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Abstract
In this paper, we generalize the asymptotic result of Esseen (1958) concerning the Wasserstein
distance of order one in the mean central limit theorem to the Wasserstein distances of order r for
r in ]1, 2].

1 Introduction and main results.

In this paper we continue the research started in Rio (2009), concerning the Wasserstein distances
in the central limit theorem. Let Ω be a probability space, rich enough to generate the set of
probability laws on IR× IR. Let d be a pseudodistance on the set of real-valued random variables,
such that d(X , Y ) depends only on the law of (X , Y ). Then, according to Paul Lévy (see Note B
in Fréchet (1950) for this fact) the minimal distance d̂ associated to d is defined by d̂(µ,ν) =
inf{d(X , Y ) : X ∼ µ, Y ∼ ν}, where the infimum is taken over all random vectors (X , Y ) with
respective marginal laws µ and ν . When E = IR, r ≥ 1 and d(X , Y ) = ‖X − Y ‖r , we denote by
Wr the so defined minimal distance on the space M r of probability laws with a finite absolute
moment of order r. This distance is usually called Wasserstein distance of order r. The distances
Wr are homogeneous of degree 1.

Throughout the paper, X1, X2, . . . is a sequence of independent and identically distributed real-
valued random variables with mean zero and finite positive variance. We set Sn = X1+X2+· · ·+Xn
and vn = Var Sn. We denote by µn the law of v−1/2

n Sn and by γv the normal law with mean 0 and
variance v. In a recent paper, Rio (2009) proved that, for r in [1,2],

(1.1) limsup
n→∞

p
nWr(µn,γ1)<∞

as soon as IE(|X1|r+2)<∞. An interesting problem is then to find the limit in (1.1). Let Fn denote
the distribution function of µn and Φ denote the distribution function of the standard normal.
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Esseen (1958) proved that

(1.2) lim
n→∞

p
n‖Fn −Φ‖p = Ap(µ1),

where Ap(µ1) is some nonnegative explicit constant. In the specific case p = 1,

‖Fn −Φ‖1 =W1(µn,γ1).

Consequently Esseen’s result gives the asymptotic constant in (1.1) for r = 1. Zolotarev (1964)
provided the following representation. Let Y and U be independent random variables, with re-
spective distributions the standard normal law and the uniform law over [−1/2,1/2]. Then

A1(µ1) = ‖(α3/6)(1− Y 2) + (h/σ)U‖1,

where σ is the standard deviation of X1, α3 = σ−3IE(X 3
1) and h is the span of the distribution of

X1 for lattice distributions and 0 otherwise. For r > 1, it is known since a long time (cf. Dall’Aglio
(1956) and Fréchet (1957) for more about this) that

(1.3) Wr(µn,γ1) = ‖F−1
n −Φ

−1‖r ,

and consequently Wr(µn,γ1) 6= ‖Fn − Φ‖r in general. In the next two theorems we describe the
asymptotic behaviour of Wr(µn,γ1) as n tends to ∞, for r in [1,2]. As for r = 1, this behaviour
depends on whether or not X1 has a lattice distribution.

Theorem 1.1. Let Y be a random variable with standard normal law. Set α3 = (IE(X 2
1))
−3/2IE(X 3

1).
Let r be any real in ]1,2]. If the distribution of X1 is not a lattice distribution and if IE(|X1|r+2) <
∞, then

lim
n→∞

n1/2Wr(µn,γ1) = (|α3|/6)‖1− Y 2‖r .

We now state the results for lattice distributions. We will consider either smoothed sums or un-
smoothed sums. For lattice distributions taking values in the arithmetic progression {a+ kh : k ∈
ZZ} (h being maximal), the smoothed sums S̄n are defined by

S̄n = Sn + hU ,

where U is a random variable with uniform distribution over [−1/2,1/2], independent of Sn. We
denote by µ̄n the law of v−1/2

n S̄n. Theorem 1.2 gives the asymptotic constants for smoothed or
unsmoothed sums.

Theorem 1.2. Let X1, X2, . . . be centered and independent identically distributed lattice random
variables with variance σ2, taking values in the arithmetic progression {a+ kh : k ∈ ZZ} (h being
maximal). Let Y and U be two independent random variables, with respective laws the standard
normal law and the uniform law over [−1/2, 1/2]. Let r be any real in ]1, 2]. Assume that
IE(|X1|r+2)<∞. Then

(a) lim
n→∞

n1/2Wr(µ̄n,γ1) = (|α3|/6)‖1− Y 2‖r

and

(b) lim
n→∞

n1/2Wr(µn,γ1) = ‖(α3/6)(1− Y 2) + (h/σ)U‖r .
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Remark 1.1. The constants appearing here are represented as in Zolotarev (1964), and conse-
quently (b) still holds for r = 1. Proceeding as in Esseen (1958) one can prove that (a) is true in
the case r = 1.

In the specific case r = 2, the asymptotic constant can be computed more explicitely. Let us state
the corresponding result.

Corollary 1.3. Let X1, X2, . . . be centered and independent identically distributed lattice random
variables with variance σ2 and finite moment of order 4, taking values in the arithmetic progres-
sion {a+ kh : k ∈ ZZ} (h being maximal). Then, with the same notations as in Theorems 1.1 and
1.2,

lim
n→∞

n1/2W2(µn,γ1) =
1

6

Æ

3(h/σ)2 + 2α2
3.

Remark 1.1. In the non lattice case, as shown by Theorem 1.1, the above result holds with h= 0.

Example 1: symmetric sign. Assume that the random variables are symmetric signs, that is IP(X1 =
1) = IP(X1 = −1) = 1/2. In that case h = 2, σ = 1 and α3 = 0. Then the asymptotic constant in
Corollary 1.3 is 1/

p
3.

Example 2: Poisson distribution. Let λ > 0 and assume that X1 + λ has the Poisson distribution
P (λ). Then h = 1, σ2 = λ and α3 = λ−1/2. In that case Corollary 1.3 gives the asymptotic
constant 1

6
(5/λ)1/2.

2 Non lattice distributions or lattice distributions and smoothed
sums.

In this section, we prove Theorem 1.1. for non lattice distributions and Theorem 1.2(a) for lattice
distributions and smoothed sums. Dividing the random variables by the standard deviation of X1,
we may assume that the random variables X1, X2, . . . satisfy IE(X 2

1) = 1. Let F̄n denote the distri-
bution function of µ̄n. The first step is the result below of pointwise convergence, which is known
as the Cornish-Fisher expansion. As pointed in Hall (1992, Theorem 2.4 and final comments to
Chapter 2), the Cornish-Fisher expansion of first order does not need the Cramer condition. To be
exhaustive, we give a proof of this result

Lemma 2.1. If µ1 is not a lattice distribution, then, for any u in ]0, 1[,

(a)
p

n(F−1
n (u)−Φ

−1(u)) =
α3

6

�

(Φ−1(u))2 − 1
�

+ o(1),

as n tends to∞. If µ1 is a lattice distribution, then

(b)
p

n(F̄−1
n (u)−Φ

−1(u)) =
α3

6

�

(Φ−1(u))2 − 1
�

+ o(1).

Furthermore the convergence in (a) and (b) are uniform on [δ, 1−δ], for any positive δ.

Proof of Lemma 2.1. Let φ = Φ′ denote the density of the standard normal. We start from
Esseen’s (1945) estimates

(2.1) Fn(x) = Φ(x) +
α3

6
(1− x2)φ(x)n−1/2 + o(n−1/2),
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which holds true for non lattice distributions, and

(2.2) F̄n(x) = Φ(x) +
α3

6
(1− x2)φ(x)n−1/2 + o(n−1/2),

which holds true for lattice distributions. Moreover these estimates hold uniformly in x as n tends
to∞. Let

Ψ(x) = Φ(x) +
α3

6
(1− x2)φ(x)n−1/2 and Q(u) = Φ−1(u) +

α3

6
((Φ−1(u))2 − 1)n−1/2.

We start by proving that, for any positive A, uniformly in x over [−A, A],

(2.3) Q(Ψ(x)) = x +O(1/n).

First
sup
x∈IR
|1− x2|φ(x) = (2π)−1/2.

For n large enough, Ψ(x) lies in [Φ(−2A),Φ(2A)] for any x in [−A, A]. Then, by the Taylor formula
at order 2 applied at Φ(x) with the increment α3

6
(1− x2)φ(x)n−1/2,

|Φ−1(Ψ(x))− x −
α3

6
(1− x2)n−1/2| ≤

α2
3

72πn
sup

u∈[Φ(−2A),Φ(2A)]
|(Φ−1)′′(u)|.

Now
(Φ−1)′′(u) = Φ−1(u)(φ(Φ−1(u)))−2.

Hence
sup

u∈[Φ(−2A),Φ(2A)]
|(Φ−1)′′(u)|= sup

x∈[0,2A]
(x/φ2(x)) = 2A/φ2(2A)<∞,

which ensures that, uniformly in x over [−A, A],

(2.4) Φ−1(Ψ(x)) = x +
α3

6
(1− x2)n−1/2 +O(1/n).

Now, uniformly in x over [−A, A],

Q(Ψ(x)) = Φ−1(Ψ(x)) +
α3

6
((Φ−1(Ψ(x)))2 − 1)n−1/2

= x +
α3

6
(1− x2)n−1/2 +O(1/n) +

α3

6
(x2 − 1)n−1/2 +O(1/n)

by (2.4) applied twice. The estimate (2.3) follows.

Starting from (2.1), we now prove Lemma 2.1(a). The proof of Lemma 2.1(b) (omitted) can be
done exactly in the same way, starting from (2.2). From (2.1), for n large enough, Fn(x) lies in
[Φ(−2A),Φ(2A)] for any x in [−A, A]. Then, by (2.1) again and the Rolle theorem

Q(Fn(x))−Q(Ψ(x)) = o(n−1/2)

uniformly in x over [−A, A]. Consequently, by (2.3), there exists some sequence (εn)n of positive
reals converging to 0 such that

|x −Q(Fn(x))| ≤ n−1/2εn,
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for any x in [−A, A]. It follows that

(2.5) |F−1
n (u)−Q(Fn(F

−1
n (u)))| ≤ n−1/2εn,

provided that F−1
n (u) lies in [−A, A]. By (2.1) again this condition holds true for n large enough if u

belongs to [Φ(−A/2),Φ(A/2)]. The estimate (2.1) also implies that the jumps of Fn are uniformly
bounded by o(n−1/2). Hence

sup
u∈]0,1[

|Fn(F
−1
n (u))− u|= o(n−1/2),

which ensures that

(2.6) sup
u∈[Φ(−A/2),Φ(A/2)]

|Q(Fn(F
−1
n (u)))−Q(u)|= o(n−1/2).

Finally, by (2.5) and (2.6), Lemma 2.1(a) holds true with δ = Φ(−A/2).

Proof of Theorem 1.1. Recall that, for laws µ and ν with respective distribution functions F and
G, Wr(µ,ν) = ‖F−1 − G−1‖r . Now, by Lemma 2.1, for any positive δ,

lim
n→∞

nr/2

∫ 1−δ

δ

|F−1
n (u)−Φ

−1(u)|r du=
�

|α3|/6
�r
∫ 1−δ

δ

|Φ−1(u))2 − 1|r du

and

lim
n→∞

nr/2

∫ 1−δ

δ

|F̄−1
n (u)−Φ

−1(u)|r du=
�

|α3|/6
�r
∫ 1−δ

δ

|Φ−1(u))2 − 1|r du.

Since Φ−1(u) has the standard normal distribution under the Lebesgue measure over [0,1], The-
orem 1.1 will follow from the above inequality if we prove that, for N large enough,

(2.7a) lim
δ↘0

sup
n≥N

�

nr/2

∫ 1

0

1inf(u,1−u)<δ|F−1
n (u)−Φ

−1(u)|r du
�

= 0

and

(2.7b) lim
δ↘0

sup
n≥N

�

nr/2

∫ 1

0

1inf(u,1−u)<δ|F̄−1
n (u)−Φ

−1(u)|r du
�

= 0.

Now |F−1
n (u)− F̄−1

n (u)| ≤ n−1/2h, which ensures that

lim
δ↘0

sup
n>0

�

nr/2

∫ 1

0

1inf(u,1−u)<δ|F̄−1
n (u)− F̄−1

n (u)|
r du
�

= 0.

Hence (2.7b) follows from (2.7a) via the triangle inequality. The proof of (2.7a) will be done via
Theorem 6.1 in Rio (2009), which is based on estimates of Borisov, Panchenko and Skilyagina
(1998) for smooth functions of Sn. For F and G distribution functions on the real line, let

κr,2(F, G) =

∫ 1

0

�

1+ (|F−1(u)|+ |G−1(u)|)2/4
�

|F−1(u)− G−1(u)|r du.
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Theorem 6.1 in Rio (2009) states that, if nr/2 ≥ IE(|X1|r+2) (recall X1 has unit variance), then

κr,2(Fn,Φ)≤ Cn−r/2IE(|X1|r+2)

for some positive constant C depending only on r. Now

∫ 1

0

1inf(u,1−u)<δ|F−1
n (u)−Φ

−1(u)|r du≤
4

1+ (Φ−1(δ))2
κr,2(Fn,Φ).

Hence, for N = (IE(|X1|r+2))2/r ,

sup
n≥N

�

nr/2

∫ 1

0

1inf(u,1−u)<δ|F−1
n (u)−Φ

−1(u)|r du
�

≤
4CIE(|X1|r+2)
1+ (Φ−1(δ))2

,

which implies (2.7a). Hence Theorem 1.1 holds true.

3 Lattice distributions.

In this section we prove Theorem 1.2(b). Again we may assume that σ2 = 1. Let

∆n(t) = n1/2(F−1
n (t)−Φ

−1(t)).

From (2.7a), it is enough to prove that, for any δ in ]0, 1/2[,

(3.1) lim
n→∞

∫ 1−δ

δ

|∆n(t)|r du=

∫ 1

0

∫ 1−δ

δ

|(α3/6)(1− |Φ−1(t)|2) + hu− h/2|r dud t.

In order to prove (3.1) we will use Lemma 2.1(b). For any distribution function F and any real
x , let F(x − 0) = limt↑x F(t). Let x0 be the smallest number in the lattice {n−1/2(a+ kh) : k ∈ ZZ}
such that Fn(x0 − 0) ≥ δ. For any relative integer l, set x l = x0 + lhn−1/2 and al = Fn(x l). Then,
for any l in ZZ such that 0< al−1 < al < 1, we have

(3.2) F−1
n (t) = x l for any t ∈]al−1, al[,

since al−1 = Fn(x l − 0). Furthermore, it can easily be proven that

(3.3) F̄−1
n ((1− u)al−1 + ual) = x l + n−1/2h(u− 1/2) for any u ∈ [0,1].

Throughout the sequel, let t l(u) = (1 − u)al−1 + ual . Let m be the largest integer such that
Fn(xm) ≤ 1− δ. It comes from Esseen’s estimates that al−1 < al for any l in [1, m], for n large
enough. Then, for l in [1, m] and u in [0,1], by Lemma 2.1(b) together with (3.3),

∆n(t l(u)) =
α3

6

�

|Φ−1(t l(u))|2 − 1
�

− h(u− 1/2) + o(1)

uniformy in l ∈ [1, m] and u ∈ [0,1]. It follows that

∫ am

a0

|∆n(t)|r du=
m
∑

l=1

(al − al−1)

∫ 1

0

�

�
α3
6

�

|Φ−1(t l(u))|2 − 1
�

− h(u− 1
2
)
�

�

r
du+ o(1).
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Now |a0−δ|+ |1−δ− am|= O(n−1/2) and |∆n(t)| is uniformly bounded on [δ, 1−δ]. It follows
that the integrals from δ to a0 and from am to 1−δ tend to 0 as n tends to∞. Hence

(3.4)

∫ 1−δ

δ

|∆n(t)|r du=
m
∑

l=1

(al − al−1)

∫ 1

0

�

�
α3
6

�

|Φ−1(t l(u))|2 − 1
�

− h(u− 1
2
)
�

�

r
du+ o(1).

Define now
Ml(u) = sup

t∈[al−1,al]

�

�
α3
6

�

|Φ−1(t)|2 − 1
�

− h(u− 1
2
)
�

�

r

and
ml(u) = inf

t∈[al−1,al]

�

�
α3
6

�

|Φ−1(t)|2 − 1
�

− h(u− 1
2
)
�

�

r
.

Let

In =
m
∑

l=1

(al − al−1)

∫ 1

0

�

�
α3
6

�

|Φ−1(t l(u))|2 − 1
�

− h(u− 1
2
)
�

�

r
du

and

Jn =
m
∑

l=1

(al − al−1)

∫ 1

0

∫ 1

0

�

�
α3
6

�

|Φ−1(t l(v))|2 − 1
�

− h(u− 1
2
)
�

�

r
dudv.

Then
m
∑

l=1

(al − al−1)

∫ 1

0

ml(u)du≤ In ∧ Jn ≤ In ∨ Jn ≤
m
∑

l=1

(al − al−1)

∫ 1

0

Ml(u)du,

and consequently

|In − Jn| ≤
m
∑

l=1

(al − al−1)

∫ 1

0

(Ml(u)−ml(u))du.

Let

C = sup
u∈[0,1]

sup
t∈[δ,1−δ]

�

�

�

∂

∂ t
| α3

6

�

|Φ−1(t)|2 − 1
�

− h(u− 1
2
)|r
�

�

�.

Clearly C is finite and Ml(u)−ml(u)≤ C(al − al−1), whence

(3.5) |In − Jn| ≤ C
m
∑

l=1

(al − al−1)
2.

Now
lim
n→∞

max
l∈[1,m]

(al − al−1) = 0,

which ensures that the upper bound in (3.5) converges to 0 as n tends to ∞. It follows that
(In − Jn) converges to 0 as n tends to∞. Finally

Jn =

∫ 1

0

∫ am

a0

�

�
α3
6

�

|Φ−1(t)|2 − 1
�

− h(u− 1
2
)
�

�

r
dud t,

so that, repeating the arguments of the proof of (3.4), we have:

(3.6) lim
n→∞

Jn =

∫ 1

0

∫ 1−δ

δ

�

�
α3
6

�

|Φ−1(t)|2 − 1
�

− h(u− 1
2
)
�

�

r
dud t.
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Both (3.4), (3.6) and the convergence of (In−Jn) to 0 then imply (3.1). Theorem 1.2(b) is proved.

Acknowledgment. I would like to thank the referee for carefully reading the paper and for
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