2/3 exp

¨

−
t2

2

«

, (5.2)

for t > 0, where di = E[Tn|Fi]− E[Tn|Fi−1] for 1 ≤ i ≤ n, and Fi = σ{X1, ..., X i}, the σ-algebra

generated by X1, ..., X i .

Proof. First, since Tn is Fn measurable, we can write

Tn − E[Tn] =
∑

1≤k≤n

dk,

where {dk : 1≤ k ≤ n} is a martingale difference sequence. It can be easily checked that

||di ||∞ ≤ C1(d)(n− i + 1)−1/d , and E[d2
i
|Fi−1]≤ C2(d)(n− i)−2/d , (5.3)

for all 1 ≤ i ≤ n, where || · ||∞ is the essential supremum norm; see (2.8) in Steele (1997) and
Corollary 5 in Rhee and Talagrand (1987). So E[d2

i
] <∞ for all 1 ≤ i ≤ n and the conditions in

Lemma 3.1 are satisfied.
Then, by Theorem 3.1, we have that for t > 0,
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|Tn − E[Tn]|
Æ

3
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i=1(d
2
i
+ E[d2

i
|Fi−1] + E[d2

i
])
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2

3

�2/3

t−2/3e−t2/2.
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Thus, (5.2) is obtained by noticing that

E
h

n
∑

i=1

d2
i

i

= E
h�

n
∑

i=1

di

�2i

= E[(Tn − E[Tn])
2] = Var(Tn).

Remark 5.1. By replacing the denominator in (5.2) by its upper bound which can be derived from

(5.3), we obtain an inequality comparable to (5.1). In particular, when d = 2, if we replace the

denominator (3/2)[Var(Tn)+
∑n

i=1(d
2
i
+ E[d2

i
|Fi−1])] in (5.2) by its upper bound C log n for some

constant C, we obtain

P





|Tn − E[Tn]|
p

C log n
≥ t



 ≤
�

2

3

�2/3

t−2/3 exp

¨

−
t2
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«

,

which implies that

P
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|Tn − E[Tn]| ≥ y
p

n
�

≤
�

2

3

�2/3




y
p

C(log n)/
p

n





−2/3

exp

¨

−
y2n

2C log n

«

.

This inequality is related to the inequality (3.5) in Rhee and Talagrand (1987).

Remark 5.2. In the proof of Theorem 5.1, by (5.3), we have

n
∑

i=1

(d2
i
+ E[d2

i
|Fi−1] + E[d2

i
])

≤ C1(d)

n
∑

i=1

(n− i + 1)−2/d + 2C2(d))

n
∑

i=1

(n− i)−2/d ≡
2

3
C(d, n)2.

Then, for t > 0,

P
�

|Tn − E[Tn]| ≥ t
�

≤
�

2

3

�2/3

C(d, n)2/3 t−2/3 exp

¨

−
t2

2C(d, n)2

«

. (5.4)

For d = 2, Rhee and Talagrand (1989b) have proved the following sharp upper bound:

P(|Tn − E[Tn]| ≥ t)≤ K exp(−t2/K), t > 0, n≥ 1, (5.5)

for some constant K independent of n. When d = 2, the constant C(d, n) in (5.4) is of order

O(
p

log n). So when t > K
p

log n for some constant K > 0, the bound in (5.4) is tighter than

that in (5.5).
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