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Abstract

We consider multitype branching processes arising in the study of random laminations of the disk.
We classify these processes according to their subcritical or supercritical behavior and provide
Kolmogorov-type estimates in the critical case corresponding to the random recursive lamina-
tion process of [1]. The proofs use the infinite dimensional Perron-Frobenius theory and quasi-
stationary distributions.

1 Introduction

In this note we are interested in multitype branching processes that arise in the study of random
recursive laminations. In order to introduce and motivate our results, let us briefly recall the
basic construction of [1]. Consider a sequence U1, V1, U2, V2, . . . of independent random variables,
which are uniformly distributed over the unit circle S1. We then construct inductively a sequence
L1, L2, . . . of random closed subsets of the closed unit disk D. To start with, L1 is set to be the
(Euclidean) chord [U1V1] with endpoints U1 and V1. Then at step n+ 1, we consider two cases.
Either the chord [Un+1Vn+1] intersects Ln, and we put Ln+1 = Ln. Or the chord [Un+1Vn+1] does
not intersect Ln, and we put Ln+1 = Ln∪[Un+1Vn+1]. Thus, for every integer n¾ 1, Ln is a disjoint
union of random chords. See Fig. 1.
A fragment of Ln is a connected component of D\Ln. These fragments have a natural genealogy
that we now describe. The first fragment,D, is represented by∅. Then the first chord [U1V1] splits
D into two fragments, which are viewed as the offspring of ∅. We then order these fragments in
a random way: With probability 1/2, the first child of ∅, which is represented by 0, corresponds
to the largest fragment and the second child, which is represented by 1, corresponds to the other
fragment. With probability 1/2 we do the contrary. We then iterate this device (see Fig. 2) so that
each fragment appearing during the splitting process is labeled by an element of the infinite binary
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Figure 1: An illustration of the process creating the sequence (Ln)n¾1. We use hyperbolic chords
rather than Euclidean chords for aesthetic reasons.

tree
T2 =

⋃

n¾0

{0, 1}n , where {0,1}0 = {∅}.

If F is a fragment, we call end of F , any connected component of F ∩ S1. For convenience, the full
disk D is viewed as a fragment with 0 end. Consequently, we can associate to any u ∈ T2 a label
`(u) that corresponds to the number of ends of the corresponding fragment in the above process.
Lemma 5.5 of [1] then entails that this random labeling of T2 is described by the following
branching mechanism: For any u ∈ T2 labeled m ¾ 0, choose m1 ∈ {0,1, . . . , m} uniformly at
random and assign the values 1+m1 and 1+m−m1 to the two children of u. This is the multitype
branching process we will be interested in. See Fig. 2.
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Figure 2: On the left-hand side, the first 7 chords of the splitting process. On the right-hand side,
the associated branching process corresponding to the number of ends of the fragments at their
creations. Notice that we split the fragments according to the order of appearance of the chords,
thus the binary tree on the right-hand side seems stretched.

We can also define a random labeling by using the above branching mechanism but starting with
a value a ¾ 0 at the root ∅ of T2, the probability distribution of this process will be denoted Pa
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and its relative expectation Ea. A ray is an infinite geodesic path u= (u1, u2, . . .) ∈ {0,1}N starting
from the root ∅ in T2. For any ray u= (u1, . . . , un, . . .) or any word of finite length u= (u1, . . . , un),
we denote by [u]i or [u]i the word (u1, . . . , ui) for 1¶ i ¶ n, and [u]0 =∅.

Theorem ([1, Lemma 5.5]). Almost surely, there exists no ray u along which all the labels starting
from 4 are bigger than or equal to 4,

P4
�

∃u ∈ {0,1}N : `([u]i)¾ 4,∀i ¾ 0
�

= 0.

The starting label 4 does not play any special role and can be replaced by any value bigger than
4. This theorem was proved and used in [1] to study certain properties of the random closed
subset L∞ = ∪Ln, and in particular to prove that it is almost surely a maximal lamination (roughly
speaking that the complement of L∞ is made of disjoint triangles), see [1, Proposition 5.4]. One of
the purposes of this note is to provide quantitative estimates related to this theorem. Specifically
let

Gn =
�

u ∈ {0,1}n : `([u]i)¾ 4,∀i ∈ {0, 1, . . . , n}
	

be the set of paths in T2 joining the root to the level n along which the labels are bigger than or
equal to 4.

Theorem 1.1. The expected number of paths starting from the root and reaching level n along which
the labels starting from 4 are bigger than or equal to 4 satisfies

E4
�

#Gn
�

−→
n→∞

4

e2 − 1
. (1)

Furthermore, there exist two constants 0 < c1 < c2 < ∞ such that the probability that Gn 6= ∅
satisfies

c1

n
¶ P4

�

Gn 6=∅
�

¶
c2

n
. (2)

Remark 1.2. These estimates are reminiscent of the critical case for Galton-Watson processes with
finite variance σ2 <∞. Indeed if Hn denotes the number of vertices at height n in such a process then
E
�

Hn
�

= 1 and Kolmogorov’s estimate [2] implies that P
�

Hn 6= 0
�

∼ 2
σ2n

.

The proof of Theorem 1.1 relies on identifying the quasi-stationary distribution of the labels along
a fixed ray conditioned to stay bigger than or equal to 4. This is done in Section 2. In Section 3,
we also study analogues of this branching random walk on the k-ary tree, for k ¾ 3, coming from
a natural generalization of the process (Ln)n¾0 where we replace chords by triangles, squares...
see Fig. 3.
We prove in these cases that there is no critical value playing the role of 4 in the binary case.

Acknowledgments. The first author thanks Microsoft Research and the University of Washington,
where most of this work was done, for their hospitality. We are also grateful to Jean-François Le
Gall for precious comments and suggestions on a first version of this note.

2 The critical case

2.1 A martingale

Fix an arbitrary ray u0 inT2, for example u0 = (0, 0,0, 0,0, . . .) and define Xn = `([u0]n) for n¾ 0,
so that Xn is the value at the n-th vertex on the fixed ray u0 of the T2-indexed walk ` starting from
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Figure 3: Extension of the process (Ln)n¾1 where we throw down triangles or squares instead of
chords.

x0 ¾ 4 at the root. Then (Xn)n¾0 is a homogeneous Markov chain with transition probabilities
given by

P2(x , y) =
1

x + 1
11¶y¶x+1.

We first recall some results derived in [1]. If Fn is the canonical filtration of (Xn)n¾0 then a
straightforward calculation leads to Ex0

[Xn+1 | Fn] = 1+Xn/2, hence the process Mn = 2n(Xn−2)
is a martingale starting from x0−2. For i ¾ 1, we let Ti be the stopping time Ti = inf{n¾ 0 : Xn =
i}, and T = T1 ∧ T2 ∧ T3. By the stopping theorem applied to the martingale (Mn)n¾0, we obtain
for every n¾ 0,

x0 − 2= Ex0
[Mn∧T ] = Ex0

[−2T11{T1=T¶n}] + 0 + Ex0
[2T31{T3=T¶n}] + Ex0

[2n(Xn − 2)1{T>n}].

One can easily check from the transition kernel of the Markov chain (Xn)n¾0 that for every i ¾ 1,
Px0
[T1 = T = i] = Px0

[T2 = T = i] = Px0
[T3 = T = i] . Hence, the equality in the last display

becomes

x0 − 2= Ex0
[2n(Xn − 2)1{T>n}],

or equivalently

x0 − 2 = 2nPx0
[T > n] Ex0

[Xn − 2 | T > n]. (3)

Our strategy here is to compute the stationary distribution of Xn conditionally on the non-extinction
event {T > n}, in order to prove the convergence of E4[Xn | T > n] and finally to get asymp-
totics for P4[T > n]. Before any calculation, we make a couple of simple remarks. Obviously
Ex0
[Xn − 2 | T > n] ¾ 2, and thus we get 2n Px0

(T > n) ¶ x0−2
2

. Since there are exactly 2n paths
joining the root ∅ of T2 to the level n, we deduce that the number #Gn of paths joining ∅ to the
level n along which the labels are bigger than or equal to 4 satisfies

Ex0
[#Gn] ¶

x0 − 2

2
. (4)

Notice that a simple argument shows that if 4 ¶ x0 ¶ x1 then the chain Xn starting from x0 and
the chain X ′n starting from x1 can be coupled in such a way that Xn ¶ X ′n for all n¾ 0.
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2.2 The quasi-stationary distribution

We consider the substochastic matrix of the Markov chain Xn killed when it reaches 1,2 or 3: This
is the matrix (P̃2(x , y))x ,y¾4 given by

P̃2(x , y) =
1

x + 1
1y¶x+1.

We will show that P̃2 is a 2-positive matrix, in the sense of [3, Lemma 1]. For that purpose we seek
left and right non-negative eigenvectors of P̃2 for the eigenvalue 1/2. In other words we look for
two sequences (g(x))x¾4 and ( f (x))x¾4 of non-negative real numbers such that f (4) = g(4) = 1
(normalization) and for every x ¾ 4

g(x) = 2
∑

y¾4

g(y)P̃2(y, x) = 2
∞
∑

y=(x−1)∨4

g(y)
y + 1

, (5)

f (x) = 2
∑

y¾4

P̃2(x , y) f (y) =
2

x + 1

x+1
∑

y=4

f (y). (6)

We start with the left eigenvector g. From (5), we get g(5) = g(4) = 1, and g(i)− g(i + 1) =
2
i
g(i− 1) for i ¾ 5. Letting

G(z) =
∑

i¾4

z i+1

i+ 1
g(i), 0¶ z < 1,

the last observations lead to the following differential equation for G

2G(z) = z−1(z− 1)G′(z) + z3,

with the condition G(z) = z5/5+o(z5). A simple computation yields G(z) = 3/4exp(2z)(z−1)2+
(z3/2+3z2/4−3/4). After normalization, the generating function G1/2(z) =

∑

i¾4 g1/2(i)z i of the
unique probability distribution g1/2 which is a left eigenvector for the eigenvalue 1/2 is given by

G1/2(z) =
z

2

�

exp(2z)(z− 1) + z+ 1
�

,

that is

g1/2(i) =
2i−3(i− 3)
(i− 1)!

1i¾4.

This left eigenvector is called the quasi-stationary distribution of Xn conditioned on non-extinction.
For the right eigenvector f , a similar approach using generating functions is possible, but it is also
easy to check by induction that

f (i) =
i− 2

2
1i¾4,

satisfies (6). Hence the condition (iii) of Lemma 1 in [3] is fulfilled (in particular
∑

f (x)g(x) <
∞) and the substochastic matrix P̃2 is 2-positive. For every x ¾ 4, set qn(x) = P4(Xn = x | T >
n) = P4(T > n)−1 P̃n

2 v (x) where v stands for the “vector” (vi)i¾4 with v4 = 1 and vi = 0 if i ¾ 5.
Theorem 3.1 of [3] then implies that

qn(x) −→
n→∞

g1/2(x). (7)

Unfortunately this convergence does not immediately imply that E4[Xn | T > n] −→ E [X ] where
X is distributed according to g1/2. But this will follow from the next proposition.
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Proposition 2.1. For every n¾ 0 the sequence

�

qn(x)
g1/2(x)

�

x¾4

is decreasing.

Proof. By induction on n ¾ 0. For n = 0 the statement is true. Suppose it holds for n ¾ 0. By the
definition of qn+1, for x ¾ 4 we have

qn+1(x) = P4(Xn+1 = x | T > n+ 1)

=
1

P4(T > n+ 1)

∑

z¾4

P4(Xn = z , Xn+1 = x , T > n)

=
P4(T > n)

P4(T > n+ 1)

∑

z¾(x−1)∨4

qn(z)
z+ 1

(8)

We need to verify that, for every x ¾ 4, we have qn+1(x)g1/2(x + 1) ¾ qn+1(x + 1)g1/2(x) or
equivalently, using (8) and (5) with g = g1/2, that

 

∑

z¾x∨4

g1/2(z)

z+ 1

!



∑

z¾(x−1)∨4

qn(z)
z+ 1



 ¾





∑

z¾(x−1)∨4

g1/2(z)

z+ 1





 

∑

z¾x∨4

qn(z)
z+ 1

!

For x = 4 this inequality holds. Otherwise, if x > 4, we have to prove that

qn(x − 1)
∑

z¾x∨4

g1/2(z)

z+ 1
¾ g1/2(x − 1)

∑

z¾x∨4

qn(z)
z+ 1

. (9)

Set Ax =
qn(x−1)

g1/2(x−1)
to simplify notation. The induction hypothesis guarantees that qn(z)¶ Ax g1/2(z)

for every z ¾ x , and therefore

∑

z¾x∨4

qn(z)
z+ 1

¶ Ax

∑

z¾x∨4

g1/2(z)

z+ 1
.

This gives the bound (9) and completes the proof of the proposition.

By Proposition 2.1 we have for every x ¾ 1, qn(x)
g1/2(x)
¶ qn(4)

g1/2(4)
¶ C , where C = supn¾0

qn(4)
g1/2(4)

<∞ by

(7). This allows us to apply dominated convergence to get

E4[Xn|T > n] =
∑

x¾4

xqn(x)−−→n→∞

∑

x¾4

x g1/2(x) = G′1/2(1) =
e2 + 3

2
.

Using (3) we then conclude that

2nP4[T > n] −−→
n→∞

4

e2 − 1
. (10)

2.3 Proof of Theorem 1.1

We first introduce some notation. We denote the tree T2 truncated at level n by T(n)2 . For every
u = (u1, . . . , un) ∈ {0,1}n, and every j ∈ {0, 1, . . . , n}, recall that [u] j = (u1, . . . , u j), and if j ¾ 1,
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also set [u]∗j = (u1, . . . , u j−1, 1−u j). We say that j ∈ {0, 1, . . . , n−1} is a left turn (resp. right turn)
of u if u j+1 = 0 (resp. u j+1 = 1). A down step of u is a time j ∈ {0,1, . . . , n− 1} such that

`([u] j)− `([u] j+1)¾ 2.

Note that if j is a down step of u then `([u]∗j+1) = 2 + `([u] j) − `([u] j+1) ¾ 4. The set of all
j ∈ {0, 1, . . . , n − 1} that are left turns, resp. right turns, resp. down steps, of u is denoted by
L(u), resp. R(u), resp D(u). We endow T2 with the lexicographical order � , and say that a path
u ∈ {0,1}n is on the left (resp. right) of v ∈ {0,1}n if u � v (resp. v � u). A vertex of {0,1}n will
be identified with the path it defines in T(n)2 . If u, v ∈T2 we let u∧ v be the last common ancestor
of u and v.

Proof of Theorem 1.1. LOWER BOUND. We use a second moment method. Recall that

Gn =
�

u ∈ {0,1}n : `([u]i)¾ 4,∀i ∈ {0,1, . . . , n}
	

is the set of all paths in T(n)2 from the root to the level n along which the labels are bigger than
or equal to 4. A path in Gn is called "good". Using (10), we can compute the expected number of
good paths and get

E4[#Gn] = 2nP4[T > n] −→
n→∞

4

e2 − 1
,

as n→∞, which proves the convergence (1) in the theorem. For u ∈ Gn and j ∈ {0, 1, . . . , n}, we
let Right(u, j) be the set of all good paths to the right of u that diverge from u at level j,

Right(u, j) = {v ∈ Gn : u� v and u∧ v = [u] j}.

In particular, if j is a right turn for u, that is u j+1 = 1, then Right(u, j) = ∅. Furthermore
Right(u, n) = {u}. Let us fix a path u ∈ {0,1}n, and condition on u ∈ Gn and on the labels
along u. Let j ∈ {0,1, 2, . . . , n}. Note that the first vertex of a path in Right(u, j) that is not an
ancestor of u is [u]∗j+1 and its label is 2+ `([u] j)− `([u] j+1), so if we want Right(u, j) to be non-
empty, the time j must be a down step of u. If j is a left turn and a down step for u, the subtree
{w ∈ T(n)2 : w ∧ [u]∗j = [u]

∗
j} on the right of [u] j is a copy of T(n− j−1)

2 , whose labeling starts at
`([u]∗j+1). Hence thanks to (4) we get

E4[# Right(u, j) | u ∈ Gn , (`([u]i))0¶i¶n] ¶
`([u]∗j+1)− 2

2
=
`([u] j)− `([u] j+1)

2
.

Since the labels along the ancestral line of u cannot increase by more that one at each step, if
u ∈ Gn we have

∑n−1
i=0 | `([u]i+1)− `([u]i) | 1i∈D(u) ¶ n. Combining these inequalities, we obtain

E4





n
∑

j=0

# Right(u, j)
�

�

� u ∈ Gn , (`([u]i))0¶i¶n



 ¶
n

2
.
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We can now bound E4[#G2
n] from above:

E4[#G2
n] ¶ 2E4





∑

u∈{0,1}n

∑

u�v

1u∈Gn
1v∈Gn





= 2
∑

u∈{0,1}n
P4(u ∈ Gn)E4





∑

u�v

1v∈Gn

�

�

� u ∈ Gn





= 2
∑

u∈{0,1}n
P4(u ∈ Gn)E4





n
∑

j=0

#Right(u, j)
�

�

� u ∈ Gn





¶ n, (11)

where we used E4[#Gn]¶ 1 from (4). The lower bound of Theorem 1.1 directly follows from the
second moment method : Using (1) and (11) we get the existence of c1 > 0 such that

P4(#Gn > 0)¾
E4[#Gn]2

E4[(#Gn)2]
¾

c1

n
. (12)

UPPER BOUND. We will first provide estimates on the number of down steps of a fixed path u ∈
{0, 1}n. Recall that L(u), R(u) and D(u) respectively denote the left turns, right turns, and down
steps times of u.

Lemma 2.2. There exists a constant c3 > 0 such that, for every n¾ 0 and every u0 ∈ {0, 1}n

P4(u0 ∈ Gn , #D(u0)¶ c3n)¶ c−1
3 2−n exp(−c3n).

Proof. We use the notation of Section 2.1. For any set A⊂ {0,1, . . . , n− 1} and m ∈ {0, 1, . . . , n−
#A}, with the notation NA

n = #{ j ∈ {0,1, . . . , n− 1}\A : X j = 5} we have from [1, formula (27)]

P4

�

X j+1 ¾ (X j − 1)∨ 4 , ∀ j ∈ {0, 1, . . . , n− 1}\A , NA
n = m

�

¶
�1

2

�m�3

7

�n−m−#A
,

We will first obtain crude estimates for NA
n . Note that NA

n ¶ N∅n and that supi¾1 P2(i, 5) = 1
5
, so

that for any B ⊂ {0,1, . . . , n} we have

P4(X i = 5 , ∀i ∈ B)¶ 5−#B.

By summing this bound over all choices of B with #B ¾ m we get P4(N∅n ¾ m) ¶ 2n5−m for every
m ∈ {0, 1, . . . n}. Let κ1 ∈ (0, 1/2) and κ2 ∈ (0,1) such that κ1 +κ2 < 1. We have

P4(u0 ∈ Gn , # D(u0)¶ κ1n)
¶ P4(u0 ∈ Gn , # D(u0)¶ κ1n , N∅n ¶ κ2n) + P4(N

∅
n ¾ κ2n)

¶
∑

A⊂{0,1,...,n−1}
#A¶κ1n

P4

�

X j+1 ¾ (X j − 1)∨ 4, ∀ j ∈ {0, 1, . . . , n− 1}\A ; NA
n ¶ κ2n

�

+ P4(N
∅
n ¾ κ2n)

¶ (bκ2nc+ 1)
∑

A⊂{0,1,...,n−1}
#A¶κ1n

�

7

6

�bκ2nc�3

7

�n−bκ1nc

+ P4(N
∅
n ¾ κ2n)
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Bounding (bκ2nc+ 1) by n and the size of a subset A in the sum by κ1n, using the above remark
we get that the last display is less than

¶ n2
�

n

bκ1nc

��

7

6

�bκ2nc�3

7

�n−bκ1nc

+ 2n5−bκ2nc. (13)

Notice that for every C > 1 we can choose κ1 > 0 small enough so that n
� n
bκ1nc

�

¶ Cn for n large
enough. Furthermore

�

7

6

�bκ2nc�3

7

�n−bκ1nc

= 2−n2bκ1nc
�

6

7

�n−bκ1nc−bκ2nc

,

and by choosing κ1 even smaller if necessary we can ensure that the right hand side of (13) is
bounded by c−1

3 2−n exp(−c3n) for some c3 > 0.

We use the last lemma to deduce that

nP4
�

∃u ∈ Gn , #D(u)¶ c3n
�

¶
n

c3
exp(−c3n) −→

n→∞
0. (14)

We now argue on the event EL = {∃u ∈ Gn , #(D(u)∩ L(u)) ¾ c3n/2}. On this event there exists a
path u ∈ Gn with at least c3n/2 down steps which are also left turns. Conditionally on this event
we consider the left-most path P of Gn satisfying these properties, that is

P =min
�

�

u ∈ Gn , #(D(u)∩ L(u))¾ c3n/2
	

.

A moment’s thought shows that conditionally on P and on the values of the labels along the
ancestral line of P, the subtrees of T(n)2 hanging on the right-hand side of P, that are the offspring
of the points [P]∗j+1 for j ∈ L(P), are independent and distributed as labeled trees started at
`([P]∗j+1).
Hence conditionally on P and on the labels ((`([P]i), 0 ¶ i ¶ n), for any j ∈ L(P) ∩ D(P) the
expected number of paths belonging to the set Right(P, j) (defined in the proof of the lower bound)
is

E4

�

#Right(P, j)
�

�

� P , (`([P]i))0¶i¶n

�

= 2n− j−1P`([P]∗j+1)
�

T > n− j− 1
�

¾ 2n− j−1P4(T > n− j− 1)
¾ κ3 > 0, (15)

where κ3 is a positive constant independent of n whose existence follows from (10). Thus we have

E4[#Gn | EL] = E4



E





n
∑

j=0

#Right(P, j)
�

�

� P , (`([P]i))0¶i¶n





�

�

� EL





¾ κ3E4[#(D(P)∩ L(P)) | EL].

¾
c3κ3

2
n. (16)

Since P4(EL) ¶ E4[#Gn]/E4[#Gn | EL] we can use (1) to obtain P4(EL) ¶ κ4/n for some constant
κ4 > 0. By a symmetry argument, the same bound holds for the event ER = {∃u ∈ Gn , #(D(u)∩
R(u)) ¾ c3n/2}. Since {Gn 6= ∅} is the union of the events ER, EL and {∃u ∈ Gn , # D(u) ¶ c3n},
we easily deduce the upper bound of the theorem from the previous considerations and (14).
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3 Extensions

Fix k ¾ 2. We can extend the recursive construction presented in the introduction by throw-
ing down polygons instead of chords: This will yield an analogue of the multitype branching
process on the full k-ary tree. Formally if x1, . . . , xk are k (distinct) points of S1 we denote by
Pol(x1, . . . , xk) the convex closure of {x1, . . . , xk} in D. Let (Ui, j : 1 ¶ j ¶ k , i ¾ 1) be indepen-
dent random variables that are uniformly distributed over S1. We construct inductively a sequence
Lk

1, Lk
2, . . . of random closed subsets of the closed unit diskD. To start with, Lk

1 is Pol(U1,1, . . . , U1,k).
Then at step n + 1, we consider two cases. Either the polygon Pn+1 := Pol(Un+1,1, . . . , Un+1,k)
intersects Lk

n, and we put Lk
n+1 = Lk

n. Or the polygon Pn+1 does not intersect Lk
n, and we put

Lk
n+1 = Lk

n ∪ Pk. Thus, for every integer n ¾ 1, Lk
n is a disjoint union of random k-gons. In a way

very similar to what we did in the introduction we can identify the genealogy of the fragments
appearing during this process with the complete k-ary tree

Tk =
⋃

i¾0

{0,1, . . . , k− 1}i , where {0, 1, . . . , k− 1}0 = {∅}.

Then the number of ends of the fragments created during this process gives a labeling `k of Tk
whose distribution can be described inductively by the following branching mechanism (this is
an easy extension of [1, Lemma 5.5]): For u ∈ Tk with label m ¾ 0 we choose a decomposition
m = m1 + m2 + . . . + mk with m1, m2, . . . , mk ∈ {0, 1, . . . , m}, uniformly at random among all
�m+k−1

k−1

�

possible choices, and we assign the labels m1+1, m2+1, . . . , mk+1 to the children of ∅.
Again the distribution of the labeling `k of Tk obtained if we use the above branching mechanism
but started from a ¾ 0 at the root will be denoted by Pa and its expectation by Ea. We use the
same notation as in the binary case and are interested in a similar question: For which a ¾ 0 does
there exist with positive probability a ray u such that `k([u]i)¾ a for every i ¾ 0? Specifically, the
value a is called subcritical for the process (`k(u), u ∈ Tk) when there exists a constant c > 0 such
that

Pa(∃u ∈ {0, 1, . . . , k− 1}n : `k([u]i)¾ a , ∀i ∈ {0,1, . . . , n}) ¶ exp(−cn).

It is called supercritical when there exists a constant c > 0 such that we have both

¨

Pa

�

∃u ∈ {0, 1, . . . , k− 1}N : `k([u]i)¾ a , ∀i ∈ {0, 1, . . .}
�

¾ c,
Ea[#

¦

u ∈ {0, 1, . . . , k− 1}n : `k([u]i)¾ a , ∀i ∈ {0,1, . . . , n}
©

] ¾ exp(cn).

Note that a deterministic argument shows that if k ¾ 2 and a = 2, there always exists a ray with
labels greater than or equal to 2, also when k = 2 and a = 3 there exists a ray with labels greater
than 3. The case k = 2 and a = 4 has been treated in our main theorem. We have the following
classification of all remaining cases:

Theorem 3.1. We have the following properties for the process `k,

• for k = 2 and a ¾ 5 the process is subcritical,

• for k = 3 the process is subcritical for a ¾ 4, and supercritical for a = 3,

• for k ¾ 4 and a ¾ 3 the process is subcritical.
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Proof. SUPERCRITICAL CASE k = 3 AND a = 3. We will prove that for k = 3 and a = 3, the process
is supercritical. Similarly as in Section 2.1 we consider the tree-indexed process `3 on a fixed ray
of T3, say {0,0, 0, . . .}. Then the process Yn given by the n-th value of `3 started from 3 along this
ray is a homogeneous Markov chain with transition matrix given by

P3(x , y) =
2(x + 2− y)
(x + 1)(x + 2)

11¶y¶x+1.

We introduce the stopping times Ti = inf{n ¾ 0, Yn = i} for i = 1, 2 and set T = T1 ∧ T2. We
consider a modification of the process Yn that we denote Y n, which has the same transition prob-
abilities as Yn on {1, 2,3, 4} , but the transition between 4 and 5 for Yn is replaced by a transition
from 4 to 4 for Y n. Thus we have Y n ¶ 4 and an easy coupling argument shows that we can
construct Yn and Y n simultaneously in such a way that Y n ¶ Yn for all n ¾ 0. Hence we have the
following stochastic inequality

T ¶ T,

with an obvious notation for T . To evaluate T we consider the subprocess Y n∧T which is again a
Markov chain whose transition matrix restricted to {3, 4} is

�

1/5 1/10
1/5 1/5

�

.

The largest eigenvalue λmax of this matrix is greater than 0.34, which implies that

P3(T > n)¾ P3(T > n)¾ κ5(0.34)n,

for some constant κ5 > 0 independent of n. It follows that the expected number of paths starting
at the root ∅ of T3 that have labels greater than or equal to 3 up to level n, which is 3nP3(T > n),
eventually becomes strictly greater that 1: There exists n0 ¾ 1 such that P3(T > n) > 3−n for
n ¾ n0. A simple coupling argument shows that the process `3 started from a ¾ 3 stochastically
dominates the process `3 started from 3. Consequently, if we restrict our attention to the levels
that are multiples of n0 and declare that v is a descendant of u if along the geodesic between u and
v the labels of `3 are larger than 3, then this restriction stochastically dominates a supercritical
Galton-Watson process. Hence the value 3 is supercritical for `3.
SUBCRITICAL CASE k = 3 AND a = 4. As in the binary case we let

P̃3(x , y) =
2(x + 2− y)
(x + 1)(x + 2)

14¶y¶x+1,

be the substochastic matrix of the process Yn started at 4 and killed when it hits 1,2 or 3. We will
construct a positive vector (h(x))x¾4 such that

∑

x h(x)<∞ and

h · P̃3 ¶ λh, (17)

for some positive λ < 1/3, where we use the notation h · P̃3(y) =
∑

x h(x)P̃3(x , y). This will imply
that

P4(T > n) ¶

∑

x h(x)
h(4)

λn,

where T is the first hitting time of {1, 2,3} by the process Yn started at 4. The subcriticality
of the case k = 3 and a = 4 follows from the preceding bound since there are 3n paths up to
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level n and λ < 1/3. To show the existence of a positive vector h satisfying (17) we begin by
studying the largest eigenvalue of a finite approximation of the infinite matrix P̃3. To be precise
let P̃(30)

3 = (P̃3(i, j))4¶i, j¶30. A numerical computation with Maple c© gives

λmax :=max
n

Eigenvalues(P̃(30)
3 )

o

' 0.248376642883065< 1/3.

The vector (h(x))x¾4 is then constructed as follows. Let (h(x))4¶x¶30 be an eigenvector associated
with the largest eigenvalue λmax of P̃(30)

3 , such that min4¶x¶30 h(x) = h(30) = 1. Note that the
vector h can be chosen to have positive coordinates by the Perron-Frobenius theorem and it is easy
to verify that x → h(x) is decreasing. For x ¾ 31 we then let

h(x) = 13x−30
�

30!

x!

�2

.

We now verify that this vector satisfies (17) with λ slightly greater than λmax. Suppose first that
y ∈ {4, . . . , 30}. In this case

∑

4¶x¶30 h(x)P̃3(x , y) equals λmaxh(y) by definition, whereas the
contribution of

∑

x¾31 h(x)P̃3(x , y) is less than
∑

x¾31 h(x)< 0.014, thus

h · P̃3(y) ¶ 0.263h(y). (18)

Now, if y ¾ 31 we have
∑

x¾y−1

h(x)P̃3(x , y)

¶ 13y−30



13−1 P̃3(y − 1, y)
�

30!

(y − 1)!

�2

+ P̃3(y, y)
�

30!

y!

�2

+
∑

x¾y+1

13x−y
�

30!

x!

�2




¶ 13y−30
�

30!

y!

�2
 

2

13

y2

y(y + 1)
+

4

(y + 1)(y + 2)
+
∑

i¾1

13i
�

y!

(y + i)!

�2
!

¶ 0.3 · h(y)

which proves (17).
OTHER CRITICAL CASES. The other critical cases are treated in the same way. We only provide
the reader with the numerical values of the maximal eigenvalues of the truncated substochastic
matrices that are very good approximations of the maximal eigenvalues of the infinite matrices,

max{eigenvalues(P2(i, j))5¶i, j¶30} ' 0.433040861268365< 1/2,

max{eigenvalues(P4(i, j))3¶i, j¶30} ' 0.231280689028977< 1/4.
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