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Abstract

We give a criterion of the form Q(d)c(M) < 1 for the non-reconstructability of tree-indexed q-
state Markov chains obtained by broadcasting a signal from the root with a given transition matrix
M . Here c(M) is an explicit function, which is convex over the set of M ’s with a given invariant
distribution, that is defined in terms of a q − 1-dimensional variational problem over symmetric
entropies. Further Q(d) is the expected number of offspring on the Galton-Watson tree.
This result is equivalent to proving the extremality of the free boundary condition Gibbs measure
within the corresponding Gibbs-simplex.
Our theorem holds for possibly non-reversible M and its proof is based on a general recursion
formula for expectations of a symmetrized relative entropy function, which invites their use as
a Lyapunov function. In the case of the Potts model, the present theorem reproduces earlier
results of the authors, with a simplified proof, in the case of the symmetric Ising model (where
the argument becomes similar to the approach of Pemantle and Peres) the method produces the
correct reconstruction threshold), in the case of the (strongly) asymmetric Ising model where the
Kesten-Stigum bound is known to be not sharp the method provides improved numerical bounds.

1 Introduction

The problem of reconstruction of Markov chains on d-ary trees has enjoyed much interest in
recent years. There are multiple reasons for this, one of them being that it is a topic where people
from information theory, researchers in mathematical statistical mechanics, pure probabilists, and
people from the theoretical physics side of statistical mechanics can meet and make contributions.
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Indeed, starting with the symmetric Ising channel for which the reconstruction threshold was
settled in [4, 8, 9], using different methods and increased generality w.r.t. the underlying tree,
there have been publications by a.o. Borgs, Chayes, Janson, Mossel, Peres from the mathematics
side [12, 13, 11, 2], deriving upper and lower bounds on reconstruction threshold for certain
models of finite state tree-indexed Markov chains. From the theoretical physics side let us highlight
[16] on trees (see also [7] on graphs) which contains a discussion of the potential relevance of the
reconstruction problem also to the glass problem. That paper also provides numerical values for
the Potts model on the basis of extensive simulation results. The Potts model is interesting because,
unlike the Ising model, the true reconstruction threshold behaves (respectively is expected to
behave) non-trivially as a function of the degree d of the underlying d-ary tree and the number
of states q. For a discussion of this see the conjectures in [16], the rigorous bounds in [5], and in
particular the proof in [17] showing that the Kesten-Stigum bound is not sharp if q ≥ 5, and sharp
if q = 3, for large enough d. We refer to [1] for a general computational method to obtain non
trivial rigorous bounds for reconstruction on trees.
Now, our treatment is motivated in the generality of its setup by the questions raised and type of
results given in [15], and technically somewhat inspired by [14, 5]. Indeed, for the Potts model
the present paper reproduces the result of [5] (where moreover we provide numerical estimates
on the reconstruction inverse temperature, also in the small q, small d regime.) However, in
the present paper the focus is on generality, that is the universality of the type of estimate, and
the structural clarity of the proof. It should be clear that the condition we provide can be easily
implemented in any given model to produce numerical estimates on reconstruction thresholds.
The remainder of the paper is organized as follows. Section 2 contains the definition of the model
and the statement of the theorem. Section 3 contains the proof.

2 Model and result

Consider an infinite rooted tree T having no leaves. For v, w ∈ T we write v→ w, if w is the child
of v, and we denote by |v| the distance of a vertex v to the root. We write T N for the subtree of all
vertices with distance ≤ N to the root.
To each vertex v there is associated a (spin-) variable σ(v) taking values in a finite space which,
without loss of generality, will be denoted by {1, 2, . . . , q}. Our model will be defined in terms of
the stochastic matrix with non-zero entries

M = (M(v, w))1≤v,w≤q . (1)

By the Perron-Frobenius theorem there is a unique single-site measure α = (α( j)) j=1,...,q which is
invariant under the application of the transition matrix M , meaning that

∑q
i=1α(i)M(i, j) = α( j).

The object of our study is the corresponding tree-indexed Markov chain in equilibrium. This is the
probability distribution P on {1, . . . , q}T whose restrictions PT N to the state spaces of finite trees
{1, . . . , q}T

N
are given by

PT N (σT N ) = α(σ(0))
∏

v,w:
v→w

M(σ(v),σ(w)) . (2)

The notion equilibrium refers to the fact that all single-site marginals are given by the invariant
measure α.



A symmetric entropy bound on the non-reconstruction regime 589

A probability measure µ on {1,2, . . . , q}T is called a Gibbs measure if it has the same finite-volume
conditional probabilities as P has. This means that, for all finite subsets V ⊂ T , we have for all N
sufficiently large

µ(σV |σV c ) = PT N (σV |σ∂ V ) (3)

µ-almost surely. The Gibbs measures, being defined in terms of a linear equation, form a simplex,
and we would like to understand its structure, and exhibit its extremal elements [6]. Multiple
Gibbs measures (phase transitions) may occur if the loss of memory in the transition described
by M is small enough compared to the proliferation of offspring along the tree T . Uniqueness of
the Gibbs measure trivially implies extremality of the measure P, but interestingly the converse is
not true. Parametrizing M by a temperature-like parameter may lead to two different transition
temperatures, one where P becomes extremal and one where the Gibbs measure becomes unique.
Broadly speaking, statistical mechanics models with two transition temperatures are peculiar to
trees (and more generally to models indexed by non-amenable graphs [10]). This is one of the
reasons for our interest in models on trees.
Now, our present aim is to provide a general criterion, depending on the model only in a local
(finite-dimensional) way, which implies the extremality of P, and which works also in regimes of
non-uniqueness. People with statistical mechanics background may think of it as an analogy to
Dobrushin’s theorem saying that c(γ) < 1 implies the uniqueness of the Gibbs measure of a local
specification γ where c(γ) is determined in terms of local (single-site) quantities.
In fact, Martinelli et al. [15] (see Theorem 9.3., see also Theorem 9.3.’ and Theorem 9.3”) give
such a theorem. Their criterion for non-reconstruction of Markov chains on d-ary trees has the
form dλ2κ < 1 where κ is the Dobrushin constant [6] of the system of conditional probabilities
described by P. Further λ2 is the second eigenvalue of M . Our theorem takes a different form.
Now, to formulate our result we need the following notation.
We write for the simplex of length-q probability vectors

P = {(p(i))i=1,...,q, p(i)≥ 0 ∀i,
q
∑

i=1

p(i) = 1} (4)

and we denote the relative entropy between probability vectors p,α ∈ P by S(p|α) =
∑q

i=1 p(i) log p(i)
α(i)

.
We introduce the symmetrized entropy between p and α and write

L(p) = S(p|α) + S(α|p) =
q
∑

i=1

�

p(i)−α(i)
�

log
p(i)
α(i)

. (5)

While the symmetrized entropy is not a metric (since the triangle inequality fails) it serves us as
a“distance" to the invariant measure α.
Let us define the constant, depending solely on the transition matrix M , in terms of the following
supremum over probability vectors

c(M) = sup
p∈P

L(pM rev)
L(p)

, (6)

where M rev(i, j) = α( j)M( j,i)
α(i)

is the transition matrix of the reversed chain. Note that numerator and
denominator vanish when we take for p the invariant distribution α. Consider a Galton-Watson
tree with i.i.d. offspring distribution concentrated on {1, 2, . . . } and denote the corresponding
expected number of offspring by Q(d).
Here is our main result.
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Theorem 2.1. If Q(d)c(M) < 1 then the tree-indexed Markov chain P on the Galton-Watson tree
T is extremal for Q-almost every tree T . Equivalently, in information theoretic language, there is no
reconstruction.

Remark 1. The computation of the constant c(M) for a given transition matrix M is a simple
numerical task. Note that fast mixing of the Markov chain corresponds to small c(M). In this
sense c(M) is an effective quantity depending on the interaction M that parallels the definition
the Dobrushin constant cD(γ) in the theory of Gibbs measures measuring the degree of dependence
in a local specification. While the latter depends on the structure of the interaction graph, this is
not the case for c(M).
Remark 2. Non-uniqueness of the Gibbs measures corresponds to the existence of boundary
conditions which will cause the corresponding finite-volume conditional probabilities to converge
to different limits. Extremality of the measure Pmeans that conditioning the measure P to acquire
a configuration ξ at a distance larger than N will cease to have an influence on the state at the
root if ξ is chosen according to the measure P itself and N is tending to infinity. In the language
of information theory this is called non-reconstructability (of the state at the origin on the basis of
noisy observations far away).
Remark 3. (On irreversibility.) If M is any transition matrix reversible for the equidistribution
and, for a permutation π of the numbers from 1 to q, we define Mπ(i, j) = M(i,π−1 j), then
c(M) = c(Mπ) for all permutations π. This is seen by a simple computation. We can say that an
irreversibility in the Markov chain which is caused by a deterministic stepwise renaming of labels
(by π) is not seen in the constant.
Remark 4. (On Convexity.) For all fixed probability vectors α the function M 7→ c(M) is convex
on the set of transition matrices which have α as their invariant distribution, i.e. αM = α.
This is a consequence of the fact that, for M1, M2 with αM1 = α, αM2 = α we have that (λM1 +
(1−λ)M2)rev = λM rev

1 +(1−λ)M
rev
2 and that the relative entropy is convex in the first and second

argument.
This implies that, for each α, and fixed degree d, {M ,αM = α; dc(M)< 1}, for which the criterion
ensures non-reconstruction, is convex.

We conclude this introduction with the discussion of two main types of test-examples.

Example 1 (Symmetric Potts and Ising model.) The Potts model with q states at inverse tem-
perature β is defined by the transition matrix

Mβ =
1

e2β + q− 1











e2β 1 1 . . . 1
1 e2β 1 . . . 1
1 1 e2β . . . 1

. . .











. (7)

This Markov chain is reversible for the equidistribution. In the case q = 2, the Ising model, one
computes c(Mβ) = (tanhβ)2 which yields the correct reconstruction threshold.
Theorem 2.1 is a generalization of the main result given in our paper [5] for the specific case
of the Potts model. That paper also contains comparisons of numerical values to the (presumed)
exact transition values. Our discussion of the cases of q = 3,4, 5 shows closeness up to a few
percent, and for q = 3,4 and small d these are the best rigorous bounds as of today. To see this
connection between the present paper and [5] we rewrite c(Mβ) =

e2β−1
e2β+q−1

c̄(β , q) and note that
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the main Theorem of [5] was formulated in terms of the quantity

c̄(β , q) = sup
p∈P

∑q
i=1(qp(i)− 1) log(1+ (e2β − 1)p(i))

∑q
i=1(qp(i)− 1) log qp(i)

. (8)

Numerical Example 2 (Non-symmetric Ising model.) Consider the following transition matrix

M =
�

1−δ1 δ1
1−δ2 δ2

�

with δ1,δ2 ∈ [0, 1]. (9)

The chain is not symmetric when 1− δ1 6= δ2. Let us focus on regular trees. Mossel and Peres in
[13] prove that, on a regular tree of degree d the reconstruction problem defined by the matrix
(9) is unsolvable when

d
(δ2 −δ1)2

min{δ1 +δ2, 2−δ1 −δ2}
≤ 1, (10)

while Martin in [3] gives the following condition for non-reconstructibility

d
�
p

(1−δ1)δ2 −
p

(1−δ2)δ1

�2
≤ 1. (11)

By the Kesten-Stigum bound it is known that there is reconstruction when d(δ2−δ1)2 > 1. When
δ1 + δ2 = 1, the matrix M is symmetric and the Kesten–Stigum bound is sharp. Recently, Borgs,
Chayes, Mossel and Roch in [2] have shown with an elegant proof that the Kesten–Stigum thresh-
old is tight for roughly symmetric binary channels; i.e. when |1−(δ1+δ2)|< δ, for some δ small.
Even if the threshold we give is very close to Kesten–Stigum bound when the chain has a small
asymmetry, by now, we are not able to recover this sharp estimate with our method. For large
asymmetry the Kesten–Stigum bound has been proved to not hold: Mossel proves as Theorem 1
in [12] that, for any λ > 1

d
there exists a δ(λ) such that there is reconstruction for δ1,δ2 = λ+δ1

when δ1 < δ. On a Cayley tree with coordination number d, non-reconstruction for the Markov
chain (9) with δ2 = 0 (or 1− δ1 = 0) is equivalent to the extremality of the Gibbs measure for

the hard-core model with activity δ1

1−δ1

�

1
1−δ1

�d
. Restricted to this specific case, Martin proves a

better condition than the one obtained taking δ2 = 0 both in (11) and in (6).

Our entropy method provides a better bound than (11) and considerably improves (10) for the
values of δ1 and δ2 giving a strongly asymmetric chain.

A computation gives

c(M) = sup
p

(δ2 −δ1) log
�

(1−δ2)+p(δ2−δ1)
δ2−p(δ2−δ1)

δ1

1−δ2

�

log
�

p
1−p

δ1

1−δ2

� . (12)

It is quite simple to compute numerically the constant c(M); the numerical outputs and the com-
parisons with (10), (11) and the Kesten-Stigum bound are in table 1. For the particular pairs of
values of (δ1,δ2) we checked, the Kesten-Stigum upper bound on the non-reconstruction thresh-
olds for asymmetric chains are quite close to our lower bounds.
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δ1 = 0.3 KS FK M MP
Kesten-Stigum Formentin-Külske Martin Mossel-Peres

δ2 = 0.1 0.04 0.0579 0.065 0.1
δ2 = 0.2 0.01 0.0125 0.0134 0.02
δ2 = 0.4 0.01 0.0107 0.0110 0.0143
δ2 = 0.5 0.04 0.0413 0.0417 0.05
δ2 = 0.6 0.09 0.0907 0.0910 0.1
δ2 = 0.7 0.16 0.16 0.16 0.16
δ2 = 0.8 0.25 0.2525 0.2534 0.28
δ2 = 0.9 0.36 0.3787 0.3850 0.45

Table 1: For δ1 = 0.3, the Kesten-Stigum upper bound on the non-reconstruction thresholds for
asymmetric chains are very close to ours.

3 Proof

We denote by T N the tree rooted at 0 of depth N . The notation T N
v indicates the sub-tree of T N

rooted at v obtained from “looking to the outside" on the tree T N . We denote by PN
v the measure on

T N
v with free boundary conditions, or, equivalently the Markov chain obtained from broadcasting

on the subtree with the root v with the same transition kernel, starting in α. We denote by PN ,ξ
v the

correponding measure on T N
v with boundary condition on ∂ T N

v given by ξ= (ξi)i∈∂ T N
v

. Obviously
it is obtained by conditioning the free boundary condition measure PN ,ξ

v to take the value ξ on the
boundary.
We write

πN
v = π

N ,ξ
v =

�

PN ,ξ(η(v) = s)
�

s=1,...,q
. (13)

To control a recursion for these quantities along the tree we find it useful to make explicit the
following notion.

Definition 3.1. We call a real-valued function L on P a linear stochastic Lyapunov function with
center p∗ if there is a constant c such that

• L (p)≥ 0 ∀p ∈ P with equality if and only if p = p∗;

• EL (πN
v )≤ c

∑

w:v 7→w EL (π
N
w).

Proposition 3.2. Consider a tree-indexed Markov chain P, with transition kernel M(i, j) and invari-
ant measure α(i).
Then the function

L(p) = S(p|α) + S(α|p) =
q
∑

i=1

�

p(i)−α(i)
�

log
p(i)
α(i)

(14)

is a linear stochastic Lyapunov function with center α w.r.t. the measure P for the constant (6).

Proposition 3.2 immediately follows from the following invariance property of the recursion which
is the main result of our paper.
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Proposition 3.3. Main Recursion Formula for expected symmetrized entropy.
∫

P(dξ)L(πN ,ξ
v ) =

∑

w:v→w

∫

P(dξ)L(πN ,ξ
w M rev). (15)

Warning: Pointwise, that is for fixed boundary condition, things fail and one has

L(πN ,ξ
v ) 6=

∑

w:v→w

L(πN ,ξ
w M rev) (16)

in general. In this sense the proposition should be seen as an invariance property which limits the
possible behavior of the recursion.

Proof of Proposition 3.3. We need the measure on boundary configurations at distance N from
the root on the tree emerging from v which is obtained by conditioning the spin in the site v to
take the value to be j, namely

QN , j
v (ξ) := PN

v (σ : σ|∂ T N
v
= ξ|σ(v) = j). (17)

Then the double expected value w.r.t. to the a priori measure α between boundary relative en-
tropies can be written as an expected value w.r.t. P over boundary conditions w.r.t. to the open
b.c. measure of the symmetrized entropy between the distributions at v and α in the following
form.

Lemma 3.4.
∫

P(dξ) L(πN ,ξ
v )

︸ ︷︷ ︸

symmetric entropy at v

=

∫

α(d x1)

∫

α(d x2)S(Q
N ,x2
v |QN ,x1

v )
︸ ︷︷ ︸

boundary entropy

. (18)

Proof of Lemma 3.4: In the first step we express the relative entropy as an expected value

S(QN ,x2
v |QN ,x1

v ) =

∫

P(dξ)
dπN

v

dα
(x2)

�

log
dπN

v

dα
(x2)− log

dπN
v

dα
(x1)

�

. (19)

Here we have used that, with obvious notations,

dQN ,x2
v

dPN
v

(ξ) =
Pv(σ(v) = x2,ξ)
Pv(σ(v) = x2)Pv(ξ)

=
dπN

v

dα
(x2). (20)

Further we have used that

log
dQN ,x2

v

dQN ,x1
v

= log
dπN

v

dα
(x2)− log

dπN
v

dα
(x1), (21)
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for x1, x2 ∈ {1, . . . , q}. This gives

∫

α(d x1)

∫

α(d x2)S(Q
N ,x2
v |QN ,x1

v )

=

∫

P(dξ)
∫

α(d x2)
dπN

v

dα
(x2) log

dπN
v

dα
(x2)

−
∫

P(dξ)
∫

α(d x1)

∫

α(d x2)
dπN

v

dα
(x2)

︸ ︷︷ ︸

1

log
dπN

v

dα
(x1)

=

∫

P(dξ)S(πN ,ξ
v |α) +

∫

P(dξ)S(α|πN ,ξ
v )

(22)

and finishes the proof of Lemma 3.4. �
Let us continue with the proof of the Main Recursion Formula. We need two more ingredients
formulated in the next two lemmas. The first gives the recursion of the probability vectors πN

v in
terms of the values πN

w of their children w, which is valid for any fixed choice of the boundary
condition ξ.

Lemma 3.5. Deterministic recursion.

πN
v ( j) =

α( j)
∏

w:v→w

∑

i
M( j,i)
α(i)

πN
w(i)

∑

k α(k)
∏

w:v→w

∑

i
M(k,i)
α(i)

πN
w(i)

, (23)

or, equivalently: for all pairs of values j, k we have

log
dπN

v

dα
( j)− log

dπN
v

dα
(k) =

∑

w:v→w

log

∑

i
M( j,i)
α(i)

πN
w(i)

∑

i
M(k,i)
α(i)

πN
w(i)

. (24)

The proof of this Lemma follows from an elementary computation with conditional probabilities
and will be omitted here.
We also need to take into account the forward propagation of the distribution of boundary condi-
tions from the parents to the children, formulated in the next lemma.

Lemma 3.6. Propagation of the boundary measure.

QN , j
v =

∏

w:v→w

∑

i

M( j, i)QN ,i
w . (25)

This statement follows from the definition of the model. Now we are ready to head for the Main
Recursion Formula.
We use the second form of the statement of the deterministic recursion Lemma 3.5 equation (21)
to write the boundary entropy in the form

S(QN , j
v |Q

N ,k
v ) =QN , j

v

∑

w:v→w

log

∑

i
M( j,i)
α(i)

πN
w(i)

∑

i
M(k,i)
α(i)

πN
w(i)

. (26)
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Next, substituting the Propagation-of-the-boundary-measure-Lemma 3.6 and (20) we write

S(QN , j
v |Q

N ,k
v ) =QN , j

v

∑

w:v→w

log

∑

i
M( j,i)
α(i)

πN
w(i)

∑

i
M(k,i)
α(i)

πN
w(i)

=
∑

w:v→w

∑

l

M( j, l)QN ,l
w log

∑

i
M( j,i)
α(i)

πN
w(i)

∑

i
M(k,i)
α(i)

πN
w(i)

=
∑

w:v→w

∫

dP(ξ)
∑

l

M( j, l)
πN

w(l)
α(l)

log

∑

i
M( j,i)
α(i)

πN
w(i)

∑

i

M(k, i)
α(i)

πN
w(i)

︸ ︷︷ ︸

πN
w Mrev(k)
α(k)

=
∑

w:v→w

∫

dP(ξ)
πN

w M rev( j)
α( j)

log

πN
w M rev( j)
α( j)

πN
w M rev(k)
α(k)

,

(27)

using in the last step the definition of the reversed Markov chain. Finally applying the sum
∑

j,k α( j)α(k) · · · to both sides of (27) we get the Main Recursion Formula. To see this, note
that the l.h.s. of (27) together with this sum becomes the r.h.s. of the equation in Lemma 3.4. For
the r.h.s. of (27) we note that

∑

j,k

α( j)α(k)
πN

w M rev( j)
α( j)

log

πN
w M rev( j)
α( j)

πN
w M rev(k)
α(k)

= L(πN
w M rev). (28)

This finishes the proof of the Main Recursion Formula Proposition 3.3. �

Finally, Theorem 2.1 follows from Proposition 3.2 with the aid of the Wald equality with respect to
the expectation over Galton-Watson trees since the contraction of the recursion and the Lyapunov
function properties yield

lim
N↑∞
P
�

ξ :
�

�

�πN ,ξ(s)−α(s)
�

�

�≥ ε
�

→ 0, (29)

for all s, for all ε > 0, and this implies the extremality of the measure P. This ends the proof of
Theorem 2.1. �
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