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Abstract

In K. Yano, Y. Yano and M. Yor (2009), limit theorems for the one-dimensional symmetric a-stable
process normalized by negative (killing) Feynman-Kac functionals were studied. We consider the
same problem and extend their results to positive Feynman-Kac functionals of multi-dimensional
symmetric a-stable processes.

1 Introduction

In [9], [10], B. Roynette, P Vallois and M. Yor have studied limit theorems for Wiener processes
normalized by some weight processes. In [[16]], K. Yano, Y. Yano and M. Yor studied the limit
theorems for the one-dimensional symmetric stable process normalized by non-negative functions
of the local times or by negative (killing) Feynman-Kac functionals. They call the limit theorems
for Markov processes normalized by Feynman-Kac functionals the Feynman-Kac penalisations. Our
aim is to extend their results on Feynman-Kac penalisations to positive Feynman-Kac functionals
of multi-dimensional symmetric a-stable processes.

Let M* = (Q,%,%,,P,,X,) be the symmetric a-stable process on R? with 0 < a < 2, that is,
the Markov process generated by —(1/2)(—A)%?2, and (&, 2(&)) the Dirichlet form of M* (see
(2.1),(2.2)). Let u be a positive Radon measure in the class #,, of Green-tight Kato measures
(Definition . We denote by A/ the positive continuous additive functional (PCAF in abbrevia-
tion) in the Revuz correspondence to u: for a positive Borel function f and y-excessive function
8

(g, f) =lim1f E, U f(Xs)dA‘j} g(x)dx. (1.1
=01 Jga 0
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We define the family {Qit} of normalized probability measures by

1
Qi [B]= ZM—(X)J exp(Af(w))P,(dw), BeE Z,,
t B

where Z!'(x) = E, [exp(A})]. Our interest is the limit of Qﬁ’t as t — oo, mainly in transient cases,
d > a. They in [16] treated negative Feynman-Kac functionals in the case of the one-dimensional
recurrent stable process, a > 1. In this case, the decay rate of Z!'(x) is important, while in our
cases the growth order is.

We define

l(@)zinf{é”@(u,u): f uzd,uzl}, 0<6 < oo, (1.2)
Rd

where & (u,u) = &(u,u)+6 f]Rd u?dx. We see from [J5, Theorem 6.2.1] and [[12} Lemma 3.1] that

the time changed process by AY is symmetric with respect to u and A(0) equals the bottom of the
spectrum of the time changed process. We now classify the set %, in terms of A(0):

@ A0)<1

In this case, there exist a positive constant 8, > 0 and a positive continuous function h in the
Dirichlet space 2(&) such that
1 =A(8,) = 64,(h, h)

(Lemma Theorem . We define the multiplicative functional (MF in abbreviation) L]tl by

h_ e—eoth(Xf)eA’f‘

= R a3

(i) A(0) =1

In this case, there exists a positive continuous function h in the extended Dirichlet space 2,(&)
such that
1=A(0)= &(h,h)

([14, Theorem 3.4]). Here 2,(&) is the set of measurable functions u on R¢ such that |u| < oo
a.e., and there exists an &-Cauchy sequence {u,} of functions in 2(&) such that lim,_, u, = u
a.e. We define

h(X,)
he et 1.
¢ = hiXy) (1.4)
(i) A(0) > 1
In this case, the measure u is gaugeable, that is,
sup E, [eA'go] <00
xeR?
([15, Theorem 3.1]). We put h(x) = E,[¢*~] and define
h(X,)
Lh= —2eh, 1.5
7 h(xo)© (-5
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The cases (i), (ii), and (iii) are corresponding to the supercriticality, criticality, and subcriticality
of the operator, —(1/2)(—A)*?2 + u, respectively ([15]). We will see that L’; is a martingale MF
for each case, i.e., E, [L’;] =1. Let M" = (Q, IP’Z,Xt) be the transformed process of M* by L?:

P'(B) = J LN w)P,(dw), BE€Z,.
B

We then see from [3] Theorem 2.6] and Proposition below that if A(0) < 1, then M" is an
h%d x-symmetric Harris recurrent Markov process.

To state the main result of this paper, we need to introduce a subclass J(Oi of A,; a measure
U € A, is said to be in > if

d
sup (lxld"‘f L}g) < 00. 1.6)
xeRd Rd |x — y|¢=*

This class is relevant to the notion of special PCAF’s which was introduced by J. Neveu ([l6]); we
will show in Lemmathat if a measure u belongs to J{foi, then f Ot (1/h(X;))dA is a special PCAF

of M". This fact is crucial for the proof of the main theorem below. In fact, a key to the proof
lies in the application of the Chacon-Ornstein type ergodic theorem for special PCAF’s of Harris
recurrent Markov processes ([2, Theorem 3.18]).

We then have the next main theorem.

Theorem 1.1. (i) If A(0) # 1, then
QY. =% P! along (7)), 1.7
that is, for any s > 0 and any bounded &,-measurable function Z,

im M —=h [Z].
= B, [expd)] "

(ii) If A(0) = 1 and u € X3, then holds.

Throughout this paper, B(R) is an open ball with radius R centered at the origin. We use ¢, C, ..., etc
as positive constants which may be different at different occurrences.

2 Preliminaries

Let M* = (Q, Z,Z,,6,,P,,X,) be the symmetric a-stable process on R? with 0 < a < 2. Here
{Z,}:>0 is the minimal (augmented) admissible filtration and 6,, t > 0, is the shift operators
satisfying X,(0,) = X, identically for s,t > 0. When a = 2, M* is the Brownian motion. Let
p(t,x,y) be the transition density function of M* and Gg(x, y), 8 = 0, be its 3-Green function,

e}

Gﬁ(x,y)=j e Pp(t,x,y)dt.
0

For a positive measure u, the 3-potential of u is defined by

Gpu(x) = J Gp (o, y)u(dy).
R4
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Let P, be the semigroup of M%,

Pf(x)= J. p(t,x, y)f (y)dy = By [f (X))
R4

Let (&, 2(&)) be the Dirichlet form generated by M*: for 0 < a < 2

S(uv) = lﬂ(d,a) Jf (u(X)—u(y))(Vd(X)—V(y))dxdy
2 RIXRI\A |x — y|é+e
(u(x) = u(y))? @D
@(é’)z{ueLz(}Rd):ff —di,adxdy<oo},
RIXRI\A Ix — yl
where A = {(x,x) : x € R%} and
B a2?7'r(4H)
-,Q{(d, a) = m
(5, Example 1.4.1]); for a = 2
&(u,v) = %D(u,v), 2(&) = HY(R?), (2.2)

where D denotes the classical Dirichlet integral and H'(R?) is the Sobolev space of order 1 ([5,
Example 4.4.1]). Let 2,(&) denote the extended Dirichlet space (5, p.35]). If a < d, that is, the
process M* is transient, then 2,(&) is a Hilbert space with inner product & ([5, Theorem 1.5.3]).
We now define classes of measures which play an important role in this paper.

Definition 2.1. (I) A positive Radon measure u on RY is said to be in the Kato class (u e XA in
notation), if
im sup Gﬁu(x) =0. 2.3)

1
B—0o x€R4

(II) A measure y is said to be 3-Green-tight (u € #,,(f) in notation), if u is in ¢ and satisfies

lim sup f Gg(x,y)u(dy)=0. 2.4
lyI>R

R—00 \ cpa

We see from the resolvent equation that for f >0

Hoo(B) = Hoo(1).

When d > a, that is, M® is transient, we write #, for .#,,(0). For u € .#, define a symmetric
bilinear form & by

& (u,u) = E(u,u) — J du, ue 2(8), (2.5)
]Rd

where U is a quasi-continuous version of u ([5, Theorem 2.1.3]). In the sequel, we always as-
sume that every function u € 2,(&) is represented by its quasi continuous version. Since yu € &
charges no set of zero capacity by [[1I, Theorem 3.3], the form &* is well defined. We see from
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[1, Theorem 4.1] that (&%, 2(&)) becomes a lower semi-bounded closed symmetric form. Denote
by #* the self-adjoint operator generated by (&%, 2(&)): §*(u,v) = (#"u,v). Let P! be the L>-
semigroup generated by s#*: P! = exp(—t#*"). We see from [[1}, Theorem 6.3(iv)] that P admits
a symmetric integral kernel p¥(t, x, y) which is jointly continuous function on (0, 00) x R¢ x R¢.
For u € 4, let A be a PCAF which is in the Revuz correspondence to u (Cf. [[5, p.188]). By the
Feynman-Kac formula, the semigroup P}' is written as

P{f(x) =E, [exp(4})f (X,)]. (2.6)
Theorem 2.2 ([111]). Let u € . Then

J u?()u(dx) < [|Gpulloop(u,u), ue 2(8), 2.7)
]Rd

where &g(u,u) = &(u,u) + 8 fRd u?dx.

Theorem 2.3. ([[14] Theorem 10], [13, Theorem 2.7]) If u € #,(1), then the embedding of 2(&)
into L%(u) is compact. If d > a and u € A, then the embedding of 9,(&) into L2(u) is compact.

3 Construction of ground states
For d < a (resp. d > a), let u be a non-trivial measure in . (1) (resp. #,,). Define
A(G)zinf{é”g(u,u):f uzdu=1}, 6 >0. 3.1
Rd

Lemma 3.1. The function A(6) is increasing and concave. Moreover, it satisfies limg_,, A(0) = oo.

Proof. It follows from the definition of A(6) that it is increasing. For 6;,0, > 0,0 <t <1
l(t@l + (1 - t)@z) = inf{£t91+(1_t)92(u, ll) : f uzd‘u = 1}
R4

> tinf{ggl(u,u) : wdu = 1} +(1- t)inf{é”ez(u, u): j uldyu = 1}
R4 Re
=tA(6;)+ (1 — t)A(6,).

We see from Theoremthat for u € 2(&) with fRd uldu =1, 8y(u,u) > 1/||Gyull,. Hence we
have

AM0) = (3.2)

1Goulloo
By the definition of the Kato class, the right hand side of (3.2)) tends to infinity as 6 — oo. O

Lemma 3.2. Ifd < a, then A(0) =0.
Proof. Note that for u € 2(&)
A0) | wldu < &(u,u).
Rd
Since (&, 2(&)) is recurrent, there exists a sequence {u,} € 2(&) such that u, T 1 q.e. and

&(u,,u,) — 0 ([I5, Theorem 1.6.3, Theorem 2.1.7]). Hence if A(0) > 0, then u = 0, which is
contradictory. O
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We see from Theorem [2.3]and Lemma 3.2 that if d < a, then there exist 6, > 0 and h € 2(&) such
that

A6y) = inf{é”go(h,h) : f h2dy = 1} =1.
le

We can assume that h is a strictly positive continuous function (e.g. Section 4 in [[14]).
Let Mt[h:| be the martingale part of the Fukushima decomposition ([[5, Theorem 5.2.2]):

h(X,) — h(X,) = MM + N (3.3)

M ——Jt ! dMm"
0 ( S—) s

and denote by L’: the unique solution of the Doléans-Dade equation:

Define a martingale by

t
Z.=1 +J Z,_dM,. 3.4
0
Then we see from the Doléans-Dade formula that L? is expressed by

i = e (- 00, ) [T+ ament-am)

2 0<s<t
1 h(X,) h(X,)

Here M; is the continuous part of M, and AM; = M, — M,_. By It&’s formula applied to the
semi-martingale h(X,) with the function log x, we see that L}g has the following expression:

h(X,)
h _ =6t ¢ w
L'=e —h(XO) exp(Ay). (3.5)

Let d > a and suppose that 6, = 0, that is,

A(0)= inf{é’(u, u): f uldu = 1} =1.
RrY

We then see from [[I4] Theorem 3.4] that there exists a function h € 2,(&) such that &(h,h) = 1.
We can also assume that h is a strictly positive continuous function and satisfies

C
] <h(x) < e’ x| >1 (3.6)

(see (4.19) in [[14]). We define the MF L" by

n h(X)
b= h(X,)

exp(AY). 3.7)

We denote by M" = (€, ]P’ﬁ,X .) the transformed process of M* by Lf,

IP”;(dw) = Lf(w) ‘P (dw).
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Proposition 3.3. The transformed process M" = (IP”;,X .) is Harris recurrent, that is, for a non-
negative function f with m({x : f(x) > 0}) > 0,

J f(X)dt =00 Plas, (3.8
0

where m is the Lebesgue measure.

Proof. Set A= {x: f(x)> 0}. Since M" is an h?d x-symmetric recurrent Markov process,
P,[0,06, <00, Y¥n>0]=1 forq.e. x €R? 3.9)

by [I5, Theorem 4.6]. Moreover, since the Markov process M has the transition density function

_ope PM(t,%,¥)
h(x)h(y)

with respect to h%dx, (3.9) holds for all x € R by [5, Problem 4.6.3]. Using the strong Feller
property and the proof of [[8, Chapter X, Proposition (3.11)], we see from (3.9) that M" is Harris
recurrent. U

We see from [[14, Theorem 4.15] : If 6, > 0, then h € L%(R%) and M" is positive recurrent. If
6, = 0 and a < d < 2a, then h & L?(RY) M" is null recurrent. If 6, = 0 and d > 2a, then
h € L2(RY) M" is positive recurrent.

4 Penalization problems

In this section, we prove Theorem|1.1

(1°) Recurrent case (d < a )

Theorem 4.1. Assume that d < a. Then there exist 6, > 0 and h € 2(&) such that A(6,) =1 and
&y, (h,h) = 1. Moreover, for each x € RY

e %R, [eAq —>h(x)f h(x)dx as t — oo.. 4.1)
Rd

Proof. The first assertion follows from Theorem [2.3]and Lemma[3.2] Note that

Ot [efﬂ :h(x)EZ [h(}lft)}

Then by [[13}, Corollary 4.7] the right hand side converges to h(x) f]Rd h(x)dx. O

Theorem [4.T]implies (1.7). Indeed,
E, (exp(A))Z,) e %'E, (exp(A)|F;)
E, (expd))) e E, (exp(a?))
o~ 0o eXp(A’:)e_QO(t_S)EXS (eXp(Al;_s))
- e %K, (exp(A)))
e~ % exp(AVR(X,) [, h(x)dx
=L as t — 0.
h(x) [0 h(x)dx
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We showed in [3] Theorem 2.6 (b)] that the transformed process M" is recurrent. We see from
this fact that L’: is martingale, IE(L’;) = 1. Therefore Scheff’s lemma leads us to Theorem 1.1 (i)

(e.g. [9D.

(2°) Transient case (d > o)

If 2(0) < 1, there exist 6, > 0 and h € 9(&) such that A(6,) = 1 and &y (h,h) = 1. Then we can

show the equation (4.1) in the same way as above. If A(0) > 1, then A} is gaugeable (see Theorem

below), that is,
sup I, [eAgoJ < o0,
xeR4

and thus
lim E, [e/ﬂ =E, [%].

Hence for any s > 0 and any Z,-measurable bounded function Z

e, 2] _, [ze¥sy [0

E, [e%] E, [¢%]
E, [zeVEy [~]] 1
— : = E, [Ze5h(X,)| =E[Z]
E, [¢*] G e L2 HO0] =B
as t — oo.
In the remainder of this section, we consider the case when A(0) = 1. It is known that a measure
U € A, is Green-bounded,
d
sup j M—(yd)_a < 0. (4.2)
xeR? Jrd |X - }’|

To consider the penalisation problem for u with A(0) = 1, we need to impose a condition on u.

Definition 4.2. (I) A measure u € ¢ is said to be special if

d
sup (lxld"‘f L}g) < 00. (4.3)
xeR? RI |x — y|¢=*

We denote by % O‘Z the set of special measures.
(I1) A PCAF A, is said to be special with respect to M", if for any positive Borel function g with

f]R’i gdx >0
[e] t
sup ]E’;( [J exp (—f g(Xs)ds) dAt:| < 00.
x€R? 0 0

A Kato measure with compact support belongs to % Oi The set ¢~ Oi is contained in A4,
HE C Ay (4.4)

Indeed, since for any R > 0

_ du(y) _ du(y)
M(u) := sup (|X|d “J ———— | >R sup —a’
ceRd we 1X =l xeBR) Jpa [X — ¥
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we have
sup f du(y) sup J du(y)
xert Jpry X — ¥4 xeB(®y Jpmy 10— Y1
M
< W — 0, R— o0.
Rd—a

Lemma 4.3. Let B, be a PCAF. Then

0 . o0 dAH
E B qal | = h(x)E" B
Uo : } B )y ¢ Ao

w| (-5 44
h(x)E; [JO e )

Proof. We have

s dA,u
Al -, %%t
E, {e s h(XS)L e h(Xt)}

) dAy
= E, eAsMh(Xs)e_Bf—t} .
[L h(X.)

Put Y, = e’ h(X,)e B /h(X,). Then since Y, is a right continuous process, its optional projection is
equal to E,[Y,|Z,] (e.g. [[Z, Theorem 7.10]). Hence the right hand side equals

s s . 1 .
E E, [Y, dA! | =E Ac g Be Ey | e*—h(X, da | .
X |:Jo x I: t|gt:| ti| x |:J;) ere h(Xt) X, [e ( sft):l ti|

Since Ex, [eAith(Xs_t)} = h(X,), the right hand side equals

S
E, { f eAf—BrdA‘;} .
0

Hence the proof is completed by letting s — co. O

The next theorem was proved in [[15]].

Theorem 4.1. ([I5]) Suppose d > a. For p = p* — u~ € Ay, — Ky, let A* = A" — A" . Then the
following conditions are equivalent:
(i) supE,[e*~] < oo.

x€R?

(ii) There exists the Green function G*(x,y) < oo (x # y) of the operator —%(—A)"‘/2 + u such that

E, U eAﬁf(Xf)dt} =J G*(x, y)f (y)dy.
0 RY

(iii) inf{g(u,u)+f uldu~ :f uzd;.ﬁ:l} > 1.
R4 R4

We see from (4.19) in [14] that if one of the statements in Theorem holds, then G*(x,y)
satisfies
G(x,y) <G"(x,y) <CG(x,y). (4.5)
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t
dA¥
Lemma 4.4. If u € %5, then S is special with respect to M™.
% o X))

Proof. We may assume that g is a bounded positive Borel function with compact support. Note

that by Lemma[4.3
T ‘ dat
E — X,)d
U e"p( Jog( ) ) h(xa}

= LIE |:Jooexp (A” —th(X )ds) dA“}
h(x) X o t o s t

= _1 Gufg-dx“(x)

h(x) '
If the measure u satisfies A(0) = 1, then u — g - dx € 4, — A, satisfies Theorem (iii), and
G*~&4x(x, y) is equivalent with G(x, y) by (4.5). Therefore the equation (3.6)) implies that (4.3)
is equivalent to that sup,.cga {(l/h(x))G”’g‘dxu(x)} < 00. O

We note that by Lemma [4.3

: ” ‘ da
o[ [ 2]

Thus for a finite positive measure v,

 dav
Al — d h s
E, [ ] =vR + (v, WEL, UO - (Xs)} (4.6)
where v = h-v/(v,h). For a positive smooth function k with compact support, put
t
P(t)=E" U k(Xs)ds} )
0
Then lim,_, , v(t) = oo by the Harris recurrence of M". Moreover,
t+s
W ) =1 4.7)

Jim W(0)

Y(t+s) = E! U k(Xu)du}+]Eﬁ [Eﬁ‘(l U k(xu)duH
0 0

P(t) + Ikl oo,

Indeed,

IA

and "
_We+s) o Klls

< <1+ .
P(t) P(t)
We see from [4, Lemma 4.4] that the Revuz measure of A} is h?u as a PCAF of M". Since by
t
1 [ Au] v(RD) EZ’I [fo(l/h(xs))dAg]
— kK, et | = + (V’ t
P(0) B [ [ k(X )ds |

Y(1)
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and f Ot (1/h(X;))dAY and f Ot k(X,)ds are special with respect to M", we see from Chacon-Ornstein
type ergodic theorem in [2] Theorem 3.18] that

ﬁEv (] — w.n)- % (4.8)
as t — oo. Note that (u,h) < oo by and (4.2).
For a bounded &,-measurable function Z, define a positive finite measure v by
v(B)=E, [ZeA?;XS eB] , Be B(RY).
Then by the Markov property,
E, [ZeA?] =E, [eAf—s] .
Therefore
E. [ze% E. [2e%] /u(0)
h, ﬁ = Hhm W
g (YL S)(OE, [¢%~] [t =s)
=00 E, [e] /4(0)
By and (4.8), the right hand side equals
(b, ), )/ J kI _wh 1 E, [ze¥h(X))] =E'[2]. 4.9)

() (R [ kh2dx — h(x) — h(x)

Remark 4.5. We suppose that d > a and A(0) = 1. If d > 2a, then h € L?(R?) on account of
(3.6). Hence M" is an ergodic process with the invariant probability measure h?dx, and thus for a
smooth function k with compact support,

M — E]Ef; [J k(Xs)dS} —>J gh?dx.
t t 0 R4

Hence we see that for u € & O‘i

lim 2E, [eA‘?] = h(x)(u, ). (4.10)

t—oo t

References

[1] Albeverio, S., Blanchard, P, Ma, Z.M.: Feynman-Kac semigroups in terms of signed smooth
measures, in "Random Partial Differential Equations" ed. U. Hornung et al., Birkhiuser,
(1991). MR1185735

[2] Brancovan, M.: Fonctionnelles additives speciales des processus recurrents au sens de Harris,
Z. Wahrsch. Verw. Gebiete. 47, 163-194 (1979). MR0523168

[3] Chen, Z.-Q., Fitzsimmons, P J., Takeda, M., Ying, J., Zhang, T.-S: Absolute continuity of
symmetric Markov processes, Ann. Probab. 32, 2067-2098 (2004). MR2073186


http://www.ams.org/mathscinet-getitem?mr=1185735
http://www.ams.org/mathscinet-getitem?mr=0523168
http://www.ams.org/mathscinet-getitem?mr=2073186

Feynman-Kac Penalisations

43

[4] Fitzsimmons, PJ., Absolute continuity of symmetric diffusions, Ann. Probab. 25, 230-258
(1997). MR1428508

[5] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes,
Walter de Gruyter, Berlin (1994). MR1303354

[6] Neveu, J.: Potentiel Markovien recurrent des chaines de Harris. Ann. Inst. Fourier 22, 85-130
(1972). MR0380992

[7] Rogers, L., Williams, D.: Diffusions, Markov Processes, and Martingales, Vol. 2, John Wiley
(1987). MR0921238

[8] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Third edition, Springer-
Verlag, Berlin (1999). MR1725357

[9] Roynette, B., Vallois, P, Yor, M.: Some penalisations of the Wiener measure. Jpn. J. Math. 1,
263-290 (2006). MR2261065

[10] Roynette, B., Vallois, P, Yor, M.: Limiting laws associated with Brownian motion per-
turbed by normalized exponential weights. I. Studia Sci. Math. Hungar. 43, 171-246 (2006).
MR2229621

[11] Stollmann, P, Voigt, J.: Perturbation of Dirichlet forms by measures, Potential Analysis 5,
109-138 (1996). MR1378151

[12] Takeda, M.: Exponential decay of lifetimes and a theorem of Kac on total occupation times,
Potential Analysis 11, 235-247, (1999). MR1717103

[13] Takeda, M.: Large deviations for additive functionals of symmetric stable processes. J. The-
oret. Probab. 21, 336-355 (2008). MR2391248

[14] Takeda, M., Tsuchida, K.: Differentiability of spectral functions for symmetric a-stable pro-
cesses, Trans. Amer. Math. Soc. 359, 4031-4054 (2007). MR2302522

[15] Takeda, M., Uemura, T.: Subcriticality and gaugeability for symmetric a-stable processes,
Forum Math. 16, 505-517 (2004). MR2044025

[16] Yano, K., Yano, Y., Yor, M.: Penalising symmetric stable Lévy paths, J. Math. Soc. Japan. 61,
757-798 (2009). MR2552915


http://www.ams.org/mathscinet-getitem?mr=1428508
http://www.ams.org/mathscinet-getitem?mr=1303354
http://www.ams.org/mathscinet-getitem?mr=0380992
http://www.ams.org/mathscinet-getitem?mr=0921238
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=2261065
http://www.ams.org/mathscinet-getitem?mr=2229621
http://www.ams.org/mathscinet-getitem?mr=1378151
http://www.ams.org/mathscinet-getitem?mr=1717103
http://www.ams.org/mathscinet-getitem?mr=2391248
http://www.ams.org/mathscinet-getitem?mr=2302522
http://www.ams.org/mathscinet-getitem?mr=2044025
http://www.ams.org/mathscinet-getitem?mr=2552915

	Introduction
	Preliminaries
	Construction of ground states
	Penalization problems
	References

