ELECTRONIC COMMUNICATIONS in PROBABILITY

AN OBSERVATION ABOUT SUBMATRICES

SOURAV CHATTERJEE¹

367 Evans Hall #3860, Department of Statistics, University of California at Berkeley, CA 94720-3860, USA.

email: sourav@stat.berkeley.edu

MICHEL LEDOUX²

Institut de Mathématiques, Université de Toulouse, 31062 Toulouse Cedex 9, France

email: ledoux@math.univ-toulouse.fr

Submitted August 19, 2008, accepted in final form October 7, 2009

AMS 2000 Subject classification: 60E15, 15A52

Keywords: Random matrix, concentration of measure, empirical distribution, eigenvalue

Abstract

Let M be an arbitrary Hermitian matrix of order n, and k be a positive integer $\leq n$. We show that if k is large, the distribution of eigenvalues on the real line is almost the same for almost all principal submatrices of M of order k. The proof uses results about random walks on symmetric groups and concentration of measure. In a similar way, we also show that almost all $k \times n$ submatrices of M have almost the same distribution of singular values.

1 Introduction

Let M be a square matrix of order n. For any two sets of integers i_1, \ldots, i_k and j_1, \ldots, j_l between 1 and n, $M(i_1, \ldots, i_k; j_1, \ldots, j_l)$ denotes the submatrix of M formed by deleting all rows except rows i_1, \ldots, i_k , and all columns except columns j_1, \ldots, j_l . A submatrix like $M(i_1, \ldots, i_k; i_1, \ldots, i_k)$ is called a principal submatrix.

For a Hermitian matrix M of order n with eigenvalues $\lambda_1, \ldots, \lambda_n$ (repeated by multiplicities), let F_M denote the empirical spectral distribution function of M, that is,

$$F_M(x) := \frac{\#\{i : \lambda_i \le x\}}{n}.$$

The following result shows that given $1 \ll k \leq n$ and any Hermitian matrix M of order n, the empirical spectral distribution is almost the same for almost every principal submatrix of M of order k.

 $^{^1}$ RESEARCH PARTIALLY SUPPORTED BY NSF GRANT DMS-0707054 AND A SLOAN RESEARCH FELLOWSHIP

²RESEARCH PARTIALLY SUPPORTED BY THE ANR GRANDES MATRICES ALÉATOIRES

Theorem 1. Take any $1 \le k \le n$ and a Hermitian matrix M of order n. Let A be a principal submatrix of M chosen uniformly at random from the set of all $k \times k$ principal submatrices of M. Let F be the expected spectral distribution function of A, that is, $F(x) = \mathbb{E}F_A(x)$. Then for each $r \ge 0$,

$$\mathbb{P}(\|F_A - F\|_{\infty} \ge k^{-1/2} + r) \le 12\sqrt{k}e^{-r\sqrt{k/8}}.$$

Consequently, we have

$$\mathbb{E}||F_A - F||_{\infty} \le \frac{13 + \sqrt{8} \log k}{\sqrt{k}}.$$

Exactly the same results hold if A is a $k \times n$ submatrix of M chosen uniformly at random, and F_A is the empirical distribution function of the singular values of A. Moreover, in this case M need not be Hermitian

Remarks. (i) Note that the bounds do not depend at all on the entries of M, nor on the dimension n.

- (ii) We think it is possible to improve the $\log k$ to $\sqrt{\log k}$ using Theorem 2.1 of Bobkov [2] instead of the spectral gap techniques that we use. (See also Bobkov and Tetali [3].) However, we do not attempt to make this small improvement because $\sqrt{\log k}$, too, is unlikely to be optimal. Taking M to be the matrix which has n/2 1's on the diagonal and the rest of the elements are zero, it is easy to see that there is a lower bound of $const.k^{-1/2}$. We conjecture that the matching upper bound is also true, that is, there is a universal constant C such that $\mathbb{E}||F_A F||_{\infty} \leq Ck^{-1/2}$.
- (iii) The function F is determined by M and k. If M is a diagonal matrix, then F is exactly equal to the spectral measure of M, irrespective of k. However it is not difficult to see that the spectral measure of M cannot, in general, be reconstructed from F.
- (iv) The result about random $k \times n$ submatrices is related to the recent work of Rudelson and Vershynin [6]. Let us also refer to [6] for an extensive list of references to the substantial volume of literature on random submatrices in the computing community. However, most of this literature (and also [6]) is concerned with the largest eigenvalue and not the bulk spectrum. On the other hand, the existing techniques are usually applicable only when M has low rank or low 'effective rank' (meaning that most eigenvalues are negligible compared to the largest one).

A numerical illustration. The following simple example demonstrates that the effects of Theorem 1 can kick in even when k is quite small. We took M to be a $n \times n$ matrix for n = 100, with (i,j)th entry $= \min\{i,j\}$. This is the covariance matrix of a simple random walk up to time n. We chose k = 20, and picked two $k \times k$ principal submatrices A and B of M, uniformly and independently at random. Figure 1 plots to superimposed empirical distribution functions of A and B, after excluding the top 4 eigenvalues since they are too large. The classical Kolmogorov-Smirnov test from statistics gives a p-value of 0.9999 (and $\|F_A - F_B\|_{\infty} = 0.1$), indicating that the two distributions are statistically indistinguishable.

2 Proof

Markov chains. Let us now quote two results about Markov chains that we need to prove Theorem 1. Let \mathcal{X} be a finite or countable set. Let $\Pi(x,y) \ge 0$ satisfy

$$\sum_{y \in \mathcal{X}} \Pi(x, y) = 1$$

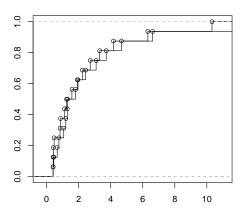


Figure 1: Superimposed empirical distribution functions of two submatrices of order 20 chosen at random from a deterministic matrix of order 100.

for every $x \in \mathcal{X}$. Assume furthermore that there is a symmetric invariant probability measure μ on \mathcal{X} , that is, $\Pi(x,y)\mu(\{x\})$ is symmetric in x and y, and $\sum_x \Pi(x,y)\mu(\{x\}) = \mu(\{y\})$ for every $y \in \mathcal{X}$. In other words, (Π,μ) is a reversible Markov chain. For every $f: \mathcal{X} \to \mathbb{R}$, define

$$\mathcal{E}(f,f) = \frac{1}{2} \sum_{x,y \in \mathcal{X}} (f(x) - f(y))^2 \Pi(x,y) \mu(\{x\}).$$

The spectral gap or the Poincaré constant of the chain (Π, μ) is the largest $\lambda_1 > 0$ such that for all f's,

$$\lambda_1 \operatorname{Var}_{\mu}(f) \leq \mathcal{E}(f, f).$$

Set also

$$|||f|||_{\infty}^{2} = \frac{1}{2} \sup_{x \in \mathcal{X}} \sum_{y \in \mathcal{X}} (f(x) - f(y))^{2} \Pi(x, y).$$
 (1)

The following concentration result is a copy of Theorem 3.3 in [5].

Theorem 2 ([5], Theorem 3.3). Let (Π, μ) be a reversible Markov chain on a finite or countable space $\mathscr X$ with a spectral gap $\lambda_1 > 0$. Then, whenever $f : \mathscr X \to \mathbb R$ is a function such that $|||f|||_{\infty} \le 1$, we have that f is integrable with respect to μ and for every $r \ge 0$,

$$\mu(\{f \ge \int f \, d\mu + r\}) \le 3e^{-r\sqrt{\lambda_1}/2}.$$

Let us now specialize to $\mathcal{X} = S_n$, the group of all permutations of n elements. The following transition kernel Π generates the 'random transpositions walk'.

$$\Pi(\pi, \pi') = \begin{cases}
1/n & \text{if } \pi' = \pi, \\
2/n^2 & \text{if } \pi' = \pi\tau \text{ for some transposition } \tau, \\
0 & \text{otherwise.}
\end{cases}$$
(2)

It is not difficult to verify that the uniform distribution μ on S_n is the unique invariant measure for this kernel, and the pair (Π, μ) defines a reversible Markov chain.

Theorem 3 (Diaconis & Shahshahani [4], Corollary 4). *The spectral gap of the random transpositions walk on* S_n *is* 2/n.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let π be a uniform random permutation of $\{1,\ldots,n\}$. Let $A=A(\pi)=M(\pi_1,\ldots,\pi_k;\pi_1,\ldots,\pi_k)$. Fix a point $x\in\mathbb{R}$. Let

$$f(\pi) := F_A(x).$$

Let Π be the transition kernel for the random transpositions walk defined in (2), and let $||| \cdot |||_{\infty}$ be defined as in (1).

Now, by Lemma 2.2 in Bai [1], we know that for any two Hermitian matrices A and B of order k,

$$\|F_A - F_B\|_{\infty} \le \frac{\operatorname{rank}(A - B)}{k}.$$
(3)

Let $\tau = (I,J)$ be a random transposition, where I,J are chosen independently and uniformly from $\{1,\ldots,n\}$. Multiplication by τ results in taking a step in the chain defined by Π . Now, for any $\sigma \in S_n$, the $k \times k$ Hermitian matrices $A(\sigma)$ and $A(\sigma\tau)$ differ at most in one column and one row, and hence $\operatorname{rank}(A(\sigma) - A(\sigma\tau)) \leq 2$. Thus,

$$|f(\sigma) - f(\sigma\tau)| \le \frac{2}{k}.$$
 (4)

Again, if I and J both fall outside $\{1, ..., k\}$, then $A(\sigma) = A(\sigma \tau)$. Combining this with (3) and (4), we get

$$|||f|||_{\infty}^2 = \frac{1}{2} \max_{\sigma \in S_n} \mathbb{E}(f(\sigma) - f(\sigma\tau))^2 \le \frac{1}{2} \left(\frac{2}{k}\right)^2 \frac{2k}{n} \le \frac{4}{kn}.$$

Therefore, from Theorems 2 and 3, it follows that for any $r \ge 0$,

$$\mathbb{P}(|F_A(x) - F(x)| \ge r) \le 6 \exp\left(-\frac{r\sqrt{2/n}}{2\sqrt{4/kn}}\right) = 6 \exp\left(-\frac{r\sqrt{k}}{\sqrt{8}}\right). \tag{5}$$

The above result is true for any x. Now, if $F_A(x-) := \lim_{y \uparrow x} F_A(y)$, then by the bounded convergence theorem we have $\mathbb{E}F_A(x-) = \lim_{y \uparrow x} F(y) = F(x-)$. It follows that for every r,

$$\mathbb{P}(|F_A(x-) - \mathbb{E}F_A(x-)| > r) \le \liminf_{y \uparrow x} \mathbb{P}(|F_A(y) - F(y)| > r)$$

$$\le 6 \exp\left(-\frac{r\sqrt{k}}{\sqrt{8}}\right).$$

Since this holds for all r, the > can be replaced by \ge . Similarly it is easy to show that F is a legitimate cumulative distribution function. Now fix an integer $l \ge 2$, and for $1 \le i < l$ let

$$t_i := \inf\{x : F(x) \ge i/l\}.$$

Let $t_0 = -\infty$ and $t_l = \infty$. Note that for each i, $F(t_{i+1} -) - F(t_i) \le 1/l$. Let

$$\Delta = (\max_{1 \le i < l} |F_A(t_i) - F(t_i)|) \vee (\max_{1 \le i < l} |F_A(t_i) - F(t_i)|).$$

Now take any $x \in \mathbb{R}$. Let *i* be an index such that $t_i \leq x < t_{i+1}$. Then

$$F_A(x) \le F_A(t_{i+1}-) \le F(t_{i+1}-) + \Delta \le F(x) + 1/l + \Delta.$$

Similarly,

$$F_A(x) \ge F_A(t_i) \ge F(t_i) - \Delta \ge F(x) - 1/l - \Delta.$$

Combining, we see that

$$||F_A - F||_{\infty} \leq 1/l + \Delta$$
.

Thus, for any $r \geq 0$,

$$\mathbb{P}(\|F_A - F\|_{\infty} \ge 1/l + r) \le 12(l-1)e^{-r\sqrt{k/8}}$$

Taking $l = [k^{1/2}] + 1$, we get for any $r \ge 0$,

$$\mathbb{P}(\|F_A - F\|_{\infty} \ge 1/\sqrt{k} + r) \le 12\sqrt{k}e^{-r\sqrt{k/8}}$$

This proves the first claim of Theorem 1. To prove the second, using the above inequality, we get

$$\begin{split} \mathbb{E}\|F_A - F\|_{\infty} &\leq \frac{1 + \sqrt{8}\log k}{\sqrt{k}} + \mathbb{P}\left(\|F_A - F\|_{\infty} \geq \frac{1 + \sqrt{8}\log k}{\sqrt{k}}\right) \\ &\leq \frac{13 + \sqrt{8}\log k}{\sqrt{k}}. \end{split}$$

For the case of singular values, we proceed as follows. As before, we let π be a random permutation of $\{1,\ldots,n\}$; but here we define $A(\pi)=M(\pi_1,\ldots,\pi_k;1,\ldots,n)$. Since singular values of A are just square roots of eigenvalues of AA^* , therefore

$$||F_A - \mathbb{E}(F_A)||_{\infty} = ||F_{AA^*} - \mathbb{E}(F_{AA^*})||_{\infty},$$

and so it suffices to prove a concentration inequality for F_{AA^*} . As before, we fix x and define

$$f(\pi) = F_{\Delta \Delta^*}(x).$$

The crucial observation is that by Lemma 2.6 of Bai [1], we have that for any two $k \times n$ matrices A and B,

$$||F_{AA^*} - F_{BB^*}||_{\infty} \le \frac{\operatorname{rank}(A - B)}{k}.$$

The rest of the proof proceeds exactly as before.

Acknowledgment. We thank the referees for helpful comments.

References

- [1] BAI, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices, a review. *Statist. Sinica* **9** no. 3, 611–677. MR1711663
- [2] Bobkov, S. G. (2004). Concentration of normalized sums and a central limit theorem for noncorrelated random variables. *Ann. Probab.* **32** no. 4, 2884–2907. MR2094433
- [3] Bobkov, S. G. and Tetali, P. (2006). Modified logarithmic Sobolev inequalities in discrete settings. *J. Theoret. Probab.* **19** no. 2, 289–336. MR2283379
- [4] DIACONIS, P. and SHAHSHAHANI, M. (1981). Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete 57 no. 2, 159–179. MR0626813
- [5] Ledoux, M. (2001). *The concentration of measure phenomenon*. Amer. Math. Soc., Providence, RI. MR1849347
- [6] Rudelson, M. and Vershynin, R. (2007). Sampling from large matrices: an approach through geometric functional analysis. *J. ACM* **54** no. 4, Art. 21, 19 pp. MR2351844