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Abstract
We study the critical parameter u∗ of random interlacements on a Galton-Watson tree conditioned
on the non-extinction event. We show that, for a given law of a Galton-Watson tree, the value of
this parameter is a.s. constant and non-trivial. We also characterize this value as the solution of a
certain equation.

1 Introduction

The aim of this note is to the study random interlacements model on a Galton-Watson tree. We will
mainly be interested in the critical parameter of the model. In particular we want to understand
whether this parameter is non trivial (that is different from 0 and ∞), whether it is random
and how it depends on the law of the Galton-Watson tree. Our main theorem answers all of these
questions and even goes further by characterizing the critical parameter as the solution of a certain
equation.
The random interlacements model was recently introduced on Zd , d ≥ 3, by A.S. Sznitman in
[Szn10] and generalised to arbitrary transient graphs by A. Teixeira in [Tei09]. It is a special
dependent site-percolation model where the set I of occupied vertices on a transient graph (G,E )
is constructed as the trace left on G by a Poisson point process on the space of doubly infinite
trajectories modulo time shift. The density of the set I is determined by a parameter u> 0 which
comes as a multiplicative parameter of the intensity measure of the Poisson point process. In this
paper, we will not need the complete construction of the random interlacements percolation. For
our purposes it will be sufficient to know that the law QG

u of the vacant set V = G \ I of the
random interlacements at level u is characterized by

QG
u [K ⊂ V ] = e−ucapG(K), K ⊂ G finite, (1.1)

where capG (K) is the capacity of K in G (see Section 2 for definition). In addition to this formula
we will need the description of the distribution of the vacant cluster containing a given vertex in
the case when G is a tree given in [Tei09] which we state in Theorem 2 below.
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The critical parameter u∗G of random interlacements on G is defined as:

u∗G = inf
u∈R+

¦

u : QG
u -a.s. all connected components of V are finite

©

. (1.2)

In this article we take the graph G to be a Galton-Watson rooted tree T defined on a probability
space (Ω,A ,P), conditioned on non-extinction. We denote by ∅ the root of the tree,

�

ρi
�

i≥0 the
offspring distribution of the non-conditioned Galton-Watson process, f its generating function and
q the probability of the extinction event. P̄ stands for the conditional law of the Galton-Watson
tree on the non-extinction event and Ē for the corresponding conditional expectation. We assume
that T is supercritical that is

∞
∑

i=0

iρi > 1. (A0)

If (A0) is satisfied, then P̄ is well defined and T is P̄-a.s. transient, see for example Proposition 3.5
and Corollary 5.10 of [LP]. Thus the random interlacements are defined on T and in particular
QT

u is P̄-a.s. well-defined.
To state our principal theorem we introduce eT the sub-tree of T composed of the vertices which
have infinite descendence. We recall the Harris decomposition (cf. Proposition 5.26 in [LP]):
under P̄, eT is a Galton-Watson tree with generating function ef given by

ef (s) =
f
�

q+
�

1− q
�

s
�

− q

1− q
. (1.3)

Theorem 1. Let T be a Galton Watson tree with a law satisfying (A0). Then there exists a non-
random constant u∗ ∈ (0,∞) such that

u∗T = u∗ , P̄-a.s. (1.4)

Moreover if we denote by Lχ (u) = Ē
�

e−ucapT ({∅})
�

the annealed probability that the root is vacant
at level u (cf 1.1), then u∗ is the only solution on (0,∞) of the equation

�

ef −1
�′ �
Lχ (u)

�

= 1. (1.5)

The main difficulty in proving this theorem is the dependence present in the model. More precisely,
for any x ∈ T , the probability that x ∈ V is given by

QT
u [x ∈ V ] = e−ucapT (x).

The capacity capT (x) depends on the whole tree T . It is thus not possible to construct the com-
ponent of the vacant set containing the root of a given tree as a sequence of independent genera-
tions, which is a key property when proving an analogous statement for Bernoulli percolation on
a Galton-Watson tree.
However, it turns out that despite this dependence, it is possible to construct a recurrence relation
under the annealed measure P̄⊗QT

u for a well chosen quantity related to the size of the cluster at
a given point (see (4.11)). This is done in section 4. Using this recurrence relation, it is possible to
find an annealed critical parameter u∗ and show that it is non-trivial. In section 3 we prove that u∗T
is P̄−a.s. constant and thus that u∗T = u∗ for P̄−a.e. tree. Section 2 introduces some preliminary
definitions and recalls some useful results for random interlacements on trees.
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2 Definitions and preliminary results

Let us introduce some notations first. For a given tree T with root ∅ and a vertex x ∈ T \ {∅},
we write x̂ for the closest ancestor of x in T , |x | for its distance to the root, Zx for the number of
children of x and degT (x) for its degree. We denote by Tx the sub-tree of T containing x and all
its descendants. If T is a tree with root ∅, for every child x of ∅ we will say that Tx is a descendant
tree of T . For any infinite rooted tree T , we denote by eZx the number of children of x in eT .
For a tree T and a vertex x of T , we denote by PT

x the law of a simple discrete time random walk
�

Xn
�

n≥0 started at x . For every set K in T , we use eHK to denote the hitting time of the set K
defined by

eHK = inf
n≥1

�

n : Xn ∈ K
	

. (2.1)

We write eT
K for the equilibrium measure of K in T and capT (K) for its total mass, also called

capacity of the set K:
eT

K (x) = degT (x) P
T
x

�

eHK =∞
�

1x∈K , (2.2)

capT (K) =
∑

x∈T

eT
K (x) =

∑

x∈K

degT (x) P
T
x

�

eHK =∞
�

. (2.3)

We also denote Cx the connected component of V containing x . According to Corollary 3.2 of
[Tei09], the definition (1.2) of the critical parameter u∗T is equivalent to

u∗T = inf
u∈R+

¦

u : QT
u

�

|C∅|=∞
�

= 0
©

. (2.4)

Finally we recall Theorem 5.1 of [Tei09] which identifies the law of the vacant cluster Cx on a
fixed tree T with the law of the vacant set left by inhomogeneous Bernoulli site percolation. This
theorem also allows us to compare random interlacements on T and random interlacements on
its descendant trees.

Theorem 2 (Theorem 5.1 of [Tei09]). Let T be a transient rooted tree with locally bounded degree.
For every vertex x ∈ T we consider the function hx

T : Tx → [0, 1] given by:

hx
T (z) = degT (z) P

Tx
z

�

eH{z,ẑ} =∞
�

PTx
z

�

eHẑ =∞
�

1z 6=x (2.5)

and hx
T (x) = 0. Conditionally on {x ∈ V }, Cx ∩ Tx has the same law under QT

u as the open cluster of
x in an inhomogeneous Bernoulli site-percolation on Tx where every site z ∈ Tx is open independently
with probability

pu (z) = exp
�

−uhx
T (z)

�

. (2.6)

3 P̄-a.s. constancy of u∗

In this section we prove that for a given Galton-Watson tree T satisfying (A0) the critical pa-
rameter u∗T is P̄-a.s constant. We will use Theorem 2 to prove a zero-one law for the event
¦

QT
u

�

|C∅|=∞
�

= 0
©

. The proof of this zero-one law is based on the following definition and
lemma which we learnt in [LP]. We present here its proof for sake of completeness.

Definition 3. We say that a property P of a tree is inherited if the two following conditions are
satisfied:

T has P ⇒ all descendent trees of T have P . (3.1)
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All finite trees have P . (3.2)

The zero-one law for Galton-Watson trees associated to such properties is:

Lemma 4. If P is an inherited property then, for every Galton-Watson tree process T satisfying (A0),
P̄ [T has P ] ∈ {0,1}.

Proof. Let E be the set of trees that have the property P and Z∅ the number of children of the
root. Using condition (3.1) we can write

P [T ∈ E] = E
�

P
�

T ∈ E|Z∅
��

(3.3)

≤ E
�

P
��

∀x : |x |= 1, Tx ∈ E
	

|Z∅
��

.

Conditionally on Z∅, the random trees
�

Tx
�

x:|x |=1 are independent and have the same law as T .
Hence the last inequality is equivalent to

P [T ∈ E] ≤ E
�

(P [T ∈ E])Z∅
�

(3.4)

≤ f (P [T ∈ E]) .

By assumption (A0) we know that ρi > 0 for some i ≥ 2. Therefore f is strictly convex on (0, 1)
with f

�

q
�

= q and f (1) = 1. Hence from (3.4) we have P [T ∈ E] ∈
�

0, q
�

∪ {1}. Since all finite
trees have P , and P [T is finite] = q, we can deduce that P [T ∈ E] ∈

�

q, 1
	

and consequently

P̄ [T ∈ E] =
P [{T ∈ E} ∩ {|T |=∞}]

P [{|T |=∞}]
∈ {0, 1} (3.5)

which finishes the proof of the lemma.

Proof of (1.4). To prove that u∗T is P̄-a.s constant we show first that, for a tree T with root ∅, the
property Pu defined by

T has Pu iff T is finite or QT
u

��

�C∅
�

�=∞
�

= 0, (3.6)

is inherited. Since every finite tree has Pu by definition, we just have to prove the statement
�

∃x ∈ T, |x |= 1 : Tx has not Pu
	

⇒
�

T has not Pu
	

. (3.7)

Let x be a child of the root such that
�

�Tx

�

� = ∞ and Tx has not Pu which can also be written
QTx

u

��

�Cx

�

�=∞
�

> 0. Since Tx ⊂ T , T is not finite. We will show that QT
u

��

�C∅
�

�=∞
�

> 0.
From the formula (2.5) it follows that for every z ∈ Tx \ {x}, hx

T (z) = hx
Tx
(z). Using Theorem 2

this means that, conditionally on {x ∈ V }, the law of the cluster Cx ∩ Tx under QT
u and the law of

the cluster Cx under QTx
u are the same. In particular we have

QT
u

�

|Cx ∩ Tx |=∞|x ∈ V
�

=QTx
u

��

�Cx

�

�=∞|x ∈ V
�

. (3.8)

Moreover, we see from (2.5) that hx
T (z) = h∅T (z) for every z ∈ Tx \ {x}. Applying Theorem 2 to

the clusters C∅ and Cx , we see that the law of C∅ ∩ Tx under QT
u [.|∅, x ∈ V ] is the same as the

law of Cx ∩ Tx under QT
u [.|x ∈ V ]. In particular we have

QT
u

�

|C∅ ∩ Tx |=∞|∅, x ∈ V
�

=QT
u

�

|Cx ∩ Tx |=∞|x ∈ V
�

. (3.9)
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Since on {∅, x ∈ V }, ∅ and x are in the same open cluster, we can rewrite (3.8) and (3.9) as

QT
u

�

|Cx ∩ Tx |=∞|∅, x ∈ V
�

= QT
u

�

|C∅ ∩ Tx |=∞|∅, x ∈ V
�

(3.10)

= QT
u

�

|Cx ∩ Tx |=∞|x ∈ V
�

= QTx
u

��

�Cx

�

�=∞|x ∈ V
�

> 0,

by hypothesis. Finally, since

QT
u [∅, x ∈ V ] = e−ucapT ({∅,x}) > 0, (3.11)

this yields

0 < QT
u

�

|C∅ ∩ Tx |=∞|∅, x ∈ V
�

QT
u [∅, x ∈ V ]≤QT

u

��

�C u
∅

�

�=∞
�

(3.12)

which finishes the proof that Pu is inherited.

We can now apply Theorem 3 and deduce that�P
�

T has Pu
�

∈ {0,1}. Thus for every s ∈Q+, there
exists a set As ⊂ Ω such that P̄

�

As
�

= 1 and 1QT
s [|C∅|=∞]=0 is constant on As. This yields

T → inf
¦

s ∈Q+ : QT
s

�

|C∅|=∞
�

= 0
©

(3.13)

is constant on A= ∩s∈Q+As with P̄ [A] = 1. But, since u 7→ QT
u

�

|C∅|=∞
�

is decreasing, we also
have:

uT
∗ = inf

¦

u ∈ R+ : QT
u

�

|C∅|=∞
�

= 0
©

(3.14)

= inf
¦

u ∈Q+ : QT
u

�

|C∅|=∞
�

= 0
©

.

It follows directly that u∗ is�P-a.s constant.

4 Characterization of u∗

In this section we will show that u∗ is non-trivial and can be obtained as the root of equation (1.5).
In order to make our calculation more natural we will work with the modified tree T ′ obtained by
attaching an additional vertex ∆ to the root of T . This change is legitimate only if T and T ′ have
the same critical parameter u∗, which is equivalent to

QT
u

��

�C∅
�

�=∞
�

> 0 iff QT ′
u

��

�C∅
�

�=∞
�

> 0. (4.1)

To prove (4.1) we observe that by Theorem 2

QT
u

��

�C∅
�

�=∞|∅ ∈ V
�

=QT ′
u

��

�C∅
�

�=∞|∅ ∈ V
�

. (4.2)

Since QT
u [∅ ∈ V ]> 0 and QT ′

u [∅ ∈ V ]> 0 this is equivalent to

QT
u

��

�C∅
�

�=∞
�

QT
u [∅ ∈ V ]

=
QT ′

u

��

�C∅
�

�=∞
�

QT ′
u [∅ ∈ V ]

(4.3)



Random interlacements on Galton-Watson Trees 567

so that (4.1) holds and u∗T = u∗T ′ .
If |x | ≥ 1,

�

Tx
�′ is isomorphic to the tree obtained by attaching x̂ to Tx . We will thus identify

both trees and write T
′

x for the tree Tx ∪ { x̂}.
For every tree T we define the random variable

γ (T ) = PT ′
∅

�

eH∆ =∞
�

. (4.4)

The random variables
�

γ
�

Tx
��

|x |=1 are related to the random variable χ (T ) := capT ′ (∅) by

χ (T ) = capT (∅) (4.5)

= capT ′ (∅) =
∑

x∈eT :|x |=1

γ
�

Tx
�

. (4.6)

The second equality is an easy consequence of definition of the capacity and the third equality
follows, using Markov property, from the following computation:

χ (T ) =
�

Z∅ + 1
�

PT ′
∅

�

eH∅ =∞
�

=
�

Z∅ + 1
�

∑

x∈eT :|x |=1

PT ′
x

�

eH∅ =∞
�

PT ′
∅
�

X1 = x
�

=
�

Z∅ + 1
�

∑

x∈eT :|x |=1

1
�

Z∅ + 1
� PT

x

�

eH∅ =∞
�

(4.7)

=
∑

x∈eT :|x |=1

P
T
′
x

x

�

eH∅ =∞
�

=
∑

x∈eT :|x |=1

γ
�

Tx
�

.

We also define Lγ the Laplace transform of T → γ (T ) under Ē.
The recursive structure of Galton-Watson tree implies that the random variables

�

γ
�

Tx
��

|x |=1 are
i.i.d. We can use this property and formula (1.3) to express relation (4.5) in terms of Laplace
transforms. This yields

Lχ (u) := Ē
�

exp
�

−ucapT ′ (∅)
��

(4.8)

= Ē






Ē
�

exp(−u
∑

x∈eT :|x |=1

γ
�

Tx
�

)|eZ∅

�







= Ē






Ē
�

∏

x∈eT :|x |=1

exp
�

−uγ
�

Tx
��

|eZ∅

�







= Ē
h

Ē
�

exp
�

−uγ (T )
��
eZ∅
i

(1.3)
= ef

�

Lγ (u)
�

.

Since
�

ef −1
�′
= 1

ef ′◦ef −1 , this allows us to write (1.5) as

1
ef ′ ◦ ef −1

�

ef
�

Lγ (u)
�� = 1 (4.9)

and thus
ef ′
�

Lγ (u)
�

= 1. (1.5)’
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Moreover, ef and ef ′ being bijective, the uniqueness of the solution is preserved. Thus from now on
we will consider (1.5) and (1.5)’ as equivalent.
We will now explicit a relation verified by the annealed probability that C∅ is infinite.

Proposition 5. For a Galton-Watson process, ru := Ē
�

QT
u

��

�C∅
�

�=∞
��

is the largest root in [0, 1]
of the equation

Lχ (u)− ru = ef
�

Lγ (u)− ru
�

. (4.10)

Proof. For every vertex x ∈ T , we introduce the notation

Dx =

�

max
y∈Cx∩eTx

�

�y
�

�

�

− |x | , (4.11)

the relative depth of the cluster containing x . Since
�

D∅ ≥ n+ 1
	

⊂ {∅ ∈ V }, for every n ∈ N, we
have

QT ′
u

�

{∅ ∈ V } ∩
�

D∅ < n+ 1
	�

=QT ′
u (∅ ∈ V )−QT ′

u

�

D∅ ≥ n+ 1
�

. (4.12)

We can also write

QT ′
u

�

{∅ ∈ V } ∩
�

D∅ < n+ 1
	�

=QT ′
u

�

D∅ < n+ 1|∅ ∈ V
�

QT ′
u [∅ ∈ V ]

=QT ′
u

�

∩x∈eT : x̂=∅
�

Dx < n
	

|∅ ∈ V
�

QT ′
u [∅ ∈ V ] . (4.13)

According to Theorem 2, we know that conditionally on {∅ ∈ V }, under QT ′
u , C∅ has the same

law as a cluster obtained by Bernoulli site-percolation. Hence the random variables
�

Dx
�

x∈eT : x̂=∅
are independent under QT ′

u [.|∅ ∈ V ]. Moreover for all vertices x ∈ eT such that x̂ = ∅ and every
z ∈ T

′

x \ {∅} we have the equality hx
T (z) = hx

T ′x
(z). This implies that

QT ′
u

�

Dx ≥ n|∅ ∈ V
�

= Q
T
′
x

u
�

Dx ≥ n|∅ ∈ V
�

. (4.14)

So that we can rewrite (4.13) as

QT ′
u

�

{∅ ∈ V } ∩
�

D∅ < n+ 1
	�

=







∏

x∈eT : x̂=∅

QT ′
u

�

Dx < n|∅ ∈ V
�






QT ′

u [∅ ∈ V ]

=







∏

x∈eT : x̂=∅

Q
T
′
x

u
�

Dx < n|∅ ∈ V
�






QT ′

u [∅ ∈ V ] (4.15)

=







∏

x∈eT : x̂=∅






1−

Q
T
′
x

u
�

Dx ≥ n
�

Q
T ′x
u [∅ ∈ V ]












QT ′

u [∅ ∈ V ] ,

where in the last equation we use the fact that Q
T
′
x

u -a.s we have the inclusion
�

Dx ≥ n
	

⊆ {∅ ∈V }.
According to (1.1) and (2.3), we have

Q
T
′
x

u [∅ ∈ V ] = exp
�

−u degT ′x
(∅) PT

′
x

x

�

eH∅ =∞
�

�

(4.16)

= exp
�

−u P
T
′
x

x

�

eH∅ =∞
�

�

= exp
�

−uγ
�

Tx
��

.
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Using (4.5) and (4.16), (4.15) can be rewritten as

QT ′
u

�

{∅ ∈ V } ∩
�

D∅ < n+ 1
	�

=







∏

x∈eT : x̂=∅

�

1−Q
T
′
x

u
�

Dx ≥ n
�

euγ(Tx)
�






e−u

∑

x∈eT : x̂=∅ γ(Tx) (4.17)

=
∏

x∈eT : x̂=∅

�

e−uγ(Tx) −Q
T
′
x

u
�

Dx ≥ n
�

�

.

We can now finally prove (4.10). If we denote ru
n = Ē

�

QT ′
u

�

D∅ ≥ n
�

�

, we have

Lχ (u)− ru
n+1 := Ē

�

e−ucapT ′ (∅) −QT ′
u

�

D∅ ≥ n+ 1
�

�

= Ē
�

QT ′
u (∅ ∈ V )−QT ′

u

�

D∅ ≥ n+ 1
�

�

(4.12)
= Ē

�

QT ′
u

�

{∅ ∈ V } ∩
�

D∅ < n+ 1
	�

�

(4.18)

(4.17)
= Ē







∏

x∈eT : x̂=∅

�

exp
�

−uγ
�

Tx
��

−Q
T
′
x

u
�

Dx ≥ n
�

�







= ef
�

Lγ (u)− ru
n

�

.

The sequence
�

ru
n

�

n∈N is decreasing by definition. Therefore it converges and its limit ru =
Ē
�

QT ′
u

�

D∅ =∞
�

�

verifies

Lχ (u)− ru = ef
�

Lγ (u)− ru
�

. (4.19)

The function ef is strictly convex by (A0). Therefore the function

x 7→ Lχ (u)− ef
�

Lγ (u)− x
�

(4.20)

is strictly concave and the equation

Lχ (u)− x = ef
�

Lγ (u)− x
�

. (4.21)

has at most two roots in [0,1]. According to (4.8), 0 is always a root. Assume that there exists
another root x0 in (0, 1]. Then using the concavity we have

x <Lχ (u)− ef
�

Lγ (u)− x
�

(4.22)

on
�

0, x0
�

. The sequence
�

ru
n

�

n∈N is positive and decreasing and verifies (4.18). Thus (4.22) and
an easy recurrence shows that ∀n ∈ N, ru

n ≥ x0. Since ru verifies (4.19), ru is a root of (4.21) and
ru can only be x0 in this case.
Finally, the tree T has locally finite degree and thus

�

D∅ =∞
	

=
¦�

�C∅
�

�=∞
©

. This yields

ru = Ē
�

QT ′
u

��

�C∅
�

�=∞
��

(4.23)

is the largest root of (4.10) in [0, 1] which finishes the proof of Proposition 5.
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We are now able to deduce non-triviality and (1.5)’ from the deterministic study of the roots of
the equality (4.10).

Proof of (1.5)’. According to (4.10), we have that

Lχ (u)− ru = ef
�

Lγ (u)− ru
�

. (4.24)

Using Taylor-Laplace formula, this can be rewritten:

0 = ru −Lχ (u) + ef
�

Lγ (u)− ru
�

(4.8)
= ru −

�

ef
�

Lγ (u)
�

− ef
�

Lγ (u)− ru
��

(4.25)

= ru









1− ef ′
�

Lγ (u)
�

+ ru

1
∫

0

(1− t) ef ′′
�

Lγ (u)− t ru
�

d t









.

From Proposition 5 and the definition of u∗, we can easily deduce that u∗ is the supremum over u
for which the function

gu (x) = 1− ef ′
�

Lγ (u)
�

+ x

1
∫

0

(1− t) ef ′′
�

Lγ (u)− t x
�

d t (4.26)

has a root in (0,1).
We first show that

gu has a root in (0,1) iff gu (0)< 0. (4.27)

According to (1.3), the function ef is strictly convex. Therefore, for every x ∈ (0, 1) we have

x

1
∫

0

(1− t) ef ′′
�

Lγ (u)− t x
�

d t > 0. (4.28)

In particular, we have gu (x)> gu (0) for every x ∈ (0, 1).
Moreover ef (0)− 0= ef (1)− 1= 0, thus the convexity yields

∀x ∈ (0, 1) , ef (x)< x . (4.29)

We can now deduce from (4.8) that for ∀u ∈ (0,∞), we have

Lχ (u) = ef
�

Lγ (u)
�

<Lγ (u)< 1. (4.30)

Replacing ru by Lγ (u) in the first line and the third line of (4.25), we obtain

Lγ (u)−Lχ (u) + ef (0) =Lγ (u) gu

�

Lγ (u)
�

. (4.31)

Since ef (0) = 0, this yields

gu

�

Lγ (u)
�

=
Lγ (u)−Lχ (u)

Lγ (u)
> 0. (4.32)
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Since gu is continuous, this finishes the proof of (4.27).
To finish the proof of (1.5)’ and non-triviality of u∗ we should show that (1.5)’ admits exactly one
solution u0 ∈ (0,∞) and that

gu (0)> 0 iff u> u0. (4.33)

We have
gu (0) = 1− ef ′

�

Lγ (u)
�

(4.34)

with ef ′ (·) = f ′
�

q+
�

1− q
�

·
�

. Since f ′ is continuous, we can write

lim
u→∞

ef ′
�

Lγ (u)
�

= ef ′
�

lim
u→∞
Lγ (u)

�

= f ′
�

q
�

(4.35)

lim
u→0

ef ′
�

Lγ (u)
�

= ef ′
�

lim
u→0
Lγ (u)

�

= f ′ (1) .

Moreover since f
�

q
�

= q and f (1) = 1, the strict convexity of f given by (A0) implies that
f ′
�

q
�

< 1 and f ′ (1)> 1. According to (4.34), this means that

lim
u→0

gu (0)< 0< lim
u→∞

gu (0) . (4.36)

Finally f ′ being increasing, ef ′ is also increasing and u 7→ gu (0) is increasing. Consequently, there
exist a unique u0 ∈ (0,∞) such that gu0

(0) = 0 (which is equivalent to u0 is a solution of (1.5)’)
and we have (4.33). This implies that u∗ = u0 and concludes our proof.
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