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Abstract

We study the problem of directed polymers in gaussian environments in Zd from the viewpoint of
a gaussian family indexed by the set of random walk paths. In the zero-temperature case, we give
a numerical bound on the maximum of the Hamiltonian, whereas in the finite temperature case,
we establish an equivalence between the very strong disorder and the growth rate of the entropy
associated to the model.

1 Introduction and main results

1.1 Finite temperature case

Let (g(i, x))i≥0,x∈Zd be i.i.d. standard real-valued gaussian variables. We denote by P and E the
corresponding probability and expectation with respect to g(·, ·). Let {Sk, k ≥ 0} be a simple
symmetric random walk on Zd , independent of g(·, ·). We denote by Px the probability measure
of (Sn)n∈N starting at x ∈ Zd and by Ex the corresponding expectation. We also write P = P0 and
E= E0.
The directed polymer measure in a gaussian random environment, denoted by 〈·〉(n), is a random

probability measure defined as follows: Let Ωn be the set of nearest neighbor paths of length n:

Ωn
def
=
n

γ : {1, ..., n} → Zd , |γk − γk−1|= 1, k = 2, . . . , n,γ0 = 0
o

. For any function F : Ωn→ R+,

〈F(S)〉(n) def
=

1

Zn
E
�

F(S)eβHn(g,S)− β
2n
2

�

, Hn(g,γ)
def
=

n
∑

i=1

g(i,γi) ,
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where β > 0 denotes the inverse of temperature and Zn is the partition function:

Zn = Zn(β , g) = E
�

eβHn(g,S)− β
2n
2

�

.

We refer to Comets, Shiga and Yoshida [3] for a review on directed polymers. It is known (see
e.g. [2], [3]) that the so-called free energy, the limit of 1

n
log Zn exists almost surely and in L1:

p(β) := lim
n→∞

1

n
log Zn,

p(β) is some constant and p(β)≤ 0 by Jensen’s inequality since EZn = 1.
A problem in the study of directed polymer is to determine the region of {β > 0 : p(β)< 0}, also

called the region of very strong disorder. It is an important problem, for instance, p(β) < 0 yields
interesting information on the localization of the polymer itself.
By using the F-K-G inequality, Comets and Yoshida [4] showed the monotonicity of p(β), there-

fore the problem is to determine

βc := inf{β > 0 : p(β)< 0}.

It has been shown by Imbrie and Spencer [8] that for d ≥ 3, βc > 0 (whose exact value remains
unknown). Comets and Vargas [5] proved that (for a wide class of random environments)

βc = 0, if d = 1. (1.1)

Recently, Lacoin [10], skilfully used the ideas developed in pinned models and solved the problem
in the two-dimensional case:

βc = 0, if d = 2. (1.2)

Moreover, Lacoin [10] gave precise bounds on p(β) when β → 0 both in one-dimensional and
two-dimensional cases.
In this note, we study this problem from the point of view of entropy (see also Birkner [1]). Let

en(β) := E
�

Zn log Zn

�

− (EZn) log(EZn) = E
�

Zn log Zn

�

be the entropy associated to Zn (recalling EZn = 1).

Theorem 1.1. Let β > 0. The following limit exits

ẽ∞(β) := lim
n→∞

en(β)
n
= inf

n≥1

en(β)
n
≥ 0. (1.3)

There is some numerical constant cd > 0, only depending on d, such that the following assertions
are equivalent:

(a) ẽ∞(β)> 0 .

(b) limsup
n→∞

en(β)
log n

> cd .

(c) p(β)< 0 .
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The proof of the implication (b) =⇒ (c) relies on a criterion of p(β) < 0 (cf. Fact 3.1 in Section
3) developed by Comets and Vargas [5] in a more general settings.
We can easily check (b) in the one-dimensional case: In fact, we shall show in the sequel (cf.

(3.7)) that in any dimension and for any β > 0,

en(β)≥
β2

2
E(Ln(S

1, S2)) ,

where S1 and S2 are two independent copies of S and Ln(γ,γ′) =
∑n

k=1 1(γk=γ′k)
is the number of

common points of two paths γ and γ′. It is well known that E(Ln(S1, S2)) is of order n1/2 when
d = 1 and of order log n when d = 2. Therefore (b) holds in d = 1 and by the implication (b)
=⇒ (c), we recover Comets and Vargas’ result (1.1) in the one-dimensional gaussian environment
case.

1.2 Zero temperature case

When β →∞, the problem of directed polymers boils down to the problem of first-passage perco-
lation. Let

H∗n = H∗n(g) :=max
γ∈Ωn

Hn(g,γ), Hn(g,γ) =
n
∑

1

g(i,γi),

where as before Ωn = {γ : [0, n]→ Zd , |γi − γi−1|= 1, i = 2, . . . , n, γ0 = 0}.
The problem is to characterize these paths γ which maximize Hn(g,γ). See Johansson [9] for

the solution of the Poisson points case. We limit here our attention to some explicit bounds on H∗n.
An easy subadditivity argument (see Lemma 2.2) shows that

H∗n
n
→ sup

n≥1

EH∗n
n

def
= c∗d , both a.s. and in L1.

By Slepian’s inequality ([12]),
EH∗n ≤

p
nEmax

γ∈Ωn

Yγ,

where (Yγ)γ∈Ωn
is a family of i.i.d. centered gaussian variables of variance 1. Since #Ωn = (2d)n,

it is a standard exercise from extreme value theory that

1
p

n
Emax
γ∈Ωn

Yγ→
p

2 log(2d).

Hence
c∗d ≤

p

2 log(2d).

It is a natural problem to ask whether this inequality is strict; In fact, a strict inequality means
that the gaussian family {Hn(g,γ),γ ∈ Ωn} is sufficiently correlated to be significantly different
from the independent one, exactly as the problem to determine whether p(β)< 0.
We prove that the inequality is strict by establishing a numerical bound:

Theorem 1.2. For any d ≥ 1, we have

c∗d ≤

r

2 log(2d)−
(2d − 1)

2d

�

1−
2d − 1

5πd

�

(1−Φ(
p

log(2d))),

where Φ(x) = 1p
2π

∫ x

−∞ e−u2/2du is the partition function of a standard gaussian variable.

The proofs of Theorems 1.1 and 1.2 are presented in two separate sections.
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2 Proof of Theorem 1.2

We begin with several preliminary results. Recall at first the following concentration of measure
property of Gaussian processes (see Ibragimov and al. [7]).

Fact 2.1. Consider a function F : RM → R and assume that its Lipschitz constant is at most A, i.e.

|F(x)− F(y)| ≤ A||x − y|| (x , y ∈ RM ) ,

where ||x || denotes the euclidean norm of x . Then if g = (g1, . . . , gM ) are i.i.d. N (0, 1) we have

P
�

|F(g)− E(F(g))| ≥ u
�

≤ exp(−
u2

2A2 ) (u> 0).

Lemma 2.2. There exists some positive constant c∗d such that

H∗n
n
→ c∗d = sup

n≥1
E(

H∗n
n
), a.s. and in L1. (2.1)

Moreover,

P
�

|H∗n − E(H∗n)|> λ
�

≤ e−
λ2

2n , λ > 0. (2.2)

Proof: We prove at first the concentration inequality. Define a function F : Rm→ R by

F(z) =max
γ∈Ωn

n
∑

i=1

∑

|x |≤n

zi,x 1(γi=x), z= (zi,x)1≤i≤n,x∈Zd ,|x |≤n ∈ Rm.

By the Cauchy-Schwarz inequality,

�

�

�

n
∑

i=1

∑

|x |≤n

zi,x1(Si=x) −
n
∑

i=1

∑

|x |≤n

z′i,x1(Si=x)

�

�

�≤ n1/2
�

n
∑

i=1

∑

|x |≤n

(zi,x − z′i,x)
2
�1/2

.

Hence F is a Lipschitz function: |F(z1)− F(z2)| ≤
p

n‖z1−z2‖. Note that H∗n = F((gi,x)i,x). By the
Gaussian concentration inequality Fact 2.1, we get (2.2).
Now we prove that n → EH∗n is superadditive: for n, k ≥ 1, let γ∗ ∈ Ωn be a path such that
Hn(g,γ∗) = H∗n, then

H∗n+k ≥ Hn(g,γ∗) +max
γ∈Ωk

k
∑

i=1

g(i+ n,γi + γ
∗
n),

hence by conditioning on σ{g(i, ·), i ≤ n}, we get that

E(H∗n+k)≥ E(Hn(g,γ∗)) + E(H∗k) = E(H∗n) + E(H∗k),

which in view of concentration (2.2) implies (2.1). �
For x , y ∈ Zd and n ≥ 0, we shall denote by y − x ←- n when Px(Sn = y) = P(Sn = y − x) > 0.

Observe that

x ←- n if and only if n−
d
∑

1

x j ≡ 0 (mod 2) and
d
∑

1

|x j | ≤ n,

with x = (x1, ..., xd) ∈ Zd . We shall also write
∑

x←-n
or max

x←-n
to mean that the sum or maximum is

taken over those x such that x ←- n.
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Define

φn(λ) = log

 

∑

x←-n
EeλH∗n,x

!

, φ∗n(a) = sup
λ>0

�

aλ−φn(λ)
�

.

Lemma 2.3. For any n≥ 1, Let ζn
def
= inf{c > 0 : φ∗n(cn)> 0}. We have

c∗d ≤ ζn ≤ c∗d + 2

r

d log(2n+ 1)
n

.

Proof: Let τn,x be the time and space shift on the environment:

g ◦τn,x(·, ·) = g(n+ ·, x + ·). (2.3)

We have for any n, k,

H∗n+k =max
x←-n

n

max
γ∈Ωn:γn=x

Hn(g,γ) +H∗k(g ◦τn,x)
o

.

Write for simplification H∗n,x :=maxγ∈Ωn:γn=x Hn(g,γ). Then for any λ ∈ R,

EeλH∗n+k = Eeλmaxx←-n (H∗n,x+H∗k(g◦τn,x ))

≤ E

 

∑

x←-n
eλH∗n,x eλH∗k(g◦τn,x )

!

= E

 

∑

x←-n
eλH∗n,x

!

EeλH∗k .

We get
EeλH∗jn ≤ e jφn(λ), j, n≥ 1,λ ∈ R.

Chebychev’s inequality implies that

P
�

H∗jn > c jn
�

≤ e− jφ∗n(cn), c > 0,

where φ∗n(a) = supλ>0
�

aλ−φn(λ)
�

. Then for any n and c such that φ∗n(cn)> 0, lim sup
j→∞

H∗jn
jn
≤ c,

a.s. It follows that
c∗d ≤ ζn, ∀n≥ 1.

On the other hand, by using the concentration inequality (2.2) and the fact that E(H∗n) ≤ nc∗d , we
get

EeλH∗n ≤ eλEH∗n eλ
2n/2 ≤ eλnc∗d+λ

2n/2, λ > 0.

It follows that for any λ > 0,

φn(λ)≤ log
∑

x←-n
EλH∗n ≤ λnc∗d +

λ2

2
n+ 2d log(2n+ 1).

Choosing λ = 2
q

d log(2n+1)
n

, we get φn(λ) < λn(c∗d + a) for any a > 2
q

d log(2n+1)
n

, which means

that φ∗n((c
∗
d + a)n)> 0. Hence ζn ≤ c∗d + a and the lemma follows. �
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Proof of Theorem 1.2: Let n= 2 in Lemma 2.3, we want to estimate φ2(λ).
Let g, g0, g1, g2, · · · be iid standard gaussian variables. Observe that the possible choices of γ1 are
(±1, 0, · · · , 0), (0,±1,0, · · · , 0), · · · , (0, · · · , 0,±1), and the possible choices of γ2 are (0,0, · · · , 0),
(±2, 0, · · · , 0), (±1,±1, 0 · · · , 0), (±1,0,±1, 0, · · · , 0), · · · , (±1,0, · · · , 0,±1), · · · , (0,±1,±1, 0, · · · , 0),
· · · , (0, · · · ,±1,±1). Therefore

∑

x←-2
EeλH∗2,x

= Eeλ(g0+max1≤i≤2d gi) + 2dEeλ(g0+g1) + 4(d − 1+ d − 2+ · · ·+ 1)Eeλ(g0+max(g1,g2))

= Eeλ(g0+max1≤i≤2d gi) + 2dEeλ(g0+g1) + 2d(d − 1)Eeλ(g0+max(g1,g2))

≤
d
∑

i=1

Eeλ(g0+max(g2i−1,g2i)) + 2dEeλ(g0+g1) + 2d(d − 1)Eeλ(g0+max(g1,g2))

= 2dEeλ(g0+g1) + d(2d − 1)Eeλ(g0+max(g1,g2))

= 2deλ
2
+ d(2d − 1)eλ

2/2Eeλmax(g1,g2)

= 2deλ
2
+ d(2d − 1)eλ

2/22eλ
2/2Φ(λ/

p
2)

= eλ
2
(2d + 2d(2d − 1)Φ(λ/

p
2)), (2.4)

where we use the fact that
Eeλmax(g1,g2) = 2eλ

2/2Φ(λ/
p

2).

In fact, since max(g1, g2) = (1/2)(g1 + g2 + |g1 − g2|) and g1 + g2 and g1 − g2 are independent,
we have

Eeλmax(g1,g2) = Eeλ(g1+g2+|g1−g2|)/2 = eλ
2/4Eeλ|g1|/

p
2 = 2eλ

2/2Φ(λ/
p

2),

where we use

Eeλ|g| =
2
p

2π

∫ ∞

0

eλx−x2/2d x =
2eλ

2/2

p
2π

∫ ∞

0

e−(x−λ)
2/2d x = 2eλ

2/2Φ(λ).

We conclude from (2.4) that

φ2(λ) ≤ λ2 + log
�

2d + 2d(2d − 1)Φ(λ/
p

2)
�

= λ2 + 2 log(2d) + log
�

1−
(2d − 1)

2d
(1−Φ(λ/

p
2))
�

≤ λ2 + 2 log(2d)−
(2d − 1)

2d
(1−Φ(λ/

p
2))

def
= h(λ)

Now consider the function

h∗(2c) := sup
λ>0
(2cλ− h(λ)), c > 0.

Clearly h∗(2c)≤ φ∗(2c) for any c > 0. Let us study the h∗(2c): The maximal achieves when

2c = h′(λ)

That is

2c = 2λ+
(2d − 1)

2d
p

2π
e−λ

2/4
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Now choose c so that

2cλ= h(λ) = λ2 + 2 log(2d)−
(2d − 1)

2d
(1−Φ(λ/

p
2)) (2.5)

Let

a =
(2d − 1)

4d
p

2π
e−λ

2/4, b =
(2d − 1)

2d
(1−Φ(λ/

p
2)).

Then
2c = 2λ+ 2a, 2cλ= λ2 + 2 log(2d)− b,

which gives
λ2 + 2aλ= 2 log(2d)− b

or
c2 = (λ+ a)2 = 2 log(2d)− b+ a2.

It is easy to see that

(1−Φ(t))≥
5

16
e−t2

, for t > 0

Hence
16

5

� 2d − 1

4d
p

2π

�2
(1−Φ(λ/

p
2))≥ a2

and

c2 = 2 log(2d)−
(2d − 1)

2d
(1−Φ(λ/

p
2)) + a2

≤ 2 log(2d)−
� (2d − 1)

2d
−
� 2d − 1

4d
p

2π

�16

5

�

(1−Φ(λ/
p

2))

= 2 log(2d)−
(2d − 1)

2d

�

1−
2d − 1

5πd

�

(1−Φ(λ/
p

2))

≤ 2 log(2d)−
(2d − 1)

2d

�

1−
2d − 1

5πd

�

(1−Φ(
p

log(2d)))
def
= ec2,

Here in the last inequality, we used the fact that λ≤
p

2 log(2d). Recall (c,λ) satisfying (2.5). For
any ε > 0, φ∗2(2(ec + ε)) ≥ h∗(2(ec + ε)) ≥ 2(c + ε)λ− h(λ) = 2ελ > 0. It follows ζ2 ≤ ec + ε and
hence c∗d ≤ ec. �

3 Proof of Theorem 1.1

Let
Zm(x) := E

�

1(Sm=x)e
βHm(g,S)−β2m/2

�

, m≥ 1, x ∈ Zd .

Fact 3.1 (Comets and Vargas [5]). If there exists some m≥ 1 such that

E
�
∑

x

Zm(x) log Zm(x)
�

≥ 0, (3.1)

then p(β)< 0.



directed polymers in gaussian environments 525

In fact, the case E
�

∑

x Zm(x) log Zm(x)
�

= 0 follows from their Remark 3.5 in Comets and Vargas

(2006), whereas if E
�

∑

x Zm(x) log Zm(x)
�

> 0, which means the derivative of θ → E
∑

x Zθm(x)

at 1 is positif, hence for some θ < 1, E
∑

x Zθm(x) < 1 and again by Comets and Vargas (2006)
(lines before Remark 3.4), we have p(β)< 0.
We try to check (3.1) in the sequel:

Lemma 3.2. There exists some constant cd > 0 such that for any m≥ 1,

E
�
∑

x

Zm(x) log Zm(x)
�

≥ E
�

Zm log Zm

�

− cd log m.

Proof: Write

um(x) :=
Zm(x)

Zm
= 〈1(Sm=x)〉(m). (3.2)

We have

E
�
∑

x

Zm(x) log Zm(x)
�

= E

 

Zm

∑

x

um(x)
h

log Zm + log um(x)
i

!

= Q
�
∑

x

um(x) log um(x)
�

+Q
�

log Zm

�

,

where the probability measure Q= Q(β) is defined by

dQ|F g
n
= Zn dP|F g

n
, ∀ n≥ 1, (3.3)

with Fn = σ{g(i, ·), i ≤ n}. By convexity,

Q
�
∑

x

um(x) log um(x)
�

≥
∑

x

Q(um(x)) logQ(um(x)).

Note that Q(um(x)) = E(Zm(x)) = P(Sm = x) and
∑

x P(Sm = x) logP(Sm = x) ∼ −c′d log m for
some positive constant c′d . Assembling all the above, we get a constant cd > 0 such that

E
�
∑

x

Zm(x) log Zm(x)
�

≥ Q
�

log Zm

�

− cd log m

for all m≥ 1, as desired. �
Let µ be a Gaussian measure on Rm . The logarithmic Sobolev inequality says (cf. Gross [6],

Ledoux [11]): for any f : Rm→ R,
∫

f 2 log f 2dµ−
�
∫

f 2dµ

�

log

�
∫

f 2dµ

�

≤ 2

∫

�

�∇ f
�

�

2
dµ. (3.4)

Using the above inequality, we have

Lemma 3.3. Let S1 and S2 be two independent copies of S. We have

en(β) ≤
β2

2
E
�

Zn 〈Ln(S
1, S2)〉(n)2

�

, (3.5)

d

dβ
en(β) = βE

�

Zn 〈Ln(S
1, S2)〉(n)2

�

, (3.6)
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where 〈Ln(S1, S2)〉(n)2 =
1
Z2

n
E
�

eβHn(g,S1)+βHn(g,S2)−β2n Ln(S1, S2)
�

. Consequently,

en(β)≥
β2

2
E(Ln(S

1, S2)). (3.7)

Proof: Taking

f (z) =

√

√

√

√Eexp

 

β

n
∑

i=1

∑

x

z(i, x)1(Si=x) −
β2

2
n

!

, z= (z(i, x), 1≤ i ≤ n, x ←- i).

Note that Zn = f 2(g) with g = (g(i, x), 1 ≤ i ≤ n, x ←- i). Applying the log-Sobolev inequality
yields the first estimate (3.5).
The another assertion follows from the integration by parts: for a standard gaussian variable g
and any derivable function ψ such that both gψ(g) and ψ′(g) are integrable, we have

E(gψ(g)) = E(ψ′(g)).

Elementary computations based on the above formula yield (3.6). The details are omitted. From
(3.5) and (3.6), we deduce that the function β → en(β)

β2 is nondecreasing. On the other hand, it is

elementary to check that lim
β→0

en(β)
β2 =

1

2
E(Ln(S

1, S2)), which gives (3.7) and completes the proof

of the lemma. �
If P and Q are two probability measures on (Ω,F ), the relative entropy is defined by

H(Q | P) def
=

∫

log
dQ

dP
dQ,

where the expression has to be understood to be infinite if Q is not absolutely continuous with
respect to P or if the logarithm of the derivative is not integrable with respect to Q. The following
entropy inequality is well-known:

Lemma 3.4. For any A∈ F , we have

log
P(A)
Q(A)

≥ −
H(Q | P) + e−1

Q(A)
.

This inequality is useful only if Q(A) ∼ 1. Recall (3.3) for the definition of Q. Note that for any

δ > 0, Q
�

Zn ≥
δ

1+δ

�

≥ 1
1+δ

, it follows that

P
�

Zn ≥
δ

1+δ

�

≥
1

1+δ
e−(1+δ)e

−1
exp
�

− (1+δ)en(β)
�

. (3.8)

Now we give the proof of Theorem 1.1:
Proof of Theorem 1.1: We prove at first (1.3) by subadditivity argument: Recalling (3.2) and
(2.3). By markov property of S, we have that for all n, m≥ 1,

Zn+m = Zn

∑

x

un(x)Zm(x , g ◦τn,x).



directed polymers in gaussian environments 527

Let ψ(x) = x log x . We have

Zn+m log Zn+m = ψ(Zn)
∑

x

un(x)Zm(x , g ◦τn,x) + Znψ

 

∑

x

un(x)Zm(x , g ◦τn,x)

!

≤ ψ(Zn)
∑

x

un(x)Zm(x , g ◦τn,x) + Zn

∑

x

un(x)ψ(Zm(x , g ◦τn,x)),

by the convexity of ψ. Taking expectation gives (1.3).
To show the equivalence between (a), (b), (c), we remark at first that the implication (b) ⇒ (c)
follows from Lemma 3.2 and (3.1). It remains to show the implication (c) ⇒ (a). Assume that
p(β)< 0. The superadditivity says that

p(β) = sup
n≥1

pn(β), with pn(β) :=
1

n
E(log Zn).

On the other hand, the concentration of measure (cf. [2]) says that

P
�
�

�

�

1

n
log Zn − pn(β)

�

�

�> u
�

≤ exp
�

−
nu2

2β2

�

, ∀u> 0.

It turns out for α > 0,

E
�

Zαn
�

= eαE(log Zn) eα(log Zn−E(log Zn))

≤ eαE(log Zn) eα
2β2n/2

≤ eαp(β)n+α2β2n/2.

By choosing α=−p(β)/β2 (note that α > 0), we deduce from the Chebychev’s inequality that

P
�

Zn >
1

2

�

≤ 2α e−p2(β)n/(2β2),

which in view of (3.8) with δ = 1 imply that lim infn→∞
1
n
en(β)≥

p(β)2

4β2 . �
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