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Abstract

We consider the complex case of the S-inequality. It concerns the behaviour of Gaussian measures
of dilations of convex and rotationally symmetric sets in Cn. We pose and discuss a conjecture that
among all such sets measures of cylinders (i.e. the sets {z ∈ Cn | |z1| ≤ p}) decrease the fastest
under dilations.
Our main result in this paper is that this conjecture holds under the additional assumption that
the Gaussian measure of the sets considered is not greater than some constant c > 0.64.

Introduction

Let νn be the standard Gaussian measure on Cn, i.e.

νn(B) =
1

(2π)n

∫

j(B)

exp

 

−
n
∑

k=1

(x2
k + y2

k )

!

dx1dy1 . . . dxndyn,

for any Borel set B ⊂ Cn, where j : Cn −→ R2n is the standard isomorphism j((x1 + i y1, . . . , xn +
i yn)) = (x1, y1, . . . , xn, yn). Denote for any z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Cn by 〈w, z〉 =
∑n

k=1 wk z̄k a scalar product on Cn and the norm generated by it as ‖z‖=
p

〈z, z〉.
Let A⊂ Cn be a set, which is

• convex,

• rotationally symmetric, i.e. for any λ ∈ C, |λ|= 1, a ∈ A implies that λa ∈ A
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and P = {z ∈ Cn | |〈z, v〉| ≤ p} be a cylinder such that νn(A) = νn(P), where v ∈ Cn has length 1
and p ≥ 0 is a radius of P. We ask whether

νn(tA)≥ νn(tP), for t ≥ 1,

i.e. whether the measure of dilations of cylinders grows the slowest among all convex rotationally
symmetric sets.
The analogous question in Rn has an affirmative answer which was shown by R. Latała and
K. Oleszkiewicz [5]. Following their method in the considered complex case we obtain a par-
tial answer to the question. The main result is the following

Theorem 1. There exists a constant c > 0.64 such that for any convex rotationally symmetric set
A⊂ Cn, with measure νn(A)≤ c, and a cylinder P = {z ∈ Cn | |z1| ≤ p} satisfying νn(A) = νn(P), we
have

νn(tA)≤ νn(tP), for 0≤ t ≤ 1. (∗)

The paper is organized as follows. In Section 1 we give the proof of the above theorem. In Section
2 we state some remarks concerning this theorem. Especially, we discuss the possibility of omitting
the restriction on the measure assumed in Theorem 1, but weakening its assertion. Section 3 is
devoted to proofs of some auxiliary lemmas which have slightly technical character.

1 Proof of the main result

Firstly, let us set up some notation. We put |x |=
p

x2
1 + . . .+ x2

n for the standard norm of a vector
x = (x1, . . . , xn) ∈ Rn. By γn we denote the standard Gaussian measure in Rn and by γ+n (A) :=
limh→0+(γn(Ah)−γn(A))/h the Gaussian perimeter of A⊂ Rn, where Ah := {x ∈ Rn | dist(x , A)≤ h}
is a h-neighbourhood of A. Analogously, we define ν+n (A). Moreover, we will use the functions

Φ(x) = γ1((−∞, x)) =
1
p

2π

∫ x

−∞
e−t2/2dt,

T (x) = 1−Φ(x).

Following the same procedure as in the real case, presented in detail in [5], we can reduce a proof
of (∗) to some kind of an isoperimetric problem in R3. However, these estimations turn out to be
insufficient and a constraint involving a boundedness of the measure from above by c appears. For
the sake of the reader’s convenience, that reduction is briefly presented below.

(I) For any measurable set A⊂ Cn let νA(t) := νn(tA). Then Theorem 1 is equivalent to ν ′A(1)≥
ν ′P(1), provided that νA(1) = νP(1)≤ c. Since P is a cylinder we have ν ′P(1) = pν+n (P).

(II) Convexity of A gives ν ′A(1)≥ wν+n (A), where

w := sup{r ≥ 0 | {z ∈ Cn | ‖z‖< r} ⊂ A}.

The parameter 2w is in some sense the width of the set A.

(III) Rotational symmetry of A gives that A is included in some cylinder of the radius w. Indeed, by
the definition of w there is a point, say a, from the closure of A such that ‖a‖= w. Using the
convexity of A we infer the existence of the supporting hyperplane {z ∈ Cn | Re〈z, a〉= ‖a‖2}.
Now the rotational symmetry of A comes in and it yields that A is included in a cylinder.
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Namely, we have A ⊂ {z ∈ Cn | |〈z, a〉| ≤ ‖a‖2}. Thanks to the invariance of the Gaussian
measure with respect to unitary transformations we may assume without loss of generality
that a = ‖a‖e1. Then

A⊂ {z ∈ Cn | |z1| ≤ w}.

Now we can apply Ehrhard’s symmetrization [1], that is for a given point z = x + i y with
modulus less than w we replace the whole section

Az = {(z2, . . . , zn) ∈ Cn−1 | (z, z2, . . . , zn) ∈ A},

of our set with a real half-line (−∞, f (|z|)) with the same Gaussian measure as Az . In such
a way we obtain a set in R3

eA=
n

(x , y, t) ∈ R3 | t ≤ f
�
p

x2 + y2
�

,
p

x2 + y2 ≤ w
o

where f : [0, w]−→ R∪ {−∞},

f
�
p

x2 + y2
�

:= Φ−1 �νn−1
�

Az
��

.

The function f is well defined (by the rotational symmetry of A), and, as A is convex by
Ehrhard’s inequality [1], f is concave and nonincreasing. Clearly, νn(A) = γ3(eA). The key
property of this symmetrization is that ν+n (A) ≥ γ

+
3 (eA). Obviously a symmetrized cylinder P

is a cylinder eP = {z ∈ R2 | |z| ≤ p} ×R and ν+n (P) = pe−p2/2 = γ+3 (eP).

Summing up, in order to prove Theorem 1 it is enough to show

Theorem 2. There exists a constant c > 0.64 with the following property. Let A⊂ R3 be a set of the
form

A=
n

(x , y, t) ∈ R3 | t ≤ f
�
p

x2 + y2
�

,
p

x2 + y2 < w
o

,

where f : [0, w) −→ R is a concave, nonincreasing, smooth function such that f (x) −−−→
x→w−

−∞.

Let P = {(x , y, t) ∈ R3 |
p

x2 + y2 ≤ p} ⊂ R3 be a cylinder with the same measure as A, that is,
γ3(A) = γ3(P) = 1− e−p2/2. Then

wγ+3 (A)≥ pγ+3 (P), (1)

provided that γ3(A)≤ c.

Proof. Following [5], we define for fixed x ∈ [0, w]

A(x) = A∪ {z ∈ R2 | |z|< x} ×R,

P(x) = {z ∈ R2 | |z|< a(x)} ×R,

where the function a(x) is defined by the equation

γ3(A(x)) = γ3(P(x)).

We have ∂ A(x) = B1(x) ∪ B2(x), where B1(x) = {(z, t) ∈ R2 ×R | |z| = x , t ≥ f (|z|)}, B2(x) =
{(z, t) ∈ R2 ×R | |z|> x , t = f (|z|)}. Let

L(x) = wγ+3 (B2(x)) + xγ+3 (B1(x))− a(x)γ+3 (P(x)), x ∈ [0, w].
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Since A(w) is a cylinder with radius w, we have L(w) = 0. Also note that L(0) = wγ+3 (A)−pγ+3 (P).
Therefore it suffices to prove that L is nonincreasing.
We can easily calculate the terms which appear in the definition of L in order to obtain L′(x).
Namely

γ+3 (B2(x)) =
1
p

2π

∫ w

x

t exp

�

−
t2 + f (t)2

2

�

p

1+ f ′(t)2dt,

γ+3 (B1(x)) =
1
p

2π
3

∫ 2π

0

∫ ∞

f (x)

exp

�

−
x2 + t2

2

�

x dtdφ

= xe−x2/2(1−Φ( f (x))) = xe−x2/2T ( f (x)),

γ+3 (A(x)) = a(x)e−a(x)2/2.

Putting these into the definition of L we have

L(x) =
w
p

2π

∫ w

x

t exp

�

−
t2 + f (t)2

2

�

p

1+ f ′(t)2dt + x2e−x2/2T ( f (x))

− a(x)2e−a(x)2/2.

Moreover

γ3(A(x)) =γ3

�

{z ∈ R2 | |z|< x} ×R
�

+ γ3

�

{(z, t) ∈ R2 ×R | |z|> x , t ≤ f (|z|)}
�

=1− e−x2/2 +

∫ w

x

te−t2/2Φ( f (t))dt.

Thus

1− e−a(x)2/2 = γ3(P(x)) = γ3(A(x)) = 1− e−x2/2 +

∫ w

x

te−t2/2Φ( f (t))dt,

and differentiating in x we get

a′(x)a(x)e−a(x)2/2 = xe−x2/2(1−Φ( f (x))) = xe−x2/2T ( f (x)).

This allows us to compute L′. We have

L′(x) =−
w
p

2π
x exp

�

−
x2 + f (x)2

2

�

p

1+ f ′(x)2

+ e−x2/2

 

2x T ( f (x))− x2 e− f (x)2/2

p
2π

f ′(x)− x3T ( f (x))

!

−
�

2− a(x)2
�

xe−x2/2T ( f (x)).

Hence L′ ≤ 0 iff

w
p

1+ f ′(x)2 + x f ′(x)≥ (a(x)2 − x2)
p

2πe f (x)2/2T ( f (x)), x ∈ [0, w].
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Since f ′ ≤ 0 ( f is nonincreasing) and inft≤0(w
p

1+ t2 + x t) =
p

w2 − x2 we will have L′ ≤ 0 if
we show that

p

w2 − x2 ≥ (a(x)2 − x2)
p

2πe f (x)2/2T ( f (x)), x ∈ [0, w]. (2)

Estimating a(x)2− x2 we can prove the above inequality in some special cases. Notice that mono-
tonicity of f implies A(x) ⊂ {z ∈ R2 | |z| < x} × R ∪ {(z, t) ∈ R2 × R | x ≤ |z| ≤ w, t ≤ f (x)},
hence

1− e−a(x)2/2 = γ3(A(x))≤ (1− e−x2/2) + (e−x2/2 − e−w2/2)Φ( f (x)),

so
a(x)2 − x2 ≤−2 ln

�

T ( f (x)) +Φ( f (x))e−(w
2−x2)/2

�

. (3)

By this inequality the proof of (2) reduces to
p

w2 − x2 ≥−2
p

2πe f (x)2/2T ( f (x)) ln
�

T ( f (x)) +Φ( f (x))e−(w
2−x2)/2

�

. (4)

In general the above inequality is not true. However, Lemma 1, which is proved in the last section,
deals with some particular cases.
Let us introduce functions F : R−→ (0,∞), G : (0,∞)−→ (0,∞) given by the formulas

F(y) =−
p

2πe y2/2T (y) ln T (y), (5)

G(y) =
y

2(1− e−y2/2)
. (6)

Note that F is increasing and onto (cf. Lemma 2). We will need the constant

H = F−1
�

G
�
p

8/π
��

.

Lemma 1. Let either

(i) u≤
p

8/π, y ∈ R, or

(ii) u>
p

8/π, y ≤ H.

Then
−2
p

2πe y2/2T (y) ln
�

T (y) +Φ(y)e−u2/2
�

≤ u.

Applying Lemma 1 for u=
p

w2 − x2, y = f (x), we get the desired inequality (4) for x such that
p

w2 − x2 ≤
p

8/π or
p

w2 − x2 >
p

8/π and f (x)≤ H.

Therefore, it remains to prove (2) for x satisfying
p

w2 − x2 >
p

8/π and f (x)> H. Observe that

(a(x)2 − x2)′ = 2(a(x)a′(x)− x) = 2x
�

e(a(x)
2−x2)/2T ( f (x))− 1

�

,

but thanks to (3) we get
e(a(x)

2−x2)/2 < 1/T ( f (x)),

hence
(a(x)2 − x2)′ < 0.



Gaussian measures of dilations of convex rotationally symmetric sets in Cn 43

Thus the function [0, w] 3 x 7−→ a(x)2 − x2 ∈ [0,∞) is decreasing. It yields

sup
x∈[0,w]

(a(x)2 − x2) = a(0)2 = p2.

Moreover, the function x 7−→ e f (x)2/2T ( f (x)) is nondecreasing on the interval [0, w]∩ {x | f (x) >
0} as a composition of the nonincreasing function f and the decreasing one y 7−→ e y2/2T (y) for
y > 0 ([5, Lemma 1]). Consequently

sup
n

e f (x)2/2T ( f (x)) | f (x)> H
o

= eH2/2T (H).

Combining these two observations and using the assumption c ≥ γ3(A) = γ3(P) = 1− e−p2/2, that

is p2 ≤ −2 ln(1− c), we obtain that (2) holds for x such that
p

w2 − x2 >
p

8/π and f (x) > H.
Indeed

(a(x)2 − x2)
p

2πe f (x)2/2T ( f (x))≤
p

2πp2eH2/2T (H)

≤−2
p

2π ln(1− c)eH2/2T (H)

=

r

8

π
<
p

w2 − x2,

where the last equality holds by the definition of the constant c. Namely, we set

c = 1− exp

�

−
1

πeH2/2T (H)

�

> 0.64,

which completes the proof.

Remark 1. I is very easy to verify that c > 0.64. Firstly, we check by direct computation that
G(
p

8/π) > F(0.7), whence H > 0.7 by virtue of the monotonicity of F . Secondly, we observe
that the dependence c on H is increasing as it was mentioned that y 7−→ e y2/2T (y) for y > 0
decreases. Thus

c = 1− exp

�

−
1

πe0.72/2T (0.7)

�

> 0.64.

From the isoperimetric-like inequality (1) proved in Theorem 2 we have already inferred (cf. steps
(I)-(III) presented at the very beginning of this section) that

νn(A) = νn(P)≤ c implies ν ′A(1)≥ ν
′
P(1).

As it was said, this in turn gives the comparison of the measures of A and of a cylinder P when we
shrink these sets by dilating them — Theorem 1. We can also use this implication in order to show
what happens with measures when we expand our sets (the simple reasoning which ought to be
repeated may be found in [4])

Corollary 1. For any convex rotationally symmetric set A ⊂ Cn, with measure νn(A) ≤ c, and a
cylinder P satisfying νn(A) = νn(P), we have

νn(tA)≥ νn(tP), for 1≤ t ≤ t0, (7)

where t0 ≥ 1 satisfies νn(t0A) = c.
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2 Some remarks

Remark 2. Generally, without the assumption on the measure of a set A Theorem 2 fails. To see
this let us consider a cylindrical frustum A = {(z, t) ∈ R2 × R | |z| ≤ w, t ≤ y} with the radius
w and the height y . This is not exactly a set as in the assumptions of Theorem 2, that is, lying
under a graph of a smooth concave function (there is a problem with smoothness), but an easy
approximation argument will fill in the gap. Take a cylinder P = {z ∈ R2 | |z| ≤ p} ×R with the
same measure as A, which means

Φ(y)(1− e−w2/2) = γ3(A) = γ3(P) = 1− e−p2/2.

We show that for some large enough w and y there actually holds the reverse inequality to the
one stated in Theorem 2

wγ+3 (A)< pγ+3 (P).

Indeed, let us fix the parameters of the cylindrical frustum such that

e−w2/2 = T (y), y > 0.

Thus 1− e−w2/2 = Φ(y). To simplify some calculations, let us define a function

g(y) =
1

p
2πe y2/2T (y)

.

Now, the relation between w and y may be written as w2 = −2 ln T (y) = y2 + 2 ln
�p

2πg(y)
�

.
Furthermore, we have

y < g(y)<
p

y2 + 2, y > 0,

where the left inequality is a standard estimation for T (y) and the right one follows from [5,
Lemma 2]. Therefore

wγ+3 (A) = w

 

we−w2/2Φ(y) +
e−y2/2

p
2π
(1− e−w2/2)

!

= T (y)

 

w2Φ(y) +wΦ(y)
e−y2/2

p
2πT (y)

!

< T (y)
�

w2Φ(y) +wg(y)
�

< T (y)
�

w2Φ(y) +
q

y2 + 2 ln
�p

2πg(y)
�
p

y2 + 2
�

≤ T (y)
�

w2Φ(y) + y2 + ln
�p

2πg(y)
�

+ 1
�

= T (y)
�

w2 �1+Φ(y)
�

+ 1− ln
�p

2πg(y)
��

.

Let us choose y such that

1− ln
�p

2πg(y)
�

<−2(1+Φ(y)) ln
�

1+Φ(y)
�

.

Then

wγ+3 (A)< T (y)
�

w2 �1+Φ(y)
�

− 2(1+Φ(y)) ln
�

1+Φ(y)
�

�

=−2T (y)
�

1+Φ(y)
�

ln
�

e−w2/2 �1+Φ(y)
�

�

= p2e−p2/2 = pγ+3 (P),
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where the second equation holds since

e−p2/2 = 1−Φ(y)(1− e−w2/2) = T (y) +Φ(y)e−w2/2 = T (y)
�

1+Φ(y)
�

.

In the previous remark we have seen that the assumption on the measure in Theorem 2 is essential.
This assumption and the technique which have been used cause that the restriction on the measure
also appears in Theorem 1. We may obtain a weaker version of the inequality (∗) dropping the
inconvenient assumption γ3(A)≤ c. This result reads as follows

Theorem 3. There exists a constant K = 3 such that for any convex rotationally symmetric set A⊂ Cn

and a cylinder P satisfying νn(A) = νn(P), we have

νn((1+ K(t − 1))A)≥ νn(tP), for t ≥ 1. (8)

Proof. Let us denote `(t) = 1+ K(t − 1).
It suffices to prove (8) only for sets with big measure, i.e. νn(A) ≥ c, where c is the constant from
Theorem 1. Indeed, assume that (8) holds for all convex rotationally symmetric sets A such that
νn(A) ≥ c. We are going to show this inequality also for a set A with the measure less than c. Let
us fix such a set and take t0 > 1 such that νn(t0A) = c. From Corollary 1 we get

νn(tA)≥ νn(tP), t ≤ t0.

Now, we are to prove (8) for t > t0. Let Q be a cylinder with the same measure as t0A. Applying
what we have assumed we obtain

νn
�

`(t)(t0A)
�

≥ νn(tQ), t ≥ 1. (9)

One can make two simple observations

`(t)t0 < `(t0 t),
νn(Q) = νn(t0A)≥ νn(t0P) =⇒ νn(tQ)≥ νn(t t0P).

Together with the inequality (9) this yields

νn
�

`(t t0)A
�

≥ νn(t t0P), t ≥ 1,

which is just the desired inequality.
Henceforth, we are going to deal with the proof of inequality (8) in the case of νn(A) ≥ c. The
idea is to exploit the deep result of Latała and Oleszkiewicz concerning dilations in the real case.
Namely, from Theorem 1 of [5] we have

νn (`(t)A)≥ νn (`(t)S) , t ≥ 1,

where
S = {(z1, . . . , zn) ∈ Cn | |Rez1| ≤ s},

is a strip of the width 2s chosen so that νn(A) = νn(S) = 1− 2T (s). Therefore, we end the proof,
providing that we show

νn (`(t)S)≥ νn(tP), t ≥ 1.

This inequality in turn can be written more explicitly. We have

νn (`(t)S) = 1− 2T (`(t)s) ,
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and using the relation 1− e−p2/2 = νn(P) = νn(A) = νn(S) = 1− 2T (s) we get e−p2/2 = 2T (s).
Hence

νn(tP) = 1− e−(t p)2/2 = 1− (2T (s))t
2

.

Thus it is enough to show that

(2T (s))t
2

≥ 2T (`(t)s) , t ≥ 1, s ≥ s0, (10)

where s0 is such that a strip with the width 2s0 has the measure c, i.e. 1 − 2T (s0) = c. Since
c > 0.64, it follows that T (s0)< 0.18< T (0.9), so s0 > 0.9.
Let us deal with the inequality (10). For t close to 1 we will apply the Prékopa-Leindler inequality
[2, Theorem 7.1]. To see this, let us fix s ≥ s0 and t ≥ 1 and consider the functions

f (x) =
2
p

2π
e−x2/21[`(t)s,∞)(x),

g(x) =
2
p

2π
e−x2/21[0,∞)(x),

h(x) =
2
p

2π
e−x2/21[s,∞)(x).

It is not hard to see that the inequality

f (x)1/t2
g(y)1−1/t2

≤ h
�

1

t2 x +
�

1−
1

t2

�

y
�

,

holds for any x , y ∈ R if and only if `(t)s ≥ t2s, or equivalently t ≤ K − 1 = 2. Then, by virtue of
Prékopa-Leindler inequality, we obtain

(2T (`(t)s))1/t2

=

�
∫

R
f

�1/t2�
∫

R
g

�1−1/t2

≤
∫

R
h= 2T (s).

Now we are left with the proof of (10) in the case of t > 2 and s ≥ s0. To handle it, we use the
asymptotic behaviour of the function T and perform some calculations. In accordance with the
standard estimate from above of the tail probability of the Gaussian distribution we get

T (`(t)s)<
1
p

2π

1

`(t)s
e−`(t)

2s2/2,

whereas from Lemma 2 in [5]

T (s)>
1
p

2π

1
p

s2 + 2
e−s2/2.

Therefore, in order to show (10) it is enough to prove

�

2
p

2π

�t2
1

(s2 + 2)t2/2
e−t2s2/2 ≥

2
p

2π

1

`(t)s
e−`(t)

2s2/2,

which is equivalent to the inequality

exp

�

s2

2

�

`(t)2 − t2
�

�

≥
�
Ç

π

2

�t2−1 (s2 + 2)t
2/2

`(t)s
, s ≥ s0, t ≥ 2.
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Taking the logarithm of both sides, putting the definition of `(t) = 1 + K(t − 1) = 3t − 2 and
simplifying we have to prove

�

8s2 − ln
�π

2

�

s2 + 2
�

��

t2 − 12s2 t + 4s2 + ln
�π

2
s2
�

+ 2 ln (3t − 2)≥ 0.

Let us call the left hand side by F(s, t). Notice that

∂ F

∂ t
(s, t) = 2

�

8s2 − ln
�π

2

�

s2 + 2
�

��

t − 12s2 +
2

3t − 2

> 2
�

5s2 − ln
�π

2

�

s2 + 2
�

��

t > 2
�

5s2 −
π

2e
(s2 + 2)

�

t

= 2
��

5−
π

2e

�

s2 −
π

e

�

t ≥ 2
��

5−
π

2e

�

s2
0 −

π

e

�

t

> 2
��

5−
π

2e

�

· 0.81−
π

e

�

t > 0,

where in the first inequality we used only the assumption that t > 2 getting −12s2 > −6ts2 and
neglected the term 2

3t−2
as being positive, while in the second one we exploit the well-known

inequality ln x ≤ x
e
. Knowing that this derivative is positive, we will finish if we check that

F(s, 2)> 0. It can be done by direct computation

F(s, 2) = 4
�

8s2 − ln
�π

2

�

s2 + 2
�

��

− 24s2 + 4s2 + ln s2 + ln
π

2
+ 2 ln 4

= 4
�

3s2 − ln
�π

2

�

s2 + 2
�

��

+ ln
�

8πs2
�

> 4
��

3−
π

2e

�

s2 −
π

e

�

> 0.

The proof is now complete.

3 Technical lemmas

We are going to prove some rather technical lemmas which will help us with the proof of Lemma
1.

Lemma 2. The function F, defined in (5), is increasing and onto (0,∞).

Proof. In order to prove that F is increasing it suffices to show that F is nondecreasing. Indeed, if
F was constant on some interval, it would be constant everywhere as F is an analytic function.
Clearly, F is nondecreasing iff 1/F is nonincreasing. Notice that

1

F(y)
=
−e−y2/2

p
2π

1

T (y) ln T (y)
=

T ′(y)
T (y) ln T (y)

=

�

− ln T (y)
�′

− ln T (y)
=
�

ln
�

− ln T (y)
��′ ,

thus 1/F is nonincreasing iff y 7−→ ln
�

− ln T (y)
�

is concave, that is for any x , y ∈ R, λ ∈ (0, 1)

− ln T (λx + (1−λ)y)≥ (− ln T (x))λ
�

− ln T (y)
�1−λ .
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Since limx→−∞(− ln T (x)) = 0, we have

− ln T (x) =

∫ x

−∞
(− ln T (t))′ dt =

∫ x

−∞

e−t2/2

p
2πT (t)

dt,

and the above inequality will hold by virtue of the Prékopa-Leindler inequality. We only need to

check the assumptions, that is to verify whether the function ln e−t2/2
p

2πT (t)
is concave. Calculating the

second derivative one can easily check that it is non-positive iff

0≥ T (t)2 +
e−t2/2

p
2π

tT (t)−

 

e−t2/2

p
2π

!2

=



T (t)−
e−t2/2

p
2π

p

t2 + 4− t

2







T (t) +
e−t2/2

p
2π

p

t2 + 4+ t

2



 , t ∈ R,

which is equivalent to

T (t)≥
e−t2/2

p
2π

p

t2 + 4− t

2
, t ∈ R.

For t ≥ 0 this follows from a well-known Komatsu’s estimate (cf. [3], page 17). For t < 0 we have
T (t)> 1/2, hence

2T (t)
p

2πet2/2 + t ≥
p

2π(1+ t2/2) + t > 0,

and

�

2T (t)
p

2πet2/2 + t
�2
>
�p

2π(1+ t2/2) + t
�2

= 2π

�

1+
t2

2

�2

+ 2
p

2π

�

1+
t2

2

�

t + t2

= 2

�

1+
t2

2

�

�π

2
t2 +
p

2πt +π
�

+ t2

> 2

 

�
Ç

π

2
t + 1

�2

+π− 1

!

+ t2

> 2(π− 1) + t2 > t2 + 4.

This completes the proof of the monotonicity of F .
F is onto (0,∞) as

F(y)−−−→
y→−∞

0,

F(y)−−−→
y→+∞

∞.

Lemma 3. The function G, defined in (6), is increasing for u≥
p

8/π.
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Proof. We have

G′(u) =
1− e−u2/2 − u2e−u2/2

2
�

1− e−u2/2
�2 ,

so G′(u)> 0 iff eu2/2 > 1+ u2. This is true for u2 > 8/π since e4/π > 1+ 8/π.

Proof of Lemma 1. (i) Using the convexity of the function − ln we get

−2
p

2πe y2/2T (y) ln
�

T (y) +Φ(y)e−u2/2
�

≤ 2
p

2πe y2/2T (y)
�

−T (y) ln 1−Φ(y) ln e−u2/2
�

=
p

2πe y2/2T (y)Φ(y)u2 ≤
Ç

π

8
u2 ≤ u,

where we use supy∈R
p

2πe y2/2T (y)Φ(y) =
p

π

8
(see Lemma 5 in [5]).

(ii) Since T (y) +Φ(y)e−u2/2 = e−u2/2+ (1− e−u2/2)T (y), we may also apply the convexity of − ln
to points 1, T (y) with weights e−u2/2, 1− e−u2/2 and obtain

−2
p

2πe y2/2T (y) ln
�

T (y) +Φ(y)e−u2/2
�

≤−2
p

2πe y2/2T (y) ln T (y)(1− e−u2/2)

=
F(y)
G(u)

u≤
F(H)

G
�
p

8/π
�u= u.
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[4] S. Kwapień and J. Sawa, On some conjecture concerning Gaussian measures of dilatations of
convex symmetric sets, Studia Math. 105 (1993), no. 2, 173–187. MR1226627 (94g:60011)
MR1226627

[5] R. Latała and K. Oleszkiewicz, Gaussian measures of dilatations of convex symmetric sets,
Ann. Probab. 27 (1999), no. 4, 1922–1938. MR1742894 (2000k:60062) MR1742894

http://www.ams.org/mathscinet-getitem?mr=0745081
http://www.ams.org/mathscinet-getitem?mr=1898210
http://www.ams.org/mathscinet-getitem?mr=0199891
http://www.ams.org/mathscinet-getitem?mr=1226627
http://www.ams.org/mathscinet-getitem?mr=1742894

	1 Proof of the main result
	2 Some remarks
	3 Technical lemmas
	References

