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Abstract

In the paper [7], Guasoni studies financial markets which are subject to proportional transaction
costs. The standard martingale framework of stochastic finance is not applicable in these markets,
since the transaction costs force trading strategies to have bounded variation, while continuous-
time martingale strategies have infinite transaction cost. The main question that arises out of [7]
is whether it is possible to give a convenient condition to guarantee that a trading strategy has
no arbitrage. Such a condition was proposed and studied in [6] and [1], the so-called stickiness
property, whereby an asset’s price is never certain to exit a ball within a predetermined finite
time. In this paper, we define the multidimensional extension of the stickiness property, to handle
arbitrage-free conditions for markets with multiple assets and proportional transaction costs. We
show that this condition is sufficient for a multi-asset model to be free of arbitrage. We also show
that d-dimensional fractional Brownian models are jointly sticky, and we establish a time-change
result for joint stickiness.

1 Introduction

In [7], a market with multiple risky assets and proportional transaction costs were studied. In the
setting of [7], the market contains one risk free asset, used as a numeraire and hence assumed
identically equal to 1, and d risky assets, given by an Rd−valued process Yt = (Y 1

t , Y 2
t , · · · , Y d

t )
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that is càdlàg (right- continuous with left-limits), adapted, and quasi-left continuous (i.e., Y i
τ =

Y i
τ−, 1 ≤ i ≤ d for all predictable stopping times τ). Transaction costs are proportional and each

unit of numeraire traded in the risky assets generates a transaction cost of k units that are charged
to the riskless asset account.

Trading strategies are given by adapted, left-continuous,Rd−valued processes θ = (θ 1
t ,θ 2

t , · · · ,θ d
t )

that are of finite variation and satisfy the following admissibility condition:

Vt(θ) =
d
∑

i=1

∫ t

0

θ i
s dY i

s −
d
∑

i=1

(

∫ t

0

kY i
s d|Dθ i |s + k|θ i

t |Y
i
t )≥−M a.s. (1)

for some determistic M > 0 and all t ≥ 0. Here Dθ i is the derivative of θ i
t in the sense of

distribution, and |Dθ i |t is the total variation measure associated to Dθ i in [0, t]. In (1), the
term
∑d

i=1

∫ t

0
kY i

s d|Dθ i |s corresponds to the cost of trading and
∑d

i=1 k|θ i
t |Y

i
t corresponds to the

liquidation cost at the end of trading.

Definition 1. An admissible trading strategy θ is an arbitrage strategy if Vt(θ) ≥ 0 and P(Vt(θ) >
0)> 0 for some t > 0.

Remark 1. Due to Proposition 2.5 of [7] and the quasi-left continuity assumption on the price
processes, left-continuity of the trading strategies θ can be relaxed to predictablity.

In the case when there is only one risky asset, the model (1) reduces to

Vt(θ) =

∫ t

0

θsdYs − k

∫ t

0

Ysd|Dθ |s − kYt |θt |. (2)

This model was studied in the recent papers [8, 1]. In [8], the notion of stickiness (see definition
2.9 of [8] and also Proposition 1 of [1]) was introduced as a sufficient for no-arbitrage in the
model (2). It was also shown that a large class of Markov processes and models with full support
in the Wiener space are sticky. In [1] stickiness was further studied and other classes of sticky
processes were provided. In this note, we introduce a condition, which we call joint stickiness,
and show that it is sufficient for no-arbitrage in the model (1), see proposition 1. Then we show
joint stickiness remains unchanged under composition with continuous functions, see proposition
2. As an example, we show the joint sticky property for independent fractional Brownian motions
with possibily different Hurst parameters, see Proposition 3. Lastly, we show a time change result
on joint stickiness and provide non-semimartingale joint sticky processes by using time change,
see Proposition 4 and corollaries thereafter.

2 Main Results

Let X t = (X 1
t , X 2

t , · · · , X d
t ) be a càdlàg process adapted to the filtration F = (Ft)t∈[0,T]. For any F

stopping time τ≤ T , let Aτ,ε
i = {supt∈[τ,T]|X i

t − X i
τ|< ε} for any ε > 0.

Definition 2. We say that X t = (X 1
t , X 2

t , · · · , X d
t ) is jointly sticky with respect to F if

P[∩d
i=1Aτ,ε

i |Fτ]> 0 a.s. (3)



616 Electronic Communications in Probability

for any F stopping time τ≤ T , and any ε > 0.

In the following proposition, we show that joint stickiness implies no arbitrage in the model (1).

Proposition 1. Let X = (X 1
t , X 2

t , · · · , X d
t ) be a jointly sticky, adapted, and càdlàg process . Then, the

market (1, eX 0
t , eX 1

t , · · · , eX d
t ) does not admit arbitrage with propotional transaction costs k for any

k > 0.

Proof. Fix k > 0. Assume θs = (θ 1
s ,θ 2

s , · · · ,θ d
s ) is an arbitrage strategy. Then there is t ∈ [0, T]

such that Vt(θ) ≥ 0 and P(Vt(θ) > 0) > 0. Let τ = inf{s ≥ 0 : θ i
s 6= 0, i = 1, 2, · · · , d} ∧ t. If

τ = t almost surely, then the left-continuity of the paths and the definition of τ implies θs = 0
on [0, t] for almost all ω, thus Vt(θ) = 0 almost surely and this contradicts with the assumption
P(Vt(θ) > 0) > 0. Therefore we assume that the event A = {τ < t} has positive probability. Let
Y i

s = eX i
s , Ỹ i

s = Y i
τ∧s, and Z i

s = Y i
s − Ỹ i

s for all 1 ≤ i ≤ d and all s ∈ [0, t]. We can write (1) as
following

Vs(θ) =
d
∑

i=1

∫ s

τ

θ i
µdỸ i

µ +
d
∑

i=1

∫ s

τ

θ i
µdZ i

µ − k
d
∑

i=1

(

∫ s

τ

Y i
µd|Dθ i |µ + |θ i

s |Y
i

s ). (4)

on A for any s ∈ [τ, t]. Observe that
∑d

i=1

∫ s

τ
θ i
µdỸ i

µ = 0 and

d
∑

i=1

∫ s

τ

θ i
µdZ i

µ =
d
∑

i=1

Z i
sθ

i
s −

d
∑

i=1

∫ s

τ

Z i
µdDθ i

µ.

on A for any s ∈ [τ, t]. Thus (4) becomes

Vs(θ) =
d
∑

i=1

(Z i
sθ

i
s − k|θ i

s |Y
i

s )−
d
∑

i=1

(

∫ s

τ

Z i
µdDθ i

µ + k

∫ s

τ

Y i
µd|Dθ i |µ) (5)

Let Aτ,ε
i = {sups∈[τ,t]|X i

s − X i
τ| < ε} for any ε > 0. Since Xs = (X 1

s , X 2
s , · · · , X d

s ) is jointly sticky, the
event Aε1 = A∩(∩d

i=1Aτ,ε
i ) has postive probability for any ε > 0. Observe that on Aε1, |Z i

s | ≤ (e
ε−1)Y i

s
for all s ∈ [τ, t] and for each 1≤ i ≤ d. Therefore on Aε1, we have

|Z i
sθ

i
s | ≤ (e

ε − 1)|θ i
s |Y

i
s (6)

and

|
∫ s

τ

Z i
µdDθ i

µ| ≤ (e
ε − 1)

∫ s

τ

Y i
µd|Dθ i |µ (7)

for all s ∈ [τ, t]. From (5) (6), and (7) we conclude that on Aε1

Vs(θ)≤ (eε − 1− k)
d
∑

i=1

[|θ i
s |Y

i
s +

∫ s

τ

Y i
µd|Dθ i |µ], ∀s ∈ [τ, t] (8)

Note that
∑d

i=1 |θ
i
t |Y

i
t +
∫ t

τ
Y i

s d|Dθ i |s > 0 almost surely on A (this follows from the definitions of
A and τ ). Therefore from (7) it follows that Vt(θ) < 0 on Aε1 ⊂ A whenever ε < ln(1+ k). This
contradicts with the assumption P(Vt(θ) ≥ 0) = 1, since P(Aε1) > 0 for all ε > 0. This shows that
θ can not be an arbitrage strategy. This completes the proof.
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Example 1. Let L1
t , L2

t , · · · , Ld
t be a sequence of independent Lévy processes in [0, T] with respect to

the filtration F. Then L = (L1
t , L2

t , · · · , Ld
t ) is jointly sticky with respect to F. To see this, let τ be any

stopping time of F. Let Aτ,ε
i = {supt∈[0,T−τ] |L i

τ+t − L i
τ| < ε} for each 1 ≤ i ≤ d and for any ε > 0.

Then we have

P(∩d
i=1Aτ,ε

i |Fτ) = P(∩d
i=1Aτ,ε

i ) =
d
∏

i=1

P(Aτ,ε
i )> 0.

The first equality above follows from the independence of L i
τ+t − L i

τ with Fτ for each 1 ≤ i ≤ d,
the second equality follows from the independence assumption on L i

t , i = 1,2, · · · , d, and the last
inequality follows from stickiness of lévy processes (the stickiness of Lévy processes was shown in [8]).

Proposition 2. Let X t = (X 1
t , X 2

t , · · · , X d
t ) be a jointly sticky process with respect to the filtration F.

Let { f1, f2, · · · , fd} be a family of real valued continuous functions onRd . Let Y i
t = fi(X 1

t , X 2
t , · · · , X d

t )
for each i ∈ {1,2, · · · , d}. Then the process Y = (Y 1

t , Y 2
t , · · · , Y d

t ) is also jointly sticky with respect to
F.

Proof. Fix any ε > 0. For any stopping time τ ≤ T , let Bτ,ε
i = {supt∈[τ,T]|Y i

t − Y i
τ| < ε} for each

i ∈ {1, 2, · · · , d}. We need to show

P[∩d
i Bτ,ε

i |Fτ]> 0 a.s. (9)

and this is equivalent to showing P[A∩ (∩d
i Bτ,ε

i )] > 0 for any A ∈ Fτ with P(A) > 0. Fix A ∈ Fτ
with P(A) > 0, and let M > 0 be such that the event A0 = A ∩ {−M ≤ X i

τ ≤ M , 1 ≤ i ≤ d}
has positive probability. Note that A0 ∈ Fτ. The set O = [−M − 1, M + 1] × [−M − 1, M +
1] × · · · × [−M − 1, M + 1] is a closed bounded set in Rd . Since f1, f2, · · · , fd are continuous
on Rd , they are uniformly continuous on O. Therefore, there is a δ0 > 0, such that for each
1 ≤ i ≤ d, | fi(x)− fi(y)| < ε as long as x , y ∈ O and ||x − y|| < δ0. Let δ1 = min(1,δ0) and
let Aτ,δ1

i = {supt∈[τ,T]|X i
t − X i

τ| < δ1}. Since X t is jointly sticky, the set A1 = A0 ∩ (∩d
i=1Aτ,δ1

i ) has
positive probability. On A1, we have Xτ ∈ O, X t ∈ O, and ||X t − Xτ|| ≤ δ1 ≤ δ0 for all t ∈ [τ, T].
Therefore A1 ⊂ ∩d

i Bτ,ε
i . Since A1 ⊂ A, we have P[A∩ (∩d

i Bτ,ε
i )] > P(A1) > 0. This completes the

proof.

Example 2. Let B = (B1
t , B2

t , · · · , Bd
t ) be d−dimensional Brownian motion. Then the process X =

(|B1
t |

1
3 , |B1

t + B2
t |

1
3 , · · · , |B1

t + Bd
t |

1
3 ) is not a semimartingale; see Theorem 72 on page 221 of [10].

However, X is jointly sticky thanks to Proposition 2 and Example 1.

The following corollary extends the Proposition 1 in [1].

Corollary 1. If the process X t = (X 1
t , X 2

t , · · · , X d
t ) is jointly sticky, then for any real valued continuous

function g :Rd →R, the process Yt = g(X 1
t , X 2

t , · · · , X d
t ) is sticky.

In the following Proposition shows that any finite sequence of independent fractional Brownian
motions with possibily different Hurst parameters is jointly sticky.

Proposition 3. Let BHi
t =
∫ t

−∞[(t − s)Hi−
1
2 − 1{s≤0}(−s)Hi−

1
2 ]dB(i)t , i = 1,2, · · · , d be a sequence of

independent fractional Brownian motions in [0, T] with respective Hurst parameters H1, H2, · · · , Hd ∈
(0, 1). Then for any deterministic continuous functions f1, f2, · · · , fd on [0, T], the process B =
(BH1

t + f1(t), BH2
t + f2(t), · · · , BHd

t + fd(t)) is jointly sticky .
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Proof. Let

Ω = {ω ∈ C(R) :ω(0) = 0 and ∀t ∈R, lim
s→t

ω(t)−ω(s)
q

|t − s|log( 1
|t−s| )

= 0},

B the σ−algebra of subsets of Ω that is generated by the cylinder sets and P the Wiener measure
on (Ω,B). Let (Ω(i),B (i), P(i)), i = 1, 2, · · · , d be d copies of (Ω,B , P). With slight abuse of
notation, we denote by P the d−dimensional Wiener measure P(1)× P(2)×· · ·× P(d) on (Ωd ,B d),
where (Ωd ,B d) is the product space of (Ω(i),B (i)), i = 1, 2, · · · , d. Without loss of generality, we
assume that for each 1 ≤ i ≤ d, BHi

t is defined on (Ωd ,B d , P) by the improper Riemann-Stieltjes
integrals

BHi
t (ω) =

∫ t

−∞
[(t − s)Hi−

1
2 − 1{s≤0}(−s)Hi−

1
2 ]dω(i)(s), t ≥ 0. (10)

where ω= (ω(1),ω(2), · · · ,ω(d)) ∈ Ωd (see the proof of Theorem 4.3 of [3]). Let FB = (F B
t )t∈[0,T]

be the filtration given by
F B

t = ∨
d
i=1σ{B

Hi
s : 0≤ s ≤ t}.

Then BH1
t , BH2

t , · · · , BHd
t are independent fractional Brownian motions in the filtered probability

space (Ωd ,B d ,FB = (F B
t )t∈[0,T], P). Let FΩ

d

t =

∨d
i=1σ{{ω ∈ Ω

d :ω(i)(s j)≤ a j , j = 1, 2, · · ·n} :−∞< s j ≤ t, a j ∈R, n ∈ N}

Then (ω(1)(t),ω(2)(t), · · · ,ω(d)(t)) is d−dimensional Brownian motion in the filtered probability
space (Ωd ,B d ,FΩ

d
= (FΩ

d

t )t∈[0,T], P). It is clear that F B
t ⊂ F

Ωd

t , t ≥ 0, therefore FB stopping

times are also FΩ
d

stopping times.

Now, let τ be any stopping time of FB and let

Aτ,ε
i = {supt∈[0,T−τ]|B

Hi
τ+t − BHi

τ + fi(τ+ t)− fi(τ)|< ε}

for each 1≤ i ≤ d and for any ε > 0. To show the jointly stickiness of B, we need to show

P(∩d
i=1Aτ,ε

i |F
B
τ )> 0 a.s.

However, since F B
τ ⊂F

Ωd

τ , it is sufficient to show

P(∩d
i=1Aτ,ε

i |F
Ωd

τ )> 0 a.s. (11)

We divide the proof of (11) into two steps.

(A) For each ω(s) ∈ Ωd set

π
(i)
1 ω(s) =ω

(i)(s)1(−∞,τ(ω)](s), s ∈R,

π
(i)
2 ω(s) =ω

(i)(τ(ω) + s)−ω(i)(τ(ω)), s ≥ 0,

for all 1≤ i ≤ d. For each 1≤ i ≤ d, let

Ω(i)1 = {π
(i)
1 ω :ω ∈ Ωd}, Ω(i)2 = {π

(i)
2 ω :ω ∈ Ωd}
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and letB (i)1 andB (i)2 be the σ−algebras generated by the cylinder sets of Ω(i)1 and Ω(i)2 respectively.
Also let Ωi = Ω

(1)
i × Ω

(2)
i × · · · × Ω

(d)
i , i = 1,2 and let Bi = B

(1)
i ×B (2)i × · · · × B (d)i , i = 1, 2.

It is clear that π(i)1 : Ωd → Ω(i)1 is FΩ
d

τ measurable for each 1 ≤ i ≤ d, hence the map π1 :

Ωd → Ω1 given by π1ω = (π
(1)
1 ω,π(2)1 ω, · · · ,π(d)1 ω) is FΩ

d

τ measurable (for notational simplicity

we write π1ω := ω1 = (ω
(1)
1 ,ω(2)1 , · · · ,ω(d)1 )) . Also it follows from Theorem 6.16 of [13] that

π2ω := (π(1)2 ω(s),π
(2)
2 ω(s), · · · ,π

(d)
2 ω(s)) is d−dimensional Brownian motion independent from

FΩ
d

τ . Define a map τ′ : Ω1 → R by τ′(ω1) := τ(ω), where ω ∈ Ωd is such that ω1 = π1ω (note
that if ω′,ω ∈ Ωd and π1ω

′ = π1ω, then τ(ω) = τ(ω′), since τ is FΩ
d

τ measurable). Then for
each ω ∈ Ωd , we can write

(BHi
τ+t − BHi

τ )(ω) = (12)
∫ τ′(π1ω)

−∞
[(τ′(π1ω) + t − s)Hi−

1
2 − (τ′(π1ω)− s)Hi+

1
2 ]dπ(i)1 ω(s)

+

∫ t

0

(t − s)Hi−
1
2 dπ(i)2 ω(s)

Note that τ′(π1(ω)) = τ(ω), therefore τ′(π1(·)) is FΩ
d

τ measurable.

(B) Let Aτ,ε
i be as in (2) for each 1≤ i ≤ d. For each ω1 = (ω

(1)
1 ,ω(2)1 , · · · ,ω(d)1 ) in Ω1, define

hi
t(ω1) :=

∫ τ′(ω1)

−∞
[(τ′(ω1) + t − s)Hi−

1
2 − (τ′(ω1)− s)Hi+

1
2 ]dω(i)1 (s)

+ f (τ′(ω1) + t)− f (τ′(ω1)),

and for each ω2 = (ω
(1)
2 ,ω(2)2 , · · · ,ω(d)2 ) ∈ Ω2 define

H i
t(ω2) :=

∫ t

0

(t − s)Hi−
1
2 dω(i)2 (s)

Then from (12) and the definition of τ′, it follows that

[BHi
τ+t − BHi

τ + fi(τ+ t)− fi(τ)](ω) = hi
t(π1ω) +H i

t(π2ω), t ≥ 0. (13)

Define
C i := {(ω1,ω2) ∈ Ω1 ×Ω2 : sup

t∈[0,T−τ′(ω1)]
|hi

t(ω1) +H i
t(ω2)|< ε}

for each 1 ≤ i ≤ d. Since hi
t + H i

t is continuous process in Ω1 ×Ω2, C i isB1 ×B2 measurable for
each 1 ≤ i ≤ d. Since π1 is FΩ

d

τ measurable and π2 is independent from FΩ
d

τ , from Proposition
A.2.5 of [4], for almost every ω ∈ Ωd we have

E[1∩d
i=1C i (π1,π2)|FΩ

d

τ ](ω) = φ(π1ω) (14)

where φ(ω1) = E1∩d
i=1C i (ω1,π2). From (13) and the definitions of C i and Aτ,ε

i , it is clear that

1C i (π1ω,π2ω) = 1Aτ,ε
i
(ω) for each 1≤ i ≤ d and ω ∈ Ωd . Therefore

E[1∩d
i=1Aτ,ε

i
|FΩ

d

τ ](ω) = E[1∩d
i=1C i (π1,π2)|FΩ

d

τ ](ω) = φ(π1ω).
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for eachω ∈ Ωd . In the following, we will show that φ(ω1)> 0 for eachω1 ∈ Ω1. To see this, note
that the random variables 1C i (ω1,π1), i = 1, 2, · · · , d are independent for each fixed ω1 ∈ Ω1 (this
follows from the independence of the Brownian motions π(i)2 ω, i = 1,2, · · · , d and the definitions
of H i

t). Therefore, we have φ(ω1) = E1C1(ω1,π2)E1C2(ω1,π2) · · · E1Cd (ω1,π2). Let

Bεi (ω1) = {ω ∈ Ωd : (ω1,πiω) ∈ C i}

for each 1 ≤ i ≤ n. Then, we have 1C i (ω1,πi) = 1Bεi (ω1) for each 1 ≤ i ≤ d. This shows that
φ(ω1) = P(Bε1) × P(Bε2) × · · · × P(Bεd). Therefore, it is sufficient to show P(Bεi ) > 0 for each
1≤ i ≤ d. Note that

Bεi (ω1) = {ω ∈ Ωd : sup
t∈[0,T−τ′(ω1)]

|hi
t(ω1) +

∫ t

0

(t − s)Hi−
1
2 dπiω< ε}.

If τ′(ω1) = 0, then Bεi (ω1) = Ωd , so P(Bεi (ω1)) > 0. If τ′(ω1) > 0, then since πi(ω) is a
Brownian motion and hi

t(ω1) is a deterministic continuous function for each ω1, from the results

in [6, 8, 11], it follows that hi
t(ω1) +
∫ t

0
(t − s)Hi−

1
2 dπiω has full support in C[0,τ′(ω1)]. This,

in turn, implies that Bεi (ω1) has positive probability for each i. Therefore φ(ω1) > 0 for each
ω1 ∈ Ω1. Now, the result follows from (14).This completes the proof.

In the following Proposition we show a time change result on joint stickiness.

Proposition 4. Let X t = (X 1
t , X 2

t , · · · , X d
t ) be a continuous process adapted to the filtration F. Let Vt

be a nondecreasing continuous process such that for each t, Vt is F stopping time. Then we have the
following

(i) X is jointly sticky with respect to F if and only if for any stopping time τ ≤ T of F and
any δ > 0, the stopping time τ1 = inf{t ≥ τ : |X i

t − X i
τ| ≥ δ, 1 ≤ i ≤ d} ∧ T satisfies

P(τ1 = T |Fτ)> 0 a.s.

(ii) If X is jointly sticky with respect toF, then the time changed process Yt = XVt∧T = (X 1
Vt∧T , X 2

Vt∧T , · · · , X d
Vt∧T )

is jointly sticky with respect to the filtration G= (Gt)t∈[0,T], where Gt =FVt∧T .

Proof. Proof of (i): Assume X is jointly sticky. To show P(τ1 = T |Fτ) > 0, we need to show

P(A∩ {τ1 = T}) > 0 for any A ∈ Fτ with P(A) > 0. Let A
τ, δ

2
i = {supt∈[τ,T]|X i

t − X i
τ| <

δ

2
}. Since

X is jointly sticky, the event A1 = A∩ (∩d
i=1A

τ, δ
2

i ) has positive probability. On A1 we clearly have
τ1 = T and so P(A∩ {τ1 = T}) > 0. To show the other direction, let τ ≤ T be any stopping time
and A ∈ Fτ be any event with P(A) > 0. For any ε > 0, let Aτ,ε

i = {supt∈[τ,T]|X i
t − X i

τ| < ε} for
each i. We need to show the event A1 = A∩ (∩d

i Aτ,ε
i ) has positive probability. Let τ1 = inf{t ≥ τ :

|X i
t − X i

τ| ≥
ε

2
, 1 ≤ i ≤ d} ∧ T . Since P(τ1 = T |Fτ) > 0 almost surely, the event A∩ {τ1 = T} has

positive probability. By the definition of τ1 we have A∩ {τ1 = T} ⊂ A1 and therefore P(A1) > 0.
This completes the proof.

Proof of (ii): Denote Y i
t = X i

Vt∧T for each i. Let τ ≤ T be any stopping time of G. For any
δ > 0, let τ1 = inf{t ≥ τ : |Y i

t − Y i
τ| ≥ δ, 1 ≤ i ≤ d} ∧ T . Due to part (i) above, we only need

to show P(τ1 = T |Gτ) > 0 almost surely. This is equivalent to showing that for any A ∈ Gτ with
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P(A) > 0, P(A∩ {τ1 = T}) > 0. To see this, let τ0 = inf{t ≥ τ : |Y i
t − Y i

τ| ≥
δ

4
, 1 ≤ i ≤ d} ∧ T .

Let τA = τ1A+ T1Ω/A and τA
0 = τ01A+ T1Ω/A, then both of τA and τA

0 are G stopping times. Since
τA < τA

0 on A, there exists a deterministic number k such that A1 = {τA < k < τA
0} has positive

probability. Note that A1 ⊂ A and A1 ∈ Gk. Since τ0 > k > τ on A1, by the definition of τ0, for
each 1≤ i ≤ d we have

supt∈[τ,k]|Y i
t − Y i

τ| ≤
δ

4
(15)

on A1. Let θ = inf{t ≥ Vk ∧ T : |X i
t − X i

Vk∧T | ≥
δ

4
, 1≤ i ≤ d} ∧ T . Since X is jointly sticky, the event

A2 = A1 ∩ {θ = T} has positive probability. Since θ = T on A2, for each 1≤ i ≤ d we have

sup
t∈[k,T]

|X i
Vt∧T − X i

Vk∧T | ≤
δ

4
(16)

on A2. From (15) and (16), for each 1≤ i ≤ d we have

supt∈[τ,T]|Y i
t + Y i

τ| ≤ supt∈[τ,k]|Y i
t − Y i

τ|+ sup
t∈[k,T]

|Y i
t − Y i

k |< δ.

on A2. This shows that τ1 = T on A2. This completes the proof.

Example 3. Let BH1
t , BH2

t , · · · , BHd
t be a sequence of independent fractional Brownian motions with

respect to the filtration F = (Ft)t≥0. Let νt be any bounded time change. Then the process X t =
(BH1
νt

, BH2
νt

, · · · , BHd
νt
) is jointly sticky with respect to the filtration (Fνt

)t∈[0,T]. To see this, let M be

such that νt ≤ M almost surely for all t ∈ [0, T]. From Proposition 3, B = (BH1
t , BH2

t , · · · , BHd
t ) is

jointly sticky for the filtration (Ft)t∈[0,M]. Then, from part (ii) of Proposition (4), we conclude X is
jointly sticky with respect to (Fνt

)t∈[0,T].
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