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Abstract

A particular subclass of compound Poisson population models is analyzed. The models in the
domain of attraction of the Kingman coalescent are characterized and it is shown that these models
are never in the domain of attraction of any other continuous-time coalescent process. Results
are obtained characterizing which of these models are in the domain of attraction of a discrete-
time coalescent with simultaneous multiple mergers of ancestral lineages. The results extend
those obtained by Huillet and the author in ‘Population genetics models with skewed fertilities: a
forward and backward analysis’, Stochastic Models 27 (2011), 521–554.

1 Introduction and model description

We study a certain class of haploid population models with non-overlapping generations and fixed
population size N ∈N := {1,2, . . .}. Each model in this class is a particular Cannings model [2, 3].
Cannings models are characterized by exchangeable random variables ν1, . . . ,νN , where νi denotes
the number of offspring of the ith individual. The class of models we are interested here, is defined
as follows. We start with independent but not necessarily identically distributed random variables
ξ1,ξ2, . . . taking values in N0 := {0,1, 2, . . .}. Assuming that P(ξ1 + · · ·+ ξN = N)> 0 for all N ∈
N, let µ1, . . . ,µN be random variables such that the joint distribution of µ1, . . . ,µN coincides with
that of ξ1, . . . ,ξN conditioned on the event that ξ1+ · · ·+ξN = N . Finally, we randomly permutate
these N random variables µ1, . . . ,µN , which leads to the desired exchangeable random variables
ν1, . . . ,νN . Cannings models of this form are called conditional branching process models, since
they are obtained from an independent sequence ξ1,ξ2, . . . by conditioning on the event that
ξ1+ · · ·+ξN = N (and random shuffling). Models of this form for the situation when the random
variables ξ1,ξ2, . . . are additionally assumed to be i.i.d. are at least known since the works of
Karlin and McGregor [7, 8]. The most prominent example is the symmetric Wright–Fisher model,
which is obtained by choosing all the ξn to have a Poisson distribution with some parameter α > 0.
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The class of models differs from those considered in [14], which are based on sampling instead of
conditioning.
In this paper we restrict our attention to a particular class of random variables ξn, n ∈N. Let φ be
a given power series of the form φ(z) =

∑∞
m=1φmzm/m!, |z| < r, with positive radius r ∈ (0,∞]

of convergence and with non-negative coefficients φm ≥ 0, m ∈N. It is also assumed that φ1 > 0.
Let furthermore θ1,θ2, . . . ∈ (0,∞) be given real parameters. We assume that the random variables
ξn, n ∈N, have probability generating functions (pgf)

fn(x) := E(xξn) = exp
�

− θnφ(z)
�

1−
φ(zx)
φ(z)

��

, |x | ≤ 1, n ∈N. (1)

In (1), z is viewed as a fixed parameter, however, it is also useful to see z as a variable satis-
fying |z| < r. If Mn is a random variable having a Poisson distribution with parameter θnφ(z)
and if X1, X2, . . . are independent random variables and independent of Mn each with pgf x 7→
φ(zx)/φ(z), |x | ≤ 1, then

∑Mn
j=1 X j has pgf (1). This subclass of Cannings models is therefore

called the compound Poisson class. Note that

E(x
∑N

n=1 ξn) = exp(−(
N
∑

n=1

θn)φ(z)(1−φ(zx)/φ(z))), N ∈N

and that E(ξn) = θnzφ′(z), n ∈N. For basic properties of these models we refer the reader to [6].
We are interested in the behavior of the ancestral structure of these models when the total po-
pulation size N tends to infinity. The analysis of the full class of compound Poisson models seems
to be quite involved. We therefore focus on a particular subclass of compound Poisson models
satisfying an additional constrain, which is described precisely in Eq. (6) below. It turns out (see
Lemma 2.1 and the remarks thereafter) that these models are generalized Wright–Fisher models
and generalized Dirichlet models.
For the symmetric case (θn = θ for all n ∈ N) the asymptotical behavior is clarified by Theorem
4.3 of [6]. For the asymmetric case, particular examples have been studied in Sections 5 and 6
of [6], but the authors did not provide more general asymptotic results for the asymmetric case.
The asymptotic results presented in the following Section 2 extend those obtained in [6]. The
proofs, provided in Section 3, rely on well known general convergence-to-the-coalescent results for
Cannings models. For more information on these convergence results and on the arising limiting
coalescent processes allowing for simultaneous multiple collisions of ancestral lineages we refer
the reader to [11] and [13].

2 Results

In order to state the results we need to introduce, for θ > 0, the Taylor expansion

exp(θφ(z)) =
∞
∑

k=0

σk(θ)
k!

zk, |z|< r. (2)

The coefficients σk(θ) are strictly positive and they satisfy the recursion

σ0(θ) = 1 and σk+1(θ) = θ
k
∑

l=0

�

k

l

�

φk−l+1σl(θ), k ∈N0, (3)



Coalescent processes derived from some compound Poisson population models 569

i.e. σ1(θ) = θφ1, σ2(θ) = θφ2+θ 2φ2
1 , σ3(θ) = θφ3+3θ 2φ1φ2+θ 3φ3

1 , and so on. In particular,
σk is a polynomial in θ of degree k, since φ1 > 0 by assumption. For more information on the
coefficients σk(θ), in particular their relation to Bell polynomials, we refer the reader to [1]. The
coefficients σk(θ) are in general not simple to compute. They are mainly introduced, since, by
(1), the distribution of ξn, n ∈N, satisfies

P(ξn = k) = σk(θn)
zk

k!
exp(−θnφ(z)), k ∈N0.

The distribution of µ := (µ1, . . . ,µN ) is therefore of the form

P(µ1 = j1, . . . ,µN = jN ) =
N !

j1! · · · jN !

σ j1(θ1) · · ·σ jN (θN )

σN (θ1 + · · ·+ θN )
, (4)

j1, . . . , jN ∈N0 with j1 + · · ·+ jN = N , and µ has joint factorial moments

E((µ1)k1
· · · (µN )kN

) =
N !

σN (θ1 + · · ·+ θN )

∑

j1≥k1,..., jN≥kN
j1+···+ jN=N

σ j1(θ1) · · ·σ jN (θN )

( j1 − k1)! · · · ( jN − kN )!
, (5)

k1, . . . , kN ∈N0, where, for x ∈R and k ∈N0, the notation (x)k := x(x −1) · · · (x − k+1) is used
with the convention that (x)0 := 1. In particular, the distribution of µ does not depend on the
auxiliary parameter z. The expression (5) for the joint factorial moments of µ is quite involved
and not very simple to analyze. We therefore focus on a particular subclass of compound Poisson
models satisfying the relation

σk+1(θ)
σk(θ)

+
σk′+1(θ ′)
σk′(θ ′)

=
σk+k′+1(θ + θ ′)
σk+k′(θ + θ ′)

, k, k′ ∈N0,θ ,θ ′ ∈ (0,∞). (6)

The following lemma clarifies which compound Poisson models satisfy (6). Its proof is provided
in Section 3.

Lemma 2.1. A compound Poisson model (with given fixed power series φ) satisfies (6) if and only if
φm = (m− 1)!φ1(φ2/φ1)m−1 for all m ∈N. If (6) holds, then µ has joint factorial moments

E((µ1)k1
· · · (µN )kN

) = (N)k
σk1
(θ1) · · ·σkN

(θN )

σk(θ1 + · · ·+ θN )
, k1, . . . , kN ∈N0. (7)

Remarks. Relation (6) thus determines the coefficients φm, m ≥ 3, of the power series φ com-
pletely. For φ2 = 0 the power series φ is of the form φ(z) = φ1z corresponding to a generalized
Wright–Fisher model, whereas for φ2 > 0 we obtain the power series

φ(z) =
∞
∑

m=1

φm

m!
zm =

φ2
1

φ2

∞
∑

m=1

1

m

�

φ2

φ1
z
�m

= −
φ2

1

φ2
log
�

1−
φ2

φ1
z
�

, |z|<
φ1

φ2
, (8)

corresponding to a generalized Dirichlet model. Formula (7) for the joint factorial moments of µ
is considerably simpler than the general formula (5), which is the main reason why we restrict our
considerations to the special subclass of compound Poisson models satisfying (6). In the following
it is always assumed that (6) holds.
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For N , k ∈N define the partial sums Θk(N) :=
∑N

n=1 θ
k
n for convenience. Furthermore, for n ∈N

let E n denote the set of all equivalence relations on [n] := {1, . . . , n}. In the following we are
interested in the so-called ancestral process (R (n)t )t∈N0

of a sample of n ∈ N individuals taken
from some generation. This is a Markovian process taking values in En with the interpretation that
(i, j) ∈ R (n)t if and only if the ith and the jth individual of the sample have a common parent t
generations backwards in time. It is well known (see, for example, the proof of [6, Proposition
4.2]) that the ancestral process (R (n)t )t∈N0

has transition probabilities

P(R (n)t+1 = η |R
(n)
t = ξ) = Φ

(N)
j (k1, . . . , k j), ξ,η ∈ En

with ξ⊆ η, where

Φ(N)j (k1, . . . , k j) :=
1

(N)k1+···+k j

N
∑

n1,...,n j=1

all distinct

E((µn1
)k1
· · · (µn j

)k j
)

=
1

σk1+···+k j
(Θ1(N))

N
∑

n1,...,n j=1

all distinct

σk1
(θn1
) · · ·σk j

(θn j
),

by (7). Here j := |η| denotes the number of equivalence classes (blocks) of η and k1, . . . , k j ∈ N
are the group sizes of merging blocks of ξ. Note that k := k1 + · · ·+ k j is the number of blocks of
ξ. In particular, the coalescence probability cN , i.e. the probability that two individuals, randomly
chosen from some generation, have a common parent, is

cN := Φ(N)1 (2) =
1

σ2(Θ1(N))

N
∑

n=1

σ2(θn)

=
φ2Θ1(N) +φ2

1Θ2(N)

φ2Θ1(N) +φ2
1(Θ1(N))2

=
φ2 +φ2

1
Θ2(N)
Θ1(N)

φ2 +φ2
1Θ1(N)

. (9)

Since NΘ2(N) ≥ (Θ1(N))2, it follows that cN ≥ 1/N . For all compound Poisson models, the
effective population size Ne := 1/cN is therefore smaller than or equal to N . The equality Ne = N
holds if and only if (N −1)φ2/φ

2
1 =Θ1(N)−NΘ2(N)/Θ1(N). In particular, Ne = N if φ2 = 0 and

θ1 = · · · = θN . We will also need the probability that three individuals, randomly sampled from
some generation, have a common parent, which is given by

dN := Φ(N)1 (3) =
1

σ3(Θ1(N))

N
∑

n=1

σ3(θn)

=
φ3Θ1(N) + 3φ1φ2Θ2(N) +φ3

1Θ3(N)

φ3Θ1(N) + 3φ1φ2(Θ1(N))2 +φ3
1(Θ1(N))3

=
φ3 + 3φ1φ2

Θ2(N)
Θ1(N)

+φ3
1
Θ3(N)
Θ1(N)

φ3 + 3φ1φ2Θ1(N) +φ3
1(Θ1(N))2

. (10)

For n ∈ N let %n denote the restriction from E , the set of all equivalence relations on N, to En.
As in Definition 2.1 of [6], we say that the considered population model is in the domain of
attraction of a continuous-time coalescent process R = (Rt)t∈[0,∞), if, for each sample size n ∈ N,
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the time-scaled ancestral process (R (n)[t/cN ]
)t∈[0,∞) weakly converges to (%nRt)t∈[0,∞) as N → ∞.

Analogously, we say that the considered population model is in the domain of attraction of a
discrete-time coalescent process (Rt)t∈N0

, if for each sample size n ∈ N, the ancestral process

(R (n)t )t∈N0
weakly converges to (%nRt)t∈N0

as N →∞.
In order to state the first theorem it is helpful to introduce, for each j ∈N, the simplex

∆ j := {(x1, . . . , x j) | x1, . . . , x j ≥ 0, x1 + · · ·+ x j ≤ 1}

and as well the infinite simplex ∆ := {(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,
∑∞

n=1 xn ≤ 1}. Moreover,
for x = (x1, x2, . . .) ∈ ∆, the notation |x | :=

∑∞
n=1 xn and (x , x) :=

∑∞
n=1 x2

n will be used. Before
we state the theorem, let us briefly recall the definition of a discrete-time Ξ-coalescent. A discrete-
time Ξ-coalescent R = (Rt)t∈N0

is a time-homogeneous Markovian process with state space E
characterized by a finite measure Ξ on ∆ having no atom at zero and satisfying

∫

∆

Ξ(d x)/(x , x)≤ 1

as follows. If the process R is in a state ξ ∈ E with k equivalence classes (blocks), then transitions
to η ∈ E with ξ⊆ η occur with probability (see [13, Eq. (81)])

P(Rt+1 = η |Rt = ξ) =

∫

∆

s
∑

l=0

�

s

l

�

(1− |x |)s−l
∑

i1,...,ir+l∈N
all distinct

x k1
i1
· · · x kr+l

ir+l

Ξ(d x)
(x , x)

,

where j := |η| denotes the number of blocks of η, k1, . . . , k j are the group sizes of merging classes
of ξ, s := |{1≤ i ≤ j : ki = 1}|, and r := j− s. We are now able to state the first main result.

Theorem 2.2. Suppose that (6) holds. If
∑∞

n=1 θn <∞, then the compound Poisson model is in the
domain of attraction of a discrete-time coalescent process R = (Rt)t∈N0

with simultaneous multiple
collisions (Ξ-coalescent). The characterizing measure Ξ on ∆ of R is obtained from the parameters
of the compound Poisson model as follows. There exists a consistent sequence (Q j) j∈N of probability
distribution Q j on ∆ j uniquely determined via their moments

∫

∆ j

x k1
1 · · · x

k j

j Q j(d x1, . . . , d x j) =
σk1
(θ1) · · ·σk j

(θ j)

σk1+···+k j
(
∑∞

n=1 θn)
, (11)

j ∈ N, k1, . . . , k j ∈ N0. Let Q denote the projective limit of the sequence (Q j) j∈N, let X1, X2, . . . be
random variables with joint distribution Q, let X(1), X(2), . . . denote the X1, X2, . . . in descending order,
and let ν be the joint distribution of the random variables X(n), n ∈ N. Then, the characterizing
measure Ξ on ∆ of R has density x 7→ (x , x) with respect to ν . The probability measure ν (and hence
also Ξ) is concentrated on the subset ∆∗ of points x = (x1, x2, . . .) ∈∆ satisfying |x |= 1.

Remarks. Note that
∑∞

n=1 θn <∞ automatically implies that
∑∞

n=1 θ
2
n <∞. The sequence (Xn)n∈N

in Theorem 2.2 satisfies
∑∞

n=1 Xn = 1 almost surely and can hence be viewed as a random partition
of the unit interval. The proof of Theorem 2.2 is provided in Section 3.

Examples. Suppose that θ :=
∑∞

n=1 θn <∞.
1. (asymmetric Wright–Fisher models) If φ(z) = φ1z, then σk(θ) = θ kφk

1 , k ∈ N0. Note
that µ = (µ1, . . . ,µN ) has a multinomial distribution with parameters N and θn/(θ1 + · · ·+ θN ),
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n ∈ {1, . . . , N}, corresponding to an asymmetric Wright–Fisher model because of the constrain
∑∞

n=1 θn <∞. It is readily seen that in this case ν is the Dirac measure at

p = (θ1/θ ,θ2/θ , . . .) ∈∆∗.

The measure Ξ assigns its total mass Ξ(∆) = (p, p) = (
∑∞

n=1 θ
2
n )/θ

2 to the single point p. We
refer to Example 5.1 (vii) and Example 5.2 of [6] for the particular examples where θn = n−α with
α > 1 or θn = λn with 0< λ < 1.
2. (Dirichlet models) If φ(z) =− log(1− z), then φm = (m− 1)!, m ∈N, and

σk(θ) = [θ]k := θ(θ + 1) · · · (θ + k− 1), k ∈N0.

In this case the limiting coalescent is the discrete-time Dirichlet–Kingman coalescent with param-
eter (θn)n∈N. We refer the reader to the remark after Example 6.2 of [6] for more details on this
particular coalescent process.

We now come to the second theorem, which covers the situation when the series
∑∞

n=1 θn diverges,
but so slowly that the series

∑∞
n=1 θ

2
n still converges.

Theorem 2.3. Suppose that (6) holds. If
∑∞

n=1 θn = ∞ and if
∑∞

n=1 θ
2
n < ∞, then the compound

Poisson model is in the domain of attraction of the Kingman coalescent [9]. The time-scaling cN
satisfies cN =Θ2(N)/(Θ1(N))2 if φ2 = 0 and cN ∼ φ2/(φ2

1Θ1(N)) if φ2 > 0.

In contrast to the situation in Theorem 2.2, the limiting coalescent in Theorem 2.3 (Kingman coa-
lescent) does not depend on the particular function φ of the compound Poisson model. Theorem
2.3 is for example applicable if θn = n−α, n ∈N, with α ∈ (1/2,1].
It remains to focus on the situation when the series

∑∞
n=1 θn and

∑∞
n=1 θ

2
n both diverge. This

situation turns out to be more involved than it seems at the first glance. We provide at least partial
solutions for this case.

Theorem 2.4. Suppose that (6) holds, that
∑∞

n=1 θn = ∞ and that
∑∞

n=1 θ
2
n = ∞. Then the

compound Poisson model is in the domain of attraction of the Kingman coalescent if and only if
Θ2(N)/(Θ1(N))2→ 0 as N →∞. In this case the time-scaling cN satisfies

cN ∼ φ2/(φ
2
1Θ1(N)) +Θ2(N)/(Θ1(N))

2.

The following corollary, which is known from the literature (see Theorem 4.3 of [6]), is a direct
consequence of Theorem 2.4. It covers the symmetric case, when all the parameters θn are equal
to a given constant θ ∈ (0,∞).

Corollary 2.5. If (6) holds and if θn = θ ∈ (0,∞) for all n ∈N, then the compound Poisson model
is in the domain of attraction of the Kingman coalescent. The time-scaling cN satisfies

cN ∼ (1+φ2/(φ
2
1θ))/N .

The proofs of Theorem 2.3 and Theorem 2.4 are provided in Section 3. These proofs give a bit
more information than stated so far. For example, they show that compound Poisson models
satisfying (6) are never in the domain of attraction of any continuous-time coalescent process
different from the Kingman coalescent. Therefore, only the Kingman coalescent or discrete-time
coalescent processes can arise in the limit as the total population size N tends to infinity. The
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proofs also show that the Kingman coalescent pops up in the limit if and only if limN→∞ cN = 0 or,
equivalently (see Lemma 3.1), if and only if

lim
N→∞

Θ2(N)
(Θ1(N))2

= 0. (12)

There exist obviously compound Poisson models satisfying (6) which are not covered by the three
theorems presented so far. Take for example θn := λn for some constant λ ∈ (0,∞). For λ < 1 we
are in the situation of Theorem 2.2 and the case λ = 1 is covered by Corollary 2.5. Suppose now
that λ > 1. Then, the series

∑∞
n=1 θn and

∑∞
n=1 θ

2
n both diverge, but

Θ2(N)/(Θ1(N))
2→ (λ− 1)/(λ+ 1)> 0.

By Theorem 2.4, this model cannot be in the domain of attraction of the Kingman coalescent
and, due to the remarks made above, not in the domain of attraction of any continuous-time
Ξ-coalescent. The following theorem covers this example.

Theorem 2.6. Suppose that (6) holds and that all the limits

p1(k) := lim
N→∞

Θk(N)

(Θ1(N))k
, k ∈N (13)

exist. Then, all the limits

p j(k1, . . . , k j) := lim
N→∞

1

(Θ1(N))k1+···+k j

N
∑

n1,...,n j=1

all distinct

θ k1
n1
· · ·θ k j

n j
, (14)

k1, . . . , k j ∈ N, exist. Suppose now in addition that
∑∞

n=1 θn = ∞ and that p1(2) > 0. Then the
compound Poisson model is in the domain of attraction of a discrete-time Ξ-coalescent R = (Rt)t∈N0

whose distribution is uniquely determined via the transition probabilities

P(%nRt+1 = η |%nRt = ξ) = p j(k1, . . . , k j), n ∈N

and ξ,η ∈ En with ξ ⊆ η, where j := |η| and k1, . . . , k j are the group sizes of merging classes of
ξ. The characterizing measure ν(d x) := Ξ(d x)/(x , x) of R is the Dirac measure ν = δx , where
x = (x1, x2, . . .) ∈∆ is given recursively via x1 := limk→∞(p1(k))1/k and

xn+1 := lim
k→∞
(p1(k)− (x k

1 + · · ·+ x k
n))

1/k, n ∈N.

Remarks. 1. Since the Euclidian 1-norm is greater than or equal to the Euclidian k-norm, it
follows that p1(k)≤ 1 for all k ∈N.
2. For N ∈N let ZN be a random variable taking the value θn/Θ1(N) with probability θn/Θ1(N),
n ∈ {1, . . . , N}. It is readily verified that the existence of all the limits (13) is equivalent to the
convergence ZN → Z in distribution as N → ∞, where Z is a random variable taking values in
[0, 1] with characteristic function ϕ(t) := E(ei tZ) =

∑∞
k=0(t

k/k!)p1(k+ 1), t ∈R.
3. In contrast to the situation in Theorem 2.2, the limiting discrete-time Ξ-coalescent R in Theorem
2.6 does not depend on the function φ of the compound Poisson model.
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Examples. Fix λ > 1.
1. Suppose that θn = λn for all n ∈N. Then, for all k ∈N,

Θk(N) = λ
k(λkN − 1)/(λk − 1)∼ λk(N+1)/(λk − 1)

as N →∞, and hence p1(k) = (λ− 1)k/(λk − 1) > 0, k ∈N. In this case Theorem 2.6 yields that
the measure Ξ of the limiting Ξ-coalescent assigns its total mass Ξ(∆) = p1(2) = (λ− 1)/(λ+ 1)
to the single point x = (x1, x2, . . .) ∈∆∗, defined via xn := (λ−1)/λn = (1−1/λ)(1/λ)n−1, n ∈N.
2. If θn = λn2

for all n ∈ N, then Θk(N) =
∑N

n=1 θ
k
n ∼ θ

k
N = λ

kN2
. It follows that p1(k) = 1 for

all k ∈ N. The limiting Ξ-coalescent R is the discrete-time star-shaped coalescent, where Ξ is the
Dirac measure at (1,0, 0, . . .) ∈ ∆. In other words, if R is in a state with k blocks, then after one
time step simply all k blocks have already merged together.
Conclusion. The results can be roughly summarized as follows. Compound Poisson models sat-
isfying (6) are in the domain of attraction of the Kingman coalescent if and only if the sequence
(θn)n∈N is balanced in the sense that (12) holds. If the sequence (θn)n∈N is unbalanced in the
sense that it converges too fast to zero or too fast to infinity, then compound Poisson models tend
to be in the domain of attraction of a discrete-time Ξ-coalescent (Theorem 2.2 and Theorem 2.6).
It remains open to provide similar results for the full class of compound Poisson models which do
not necessarily satisfy the constraint (6).

3 Proofs

Proof of Lemma 2.1. By induction on m ∈N it follows from (6) that

m
∑

j=1

σk j+1(θ j)

σk j
(θ j)

=
σk1+···+km+1(θ1 + · · ·+ θm)

σk1+···+km
(θ1 + · · ·+ θm)

, k1, . . . , km ∈N0,θ1, . . . ,θm ∈ (0,∞). (15)

Choosing k j := 1 for all j ∈ {1, . . . , m} in (15) leads to

σm+1(θ1 + · · ·+ θm)
σm(θ1 + · · ·+ θm)

=
m
∑

j=1

σ2(θ j)

σ1(θ j)
=

m
∑

j=1

φ2θ j +φ2
1θ

2
j

φ1θ j
= m

φ2

φ1
+ (θ1 + · · ·+ θm)φ1

for all m ∈N and all θ1, . . . ,θm ∈ (0,∞). Choosing θ j := θ/m for all j ∈ {1, . . . , m}with θ ∈ (0,∞)
it follows that σm+1(θ) = σm(θ)(mφ2/φ1 + θφ1) for all m ∈ N and all θ ∈ (0,∞). The solution
of this recursion with initial conditions σ0(θ) = 1 and σ1(θ) = φ1θ is

σm(θ) =
m−1
∏

i=0

�

i
φ2

φ1
+ θφ1

�

, m ∈N0,θ ∈ (0,∞). (16)

In particular, σm(θ) is a polynomial in θ of degree N and the coefficient in front of θ is

φ1

m−1
∏

i=1

(iφ2/φ1) = (m− 1)!φ1(φ2/φ1)
m−1.

In general, the coefficient in front of θ of the polynomial σm(θ) is φm, which shows that the
coefficients are of the form φm = (m−1)!φ1(φ2/φ1)m−1, m ∈N. Conversely, it is readily checked
that if the coefficients φm are of this form, then σm(θ) is given by (16) and, hence, (6) holds.
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Let us now verify (7) by backward induction on k := k1+ · · ·+ kN . For k > N both sides of (7) are
equal to zero. For k = N we have

E((µ1)k1
· · · (µN )kN

) = k1! · · · kN !P(µ1 = k1, . . . ,µN = kN ) = N !
σk1
(θ) · · ·σkN

(θ)

σN (θ1 + · · ·+ θN )
,

which is (7) for k = N . The induction step from k+1 to k works as follows. From µ1+· · ·+µN = N
and by induction it follows that

(N − k)E((µ1)k1
· · · (µN )kN

) = E((µ1)k1
· · · (µN )kN

N
∑

j=1

(µ j − k j))

=
N
∑

j=1

E((µ1)k1
· · · (µ j)k j+1 · · · (µN )kN

) =
N
∑

j=1

(N)k+1

σk1
(θ1) · · ·σk j+1(θ j) · · ·σkN

(θN )

σk+1(θ1 + · · ·+ θN )

= (N)k+1

σk1
(θ1) · · ·σkN

(θN )

σk+1(θ1 + · · ·+ θN )

N
∑

j=1

σk j+1(θ j)

σk j
(θ j)

= (N)k+1

σk1
(θ1) · · ·σkN

(θN )

σk(θ1 + · · ·+ θN )
, (17)

where the last equality holds by (15). Division of (17) by N − k shows that (7) holds for k which
completes the induction.

Proof of Theorem 2.2. For all j, k1, . . . , k j ∈N it follows by dominated convergence that

Φ(N)j (k1, . . . , k j) :=
1

σk1+···+k j
(θ1 + · · ·+ θN )

N
∑

n1,...,n j=1

all distinct

σk1
(θn1
) · · ·σk j

(θn j
)

→
1

σk1+···+k j
(
∑∞

n=1 θn)

∑

n1,...,n j∈N
all distinct

σk1
(θn1
) · · ·σk j

(θn j
)

=: p j(k1, . . . , k j).

Note that p j(k1, . . . , k j) ∈ [0, 1], since Φ(N)j (k1, . . . , k j) ∈ [0,1] for all N ∈N. Moreover,

lim
N→∞

cN = lim
N→∞

Φ(N)1 (2) = p1(2) =

∑∞
n=1σ2(θn)

σ2(
∑∞

n=1 θn)
> 0,

since σ2(θ) = θφ2 + θ 2φ2
1 ≥ θ

2φ2
1 > 0 for all θ > 0 by the general assumption φ1 > 0. The

convergence Φ(N)j (k1, . . . , k j)→ p j(k1, . . . , k j) as N →∞ for all j, k1, . . . , k j ∈ N ensures (see, for

example, [11, Theorem 2.1]) that for each sample size n ∈ N the ancestral process (R (n)t )t∈N0

weakly converges to (%nRt)t∈N0
as N →∞, where R = (Rt)t∈N0

is a discrete-time coalescent such
that, if R is in a state with k blocks, any transition involving a (k1, . . . , k j)-collision occurs with
probability p j(k1, . . . , k j). Thus it is shown that the model is in the domain of attraction of R. Let
us now determine the characterizing measure Ξ of R. For j ∈N and k1, . . . , k j ∈N0 define

m j(k1, . . . , k j) :=
σk1
(θ1) · · ·σk j

(θ j)

σk1+···+k j
(
∑∞

n=1 θn)
= lim

N→∞

E((µ1)k1
· · · (µ j)k j

)

(N)k1+···+k j

,

where the last equality follows from (7). For every fixed j ∈N the multi sequence m j(k1, . . . , k j),
k1, . . . , k j ∈ N0 is completely monotone in the sense of Gupta [4, p. 287], since for arbitrary
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but fixed i1, . . . , i j ∈ N0 with i1 + · · · + i j ≤ N , the multi-sequence (i1)k1
· · · (i j)k j

/(N)k1+···+k j
,

k1, . . . , k j ∈ N0 with k1 + · · ·+ k j ≤ N , is completely monotone and this property carries over to
the convex combined multi-sequence

E((µ1)k1
· · · (µ j)k j

)

(N)k1+···+k j

=
∑

i1,...,i j∈N0
i1+···+i j≤N

P(µ1 = i1, . . . ,µ j = i j)
(i1)k1

· · · (i j)k j

(N)k1+···+k j

,

k1, . . . , k j ∈ N0 with k1 + · · · + k j ≤ N and, hence, to the limiting sequence m j(k1, . . . , k j),
k1, . . . , k j ∈ N0. Thus (see, for example, [4]), for each j ∈ N, there exists a measure Q j on the
j-dimensional simplex ∆ j := {(x1, . . . , x j) : x1, . . . , x j ≥ 0, x1 + · · ·+ x j ≤ 1} uniquely determined
via its moments

∫

∆ j

x k1
1 · · · x

k j

j Q j(d x1, . . . , d x j) = m j(k1, . . . , k j).

Since m j+1(k1, . . . , k j , 0) = m j(k1, . . . , k j) for all k1, . . . , k j ∈ N0, it follows that the sequence of
measures (Q j) j∈N is consistent. Thus, by Kolmogorov’s extension theorem there exists a probability
measure Q onRN, the projective limit of the sequence (Q j) j∈N. Let X1, X2, . . . be random variables
with joint distribution Q, let X(1) ≥ X(2) ≥ · · · denote the X1, X2, . . . in decreasing order, and let ν
be the joint distribution of the ordered random variables X(n), n ∈N. Then,

∫

∆

∑

n1,...,n j∈N
all distinct

x k1
n1
· · · x k j

n j
ν(d x)

=
∑

n1,...,n j∈N
all distinct

E(X k1

(n1)
· · ·X k j

(n j)
) =

∑

n1,...,n j∈N
all distinct

E(X k1
n1
· · ·X k j

n j
)

=
∑

n1,...,n j∈N
all distinct

σk1
(θn1
) · · ·σk j

(θn j
)

σk1+···+k j
(
∑∞

n=1 θn)
= p j(k1, . . . , k j),

showing that Ξ(d x) := (x , x)ν(d x) is the characterizing measure of the coalescent R in the spirit
of Schweinsberg [13]. Note that

∫

∆
|x |ν(d x) = p1(1) =

∑∞
n1=1σ1(θn1

)/σ1(
∑∞

n=1 θn) = 1, since

σ1(θ) = φ1θ for all θ > 0. Thus,
∫

∆
(1− |x |)ν(d x) = 0, showing that ν is concentrated on the

subset ∆∗ of points x ∈∆ satisfying |x |= 1.

Remark. For pairwise distinct n1, . . . , n j ∈N let Pn1,...,n j
denote the distribution of Xn1

, . . . , Xn j
, and

define the symmetric measure M j on ∆ j via M j :=
∑

n1,...,n j
Pn1,...,n j

, where the sum extends over
all pairwise distinct n1, . . . , n j ∈N. Then, for all M j-integrable functions g,

E(
∑

n1,...,n j

g(Xn1
, . . . , Xn j

)) =

∫

∆ j

g dM j ,

showing that M j is the correlation measure (see, for example, [5, Eq. (2.1)]) of the point process
∑∞

n=1 δXn
.

We now come to the proofs of Theorem 2.3 and Theorem 2.4. They are based on the following
technical but fundamental lemma. Once this lemma is established the proofs of both theorems
follow with only little effort. Recall that Θk(N) :=

∑N
n=1 θ

k
n for N , k ∈N.
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Lemma 3.1. If (6) holds, then the following four conditions are equivalent.

(i) lim
N→∞

Θ2(N)
(Θ1(N))2

= 0. (ii) lim
N→∞

Θ3(N)
Θ1(N)Θ2(N)

= 0.

(iii) lim
N→∞

cN = 0. (iv) lim
N→∞

dN

cN
= 0.

Remark. For the equivalence of (i) and (ii) the constraint (6) is not needed.

Proof. ‘(i)⇒ (ii)’: Since the Euclidian 2-norm is larger than or equal to the Euclidian 3-norm, we
have (Θ2(N))1/2 ≥ (Θ3(N))1/3. Thus, Θ3(N)≤ (Θ2(N))3/2, and, consequently,

Θ3(N)
Θ1(N)Θ2(N)

≤
� Θ2(N)
(Θ1(N))2

�1/2
.

‘(ii)⇒ (i)’: An application of the Hölder inequality
 

N
∑

n=1

|an bn|

!2

≤

 

N
∑

n=1

a2
n

! 

N
∑

n=1

b2
n

!

to an := θ 1/2
n and bn := θ 3/2

n leads to (Θ2(N))2 ≤Θ1(N)Θ3(N), or, equivalently,

Θ2(N)
(Θ1(N))2

≤
Θ3(N)

Θ1(N)Θ2(N)
.

‘(iii) ⇒ (i)’: Since the Euclidian 1-norm is larger than or equal to the Euclidian 2-norm, we have
(Θ1(N))2 ≥Θ2(N). Using (9) it is easily checked that this inequality implies that

cN =
φ2 +φ2

1
Θ2(N)
Θ1(N)

φ2 +φ2
1Θ1(N)

≥
Θ2(N)
(Θ1(N))2

.

‘(i) ⇒ (iii)’: Let us first verify that Θ1(N) → ∞ as N → ∞. Suppose this is not the case. Then,
∑∞

n=1 θn < ∞. In particular, θn → 0 as n → ∞, and, as a consequence, the series
∑∞

n=1 θ
2
n < ∞

converges as well. It follows that limN→∞Θ2(N)/(Θ1(N))2 = (
∑∞

n=1 θ
2
n )/(

∑∞
n=1 θn)2 > 0, an

obvious contradiction to (i). Thus, we have Θ1(N)→∞ as N →∞. Therefore,

cN ≤
φ2 +φ2

1
Θ2(N)
Θ1(N)

φ2
1Θ1(N)

=
φ2

φ2
1

1

Θ1(N)
+
Θ2(N)
(Θ1(N))2

→ 0 by (i).

‘(iv) ⇒ (iii)’: A fundamental theorem from coalescent theory (see, for ex., [10, p. 989] or [12,
Lemma 5.5]) states that, for arbitrary exchangeable Cannings models, if dN/cN → 0, then cN → 0.
‘(i)⇒ (iv)’: Note first (as already shown in the part ‘(i)⇒ (iii)’) that (i) implies that Θ1(N)→∞
as N →∞. Furthermore, we have already shown that (i) is equivalent to (ii), so we are allowed
to use (ii). Two cases are now distinguished.
Case 1: Suppose that

∑∞
n=1 θ

2
n =∞. Then, using the inequality cN ≥ Θ2(N)/(Θ1(N))2 (which is

always valid as shown in the part ‘(iii)⇒ (i)’), and using (10), it follows that

dN

cN
≤ dN

(Θ1(N))2

Θ2(N)
≤
φ3 + 3φ1φ2

Θ2(N)
Θ1(N)

+φ3
1
Θ3(N)
Θ1(N)

φ3
1(Θ1(N))2

(Θ1(N))2

Θ2(N)

=
φ3

φ3
1

1

Θ2(N)
+

3φ2

φ2
1

1

Θ1(N)
+

Θ3(N)
Θ1(N)Θ2(N)

→ 0,



578 Electronic Communications in Probability

by (ii) and since Θ1(N)→∞ and Θ2(N)→
∑∞

n=1 θ
2
n =∞.

Case 2: Suppose that
∑∞

n=1 θ
2
n < ∞. Then, we also have

∑∞
n=1 θ

3
n < ∞. If φ2 > 0 and φ3 > 0,

then

cN =
φ2 +φ2

1
Θ2(N)
Θ1(N)

φ2 +φ2
1Θ1(N)

∼
φ2

φ2
1

1

Θ1(N)
(18)

and analogously dN ∼ φ3/(φ3
1(Θ1(N))2), and it follows that dN/cN ∼ φ3/(φ1φ2Θ1(N)) → 0. If

φ2 > 0 and φ3 = 0, then (18) still holds, but

dN ∼
3φ1φ2Θ2(N) +φ3

1Θ3(N)

φ3
1(Θ1(N))3

.

Since the sequences (Θ2(N))N∈N and (Θ3(N))N∈N are bounded, it follows that

dN/cN ≤ C/(Θ1(N))
2

for some constant C > 0, and, in particular, dN/cN → 0.
Finally, if φ2 = φ3 = 0, then dN/cN = Θ3(N)/(Θ1(N)Θ2(N)) → 0 by (ii), which completes the
proof of the lemma.

Thanks to Lemma 3.1, the following proofs of Theorem 2.3 and 2.4 are short and straightforward.

Proof of Theorem 2.3. By assumption, Θ1(N)→
∑∞

n=1 θn = ∞ as N → ∞, whereas the sequence
(Θ2(N))N∈N is bounded. The condition (i) of Lemma 3.1 and hence all four conditions of Lemma
3.1 are therefore satisfied. In particular, dN/cN → 0 as N →∞. By [11] or [10, Theorem 4 (b)], for
each sample size n ∈N, the time-scaled ancestral process (R (n)[t/cN ]

)t∈[0,∞) weakly converges to the
Kingman n-coalescent as N →∞. Thus, the model is in the domain of attraction of the Kingman
coalescent. From (9) it follows that cN =Θ2(N)/(Θ1(N))2 if φ2 = 0 and that cN ∼ φ2/(φ2

1Θ1(N))
if φ2 > 0.

Proof of Theorem 2.4. By Lemma 3.1, the condition (i) is equivalent to dN/cN → 0 as N → ∞,
which in turn (see [11] or [10, Theorem 4 (b)]) is equivalent to the fact that the model is in the
domain of attraction of the Kingman coalescent. Moreover, since Θ1(N)→∞, it follows that

cN =
φ2 +φ2

1
Θ2(N)
Θ1(N)

φ2 +φ2
1Θ1(N)

∼
φ2 +φ2

1
Θ2(N)
Θ1(N)

φ2
1Θ1(N)

=
φ2

φ2
1

1

Θ1(N)
+
Θ2(N)
(Θ1(N))2

.

Proof of Theorem 2.6. Let us first verify by induction on j that all the limits (14) exist. For j = 1,
these limits exist by assumption. Now fix j ∈N and assume that the limits

p1(k1), p2(k1, k2), . . . , p j(k1, . . . , k j)
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exist for all k1, . . . , k j ∈N. Then, for all k1, . . . , k j+1 ∈N,

1

(Θ1(N))k1+···+k j+1

N
∑

n1,...,n j+1=1

all distinct

θ k1
n1
· · ·θ k j+1

n j+1

=
1

(Θ1(N))k1+···+k j+1

N
∑

n1,...,n j=1

all distinct

θ k1
n1
· · ·θ k j

n j

�

Θk j+1
(N)−

j
∑

i=1

θ
k j+1
ni

�

=
Θk j+1

(N)

(Θ1(N))k j+1

1

(Θ1(N))k1+···+k j

N
∑

n1,...,n j=1

all distinct

θ k1
n1
· · ·θ k j

n j

−
j
∑

i=1

1

(Θ1(N))k1+···+k j+1

N
∑

n1,...,n j=1

all distinct

θ k1
n1
· · ·θ ki+k j+1

ni
· · ·θ k j

n j

→ p1(k j+1) p j(k1, . . . , k j)−
j
∑

i=1

p j(k1, . . . , ki−1, ki + k j+1, ki+1, . . . , k j)

as N →∞, which shows that the limits p j+1(k1, . . . , k j+1) exist for all k1, . . . , k j+1 ∈ N and which
completes the induction. It is in particular shown that the limits (14) satisfy the recursion

p j+1(k1, . . . , k j+1) = p j(k1, . . . , k j) p1(k j+1)

−
j
∑

i=1

p j(k1, . . . , ki−1, ki + k j+1, ki+1, . . . , k j), (19)

j, k1, . . . , k j+1 ∈ N. Now fix k1, . . . , k j ∈ N and define k := k1 + · · ·+ k j for convenience. Since
Θ1(N)→

∑∞
n=1 θn =∞ by assumption, we have

Φ(N)j (k1, . . . , k j) =
1

σk(Θ1(N))

N
∑

n1,...,n j=1

all distinct

σk1
(θn1
) · · ·σk j

(θn j
)

∼
1

φk
1(Θ1(N))k

N
∑

n1,...,n j=1

all distinct

φ
k1
1 θ

k1
n1
· · ·φk j

1 θ
k j
n j

=
1

(Θ1(N))k

N
∑

n1,...,n j=1

all distinct

θ k1
n1
· · ·θ k j

n j
→ p j(k1, . . . , k j)

as N →∞. Suppose now that p1(2) > 0. Note that in the situation of Theorem 2.2 the condition
p1(2)> 0 is automatically satisfied whereas in the present proof it has to be assumed that p1(2)>
0 in order to be able to apply [11, Theorem 2.1] with c := limN→∞ cN > 0. As in the proof of
Theorem 2.2, the convergence Φ(N)j (k1, . . . , k j) → p j(k1, . . . , k j) for all j, k1, . . . , k j ∈ N ensures
that the model is in the domain of attraction of a discrete-time Ξ-coalescent R = (Rt)t∈N0

, whose
distribution is uniquely determined via the transition probabilities

P(%nRt+1 = η |%nRt = ξ) = p j(k1, . . . , k j), n ∈N,
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ξ,η ∈ En with ξ ⊆ η, where j = |η| and k1, . . . , k j are the merging classes of ξ. It remains to
characterize the measure Ξ of R. By Proposition 35 of [13], the measure ν(d x) := Ξ(d x)/(x , x)
satisfies ν(∆)≤ 1 and (choose s = 0 in Eq. (81) of [13])

p j(k1, . . . , k j) =

∫

∆

∑

n1,...,n j∈N
all distinct

x k1
n1
· · · x k j

n j
ν(d x) (20)

for j ∈N and k1, . . . , k j ≥ 2. In particular, for all k ≥ 2,

p2(k, k) =

∫

∆

∑

n1,n2∈N
n1 6=n2

x k
n1

x k
n2
ν(d x) =

∫

∆

��
∞
∑

n=1

x k
n

�2
−
∞
∑

n=1

x2k
n

�

ν(d x)

=

∫

∆

g2
k(x)ν(d x)− p1(2k), (21)

with gk : ∆ → [0, 1] defined via gk(x) :=
∑∞

n=1 x k
n, k ≥ 2, x ∈ ∆. On the other hand, by (19),

p2(k, k) = (p1(k))2 − p1(2k). Comparison with (21) shows that

∫

∆

g2
k(x)ν(d x) = (p1(k))

2 =

�
∫

∆

gk(x)ν(d x)

�2

. (22)

Let Qk denote the probability measure on ([0,1],B([0, 1])) defined via

Qk(B) :=
νgk
(B)

ν(∆)
:=

ν(g−1
k (B))

ν(∆)
, B ∈B([0,1]),

and let Yk be a random variable with distribution Qk. Since Yk has moments

E(Y j
k ) =

1

ν(∆)

∫

[0,1]

y j νgk
(d y) =

1

ν(∆)

∫

∆

(gk(x))
j ν(d x), j ∈N0,

it follows from (22) that E(Y 2
k ) = ν(∆)(E(Yk))2. Since E(Y 2

k )≥ (E(Yk))2 it follows that ν(∆)≥ 1.
Thus ν(∆) = 1 and, hence, E(Y 2

k ) = (E(Yk))2, showing that each measure Qk assigns its total
mass 1 to a single point, say qk ∈ [0, 1]. In other words, the measure ν is concentrated on points
x = (x1, x2, . . .) ∈ ∆ satisfying gk(x) = qk for all k ∈ {2, 3, . . .}. Since the map g : ∆ → RN,
g(x) := (g2(x), g3(x), . . .), is injective (see Corollary 4.2 in the appendix), the measure ν assigns
its total mass 1 to a single point, say x = (x1, x2, . . .) ∈ ∆. By (20), p1(k) =

∑∞
n=1 x k

n = gk(x) for
k ∈ {2,3, . . .}. For j ∈N define f j :N→ R via f j(n) := xn+ j−1 for n ∈N. By Lemma 4.1 (applied
with µ := δN, the counting measure on N) it follows that (p1(k))1/k = ‖ f1‖k → ‖ f1‖∞ = x1 as
k→∞, (p1(k)−x k

1)
1/k = ‖ f2‖k → ‖ f2‖∞ = x2, and so on, which shows that the point x is obtained

recursively from the p1(k), k ∈N, via x1 := limk→∞(p1(k))1/k and

xn+1 = (p1(k)− (x k
1 + · · ·+ x k

n))
1/k, n ∈N.



Coalescent processes derived from some compound Poisson population models 581

4 Appendix

Versions of the following Lemma 4.1 are well known from the literature. Standard proofs (see, for
example, [15, p. 34, Theorem 1]) usually work under the assumption that the underlying measure
µ is finite. We state a slightly different version, which is valid for arbitrary (not necessarily finite)
measures µ.

Lemma 4.1. Let (Ω,F ,µ) be a measure space and let f : Ω→R be a measurable function satisfying
‖ f ‖r := (

∫

| f |r dµ)1/r <∞ for all r ≥ r0 ≥ 1. Then,

lim
r→∞
‖ f ‖r = ‖ f ‖∞ := inf{a ∈ [0,∞) : | f | ≤ a µ-almost everywhere} ∈ [0,∞].

Proof. We have

‖ f ‖r
r =

∫

| f |r dµ=

∫

| f |r0 | f |r−r0 dµ≤ ‖ f ‖r−r0
∞

∫

| f |r0 dµ.

Thus, ‖ f ‖r ≤ ‖ f ‖1−r0/r
∞ ‖ f ‖r0/r

r0
→ ‖ f ‖∞ as r →∞, and, consequently, limsupr→∞ ‖ f ‖r ≤ ‖ f ‖∞.

In order to verify that lim infr→∞ ‖ f ‖r ≥ ‖ f ‖∞ fix 0 < a < ‖ f ‖∞ and define A := {| f | > a}. Note
that µ(A)> 0. Consider

‖ f ‖r = a

�
∫

� | f |
a

�r
dµ

�
1
r

≥ a

�
∫

A

� | f |
a

�r
dµ

�
1
r

.

On A we have | f |/a > 1. Thus, for r →∞ the term below the last integral converges to infinity.
From µ(A) > 0 it follows by monotone convergence that

∫

A
(| f |/a)r dµ → ∞ as r → ∞. For all

sufficiently large r this integral is in particular greater than 1, which implies that

(

∫

A

(| f |/a)r dµ)1/r > 1

for all sufficiently large r. It follows that ‖ f ‖r > a for all sufficiently large r. Since a can be chosen
arbitrarily close to ‖ f ‖∞, it follows that lim infr→∞ ‖ f ‖r ≥ ‖ f ‖∞.

The following corollary is needed in the proof of Theorem 2.6.

Corollary 4.2. The map g :∆→RN, g(x) := (
∑∞

n=1 x2
n,
∑∞

n=1 x3
n, . . .), is injective.

Proof. For x ∈∆ define ‖x‖k := (
∑∞

n=1 x k
n)

1/k and ‖x‖∞ := supn∈N xn = x1. Suppose that x , y ∈∆
with g(x) = g(y). Then, ‖x‖k = ‖y‖k for all k ∈ {2, 3, . . .}. By Lemma 4.1 (applied with µ := δN,
the counting measure on N, and f (n) := xn for n ∈N) it follows that

x1 = ‖x‖∞ = lim
k→∞
‖x‖k = lim

k→∞
‖y‖k = ‖y‖∞ = y1.

Define x̃ := (x2, x3, . . .) ∈∆ and ỹ := (y2, y3, . . .) ∈∆. Since g(x) = g(y) and x1 = y1, it follows
that g( x̃) = g( ỹ). Proceeding in the same way as before, but with x̃ and ỹ instead of x and y ,
yields x2 = y2. Inductively it follows that xn = yn for all n ∈N. Therefore, x = y .
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