A REFLECTION TYPE PROBLEM FOR THE STOCHASTIC 2-D NAVIER-STOKES EQUATIONS WITH PERIODIC CONDITIONS

VIOREL BARBU¹ University Al. I. Cuza and Institute of Mathematics Octav Mayer, Iaşi, Romania email: vbarbu41@gmail.com

GIUSEPPE DA PRATO² Scuola Normale Superiore, Pisa, Italy email: daprato@sns.it

LUCIANO TUBARO² Department of Mathematics, University of Trento, Italy email: tubaro@science.unitn.it

Submitted 22 february 2011, accepted in final form 15 May 2011

AMS 2000 Subject classification: 76D05, 60H15, 76B03, 76M35 Keywords: 2-D stochastic Navier-Stokes equations, Gibbs measures, Kolmogorov operator.

Abstract

We prove the existence of a solution for the Kolmogorov equation associated with a reflection problem for 2-D stochastic Navier-Stokes equations with periodic spatial conditions and the corresponding stream flow in a closed ball of a Sobolev space of the torus \mathbb{T}^2 .

1 Introduction

We consider here the 2-D stochastic Navier-Stokes equation for an incompressible non-viscous fluid

$$\begin{cases} dX - v \Delta X \, dt + (X \cdot \nabla) X \, dt = \nabla p \, dt + dW_t \\ \nabla \cdot X = 0 \end{cases}$$
(1)

This equation is considered on a 2-D torus, that we identify with the square $\mathbb{T}^2 = [0, 2\pi] \times [0, 2\pi]$ and with periodic boundary conditions.

Here v is the viscosity of the fluid, X is the velocity field, p is the pressure and W is a cylindrical Wiener process.

If we denote by $\phi: \mathbb{T}^2 \to \mathbb{R}$ the corresponding stream function, that is

$$X = \nabla^{\perp}\phi, \quad -\Delta\phi = \operatorname{curl} X, \quad \phi(\xi + 2\pi) \equiv \phi(\xi) \tag{2}$$

¹THIS WORK IS SUPPORTED BY CNCSIS PROJECT PN II IDEI ID-70/2008.

²PARTIALLY SUPPORTED BY THE ITALIAN NATIONAL PROJECT MURST "EQUAZIONI DI KOLMOGOROV."

where $\nabla^{\perp} = (-D_2, D_1)$, curl $X = D_2 X_1 - D_1 X_2$, $X = (X_1, X_2)$ we may rewrite (1) in terms of the stream function ϕ (see [1], [2])

$$d(\nabla^{\perp}\phi) - v\Delta\nabla^{\perp}\phi \,dt + (\nabla^{\perp}\phi \cdot \nabla)\nabla^{\perp}\phi \,dt = \nabla p \,dt + dW_t \tag{3}$$

and formulate for (1) the corresponding reflection problem on the set

$$K = \{ \phi \in H^{1-\alpha}(\mathbb{T}; \mathbb{R}^2) : \|\phi\|_{1-\alpha} \le \ell \}$$

$$\tag{4}$$

where $H^{1-\alpha}$ is the Sobolev space of order $1 - \alpha$ with $\alpha > \frac{3}{2}$, with respect to the natural Gibbs measure μ given by enstrophy (see Section 2 below.)

More precisely, we shall prove that the Kolmogorov equation associated with (1), (2) and (4) has at least one solution $\varphi \colon \mathbb{T}^2 \to \mathbb{R}$. In terms of coordinates $u_j = \frac{1}{2\pi} \int_{\mathbb{T}^2} e^{ij \cdot \xi} \phi(\xi) d\xi$ this equation has the form

$$\begin{cases} \lambda \varphi - L \varphi = f & \text{in } \mathring{K} \\ \frac{\partial \varphi}{\partial n} = 0 & \text{on } \partial K. \end{cases}$$
(5)

where *L* is the Kolmogorov operator

$$L\varphi(u) = \sum_{k \in \mathbb{Z}^2} \left[\frac{1}{2k^2} D_k^2 \varphi(u) - v k^2 u_k D_k \varphi(u) - B_k(u) D_k \varphi(u) \right],$$
(6)

defined on a space $\mathscr{F}C_b^2$ of cylindrical smooth functions. (The function B_k is defined in (10).) The main result of this work, Theorem 1 below, amounts to saying that the Neumann problem (5) has at least one weak solution φ , but the uniqueness of this solution remains open. It should be said that the uniqueness is still an open problem in the case $K = H^{1-\alpha}$ and it is equivalent in the later case with the unique extension of operator L from $\mathscr{F}C_b^2$ to an m-dissipative operator in $L^2(\mu)$ see [3]. We mention, however, that L is essentially m-dissipative in $L^1(\mu)$ when the viscosity v is sufficiently large (Stannat [11]). It should mention also that in this way the study of stochastic process $X = X_t$ reduces to a linear infinite dimensional equation in the space $H^{1-\alpha}$ associated to the operator L.

There is a large number of works devoted to infinite dimensional stochastic reflection problems but most of them are, except a few notable works, concerned with Wiener processes W with finite covariance. So the existence theory for (13) is still open.

Here following the way developped in [5], [6], we will treat instead of (1) its associated Kolmogorov equation which as noted in Introduction will lead to an infinite dimensional Neumann problem on the convex *K*. (The Kolmogorov equation [6] in the special case $K = H^{1-\alpha}$ was previously studied by Flandoli and Gozzi [9].)

Previous results on infinite dimensional reflection problems, starting from [10] are essentially concerned with reversible systems. We believe that the present paper is the first attempt to study non symmetric infinite dimensional Kolmogorov operators with Neumann boundary conditions.

2 The functional setting

Consider the Sobolev space of order $p \in \mathbb{R}$ defined by

$$H^{p} = \left\{ y(\xi) = \frac{1}{2\pi} \sum_{j \in \mathbb{Z}^{2}_{+}} u_{j} e^{ij \cdot \xi} : \sum_{j \in \mathbb{Z}^{2}_{+}} j^{2p} |u_{j}|^{2} < +\infty \right\}$$

where $j = (j_1, j_2)$ and $\mathbb{Z}^2_+ = \{j \in \mathbb{Z}^2 : j_1 > 0 \text{ or } j_1 = 0, j_2 > 0\}$. We set also $\mathbb{Z}^2_0 = \mathbb{Z}^2 \setminus \{(0, 0)\}$, $j^2 = j_1^2 + j_2^2$ and set $u = \{u_j\}_{j \in \mathbb{Z}^2_0}$, $u_j = \bar{u}_{-j}$ for $j \in \mathbb{Z}^2_0 \setminus \mathbb{Z}^2_+$. The space H^p is a complex Hilbert space with the scalar product

$$\langle y_1, y_2 \rangle_p = \sum_{j \in \mathbb{Z}^2_+} j^{2p}(y_1)_j (\bar{y}_2)_j, \quad y_j = \frac{1}{2\pi} \int_{\mathbb{T}^2} y(\xi) e^{ij \cdot \xi} d\xi.$$

Consider the Gibbs measure $\mu = \mu_{\nu}$ given by the enstrophy, that is

$$d\mu(u) = \prod_{j \in \mathbb{Z}_+^2} d\mu^i(u_j), d\mu^j(z) = \frac{v \, j^4}{2\pi} \exp\left(-\frac{1}{2}v j^4 |z|^2\right) dx dy, z = x + iy.$$

We recall (see [1], [3]) that for $\alpha > 0$ we have

$$\int_{H} |u|_{1-\alpha}^2 d\mu(u) < \infty,$$

and so the probability measure μ is supported by H^p , p < 1. For each $q \ge 1$ we denote the space $L^q(\Lambda, \mu)$ by $L^q(\mu)$.

We denote by $H^{1,2}(H^{\delta},\mu)$ the completion of the space $\mathscr{F}C_b^2$ in the norm

$$\|\varphi\|_{\delta}^{2} = \sum_{j \in \mathbb{Z}_{0}^{2}} |j|^{2\delta} \int_{H} |D_{j}\varphi|^{2} d\mu + \int_{H} |\varphi|^{2} d\mu.$$

Given a closed convex subset $K \subset H^{\delta}$ with smooth boundary we denote by $H^{1,2}_{\delta}(K,\mu)$ the space $\{\varphi|_{K} : \varphi \in H^{1,2}(H^{\delta},\mu)\}$ with the norm

$$\|\varphi\|_{H^{1,2}(K,\mu)}^{2} = \sum_{j \in \mathbb{Z}_{0}^{2}} |j|^{2\delta} \int_{K} |D_{j}\varphi|^{2} d\mu + \int_{K} |\varphi|^{2} d\mu.$$

There is a standard way (see [1], [2]) to reduce equation (1) to a differential equation in $H^{1-\alpha}$ we briefly present below. Namely applying the curl operator into (3) we get for $\psi = \operatorname{curl} X$ the equation

$$d\psi - v\Delta\psi \, dt + \operatorname{curl} \left[(\nabla^{\perp}\phi \cdot \nabla)\nabla^{\perp}\phi \right] dt = d \operatorname{curl} W_t.$$

Now, we expand ϕ in Fourier series

$$\phi(t,\xi) = \frac{1}{2\pi} \sum_{j \in \mathbb{Z}_0^2} u_j(t) e^{\mathbf{i}j \cdot \xi}$$
(7)

and take W to be the cylindrical Wiener process

$$W_{t} = \frac{1}{2\pi} \sum_{j \in \mathbb{Z}_{0}^{2}} |j|^{-1} \nabla^{\perp} (e^{ij \cdot \xi}) W_{j}(t)$$
(8)

where $\{W_j\}_{j\in\mathbb{Z}_0^2}$ are independent Brownian motions in a probability space $\{\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_t\}_{t\geq 0}\}$. We note that

$$\operatorname{curl} W_t = -\frac{1}{2\pi} \sum_{j \in \mathbb{Z}_0^2} |j| \, e^{\mathbf{i} j \cdot \xi} W_j(t)$$

By (7) we have

$$\psi(t,\xi) = \frac{1}{2\pi} \sum_{j \in \mathbb{Z}_0^2} j^2 u_j(t) e^{ij \cdot \xi}, \quad \Delta \psi(t,\xi) = -\frac{1}{2\pi} \sum_{j \in \mathbb{Z}_0^2} (j^2)^2 u_j(t) e^{ij \cdot \xi}$$

and (see [2])

$$\operatorname{curl}\left[(\nabla^{\perp}\phi\cdot\nabla)\nabla^{\perp}\phi\right] = \sum_{j\in\mathbb{Z}_0^2} j^2 B_j(u).$$

Then (1) reduces to

$$du_{j}(t) + v j^{2} u_{j}(t) dt - B_{j}(u(t)) dt = |j|^{-1} dW_{j}(t).$$
(9)

Here we have used the notation

$$B_{j}(u) = \sum_{\substack{h \neq 0 \\ h \neq j}} \alpha_{h,j} \, u_{j} \, u_{j-h}, \quad \alpha_{h,j} = \frac{1}{2\pi} \Big[j^{-2} (j \cdot h^{\perp}) (j \cdot h) - \frac{1}{2} h^{\perp} \cdot j \Big], \tag{10}$$

and $h^{\perp} = (-h_2, h_1)$, $h = (h_1, h_2)$. Since the function ϕ is real valued one must have $u_k = \bar{u}_{-k}$ and this implies $\bar{B}_k = B_{-k}$ for all k.

It turns out that if p < -1 then the vector field $B = \{B_j\}_{j \in \mathbb{Z}_0^2}$ is L^q -integrable in the norm $|\cdot|_p$ with respect to the Gibbs measure μ for all $q \ge 1$.

One also has (see [7])

$$\sum_{j \in \mathbb{Z}_0^2} j^{2p} \left(\int |B_j(u)|^{2q} \, d\mu \right)^{\frac{1}{2}} < \infty.$$
(11)

Moreover, the measure μ is infinitesimally invariant for *B* (see [1], [7].) Equation (9) can be written in $H^{1-\alpha}$ as

$$du + vQAu\,dt - Bu\,dt = dW_t \tag{12}$$

where

$$Au = \{k^{-(1+\alpha)}u_k\}_{k \in \mathbb{Z}_0^2}, \quad W_t = \{|j|^{-1}W_j(t)\}_{j \in \mathbb{Z}_0^2}, \quad Qv = \{k^{3+\alpha}v_k\}_{k \in \mathbb{Z}_0^2}.$$

We recall (see [1]) that *A* is a Hilbert-Schmidt operator on H^2 and $|Au|_2 = |u|_{1-\alpha}$. Now, we associate with (12) the stochastic variational inequality

$$du + vQAu dt - B(u) dt + R\partial I_K(u) dt \ni dW_t$$
(13)

where $Rv = \{k^{-2\alpha}v_k\}_{k \in \mathbb{Z}_0^2}$, *K* is a smooth closed and convex subset of $H = H^{1-\alpha}$ and $\partial I_K : K \to 2^H$ is the normal cone to *K*. Formally (13) can be written as

$$\begin{aligned} du(t) + vQAu(t)dt - Bu(t)dt &= dW_t & \text{in } \{t \mid u(t) \in \mathring{K}\} \\ du(t) + vQAu(t)dt - Bu(t)dt + \lambda(t)Rn_K(u(t)) &= dW_t & \text{in } \{t \mid u(t) \in \partial K\} \\ u(t) \in K \quad \forall t \ge 0 \end{aligned}$$

where $\lambda(t) \ge 0$ and $n_K(u)$ is the unit exterior normal to ∂K .

Coming back to equation (1) and taking into account (2) the variational inequality (13) can be rewritten in terms of the velocity field X under the form

$$\begin{cases} dX - v\Delta X \, dt + (X \cdot \nabla)X \, dt + N_{\mathscr{K}}(X) \, dt \ni \nabla p \, dt + dW_t \\ \nabla \cdot X = 0, X = 0 \text{ on } \partial \mathcal{O} \end{cases}$$
(14)

where $N_{\mathcal{K}}(X)$ is the normal cone to the closed convex set \mathcal{K} of $\{X \in (L^2(0, 2\pi))^2; \nabla \cdot X = 0, X(0) = X(2\pi)\}$ defined by,

$$\mathscr{K} = \{X : \{\langle \phi, e^{-ij \cdot \xi} \rangle_{L^2(\mathbb{T}^2)}\}_{j \in \mathbb{Z}^2_0} \in K, \ \phi = (-\Delta)^{-1} \operatorname{curl} X\}.$$

This is the reflection problem to the boundary of \mathscr{K} on the oblique normal direction $N_{\mathscr{K}}(x)$. In the special case of *K* given by (4) its meaning is that the stream value ϕ of the fluid is constrained to the set $\|\phi\|_{1-\alpha} \leq \ell$ and when ϕ reaches the boundary ∂K in the dynamic of fluid arises a convective acceleration oriented toward interior of *K* along an oblique direction. Indeed we have by definition of the normal cone $N_{\mathscr{K}}(X)$,

$$N_{\mathscr{K}}(X) = \left\{ \eta \in \left(L^2(0, 2\pi) \right)^2; \int_0^{2\pi} \int_0^{2\pi} \eta(\xi) (X(\xi) - Y(\xi)) d\xi \ge 0 \quad \forall Y \in \mathscr{K} \right\}$$

Recalling that by (2), (7),

$$X = \frac{\mathrm{i}}{2\pi} \sum_{j \in \mathbb{Z}_0^2} j^\perp u_j \, e^{\mathrm{i} \, j \cdot \xi}$$

and setting

$$\eta = \frac{\mathrm{i}}{2\pi} \sum_{j \in \mathbb{Z}_0^2} j^{\perp} \eta_j \, e^{\mathrm{i} j \cdot \xi}, \quad Y = \frac{\mathrm{i}}{2\pi} \sum_{j \in \mathbb{Z}_0^2} j^{\perp} \, v_j \, e^{\mathrm{i} j \cdot \xi}$$

where $\{\eta_j\}_j, \{\nu_j\}_j \in H^{1-\alpha}$, we see that

$$N_{\mathscr{K}}(X) = \left\{\eta; \sum_{j \in \mathbb{Z}_0^2} |j|^2 \eta_j \left(\bar{u}_j - \bar{v}_j\right) \ge 0, \forall \{v_j\}_j \in K\right\}$$

On the other hand, the normal cone $N_K(u)$ to K in $H^{1-\alpha}$ is given by

$$N_{K}(u) = \left\{ \tilde{\eta} = \{ \tilde{\eta}_{j} \}_{j}; \sum_{j \in \mathbb{Z}_{0}^{2}} j^{2(1-\alpha)} \tilde{\eta}_{j} (\bar{u}_{j} - \bar{v}_{j}) \ge 0, \forall \tilde{u} = \{ u_{j} \}_{j} \in K \right\}$$

Hence

$$N_{\mathscr{K}}(X) = \left\{ \eta; \langle \eta, e^{i j \cdot \xi} \rangle_{L^2(\mathbb{T}^2)} = \eta_j = j^{-2\alpha} \tilde{\eta}_j; \{ \tilde{\eta}_j \}_j \in N_K(u) \right\}$$

and taking into account (13) and definition of $\mathcal K$ this yields (14) as claimed.

3 The Kolmogorov equation

Consider the Kolmogorov operator *L* corresponding to (9) which is defined by (6) on the space $\mathscr{F}C_b^2$ of cylindrical C^2 -functions

$$\mathscr{F}C_b^2 = \{ \varphi = \varphi(u_{j_1}, u_{j_2}, \dots, u_{j_n}) : n \ge 1, \ j_1, u_{j_2}, \dots, u_{j_n} \in \mathbb{Z}_0^2, \ \varphi \in C_b^2(\mathbb{C}^n) \}.$$

We recall (see e.g., [1], [2], [3]) that the measure μ is invariant for operator *L*. As noticed earlier the essential *m*-dissipativity of *L* in the space $L^2(\mu)$ is still an open problem. Our aim here is to study the Neumann problem

$$\begin{cases} \lambda \varphi - L \varphi = f & \text{in } \mathring{K} \\ \frac{\partial \varphi}{\partial n} = 0 & \text{on } \partial K =: \Sigma \end{cases}$$
(15)

considered in some generalized sense to be precised below.

Definition 1. The function $\varphi : K \to \mathbb{R}$ is said to be weak solution to (15) if

$$\int_{K} |\varphi|^2 d\mu < \infty, \qquad \sum_{j \in \mathbb{Z}_0^2} j^{-2} \int_{K} |D_j \varphi|^2 d\mu < \infty, \tag{16}$$

and

$$\lambda \int_{K} \varphi \,\psi \,d\mu + \frac{1}{2} \sum_{j \in \mathbb{Z}_{0}^{2}} j^{-2} \int_{K} D_{j} \varphi \,D_{j} \psi \,d\mu$$
$$- \sum_{j \in \mathbb{Z}_{0}^{2}} \int_{K} B_{j}(u) D_{j} \psi(u) \,\varphi(u) \,d\mu(u) = \int_{K} f \,\psi \,d\mu \quad (17)$$

for all real valued $\psi \in \mathscr{F}C_b^2$.

It is readily seen by (11) that (14) makes sense for all $\psi \in \mathscr{F}C_b^2$. Theorem 1 below is the main result.

Theorem 1. Assume that $\alpha > \frac{3}{2}$ and

$$K = \{ u \in H^{1-\alpha} : |u|_{1-\alpha} \le \ell \}$$
(18)

then for each real valued $f \in L^2(K,\mu)$ problem (5) has at least one weak solution $\varphi \in H^{1,2}_{-1}(K,\mu)$ and the following estimates hold

$$\lambda \int_{K} |\varphi|^2 d\mu + \frac{1}{2} \sum_{j \in \mathbb{Z}_0^2} j^{-2} \int_{K} |D_j \varphi|^2 d\mu \le C \int_{K} |f|^2 d\mu$$
(19)

$$\int_{K} |\varphi|^2 d\mu \le \frac{1}{\lambda^2} \int_{K} |f|^2 d\mu.$$
(20)

In (17) as well as in (16),(19) by $D_j\varphi$ we mean of course the distributional derivative D_j of function φ which belongs to $L^2(\mu)$.

Remark 1. If φ is a smooth solution to elliptic problem (15) then it is easily seen via integration by parts that φ is also weak solution in the sense of Definition 1.

4 Proof of Theorem 1

To prove Theorem 1 we consider the approximating equation

$$\lambda \varphi_{\varepsilon} - L \varphi_{\varepsilon} + \sum_{j \in \mathbb{Z}_0^2} j^{-4} \beta_j^{\varepsilon} D_j \varphi_{\varepsilon} = f,$$
(21)

where L is given by (6) and

$$\beta^{\varepsilon}(u) = \frac{1}{\varepsilon}(u - \Pi_{K}u) = \frac{u}{\varepsilon} \left(1 - \frac{\ell}{|u|_{1-\alpha}}\right), \quad u \in H.$$

(Here Π_K is the projection on *K*.) We introduce also the measure

$$d\mu_{\varepsilon}(u) = \prod_{k} e^{-\frac{k^4 d_{K}^{2}(u)}{2\varepsilon}} d\mu_{k}(u)$$

and note that

$$D_j\left(e^{-\frac{j^4d_K^2(u)}{2\varepsilon}}\right) = -j^4\beta_j^{\varepsilon}(u)e^{-\frac{j^4d_K^2(u)}{\varepsilon}}.$$

It should be mentioned that equation (21) in spite of its apparent simplicity is still unsolvable for all $f \in L^2(\mu)$ and the reason is that as mentioned earlier we dont know whether the operator *L* is essentially *m*-dissipative. In order to circumvent this we shall define just a weak solution concept for (21) and prove the existence of such a solution.

Definition 2. The function $\varphi_{\varepsilon} \colon H = H^{1-\alpha} \to \mathbb{R}$ is said to be weak solution to equation (21) if the following conditions hold, $\varphi_{\varepsilon} \in H^{1,2}_{-1}(\mu)$, that is

$$\int \varphi_{\varepsilon}^{2} d\mu_{\varepsilon} < \infty, \quad \sum_{k \in \mathbb{Z}_{0}^{2}} k^{-2} \int |D\varphi_{\varepsilon}|^{2} d\mu_{\varepsilon} < \infty$$
(22)

and

$$\lambda \int \varphi_{\varepsilon} \psi \, d\mu_{\varepsilon} + \sum_{k \in \mathbb{Z}_{0}^{2}} k^{-2} \int_{H} D_{k} \varphi_{\varepsilon} \, D_{k} \psi \, d\mu_{\varepsilon} + \sum_{k \in \mathbb{Z}_{0}^{2}} \int B_{k}(u) D_{k} \psi \, \varphi_{\varepsilon} \, d\mu_{\varepsilon} = \int f \, \psi \, d\mu_{\varepsilon} \quad (23)$$

for all real valued cylindrical functions $\psi \in \mathscr{F}C_b^2$.

We note that Definition 2 is in the spirit of Definition 1 and that if φ_{ε} is a smooth solution to (21) then we see by (21) via integration by parts that φ_{ε} satisfies also (23). We note that

$$\sum_{k\in\mathbb{Z}_{0}^{2}}\int B_{k}(u)D_{k}\varphi_{\varepsilon}\psi\,d\mu_{\varepsilon} = -\sum_{k\in\mathbb{Z}_{0}^{2}}\int B_{k}(u)D_{k}\psi\,\varphi_{\varepsilon}\,d\mu_{\varepsilon} - \sum_{k\in\mathbb{Z}_{0}^{2}}\int\psi\,\varphi_{\varepsilon}[D_{k}B_{k}(u) + k^{4}B_{k}(u)\bar{\beta}_{k}^{\varepsilon}]\,d\mu_{\varepsilon} = -\sum_{k\in\mathbb{Z}_{0}^{2}}\int B_{k}(u)\,\varphi_{\varepsilon}\,D_{k}\psi\,d\mu_{\varepsilon} \quad (24)$$

because by enstrophy invariance we have (see e.g., [1], [2])

$$\sum_{k \in \mathbb{Z}_0^2} k^4 \bar{u}_k B_k(u) \equiv 0, \quad D_k B_k(u) \equiv 0, \quad \forall k \in \mathbb{Z}_0^2,$$
(25)

and

$$\beta_k^{\varepsilon}(u) = \frac{u_k}{\varepsilon} \left(1 - \frac{\ell}{|u|_{1-\alpha}} \right), \quad \forall k \in \mathbb{Z}_0^2.$$
(26)

Proposition 1. For each $f \in L^2(\mu)$, $\lambda > 0$ equation (19) has at least one weak solution φ_{ε} which satisfies the estimates

$$\int |\varphi_{\varepsilon}|^2 d\mu_{\varepsilon} \leq \frac{1}{\lambda^2} \int |f|^2 d\mu_{\varepsilon}, \quad \forall \varepsilon > 0,$$
(27)

$$\sum_{k \in \mathbb{Z}_0^2} k^{-2} \int |D_k \varphi_{\varepsilon}|^2 d\mu_{\varepsilon} \le C \int |f|^2 d\mu_{\varepsilon}, \quad \forall \varepsilon > 0.$$
(28)

Proof. We shall use the Galerkin scheme for equation (21). Namely, we introduce the finite dimensional approximation B_k^n of B_k (see [1])

$$B_k^n(u) = \sum_{k,j-k \in I_n} \left[\frac{1}{j^2} (k^{\perp} \cdot j)(k \cdot j) - \frac{1}{2} k^{\perp} \cdot j) \right] u_k u_{j-k}$$

and $I_n = \{m \in \mathbb{Z}_0^2 : 0 < |m| \le n\}$. Then $B^n = \{B_k^n(u)\}_{k \in I_n}$, like *B*, has the properties (25) and the operator

$$L_n \varphi = \sum_{j \in I_n} \left[\frac{1}{2j^2} D_j^2 \varphi - v \, j^2 u_j \, D_j \varphi \right],$$

defined on the space of smooth functions $\varphi = \varphi(u_1, u_2, \dots, u_n)$ has the invariant measure $\mu^n =$ $\prod_{|j| \le n} \mu_j.$ Then we consider the equation

$$\lambda \varphi_{\varepsilon}^{n} - L_{n} \varphi_{\varepsilon}^{n} + \sum_{k \in I_{n}} B_{k}^{n} D_{k} \varphi_{\varepsilon}^{n} + \sum_{k \in I_{n}} k^{-4} (\beta_{k}^{n})^{\varepsilon} D_{k} \varphi_{\varepsilon}^{n} = f, \text{ in } H_{n}$$

$$(29)$$

where $(\beta_k^n)^{\varepsilon} = \frac{1}{\varepsilon} \left(1 - \frac{\ell}{|u|_{H^n}} \right) u_k$ and $H_n = \{u_j : j \in I_n\}.$

By standard existence theory for Kolmogorov equations associated with stochastic differential equations, the equation (29) has a unique solution $\varphi_{\varepsilon}^{n}$ which is precisely the function

$$\varphi_{\varepsilon}^{n}(u^{0}) = \mathbb{E} \int_{0}^{\infty} e^{-\lambda t} f(X_{\varepsilon}^{n}(t, u^{0})) dt,$$

and $X_{\varepsilon}^{n} = \{u_{j}^{n} : j \in I_{n}\}$ is the solution to stochastic equation (see [3])

$$\begin{aligned} du_j^{\varepsilon} + v \, j^2 \, u_j^{\varepsilon} \, dt - B_j^n(u^{\varepsilon}) \, dt &= \frac{1}{|j|} \, dW_j, \quad j \in I_n, \\ u_j^{\varepsilon}(0) &= u_j^0, \quad j \in I_n. \end{aligned}$$

We may assume therefore that φ_{ε} is smooth and so multiplying (29) by $\varphi_{\varepsilon}^{n}$ and integrating with respect to the measure

$$\mu_{\varepsilon}^{n} = \prod_{k \in I_{n}} e^{-\frac{k^{2} d_{K}^{2}}{\varepsilon}} \mu_{k}$$

we obtain that

$$\lambda \int |\varphi_{\varepsilon}^{n}|^{2} d\mu_{\varepsilon} + \frac{1}{2} \sum_{k \in I_{n}} k^{-2} \int |D_{k}\varphi_{\varepsilon}^{n}|^{2} d\mu_{\varepsilon} + \frac{1}{2} \sum_{k \in I_{n}} \int B_{k}^{n}(u) D_{k} |\varphi_{\varepsilon}^{n}|^{2} d\mu_{\varepsilon} = \int f \varphi_{\varepsilon}^{n} d\mu_{\varepsilon}.$$
 (30)

On the other hand, taking into account that by (25) we have

$$\sum_{k\in I_n} k^4 B_k^n \bar{u}_k \equiv 0, \quad D_k B_k^n \equiv 0, \quad \forall k \in \mathbb{Z}_0^2,$$

and it follows as in (24) that

$$\sum_{k\in I_n}\int B_k^n(u)D_k^n|\varphi_\varepsilon^n|^2\,d\mu_\varepsilon=0$$

and so by (30) we have that

$$\lambda \int |\varphi_{\varepsilon}^{n}|^{2} d\mu_{\varepsilon} + \frac{1}{2} \sum_{k \in I_{n}} k^{-2} \int |D_{k} \varphi_{\varepsilon}^{n}|^{2} d\mu_{\varepsilon} = \int f \varphi_{\varepsilon}^{n} d\mu_{\varepsilon} \leq \left(\int |f|^{2} d\mu_{\varepsilon} \right)^{\frac{1}{2}} \left(\int |\varphi_{\varepsilon}^{n}|^{2} d\mu_{\varepsilon} \right)^{\frac{1}{2}}.$$
 (31)

Hence, on a subsequence, again denoted by $\{n\}$ we have for $n \to \infty$

$$\varphi_{\varepsilon}^{n} \to \varphi_{\varepsilon}$$
 weakly in $L^{2}(\mu_{\varepsilon})$ (32)

$$\{D_k \varphi_{\varepsilon}^n\} \to \{D_k \varphi_{\varepsilon}\}$$
 weakly in $L^2(\mu_{\varepsilon})$ (33)

and letting n tend to infinity into the weak form of (29), that is

$$\lambda \int \varphi_{\varepsilon}^{n} \psi \, d\mu_{\varepsilon} + \frac{1}{2} \sum_{k \in I_{n}} k^{-2} \int D_{k} \varphi_{\varepsilon}^{n} D_{k} \psi \, d\mu_{\varepsilon} - \sum_{k \in I_{n}} \int B_{k}^{n}(u) D_{k} \psi \, \varphi_{\varepsilon}^{n} \, d\mu_{\varepsilon} = \int f \, \psi \, d\mu_{\varepsilon} \quad (34)$$

and recalling that $\{B_k^n\}$ is strongly convergent to $\{B_k\}$ in $L^2(\mu)$ (see Lemma 1.3.2 in [7]) we infer that φ_{ε} is solution to (21) as claimed. Estimates (27), (28) follows by (31), (32), (33). This complete the proof of Proposition 1.

Proof of Theorem 1 (continued). Let φ_{ε} be a solution to (19). By estimates (27), (28) we have for $\varepsilon \to 0$

$$\varphi_{\varepsilon} \to \varphi$$
 weakly in $L^{2}(K, \mu)$,
 $\{D_{k}\varphi_{\varepsilon}\} \to \{D_{k}\varphi\}$ weakly in $L^{2}(K, \mu; H^{2})$

Then, letting ε tend to zero into (23) we see that φ satisfies (17) for all $\psi \in \mathscr{F}C_b^2$. Estimates (19), (20) follow by (27), (28). This completes the proof. \Box

Remark 2. Letting ε tend to zero into (29) it follows via integration by parts formula by a similar argument as in [5] that $\varphi_{\varepsilon}^{n} \to \varphi^{n}$, $D_{j}\varphi_{\varepsilon}^{n} \to D_{j}\varphi^{n}$ in $L^{2}(H_{n},\mu)$ where φ^{n} is the solution to Neumann boundary value problem

$$\begin{cases} \lambda \varphi^n - v \Delta \varphi^n + B^n(u_n) \cdot D \varphi^n = f & \text{in } \mathring{K}_n \\ \frac{\partial \varphi^n}{\partial n_{K_n}} = 0 & \text{on } \partial K_n. \end{cases}$$

where $K_n = K \cup H_n$. Moreover, by elliptic regularity, $\varphi^n \in H^2(\mathring{K}_n)$. On the other hand, it is clear by the above energetic estimates in $H^{1-\alpha}$ that for $n \to \infty \{\varphi^n\}$ is convergent to a weak solution φ to (15). However, this solution is not necessarily that given by approximating process φ_{ε} .

References

- [1] S. Albeverio, A.B. Cruzeiro, Global flows with invariant (Gibbs) measure for Euler and Navier-Stokes two dimensional fluids, Comm. Math. Phys. 129 (1990), 431-444. MR1051499
- [2] S. Albeverio, M. Ribeiro De Faria, R. Høegh-Krohn, Stationary measures for the periodic Euler flows in two dimensions, J. Stat. Phys. 20 (1979), 584-595. MR0537263
- [3] S. Albeverio, B. Ferrario, Uniqueness results for the generators of the two dimensional Euler and Navier-Stokes flows, J. Funct. Anal. 193 (2002), 73-93. MR1923629
- [4] S. Albeverio, V. Barbu, B. Ferrario, Uniqueness of the generators of the 2-D Euler and Navier-Stokes flows, Stoch. Processes and their Appl. 118 (2008), 2071-2084. MR2462289
- [5] V. Barbu, G. Da Prato and L. Tubaro, Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space, Ann. Probab, 37, n.4, 1427-1458, 2009. MR2546750
- [6] V. Barbu, G. Da Prato and L. Tubaro, *Kolmogorov equation associated to the stochastic reSSection problem on a smooth convex set of a Hilbert space II*, Ann. Inst. Poincaré (to appear).
- [7] F. Cipriano, The two dimensional Euler equations: a statistical study, Comm. Math. Phys. 201 (1999), 139-154. MR1669421
- [8] G. Da Prato, A. Debussche, Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal. 196 (2002), 180-210. MR1941997
- [9] F. Flandoli, F. Gozzi, Kolmogorov equation associated to a stochastic Navier-Stokes equation, J. Funct. Anal. 160 (1998), 312-336. MR1658680
- [10] D. Nualart, E. Pardoux, White noise driven quasilinear SPDE's with reflection, Prob. Th. and Related Fields 93, 77-89, 1992. MR1172940
- [11] W. Stannat, A new apriori estimates for the Kolmogorov operator of a 2-D stochastic Navier-Stokes equation, Infinite Dimensional Anal. Quantum Probab. Related Topics, 10 4 (2007), 483-497. MR2376438

Acknowledgement. This work was done during the visit of V. Barbu and G. Da Prato to the Mathematics Department of University of Trento.