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Abstract
We prove a localization-result for branching random walks in random environment, namely that
if the process does not die out, the most populated site will infinitely often contain more than a
fixed percentage of the population. This had been proven already before by Hu and Yoshida, but
it is possible to drop their assumption that particles may not die.

1 Branching Random Walks in Random Environment

1.1 Informal descripion

Branching Random Walks in Random Environment (BRWRE) are a model for the spread of parti-
cles on an inhomogeneous media, such as bacteria that move around and encounter food supply
or environmental conditions variable in time and space. These environmental conditions have an
impact on the reproduction rate of the particles.
The randomness of the model occurs in two steps. The first step is the setting of the environ-
ment, which determines the offspring distribution at different times and places. In our case, these
offspring distributions are to be i.i.d..
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The second step is the development of the population given the environment randomly generated
in the first step. Starting with one particle at the origin, each particle generates offspring according
to the offspring distribution associated with the time-space-location where it is born. It carries this
offspring to adjacent sites in the manner of a simple random walk, and dies, leaving the new
particles to start over, independently of each other.
As it is possible that particles die without leaving any offspring, the whole population might die
out. This phenomenon is described in the event of “extinction”. In the present article, however,
we are more interested in the long-term-behaviour of the population, and usually work on the
complementary event, called “survival”. All the notions will be thoroughly defined in Subsection
1.3.

1.2 Brief history

Branching random walks in random environment have been introduced in [Birk], and Birkner,
Geiger and Kersting [BGK05] revealed a phase change of the model which was subsequently
characterized as a dichotomy: [Nak11] revealed that this model exhibits a phase transition beween
what is called slow and regular growth, respectively.
The question of localization in this model, that is whether or not it is possible that in the long
term, many particles may become concentrated on few sites, was answered positively for the
slow growth phase by Hu and Yoshida [HY09] for environments that do not allow for extinction.
A similar answer is given for the more general model of Linear Stochastic Evolution (LSE) in
[Yos10]. BRWRE’s survival, together with growth rates for the population, are studied by Comets
and Yoshida [CY].
Uniting tools from the last three articles is what allows us to prove a localization result in a setting
where extinction is possible.
A central limit theorem for BRWRE in the regular growth phase is proved in [HNY]. In that article,
a more complete outline of the history of CLTs for BRW, BRWRE and related models can be found,
and pictures of the BRWRE are given.

1.3 Thorough definition of the model

We define the random environment as i.i.d. offspring distributions (qt,x)t∈N0,x∈Zd under some
(product-)measure Q on Ωq :=P (N0)N0×Zd , where P (N0) is the set of probability measures on
N0, and may be equipped with the natural Borel-σ-field induced from that of [0, 1]N0 . We call
this product-σ-field Fq.

qt,x = (qt,x(k))k∈N0
∈ [0, 1]N0 ,

∑

k∈N0

qt,x(k) = 1.

On a measurable space (ΩK ,FK), to each fixed environment q = (qt,x)t∈N0,x∈Zd we associate a
probability measure Pq

K such that the random variables K := (Kνt,x)t∈N0,x∈Zd ,ν∈N are independent
in the number ν of the particle and the space-time point (t, x) while being distributed according
to qt,x :

Pq
K(K

ν
t,x = k) = qt,x(k), k ∈N0. (1.1)

These random variables Kνt,x describe the number of children born to the ν-th particle at time-
space-location (t, x).
The ν-th particle (ν ∈N) at time t ∈N0 := {0,1, . . . }=:N∪{0} and site x ∈Zd moves (together
with all of his offspring) to some site adjacent to his birthplace, determined by the Zd -valued
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random variable X νt,x . The X := (X νt,x)t∈N0,x∈Zd ,ν∈N, defined on a probability space (ΩX ,FX , PX ),
are defined to be the one-step transitions of a simple random walk, and i.i.d. in all three time,
space, and particles:

PX (X
ν
t,x = y) = p(x , y) :=

¨

1/2d if |x − y|= 1

0 if |x − y| 6= 1;
(1.2)

| · | designates the one-norm.
At its time-space destination (t + 1, X νt,x), the said ν-th particle from (t, x) dies and leaves place
to its children, and the procedure starts over for every child.
Of course, we can combine the realization of X and K on one probability space

(ΩX ×ΩK ,FX ⊗FK , Pq), where Pq := PX ⊗ Pq
K (1.3)

and finally merge all our construction to

Ω := ΩX ×ΩK ×Ωq, F :=FX ⊗FK ⊗Fq,

P(A) :=

∫

A

Q(dq)Pq(dω), A∈ F .
(1.4)

Pq can be seen as the quenched measure and P as the annealed one of the model.
Now we come to the population at time t and site x . We start at time 0 with one particle at the
origin, and define inductively

N0,x := 1x=0, Nt,x =
∑

y∈Zd

Nt−1,y
∑

ν=1

1X νt,y=x Kνt−1,y , t ≥ 1. (1.5)

The filtration
F0 := {;,Ω}, Ft := σ

�

X ·s,·, K ·s,·, qs,·; s ≤ t − 1
�

, t ≥ 1, (1.6)

makes the process t 7→ (Nt,x)x∈Zd adapted. The total population at time t can now be obtained by
summation over all sites:

Nt :=
∑

y∈Zd

Nt,y =
∑

y∈Zd

Nt−1,y
∑

ν=1

Kνt−1,y t ≥ 1. (1.7)

Important quantities of this model are the averaged and local moments of the offpring distributions

m(p) :=Q
�

m(p)t,x
�

, m(p)t,x :=
∑

k∈N0

kpqt,x(k), p ∈N. (1.8)

We also write m := m(1).

1.4 The phase transition of the normalized population

It has been proven in [Nak11] that the total population exhibits a phase transition, where the
one phase amounts to population growing as fast as its expectation, while the other phase means
slower-than-the-expectation growth.
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Proposition 1.4.1. The normalized population N t := Nt/m
t is a martingale, and hence its limit

exists:

N∞ := lim
t→∞

Nt

mt , P-a.s.. (1.9)

Further,

P(N∞) =

¨

1 “regular growth phase”, or
0 “slow growth phase”.

Sufficient conditions for both phases are given by the following two Propositions 1.4.3 and 1.4.4,
which necessitate a bit of

Notation 1.4.2. Given the simple symmetric random walk St on Zd , we call πd the probability of
the return event

⋃

t≥1{St = 0}. Furthermore, we write

α :=
Q(m2

t,x)

m2 .

Proposition 1.4.3. There exists a constant α∗ > 1/πd such that, if

m> 1, m(2) <∞, d ≥ 3, and α < α∗, (1.10)

then P(N∞ > 0)> 0.

Proposition 1.4.4. On the other hand, P(N∞ = 0) = 1 is provided by any of the following three
conditions:

(a1) d = 1; Q(mt,x =m) 6= 1.

(a2) d = 2; Q(mt,x =m) 6= 1.

(a3) d ≥ 3; Q
�mt,x

m
ln

mt,x

m

�

> ln(2d).

Propositions 1.4.3 and 1.4.4 were obtained first in [BGK05, Theorem 4]. Proposition 1.4.3 plays
a crucial role in our proof as it allows us in the slow growth phase to conclude α > α∗ > 1/πd .

Remark 1.4.5. We would at this point recall the non-random environment case [AN72, Theorem
1, page 24], where

P(N∞ = 0) = 1 if and only if P(Kνt,x ln Kνt,x) =∞ or m≤ 1. (1.11)

In our case here, with the additional randomness of the environment, P(N∞ = 0) = 1 can happen
even if the Kνt,x are bounded (see Remark 1.6.3 b) below).

1.5 Survival and the global growth estimate

Another dichotomy of this model is the one of survival and extinction. We define

{survival} := {∀t ∈N0, Nt > 0}. (1.12)

The event of extinction is defined as the complement.
The following global growth estimate obtained in [CY, Theorem 2.1.1] characterizes the event of
survival:
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Lemma 1.5.1. Suppose Q(mt,x +m−1
t,x)<∞ and let ε > 0. Then, for large t,

Nt ≤ e(Ψ+ε)t , P-a.s.,

where the limit

Ψ := lim
t→∞

1

t
Q
�

ln Pq(Nt,0)
�

exists.
If Ψ> 0 and m(2) <∞, then

{survival}= {Nt ≥ e(Ψ−ε)t for all large t}, P-a.s.. (1.13)

Remark 1.5.2. a) Actually, the hypotheses given in [CY] are somewhat weaker, and are implied by
our assumption m(2) <∞. See the Remark 2) right after [CY, Theorem 2.1.1].
b) It is proved in [CY] as well that “Ψ> 0” is implied by

Q(mt,x =m) 6= 1, Q(ln mt,x)≥ 0. (1.14)

The object we investigate is the population density

ρt,x = ρt(x) :=
Nt,x

Nt
1Nt>0, t ∈N0, x ∈Zd . (1.15)

It describes the distribution of the population in space.
Related important objects are

ρ∗t :=max
x∈Zd

ρt,x and Rt :=
∑

x∈Zd

ρ2
t,x . (1.16)

They are, respectively, the density at the most populated site and the probability that two particles
picked randomly from the total population are at the same site at time t. We will call this latter
value the “replica overlap”.
It is possible to relate the event of survival to this replica overlap.

Theorem 1.5.3. Suppose m(2) <∞. Then, if P(N∞ = 0) = 1,

{survival} ⊆
n
∞
∑

t=1

Rt =∞
o

. (1.17)

The proof of this Theorem can be found in Section 2.2. While it is true that the opposite inclusion
does hold under the stronger assumption m(3) <∞, we do not state this formally here. The proof
can be found in [HNY].

1.6 The main result

Hu and Yoshida, using the assumption that particles may not die, proved in [HY09, Theorem
1.3.2] the following

Theorem 1.6.1. Suppose P(N∞ = 0) = 1 and

m(3) <∞, Q(mt,x =m) 6= 1, Q
�

qt,x(0) = 0
�

= 1. ([HY09, (1.18)])

Then, there exists a non-random number c ∈ (0, 1) such that,

limsup
t→∞

ρ∗t ≥ limsup
t→∞

Rt ≥ c, P-a.s.. (6.19)
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In this setting, extinction (i.e. the event that at some time, the total population becomes 0) cannot
occur. However, it is possible to drop this assumption with the help of a few additional tools.
Our main result is indeed that the last two hypotheses can be replaced by weaker ones.

Theorem 1.6.2. Suppose P(N∞ = 0) = 1 and

m(3) <∞, Ψ> 0, Q(m−1
t,x)<∞. (1.20)

Then, there exists a non-random number c ∈ (0, 1) such that

limsup
t→∞

ρ∗t ≥ limsup
t→∞

Rt ≥ c, P-a.s. on the event of survival. (1.21)

The proof of the Theorem is postponed to its own Section 2.4.

Remark 1.6.3. a) The fact that Theorem 1.6.1 does not allow for dying particles has two implica-
tions, namely Ψ> 0 (rather trivially by (1.14)) and Q(m−1

t,x)<∞. Our theorem shows that we can
indeed content ourselves with these two weaker conditions themselves.
b) The hypotheses P(N∞ = 0) = 1 and Ψ> 0 are difficult to check in practice. Yet, it is possible to
give an example that satisfies the easier (a1)− (a3) of Proposition 1.4.4 and (1.14), but not the
hypotheses of Theorem 1.6.1. It is given by the following class of environments constituted only
of two states: for n ∈N,

q·,·(0) = q·,·(n
2) =

1

2
with probability

1

n
, (1.22)

q·,·(1) = 1 with probability 1−
1

n
. (1.23)

In this case, Q
�mt,x

m
ln

mt,x

m

�

∼ ln n, and hence any dimension can be covered by n large enough.

2 Proofs

2.1 Tools for the proof of Theorem 1.5.3

The following Definition will be useful at several points. It provides notation for the thorough
calculus of the fluctuation of the normalized population.

Definition 2.1.1. Let

Us+1,x :=
1Ns>0

mNs

Ns,x
∑

ν=1

Kνs,x ≥ 0, Us+1 :=
∑

x∈Zd

Us+1,x =
Ns+1

mNs
1Ns>0 =

N s+1

N s

1N s>0.

The (Us+1,x)x∈Zd are independent under P(·|Fs). It is not difficult to see that, on the event {Ns > 0},

P(Us+1,x |Fs) = ρs(x), and hence P(Us+1|Fs) = 1.
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Also, with eci =
m(i)

mi , i = 2,3,

αρ(x)2 =
1

m2N2
s

N2
s,xQ
�

m2
s,x

�

≤ P
�

U2
s+1,x

�

�Fs
�

(2.1)

=
1

m2N2
s

P
�

�

Ns,x
∑

ν=1

Kνs,x
�2
�

�

�Fs

�

≤
N2

s,x m(2)

m2N2
s

= ec2ρs(x)
2, (2.2)

P
�

U3
s+1,x

�

�Fs
�

≤
m(3)

m3 ρs(x)
3 = ec3ρs(x)

3, again on the event {Ns > 0}. (2.3)

Theorem 1.5.3 is a consequence of the following Proposition. It can be found in [Yos10, Proposi-
tion 2.1.2] and relates survival and boundedness of the predictable quadratic variation for some
abstract martingale.

Proposition 2.1.2. Let (Yt)t∈N0
be a mean-zero square-integrable martingale on a probability space

with measure E and filtration (Ft)t∈N0
. Suppose −1≤∆Yt := Yt − Yt−1 for all t ∈N, and let

X t :=
t
∏

s=1

(1+∆Ys). (2.4)

If P
�

(∆Yt)2
�

�Ft−1
�

is uniformly bounded in t, then

{X∞ = 0} ⊆ {Ex tinct ion} ∪
� ∞
∑

s=1

P
�

(∆Ys)
2
�

�Fs−1
�

=∞
�

, (2.5)

where {Ex tinct ion} := {∃t > 0 : X t = 0}.

2.2 Proof of Theorem 1.5.3

We want to apply the abstract result that is Proposition 2.1.2 to our setting. To get the notation
right, we take X t := N t , and remark that the definition

∆Yt :=
N t

N t−1

1Nt−1>0 −1Nt−1>0 =
∑

x

�

Ut,x −ρt,x
�

≥−1 (2.6)

verifies (2.4); the Ut,x are taken from Definition 2.1.1. As for the other hypothesis of the Proposi-
tion, we need not even to check it in order to find

∑∞
s=1 P

�

(∆Ys)2
�

�Fs−1
�

=∞: if uniform bound-
edness does not hold, it is true anyway, and if uniform boundedness holds, we derive it from
Proposition 2.1.2 on the event {survival} ∩ {N∞ = 0}.
Now, with (2.1), we see that

∑t
s=1 P

�

(∆Ys)2
�

�Fs−1
�

shares its asymptotic behaviour with
∑t

s=1Rs,
so we conclude (1.17).

2.3 Tools for the proof of Theorem 1.6.2

One result that has not been taken into account in [HY09] and that helps us making the slight
improvement of the hypotheses is the following improved version of the Borel-Cantelli-lemma,
stated in [Yos10, Lemma 2.2.1]:
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Lemma 2.3.1. Let (Rt)t∈N be an integrable, adapted process defined on a probability space with
measure E and a filtration (Ft)t∈N0

. Define V0 := 0=: T0 and

Vt :=
t
∑

s=1

Rs, Tt :=
t
∑

s=1

E[Rs|Fs−1], t ∈N.

a) Suppose there is a constant C1 ∈ (0,∞) such that

Rt −E[Rt |Ft−1]≥−C1, E-a.s. for all t ∈N. (2.7)

Then,
n

lim
t→∞

Vt =∞
o

=
�

lim
t→∞

Vt =∞, limsup
t→∞

Tt

Vt
≥ 1
�

⊆
n

sup
t≥1

Tt =∞
o

.

b) Suppose that (Rt)t∈N is in L2(E), and that there exists a constant C2 ∈ (0,∞) such that

Var[Rt |Ft−1]≤ C2E[Rt |Ft−1] E-a.s. for all t ∈N,

where Var[Rt |Ft−1] := E[R2
t |Ft−1]−E[Rt |Ft−1]2. Then, E-a.s.,

n

lim
t→∞

Tt =∞
o

=
�

lim
t→∞

Tt =∞, lim sup
t→∞

Vt

Tt
= 1
�

⊆
n

sup
t≥1

Vt =∞
o

.

This Lemma admits in our setting, with a slight abuse of notation, for the following

Corollary 2.3.2. On the event {limt→∞ Vt =∞}, there exists a constant c0 ∈ [1,∞) such that

Tt :=
t
∑

s=1

P(Rs|Fs−1)≤ c0

t
∑

s=1

Rs =: c0Vt (2.8)

holds for large t.

Proof. In fact, the hypotheses of both a) and b) of Lemma 2.3.1 are satisfied. Indeed, 0≤Rt =
∑

x ρ
2
t,x ≤ 1

is square-integrable and adapted, and (2.7) is satisfied with C1 = 2. Also,

Var(Rt |Ft−1)≤ P(R2
t |Ft−1)≤ P(Rt |Ft−1).

Hence, with a), {limt→∞ Vt =∞} implies {supt Tt =∞}. But Tt is a sum over positive terms, so its
supremum is equal to its limes, and we can readily apply part b). The statement is then trivial.

The following Lemma is an extension to [Yos10, Lemma 3.2.1] and replaces [HY09, Lemma 3.1.1].

Lemma 2.3.3. Let (Ui)1≤i≤n, n ≥ 2, be non-negative, independent and cube-integrable random
variables on our general probability space with probability measure E such that for

U =
n
∑

i=1

Ui , E[U] = 1. (2.9)

Let furthermore X be a random variable such that 0≤ X ≤ U2
1 a.s.. Then,

E
hU1U2

U2 : U > 0
i

≥ E[U1]E[U2]− 2E[U2]Var[U1]− 2E[U1]Var[U2], (2.10)

E
h X

U2 : U > 0
i

≥ E[U2
1 ](1+ 2E[U1])− 2E[U3

1 ]− 3E[U2
1 − X ]. (2.11)
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Proof. The first inequality is proved in [Yos10]. We will prove the second one.
Note that u−2 ≥ 3− 2u for u ∈ (0,∞). Thus, we have that

E
h X

U2 : U > 0
i

≥ E[X (3− 2U) : U > 0] = E[X (3− 2U)]

= E[(X − U2
1 )(3− 2U)] +E[U2

1 (3− 2U)]

= E[(X − U2
1 )(3− 2U)] + 3E[U2

1 ]− 2E[U3
1 ]− 2E[U2

1 ]E[
∑

i 6=1Ui]

= 2E[(U2
1 − X )U]− 3E[U2

1 − X ] + 3E[U2
1 ]− 2E[U3

1 ]− 2E[U2
1 ](1−E[U1])

≥−3E[U2
1 − X ] +E[U2

1 ](1+ 2E[U1])− 2E[U3
1 ].

At this point, we need some further notations. We denote by Ps(x , y) the probability that the sim-
ple random walk starting in x ∈ Zd goes to y ∈ Zd in exactly s ∈N steps. We write r j :=P2 j(x , x).
Also, we can define the semigroup of the simple random walk by Ps f (x) :=

∑

y Ps(x , y) f (y). We
write P :=P1.

Remark 2.3.4. With the Cauchy-Schwarz-inequality, we have

max
x

�

P jρt(x)
�2 ≤

∑

x

�

P jρt(x)
�2 ≤

∑

x

P jρ
2
t (x) =Rt =

∑

x

ρ2
t (x)≤ 1. (2.12)

We now start estimates on the population density. The following result corresponds to the inequal-
ity (3.7) in [HY09, Lemma 3.1.4].

Lemma 2.3.5. Suppose (1.20). On the event of survival up to time s ∈ N, for any y1, y2 ∈ Zd , we
have

P
�

ρs+1(y1)ρs+1(y2)
�

�Fs
�

≥P ρs(y1)P ρs(y2) + (α− 1)
∑

z

ρs(z)
2p(z, y1)p(z, y2) (2.13)

− 2ec2
�

P ρs(y2)P (ρ2
s )(y1) +P ρs(y1)P (ρ2

s )(y2)
�

− 2ec3

∑

z

ρs(z)
3p(z, y1)p(z, y2)− 3ec2

1

Ns

∑

z

ρs(z)p(z, y1)p(z, y2).

where the ec· are the same as in Definition 2.1.1.

Proof. We have

P
�

ρs+1(y1)ρs+1(y2)|Fs
�

=
∑

z1,z2

Ns,z1
∑

ν1=1

Ns,z2
∑

ν2=1

P
�1X ν1s,z1=y1

1X ν2s,z2=y2
Kν1

s,z1
Kν2

s,z2

N2
s+1

1Ns+1>0

�

�

�Fs

�

≥
∑

z1 6=z2

p(z1, y1)p(z2, y2)P
�

∑Ns,z1
ν1=1 Kν1

s,z1

∑Ns,z2
ν2=1 Kν2

s,z2

N2
s+1

1Ns+1>0

�

�

�Fs

�

(2.14)

+
∑

z

p(z, y1)p(z, y2)P
�

∑Ns,z

ν1 6=ν2=1 Kν1
s,zKν2

s,z

N2
s+1

1Ns+1>0

�

�

�Fs

�

. (2.15)

Now, we would like to estimate (2.14) and (2.15). We can rewrite these lines with the processes
from Definition 2.1.1. These verify the hypotheses of Lemma 2.3.3. The estimates obtained by the
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application of this Lemma comprise second and third moments which we cannot provide explicitly.
We therefore replace them by the estimates obtained in Definition 2.1.1; note that survival up to
time s+ 1 implies survival up to time s.

Since {Ns+1 > 0} ⊆ {Us+1 > 0}, by (2.10), we have

(2.14)=
∑

z1 6=z2

p(z1, y1)p(z2, y2)P
�Us+1,z1

Us+1,z2

U2
s+1

1Us+1>0

�

�

�Fs

�

≥
∑

z1 6=z2

p(z1, y1)p(z2, y2)
�

ρs(z1)ρs(z2)− 2ec2
�

ρs(z2)ρs(z1)
2 +ρs(z1)ρs(z2)

2�
�

.

Also, with X (z) =
�

�
∑Ns,z

ν=1 Kνs,z
�2 −

∑Ns,z

ν=1(K
ν
s,z)

2
�

/m2N2
s and (2.11),

(2.15)=
∑

z

p(z, y1)p(z, y2)P
�X (z)

U2
s+1

1Us+1>0

�

�

�Fs

�

≥
∑

z

p(z, y1)p(z, y2)

�

P
�

U2
s+1,z

�

�Fs
��

1+ 2ρs(z)
�

− 2P
�

U3
s+1,z

�

�Fs
�

− 3
Ns,z
∑

ν=1

P
�

�

Kνs,z
mNs

�2
�

�

�Fs

�

�

≥
∑

z

p(z, y1)p(z, y2)
h

αρs(z)
2 − 2ec3ρs(z)

3 − 3ec2
ρs(z)

Ns

i

.

These estimates imply the statement.

Lemma 2.3.6. Suppose (1.20). For all 1≤ j ≤ t − 1,

P
�

∑

x

�

P j−1ρt− j+1(x)
�2
�

�

�Ft− j

�

≥
∑

x

(P jρt− j(x))
2 +
�

α− 1
�

r jRt− j

− (4ec2 + 2ec3)R
3/2
t− j −

3ec2

Nt− j
.

Proof. If we apply the definition of the semigroup operator P , we get

∑

x

�

P j−1ρt− j+1(x)
�2 =

∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)ρt− j+1(y1)ρt− j+1(y2).

Applying (2.13) gives

P
�
∑

x

�

P j−1ρt− j+1(x)
�2
�

�

�Ft− j

�

≥ [I + (α− 1)I I − 2ec2 I I I − 2ec3 IV − 3ec2
1

Nt− j
V
i

,



A Remark on Localization for Branching Random Walks in Random Environment 333

where

I :=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)P ρt− j(y1)P ρt− j(y2)

=
∑

x

�

P jρt− j(x)
�2 by definition of the semigroup-operator;

I I :=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)
∑

z

ρt− j(z)
2p(z, y1)p(z, y2)

=
∑

x

∑

z

�

P j(x , z)
�2
ρ2

t− j(z) = r j

∑

z

ρ2
t− j(z) because

∑

x

�

P j(x , z)
�2 = r j;

I I I :=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)
�

P ρt− j(y2)P ρ2
t− j(y1) +P ρt− j(y1)P ρ2

t− j(y2)
�

= 2
∑

x

P jρt− j(x)P j(ρ
2
t− j)(x)

≤ 2 max
x
P jρt− j(x)

∑

x

P j(ρ
2
t− j)(x)≤ 2R1/2

t− jRt− j by Remark 2.3.4;

IV :=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)
∑

z

ρ3
t− j(z)p(z, y1)p(z, y2)

≤
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)
∑

z1,z2

ρt− j(z1)p(y1, z1)ρ
2
t− j(z2)p(y2, z2)

=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)P ρt− j(y1)P ρ2
t− j(y2)≤ I I I ;

V :=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)
∑

z

ρt− j(z)p(z, y1)p(z, y2)

=
∑

x

∑

z

�

P j(x , z)
�2
ρt− j(z) =

∑

z

ρt− j(z)r j = r j .

In these computations, the symmetry of p(·, ·) has been used at appropriate places. If we put
together the pieces, we obtain the statement of the Lemma.

Later, in the proof of the main theorem, we are going to perform a division by
∑t

s=1Rs at some
point. The following Lemma helps showing that a certain term then vanishes asymptotically. We
recall the definition of Vt :=

∑t
s=1Rs from Corollary 2.3.2 and write V∞ := limt→∞ Vt .

Lemma 2.3.7. Assume (1.20), and fix some j ≥ 1. The martingale Z j(·) defined by

Z j(t) :=
t
∑

s=1

∑

x

h

�

P jρs(x)
�2 − P

�

(P jρs(x))
2
�

�Fs−1
�

i

, t ≥ 1,

satisfies the following law of large numbers:

�

V∞ =∞
	

⊆
n Z j(t)

Vt
−−→
t→∞

0
o

, P-a.s..

Remark 2.3.8. The increments of Z j(t) will be used later, and in squared form in the proof of the
Lemma. They are given by

Z j(t + 1)− Z j(t) =
∑

x

h

�

P jρt+1(x)
�2 − P

�

(P jρt+1(x))
2
�

�Ft
�

i

;
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recalling Remark 2.3.4, we can further estimate

�

Z j(t + 1)− Z j(t)
�2 ≤

�

∑

x

�

P jρt+1(x)
�2
�2

+
�

∑

x

P
�

(P jρt+1(x))
2
�

�Ft
�

�2

≤R2
t+1 + P

�

Rt+1

�

�Ft
�2 ≤Rt+1 + P

�

Rt+1

�

�Ft
�

.

Proof of Lemma 2.3.7. The idea of the proof is to make use of the increasing process 〈Z j〉t associ-
ated with Z j(t) in order to monitor the growth of Z j(t) itself.
With the previous Remark, it is indeed possible to estimate 〈Z j〉t by the sum of the conditional
replica-overlap:

〈Z j〉t =
t−1
∑

s=0

〈Z j〉s+1 − 〈Z j〉s =
t−1
∑

s=0

P
�

�

Z j(s+ 1)− Z j(s)
�2
�

�

�Fs

�

(2.16)

≤ 2
t−1
∑

s=0

P
�

Rs

�

�Fs−1
�

= . . . ,

but this, by Corollary 2.3.2, is in turn related to the replica overlap itself:

· · · ≤ 2c0Vt , t ≥ 1. (2.17)

The rest is easy. Either 〈Z j〉∞ < ∞, in which case Z j(t) converges and the statement is trivial
anyway, or 〈Z j〉∞ =∞, in which case we can apply the law of large numbers for square-integrable
martingales, see [Dur91, p. 253], which gives us

�

�

�

�

Z j(t)

Vt

�

�

�

�

≤
1

2c0

�

�

�

�

Z j(t)

〈Z j〉t

�

�

�

�

−−→
t→∞

0.

As a final ingredient, we give a statement that compares parameters of the simple random walk
with ones of the BRWRE-model.

Lemma 2.3.9. Suppose (1.20) and P(N∞ = 0) = 1. There exist ε > 0 and t0 ∈N such that

t0
∑

s=1

rs ≥
1+ ε
α− 1

. (2.18)

Furthermore, with T > t0 and c4 := (α− 1)t0

∑t0

j=1 r j ,

T
∑

t=t0+1

h

(α− 1)
t0
∑

j=1

r jRt− j −Rt

i

≥ εVT − c4. (2.19)

Proof. In dimensions d = 1, 2, the first statement is trivial as
∑∞

s=1 rs =∞.
In dimensions d ≥ 3, the assumption P(N∞ = 0) = 1 in conjunction with Proposition 1.4.3 gives
us α≥ α∗ > 1/πd > 0, which implies

(α− 1)
∞
∑

s=1

rs = (α− 1)
πd

1−πd
>

1

1−πd
> 1, (2.20)

so that (2.18) follows.
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As for the second statement, we compute

T
∑

t=t0+1

h

(α− 1)
t0
∑

j=1

r jRt− j −Rt

i

= (α− 1)
t0
∑

j=1

r j

T
∑

t=t0+1

Rt− j −
T
∑

t=t0+1

Rt

= (α− 1)
t0
∑

j=1

r j(VT− j − Vt0− j)− (VT − Vt0
)≥ (α− 1)

�

VT − t0)
�

t0
∑

j=1

r j − VT

≥ (1+ ε)VT − (α− 1)t0

t0
∑

j=1

r j − VT = εVT − c4,

where for the last but one inequality, we used that Vt0− j ≤ t0 − j and VT− j + j ≥ VT for all
1≤ j ≤ t0.

2.4 Proof of the main theorem

Proof of Theorem 1.6.2. The idea of the proof is to obtain some estimate of the form

lim inf
T→∞

∑T
t=1R

3/2
t

∑T
t=1Rt

≥ C some constant, P-a.s.. (2.21)

This then implies

limsup
t→∞

Rt ≥ C2, P-a.s., (2.22)

as can easily be verified by contradiction.
However, the only tool we have at hand to estimate R3/2

t is Lemma 2.3.6, and we need to carry
out several operations before arriving at (2.21).
First, we apply Lemma 2.3.6 to j = 1, . . . t0, with t0 from (2.18), and take the sum:

t0
∑

j=1

�

(4ec2 + 2ec3)R
3/2
t− j +

3ec2

Nt− j

�

≥
t0
∑

j=1

∑

x

�

�

P jρt− j(x)
�2 − P

�

�

P j−1ρt− j+1(x)
�2�
�Ft− j

�

�

+ (α− 1)
t0
∑

j=1

r jRt− j

=
t0
∑

j=1

∑

x

�

�

P j−1ρt− j+1(x)
�2 − P

�

�

P j−1ρt− j+1(x)
�2�
�Ft− j

�

�

+
t0
∑

j=1

∑

x

�

�

P jρt− j(x)
�2 −

�

P j−1ρt− j+1(x)
�2
�

+ (α− 1)
t0
∑

j=1

r jRt− j

=
t0
∑

j=1

h

Z j−1(t − j+ 1)− Z j−1(t − j)
i

+
∑

x

�

Pt0
ρt−t0

(x)
�2 −Rt + (α− 1)

t0
∑

j=1

r jRt− j

≥
t0
∑

j=1

h

Z j−1(t − j+ 1)− Z j−1(t − j)
i

+ (α− 1)
t0
∑

j=1

r jRt− j −Rt .

In the last equality, we made use of Remark 2.3.8.
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Another summation, over t = t0 + 1, . . . , T , makes appear VT =
∑T

t=1Rt on the right hand side
(we immediately replace a telescopic sum by the end terms and apply (2.19)):

T
∑

t0+1

t0
∑

j=1

h

(4ec2 + 2ec3)R
3/2
t− j +

3ec2

Nt− j

i

≥
t0
∑

j=1

h

Z j−1(T − j+ 1)− Z j−1(t0 − j+ 1)
i

+ εVT − c4 (2.23)

Now, if we divide by VT and let T tend to infinity, the fact that by Theorem 1.5.3, V∞ = ∞
makes disappear several terms: the sum over 3ec2/Nt− j is finite by (1.13), and the one with the
martingales Z·(·) vanishes by Lemma 2.3.7. This leads directly to (2.21) and concludes the proof.

We would like to thank Prof. N. Yoshida for the suggestion of the subject and very helpful remarks,
and the anonymous referee for his most careful and thorough review.
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