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Abstract
Let Y be a nonnegative random variable with mean µ and finite positive variance σ2, and let
Y s, defined on the same space as Y , have the Y size biased distribution, that is, the distribution
characterized by

E[Y f (Y )] = µE f (Y s) for all functions f for which these expectations exist.

Under a variety of conditions on the coupling of Y and Y s, including combinations of boundedness
and monotonicity, concentration of measure inequalities such as

P
�

Y −µ
σ
≥ t
�

≤ exp

�

−
t2

2(A+ Bt)

�

for all t ≥ 0

are shown to hold for some explicit A and B in [8]. Such concentration of measure results are
applied to a number of new examples: the number of relatively ordered subsequences of a random
permutation, sliding window statistics including the number of m-runs in a sequence of coin tosses,
the number of local maxima of a random function on a lattice, the number of urns containing
exactly one ball in an urn allocation model, and the volume covered by the union of n balls placed
uniformly over a volume n subset of Rd .

1 Introduction

Theorem 1.1, from [8], demonstrates that the existence of a bounded size bias coupling to a
nonnegative variable Y implies bounds for the degree of concentration of the distribution of Y . In
this work we explore a spectrum of new consequences of Theorem 1.1.
The couplings required here which yield concentration of measure results for Y are to a random
variable having the size biased distribution of Y , denoted Y s. Size biasing of a random variable is
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Size biased coupling for concentration 71

essentially sampling it proportional to its size, and is a well known phenomenon in the literature of
both probability and statistics; see, for example, the waiting time paradox in Feller [7], Section I.4,
and the method of constructing unbiased ratio estimators in [16]. Size biased couplings are used
in Stein’s method for normal approximation (see, for instance, [11], [9] and [5]), and is a method
which in some sense parallels the exchangeable pair technique. In fact, these two techniques
are somewhat complementary, with size biasing useful for the approximation of distributions of
nonnegative random variables such as counts, and the exchangeable pair for mean zero variates.
Recently, the objects of Stein’s method have also proved successful in deriving concentration of
measure inequalities, that is, deviation inequalities of the form P(|Y − E(Y )| ≥ t

p

Var(Y )), where
typically one seeks bounds that decay exponentially in t; for a guide to the literature on the
concentration of measures, see [14] for a detailed overview. As far as the use of techniques
related to Stein’s method is concerned, Raič [22] obtained large deviation bounds for certain graph
related statistics using the Stein equation (see [24]) along with the Cramér transform. Chatterjee
[3] derived Gaussian and Poisson type tail bounds for Hoeffding’s combinatorial CLT and the
net magnetization in the Curie-Weiss model in statistical physics in [3] using the exchangeable
pair of Stein’s method (see [24]). Considering the complementary method, Ghosh and Goldstein
[8] proved Theorem 1.1 which relies on the existence of bounded size bias couplings. Here we
demonstrate the broad range of applicability of Theorem 1.1 by presenting a variety of examples.
First recall that for a given nonnegative random variable Y with finite nonzero mean µ, we say
that Y s has the Y -size biased distribution if

E[Y f (Y )] = µE[ f (Y s)] for all functions f for which these expectations exist. (1)

Theorem 1.1. Let Y be a nonnegative random variable with mean and variance µ and σ2 respec-
tively, both finite and positive. Suppose there exists a coupling of Y to a variable Y s having the Y -size
bias distribution which satisfies |Y s − Y | ≤ C for some C > 0 with probability one. Let A= Cµ/σ2.

If Y s ≥ Y with probability one, then

P
�

Y −µ
σ
≤−t

�

≤ exp

�

−
t2

2A

�

for all t > 0. (2)

If the moment generating function m(θ) = E(eθY ) is finite at θ = 2/C, then

P
�

Y −µ
σ
≥ t
�

≤ exp

�

−
t2

2(A+ Bt)

�

for all t > 0, where B = C/2σ. (3)

In typical examples the variable Y is indexed by n, and the ones we consider have the property
that the ratio µ/σ2 remains bounded as n→∞, and C does not depend on n. In such cases the
bound in (2) decreases at rate exp(−c t2) for some c > 0, and if σ→∞ as n→∞, the bound in
(3) is of similar order, asymptotically.
In [8], the number of lightbulbs switched on at the terminal time in the lightbulb process was
shown to obey the hypothesis of Theorem 1.1 and concentration of measure inequalities were
obtained. In Section 3 we apply Theorem 1.1 to the number of relatively ordered subsequences
of a random permutation, sliding window statistics including the number of m-runs in a sequence
of coin tosses, the number of local maxima of a random function on the lattice, the number of
urns containing exactly one ball in the uniform urn allocation model, and the volume covered by
the union of n balls placed uniformly over a volume n subset of Rd . In Section 2, we review the
methods in [11] for the construction of size bias couplings in the presence of dependence, and
then move to the examples.



72 Electronic Communications in Probability

2 Construction of size bias couplings

In this section we will review the discussion in [11] which gives a procedure for a construction of
size bias couplings when Y is a sum; the method has its roots in the work of Baldi et al. [1]. The
construction depends on being able to size bias a collection of nonnegative random variables in a
given coordinate, as described Definition 2.1. Letting F be the distribution of Y , first note that the
characterization (1) of the size bias distribution F s is equivalent to the specification of F s by its
Radon Nikodym derivative

dF s(x) =
x

µ
dF(x). (4)

Definition 2.1. LetA be an arbitrary index set and let {Xα : α ∈A} be a collection of nonnegative
random variables with finite, nonzero expectations EXα = µα and joint distribution dF(x). For
β ∈ A , we say that Xβ = {X βα : α ∈ A} has the X size bias distribution in coordinate β if Xβ has
joint distribution

dFβ(x) = xβdF(x)/µβ .

Just as (4) is related to (1), the random vector Xβ has the X size bias distribution in coordinate β
if and only if

E[Xβ f (X)] = µβ E[ f (Xβ)] for all functions f for which these expectations exist.

Letting f (X) = g(Xβ) for some function g one recovers (1), showing that the β th coordinate of

Xβ , that is, X β
β

, has the Xβ size bias distribution.
The factorization

P(X ∈ dx) = P(X ∈ dx|Xβ = x)P(Xβ ∈ d x)

of the joint distribution of X suggests a way to construct X. First generate Xβ , a variable with
distribution P(Xβ ∈ d x). If Xβ = x , then generate the remaining variates {X βα ,α 6= β} with
distribution P(X ∈ dx|Xβ = x). Now, by the factorization of dF(x), we have

dFβ(x) = xβdF(x)/µβ (5)

= P(X ∈ dx|Xβ = x)xβ P(Xβ ∈ d x)/µβ = P(X ∈ dx|Xβ = x)P(X β
β
∈ d x).

Hence, to generate Xβ with distribution dFβ , first generate a variable X β
β

with the Xβ size bias

distribution, then, when X β
β
= x , generate the remaining variables according to their original

conditional distribution given that the β th coordinate takes on the value x .
Definition 2.1 and the following special case of a proposition from Section 2 of [11] will be applied
in the subsequent constructions; the reader is referred there for the simple proof.

Proposition 2.1. Let A be an arbitrary index set, and let X = {Xα,α ∈ A} be a collection of
nonnegative random variables with finite means. Let Y =

∑

β∈A Xβ and assume µA = EY is finite and
positive. Let Xβ have the X-size biased distribution in coordinate β as in Definition 2.1. Let I be a
random index taking values in A with distribution

P(I = β) = µβ/µA, β ∈ A.

Then if XI has the mixture distribution
∑

β∈A P(I = β)L (Xβ), the variable Y s =
∑

α∈A X I
α has the

Y -sized biased distribution as in (1).
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In our examples we use Proposition 2.1 and the random index I , and (5), to obtain Y s by first
generating X I

I with the size bias distribution of X I , then, if I = α and X αα = x , generating {X αβ :
β ∈ A\ {α}} according to the (original) conditional distribution P(Xβ ,β 6= α|Xα = x).

3 Applications

We now consider the application of Theorem 1.1 to derive concentration of measure results for
the number of relatively ordered subsequences of a random permutation, the number of m-runs
in a sequence of coin tosses, the number of local extrema on a graph, the number of nonisolated
balls in an urn allocation model, and the covered volume in a binomial coverage process. Without
further mention we will use that when (2) and (3) hold for some A and B then they also hold when
these values are replaced by larger ones, also denoted by A and B, and that moment generating
functions of bounded random variables are everywhere finite.

3.1 Relatively ordered sub-sequences of a random permutation

For n≥ m≥ 3, let π and τ be permutations of V = {1, . . . , n} and {1, . . . , m}, respectively, and let

Vα = {α,α+ 1, . . . ,α+m− 1} for α ∈ V , (6)

where addition of elements of V is modulo n. We say the pattern τ appears at location α ∈ V if
the values {π(v)}v∈Vα and {τ(v)}v∈V1

are in the same relative order. Equivalently, the pattern τ
appears at α if and only if π(τ−1(v) +α− 1), v ∈ V1 is an increasing sequence. When τ = ιm, the
identity permutation of length m, we say that π has a rising sequence of length m at position α.
Rising sequences are studied in [2] in connection with card tricks and card shuffling.
Letting π be chosen uniformly from all permutations of {1, . . . , n}, and Xα the indicator that τ
appears at α,

Xα(π(v), v ∈ Vα) = 1(π(τ−1(1) +α− 1)< · · ·< π(τ−1(m) +α− 1)),

the sum Y =
∑

α∈V Xα counts the number of m-element-long segments of π that have the same
relative order as τ.
For α ∈ V we may generate Xα = {X αβ ,β ∈ V } with the X = {Xβ ,β ∈ V } distribution size biased
in direction α, following [9]. Let σα be the permutation of {1, . . . , m} for which

π(σα(1) +α− 1)< · · ·< π(σα(m) +α− 1),

and set

πα(v) =
�

π(σα(τ(v−α+ 1)) +α− 1), v ∈ Vα
π(v) v 6∈ Vα.

In other words πα is the permutation π with the values π(v), v ∈ Vα reordered so that πα(γ) for
γ ∈ Vα are in the same relative order as τ. Now let X αβ = Xβ(πα(v), v ∈ Vβ), the indicator that τ
appears at position β in the reordered permutation πα. As πα and π agree except perhaps for the
m values in Vα, we have

X αβ = Xβ(π(v), v ∈ Vβ) for all |β −α| ≥ m.
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Hence, as

|Y α − Y | ≤
∑

|β−α|≤m−1

|X αβ − Xβ | ≤ 2m− 1. (7)

we may take C = 2m− 1 as the almost sure bound on the coupling of Y s and Y .
Regarding the mean µ of Y , clearly for any τ, as all relative orders of π(v), v ∈ Vα are equally
likely,

EXα = 1/m! and therefore µ= n/m!. (8)

To compute the variance, for 0 ≤ k ≤ m− 1, let Ik be the indicator that τ(1), . . . ,τ(m− k) and
τ(k + 1), . . . ,τ(m) are in the same relative order. Clearly I0 = 1, and for rising sequences, as
τ( j) = j, Ik = 1 for all k. In general for 0 ≤ k ≤ m− 1 we have XαXα+k = 0 if Ik = 0, as the
joint event in this case demands two different relative orders on the segment of π of length m− k
of which both Xα and Xα+k are a function. If Ik = 1 then a given, common, relative order is
demanded for this same length of π, and relative orders also for the two segments of length k on
which exactly one of Xα and Xβ depend, and so, in total a relative order on m− k+ 2k = m+ k
values of π, and therefore

EXαXα+k = Ik/(m+ k)! and Cov(Xα, Xα+k) = Ik/(m+ k)!− 1/(m!)2.

As the relative orders of non-overlapping segments of π are independent, now taking n≥ 2m, the
variance σ2 of Y is given by

σ2 = nVar(X1) + 2n
m−1
∑

k=1

Cov(X1, X1+k)

= n
�

1

m!
−

1

(m!)2

�

+ 2n
m−1
∑

k=1

�

Ik

(m+ k)!
− (

1

m!
)2
�

= n

 

1

m!

�

1−
2m− 1

m!

�

+ 2
m−1
∑

k=1

Ik

(m+ k)!

!

. (9)

Clearly Var(Y ) is maximized for the identity permutation τ(k) = k, k = 1, . . . , m, as Im = 1 for
all 1 ≤ m ≤ m − 1, and as mentioned, this case corresponds to counting the number of rising
sequences. In contrast, the variance lower bound given when Ik = 0 for all 1≤ k ≤ m− 1 is

σ2 ≥
n

m!

�

1−
2m− 1

m!

�

, attained at the permutation τ( j) =







1 j = 1
j+ 1 2≤ j ≤ m− 1

2 j = m
.

Hence, the bound (3) of Theorem 1.1 holds where µ and σ2 are given in (8) and (9), respectively,
and

A=
2m− 1

1− 2m−1
m!

and B =
2m− 1

2
Æ

n
m!

�

1− 2m−1
m!

�

.
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3.2 Local Dependence

The following lemma shows how to construct a collection of variables Xα having the X distribution
biased in direction α when Xα is some function of a subset of a collection of independent random
variables.

Lemma 3.1. Let {Cg , g ∈ V } be a collection of independent random variables, and for each α ∈ V
let Vα ⊂ V and Xα = Xα(Cg , g ∈ Vα) be a nonnegative random variable with a nonzero, finite
expectation. Then if {Cαg , g ∈ Vα} has distribution

dFα(cg , g ∈ Vα) =
Xα(cg , g ∈ Vα)

EXα(Cg , g ∈ Vα)
dF(cg , g ∈ Vα)

and is independent of {Cg , g ∈ V }, letting

X αβ = Xβ(C
α
g , g ∈ Vβ ∩Vα, Ch, h ∈ Vβ ∩V c

α ),

the collection Xα = {X αβ ,β ∈ V } has the X distribution biased in direction α.
Furthermore, with I chosen proportional to EXα, independent of the remaining variables, the sum

Y s =
∑

β∈V

X I
β

has the Y size biased distribution, and when there exists M such that Xα ≤ M for all α,

|Y s − Y | ≤ bM where b =max
α
|{β : Vβ ∩Vα 6= ;}|. (10)

Proof. By independence, the random variables

{Cαg , g ∈ Vα} ∪ {Cg , g 6∈ Vα} have distribution dFα(cg , g ∈ Vα)dF(cg , g 6∈ Vα).

Thus, with Xα as given, we find

EXα f (X) =

∫

xα f (x)dF(cg , g ∈ V )

= EXα

∫

f (x)
xαdF(cg , g ∈ Vα)
EXα(Cg , g ∈ Vα)

dF(cg , g 6∈ Vα)

= EXα

∫

f (x)dFα(cg , g ∈ Vα)dF(cg , g 6∈ Vα)

= EXαE f (Xα).

That is, Xα has the X distribution biased in direction α, as in Definition 2.1.
The claim on Y s follows from Proposition 2.1, and finally, since Xβ = X αβ whenever Vβ ∩Vα = ;,

|Y s − Y | ≤
∑

β:Vβ∩VI 6=;

|X I
β − Xβ | ≤ bM .

This completes the proof.
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3.2.1 Sliding m window statistics

For n ≥ m ≥ 1, let V = {1, . . . , n} considered modulo n, {Cg : g ∈ V } i.i.d. real valued random
variables, and for each α ∈ V let Vα be as in (6). Then for X : Rm→ [0,1], say, Lemma 3.1 may be
applied to the sum Y =

∑

α∈V Xα of the m-dependent sequence Xα = X (Cα, . . . , Cα+m−1), formed
by applying the function X to the variables in the ‘m-window’ Vα. As for all α we have Xα ≤ 1 and

max
α
|{β : Vβ ∩Vα 6= ;}|= 2m− 1,

we may take C = 2m− 1 in Theorem 1.1, by Lemma 3.1.
For a concrete example let Y be the number of m runs of the sequence ξ1,ξ2, . . . ,ξn of n i.i.d
Bernoulli(p) random variables with p ∈ (0,1), given by Y =

∑n
i=1 X i where X i = ξiξi+1 · · ·ξi+m−1,

with the periodic convention ξn+k = ξk. In [23], the authors develop smooth function bounds
for normal approximation for Y . Note that the construction given in Lemma 3.1 for this case is
monotone, as for any i, size biasing the Bernoulli variables ξ j for j ∈ {i, . . . , i+m− 1} by setting

ξ′j =
�

ξ j j 6∈ {i, . . . , i+m− 1}
1 j ∈ {i, . . . , i+m− 1},

the number Y s =
∑n

i=1 ξ
′
iξ
′
i+1 · · ·ξ

′
i+m−1 of m runs of {ξ′j}

n
i=1 is at least Y .

The mean µ of Y is clearly npm. For the variance, now letting n ≥ 2m and using the fact that
non-overlapping segments of the sequence are independent,

σ2 =
n
∑

i=1

Var(ξiξi+1 · · ·ξi+m−1) + 2
∑

i< j

Cov(ξi · · ·ξi+m−1,ξ j · · ·ξ j+m−1)

= npm(1− pm) + 2
n
∑

i=1

m−1
∑

j=1

Cov(ξi · · ·ξi+m−1,ξi+ j · · ·ξi+ j+m−1).

For the covariances Cov(ξi · · ·ξi+m−1,ξi+ j · · ·ξi+ j+m−1) one obtains

E(ξi · · ·ξi+ j−1ξi+ j · · ·ξi+m−1ξi+m · · ·ξi+ j+m−1)− p2m = pm+ j − p2m,

and therefore

σ2 = npm
�

(1− pm) + 2
�

p− pm

1− p
− (m− 1)pm

��

= npm
�

1+ 2
p− pm

1− p
− (2m− 1)pm

�

.

Hence (2) and (3) of Theorem 1.1 hold with

A=
2m− 1

1+ 2 p−pm

1−p
− (2m− 1)pm

and B =
2m− 1

2
q

npm
�

1+ 2 p−pm

1−p
− (2m− 1)pm

�

.

3.2.2 Local extrema on a lattice

Let G = {V ,E} be a given graph, and for every v ∈ V let Vv ⊂ V be a collection of vertices
depending on v; we think of Vv as some ‘neighborhood’ of the vertex v. Let {Cg , g ∈ V } be a
collection of independent and identically distributed random variables, and let X v be the indicator
that vertex v corresponds to a local maximum value with respect to the neighborhood Vv , that is

X v(Cw , w ∈ Vv) = 1(Cv > Cw , w ∈ Vv), v ∈ V .
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The sum Y =
∑

v∈V X v counts the number of local maxima. Size biased couplings to Y , for the
purpose of normal approximation, were studied in [1] and [9].
In general one may define the neighbor distance d between two vertices v, w ∈ V by

d(v, w) =min{n : there ∃ v0, . . . , vn in V so that v0 = v, vn = w and (vk, vk+1) ∈ E for k = 0, . . . , n},

and for r ∈ N, the r neighborhood of v ∈ V consisting of vertices at distance at most r from v,

Vv(r) = {w ∈ V : d(w, v)≤ r}.

We consider the case where there is some r such that the graphs Gv = {Vv ,Ev}, v ∈ V , where
Vv = Vv(r) and Ev = {{w, u} ⊂ Vv(r), {w, v} ∈ E}, are isomorphic, and the isomorphism from Gv1

to Gv2
maps v1 to v2. Then if d(v1, v2)> 2r, and (w1, w2) ∈ Vv1

×Vv2
, rearranging

2r < d(v1, v2)≤ d(v1, w1) + d(w1, w2) + d(w2, v2)

and using d(vi , wi)≤ r, i = 1,2, yields d(w1, w2)> 0. Hence,

d(v1, v2)> 2r implies Vv1

⋂

Vv2
= ;, so by (10) we may take b =max

v
|Vv(2r)|. (11)

For example, for p ∈ {1,2, . . .} and n ≥ 5 consider the lattice V = {1, . . . , n}p modulo n in Zp and
E = {{v, w} :

∑p
i=1 |vi −wi |= 1}; in this case d is the L1 norm. To consider the case where we call

vertex v a local maximum if Cv exceeds the values Cw over the immediate neighbors w of v, we
take r = 1 and obtain

Vv = Vv(1) and that |Vv(1)|= 1+ 2p,

the 1 accounting for v itself, and 2p for the number of neighbors at distance 1 from v, which differ
from v by either +1 or −1 in exactly one coordinate.
Lemma 3.1, (11), and |X v | ≤ 1 yield

|Y s − Y | ≤max
v
|Vv(2)|= 1+ 2p+

�

2p+ 4
�

p

2

��

= 2p2 + 2p+ 1, (12)

where the 1 counts v itself, the 2p again are the neighbors at distance 1, and the term in the paren-
thesis accounting for the neighbors at distance 2, 2p of them differing in exactly one coordinate
by +2 or −2, and 4

�p
2

�

of them differing by either +1 or −1 in exactly two coordinates. Note that
we have used the assumption n≥ 5 here, and continue to do so below.
Now letting Cv have a continuous distribution, without loss of generality we can assume Cv ∼
U [0,1]. As any vertex has chance 1/|Vv |= 1/(2p+1) of having the largest value in its neighbor-
hood, µ= EY satisfies

µ=
n

2p+ 1
. (13)

To begin the calculation of the variance, note that when v and w are neighbors they cannot both
be maxima, so X vXw = 0 and therefore, for d(v, w) = 1,

Cov(X v , Xw) =−(EX v)
2 =−

1

(2p+ 1)2
.

If the distance between v and w is 3 or more, X v and Xw are functions of disjoint sets of indepen-
dent variables, and hence are independent.
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When d(w, v) = 2 there are two cases, as v and w may have either 1 or 2 neighbors in common,
and

EX vXw = P(U > U j , V > Vj , j = 1, . . . , m− k and U > U j , V > U j , j = m− k+ 1, . . . , m),

where m is the number of vertices over which v and w are extreme, so m= 2p, and k = 1 and k = 2
for the number of neighbors in common. For k = 1,2, . . ., letting Mk = max{Um−k+1, . . . , Um}, as
the variables X v and Xw are conditionally independent given Um−k+1, . . . , Um

E(X vXw |Um−k+1, . . . , Um) = P(U > U j , j = 1, . . . , m|Um−k+1, . . . , Um)
2

=
1

(m− k+ 1)2
(1−M m−k+1

k )2, (14)

as

P(U > U j , j = 1, . . . , m|Um−k+1, . . . , Um) =

∫ 1

Mk

∫ u

0

· · ·
∫ u

0

du1 · · · dum−kdu

=

∫ 1

Mk

um−kdu

=
1

m− k+ 1
(1−M m−k+1

k ).

Since P(Mk ≤ x) = x k on [0,1], we have

EM m−k+1
k = k

∫ 1

0

xm−k+1 x k−1d x =
k

m+ 1
and

E(M m−k+1
k )2 = k

∫ 1

0

x2(m−k+1)x k−1d x =
k

2m− k+ 2
.

Hence, averaging (14) over Um−k+1, . . . , Um yields

EX vXw =
2

(m+ 1)(2(m+ 1)− k)
.

For n≥ 3, when m= 2p, for k = 1 and 2 we obtain

Cov(X v , Xw) =
1

(2p+ 1)2(2(2p+ 1)− 1)
and Cov(X v , Xw) =

2

(2p+ 1)2(2(2p+ 1)− 2)
, respectively.

For n ≥ 5, of the 2p+ 4
�p

2

�

vertices w that are at distance 2 from v, 2p of them share 1 neighbor
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in common with v, while the remaining 4
�p

2

�

of them share 2 neighbors. Hence,

σ2 =
∑

v∈V

Var(X v) +
∑

v 6=w

Cov(X v , Xw)

=
∑

v∈V

Var(X v) +
∑

d(v,w)=1

Cov(X v , Xw) +
∑

d(v,w)=2

Cov(X v , Xw)

= n
�

2p

(2p+ 1)2
− 2p

1

(2p+ 1)2
+ 2p

1

(2p+ 1)2(2(2p+ 1)− 1)
+ 4
�

p

2

�

2

(2p+ 1)2(2(2p+ 1)− 2)

�

= n
2p

(2p+ 1)2

�

1

(2(2p+ 1)− 1)
+

2(p− 1)
(2(2p+ 1)− 2)

�

= n

�

4p2 − p− 1

(2p+ 1)2(4p+ 1)

�

. (15)

We conclude that (2) of Theorem 1.1 holds with A = Cµ/σ2 and B = C/2σ with µ, σ2 and C
given by (13), (15) and (12), respectively, that is,

A=
(2p+ 1)(4p+ 1)(2p2 + 2p+ 1)

4p2 − p− 1
and B =

2p2 + 2p+ 1

2
q

n
�

4p2−p−1
(2p+1)2(4p+1)

�

.

3.3 Urn allocation

In the classical urn allocation model n balls are thrown independently into one of m urns, where,
for i = 1, . . . , m, the probability a ball lands in the i th urn is pi , with

∑m
i=1 pi = 1. A much studied

quantity is the number of nonempty urns, for which Kolmogorov distance bounds to the normal
were obtained in [6] and [21]. In [6], bounds were obtained for the uniform case where pi = 1/m
for all i = 1, . . . , m, while the bounds in [21] hold for the nonuniform case as well. In [19] the
author considers the normal approximation for the number of isolated balls, that is, the number
of urns containing exactly one ball, and obtains Kolmogorov distance bounds to the normal. Using
the coupling provided in [19], we derive right tail inequalities for the number of non-isolated
balls, or, equivalently, left tail inequalities for the number of isolated balls.
For i = 1, . . . , n let X i denote the location of ball i, that is, the number of the urn into which ball i
lands. The number Y of non-isolated balls is given by

Y =
n
∑

i=1

1(Mi > 0) where Mi =−1+
n
∑

j=1

1(X j = X i).

We first consider the uniform case. A construction in [19] produces a coupling of Y to Y s,
having the Y size biased distribution, which satisfies |Y s − Y | ≤ 2. Given a realization of X =
{X1, X2, . . . , Xn}, the coupling proceeds by first selecting a ball I , uniformly from {1,2, . . . , n}, and
independently of X. Depending on the outcome of a Bernoulli variable B , whose distribution
depends on the number of balls found in the urn containing I , a different ball J will be imported
into the urn that contains ball I . In some additional detail, let B be a Bernoulli variable with
success probability P(B = 1) = πMI

, where

πk =

¨

P(N>k|N>0)−P(N>k)
P(N=k)(1−k/(n−1))

if 0≤ k ≤ n− 2
0 if k = n− 1,
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with N ∼ Bin(1/m, n− 1). Now let J be uniformly chosen from {1, 2, . . . , n} \ {I}, independent of
all other variables. Lastly, ifB = 1, move ball J into the same urn as I . It is clear that |Y ′−Y | ≤ 2,
as at most the occupancy of two urns can affected by the movement of a single ball. We also note
that if MI = 0, which happens when ball I is isolated, π0 = 1, so that I becomes no longer isolated
after relocating ball J . We refer the reader to [19] for a full proof that this procedure produces a
coupling of Y to a variable with the Y size biased distribution.
For the uniform case, the following explicit formulas for µ and σ2 can be found in Theorem II.1.1
of [13],

µ = n

�

1−
�

1−
1

m

�n−1
�

and

σ2 = (n−µ) +
(m− 1)n(n− 1)

m

�

1−
2

m

�n−2

− (n−µ)2

= n
�

1−
1

m

�n−1

+
(m− 1)n(n− 1)

m

�

1−
2

m

�n−2

− n2
�

1−
1

m

�2n−2

. (16)

Hence with µ and σ2 as in (16), we can apply (3) of Theorem 1.1 for Y , the number of non
isolated balls with C = 2, A= 2µ/σ2 and B = 1/σ.
Taking limits in (16), if m and n both go to infinity in such a way that n/m → α ∈ (0,∞), the
mean µ and variance σ2 obey

µ� n(1− e−α) and σ2 � ng(α)2 where g(α)2 = e−α − e−2α(α2 −α+ 1)> 0 for all α ∈ (0,∞),

where for positive functions f and h depending on n we write f � h when limn→∞ f /h= 1.
Hence, in this limiting case A and B satisfy

A�
2(1− e−α)

e−α − e−2α(α2 −α+ 1)
and B �

1
p

ng(α)
.

In the nonuniform case similar results hold with some additional conditions. Letting

||p||= sup
1≤i≤m

pi and γ= γ(n) =max(n||p||, 1),

in [19] it is shown that when ||p|| ≤ 1/11 and n≥ 83γ2(1+3γ+3γ2)e1.05γ, there exists a coupling
such that

|Y s − Y | ≤ 3 and
µ

σ2 ≤ 8165γ2e2.1γ.

Now, using the bound σ2 ≥ (7776)−1γ−2e−2.1γn2
∑

i p2
i from (2.14) of Theorem 2.4 in [19] to

yield B, we find that (3) of Theorem 1.1 holds with

A= 24, 495γ2e2.1γ and B =
1.5
p

7776 γe1.05γ

n
p
∑m

i=1 p2
i

.

3.4 An application to coverage processes

We consider the following coverage process, and associated coupling, from [10]. Given a col-
lection U = {U1, U2, . . . , Un} of independent, uniformly distributed points in the d dimensional
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torus of volume n, that is, the cube Cn = [0, n1/d)d ⊂ Rd with periodic boundary conditions, let
V denote the total volume of the union of the n balls of fixed radius ρ centered at these n points,
and S the number of balls isolated at distance ρ, that is, those points for which none of the other
n− 1 points lie within distance ρ. The random variables V and S are of fundamental interest in
stochastic geometry, see [12] and [18]. If n → ∞ and ρ remains fixed, both V and S satisfy a
central limit theorem [12, 17, 20]. The L1 distance of V , properly standardized, to the normal is
studied in [4] using Stein’s method. The quality of the normal approximation to the distributions
of both V and S, in the Kolmogorov metric, is studied in [10] using Stein’s method via size bias
couplings.
In more detail, for x ∈ Cn and r > 0 let Br(x) denote the ball of radius r centered at x , and
Bi,r = B(Ui , r). The covered volume V and number of isolated balls S are given, respectively, by

V = Volume(
n
⋃

i=1

Bi,ρ) and S =
n
∑

i=1

1{(Un ∩ Bi,ρ = {Ui}}. (17)

We will derive concentration of measure inequalities for V and S with the help of the bounded
size biased couplings in [10].
Assume d ≥ 1 and n ≥ 4. Denote the mean and variance of V by µV and σ2

V , respectively, and
likewise for S, leaving their dependence on n and ρ implicit. Let πd = πd/2/Γ(1 + d/2), the
volume of the unit sphere in Rd , and for fixed ρ let φ = πdρ

d . For 0≤ r ≤ 2 let ωd(r) denote the
volume of the union of two unit balls with centers r units apart. We have ω1(r) = 2+ r, and

ωd(r) = πd +πd−1

∫ r

0

(1− (t/2)2)(d−1)/2d t, for d ≥ 2.

From [10], the means of V and S are given by

µV = n
�

1− (1−φ/n)n
�

and µS = n(1−φ/n)n−1, (18)

and their variances by

σ2
V = n

∫

B2ρ(0)

�

1−
ρdωd(|y|/ρ)

n

�n

d y + n(n− 2dφ)
�

1−
2φ

n

�n

− n2(1−φ/n)2n, (19)

and

σ2
S = n(1−φ/n)n−1(1− (1−φ/n)n−1)

+(n− 1)

∫

B2ρ(0)\Bρ(0)

�

1−
ρdωd(|y|/ρ)

n

�n−2

d y

+n(n− 1)

��

1−
2dφ

n

�

�

1−
2φ

n

�n−2

−
�

1−
φ

n

�2n−2�

. (20)

It is shown in [10], by using a coupling similar to the one briefly described for the urn allocation
problem in Section 3.3, that one can construct V s with the V size bias distribution which satisfies
|V s − V | ≤ φ. Hence (2) of Theorem 1.1 holds for V with

AV =
φµV

σ2
V

and BV =
φ

2σV
,
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where µV and σ2
V are given in (18) and (19), respectively. Similarly, with Y = n− S the number

of non-isolated balls, it is shown that Y s with Y size bias distribution can be constructed so that
|Y s−Y | ≤ κd+1, where κd denotes the maximum number of open unit balls in d dimensions that
can be packed so they all intersect an open unit ball in the origin, but are disjoint from each other.
Hence (2) of Theorem 1.1 holds for Y with

AY =
(κd + 1)(n−µS)

σ2
S

and BY =
κd + 1

2σS
.

To see how the AV , AY and BV , BY behave as n→∞, let

Jr,d(ρ) = dπd

∫ r

0

exp(−ρdωd(t))t
d−1d t,

and define

gV (ρ) = ρd J2,d(ρ)− (2dφ +φ2)e−2φ and

gS(ρ) = e−φ − (1+ (2d − 2)φ +φ2)e−2φ +ρd(J2,d(ρ)− J1,d(ρ)).

Then, again from [10],

lim
n→∞

n−1µV = lim
n→∞
(1− n−1µS) = 1− e−φ ,

lim
n→∞

n−1σ2
V = gV (ρ)> 0, and

lim
n→∞

n−1σ2
S = gS(ρ)> 0.

Hence, BV and BY tend to zero at rate n−1/2, and

lim
n→∞

AV =
φ(1− e−φ)

gV (ρ)
, and lim

n→∞
AY =

(κd + 1)(1− e−φ)
gS(ρ)

.
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