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Abstract

We use Girsanov’s theorem to establish a conjecture of Khoshnevisan, Xiao and
Zhong that φ(r) = rN−d/2(log log( 1

r ))
d/2 is the exact Hausdorff measure function for

the zero level set of an N -parameter d-dimensional additive Brownian motion. We
extend this result to a natural multiparameter version of Taylor and Wendel’s theorem
on the relationship between Brownian local time and the Hausdorff φ-measure of the
zero set.

AMS 2000 subject classifications: Primary: 60G60; Secondary: 60G15, 60G17.

Key words and phrases. Local times, Hausdorff measure, Level sets, Additive Brownian
motion.

Submitted to EJP on November 21, 2003. Final version accepted on April 13, 2004.
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1 Introduction and results

Let X : RI N → RI d be a multiparameter additive Brownian motion, that is, X has the
following decomposition

X(t) =

N
∑

i=1

X i(ti), t = (t1, ..., tN ) ∈ RI N ,

where the X i are independent, two sided d-dimensional Brownian motions.
The aim of this paper is to establish a conjecture of Khoshnevisan, Xiao and Zhong,

c.f. [5, Problem 6.3], that if 2N > d, for any bounded interval I ⊂ RI N ,

mφ({t : X(t) = 0} ∩ I) <∞ a.s.,

where φ(r) = rN−d/2(log log(1
r ))

d/2 and mφ denotes the Hausdorff φ-measure.
Note that the question does not arise for 2N ≤ d since a.s. for all t 6= 0, X(t) 6= 0 (see

e.g. [7, Proof of Theorem 1 (b), p.15] or [8]).
The conjecture followed the result of Xiao [14], as observed in [5], that mφ({t : X(t) =

0} ∩ I) > 0 a.s. if L(I) > 0 for L the local time as defined below in (1.1), and so implies
that φ is the exact measure Hausdorff function for the zero level set of X.

In one dimension the first result of this kind was due to Taylor and Wendel [13], who
showed that if X is a one-dimensional Brownian motion, there exists a positive finite con-
stant c such that

mφ({s : X(s) = 0, s ≤ t}) = cL(t) a.s.,

for all t > 0, where L is the local time at zero of X, that is,

L(t) = lim
ε↓0

1

2ε

∫ t

0
1{|X(s)|≤ε}ds,

where 1A denotes indicator function of the event A.
Due to Perkins [9] much more is known, Perkins identified the constant c as 1/

√
2 and

in fact showed that a.s., simultaneously over all x,

mφ({s : X(s) = x, s ≤ t}) = Lx(t)/
√
2,

where

Lx(t) = lim
ε↓0

1

2ε

∫ t

0
1{|X(s)−x|≤ε}ds.

We adopt arguments found in Perkins’ and Taylor and Wendel’s articles, and ultimately
prove the following result.

Theorem 1.1 Let X : RI N → RI d be an additive Brownian motion. Then, there exists a
strictly positive finite constant c such that for any multi-time interval I ⊂ RI N ,

mφ({t : X(t) = 0} ∩ I) = cL(I) a.s.,

where L(I) denotes the local time at 0 on multi-time interval I, that is,

L(I) = lim
ε↓0

1

cdεd

∫

I
1{‖X(s)‖≤ε}ds, (1.1)

where cd is the d-dimensional volume of the unit sphere and ‖ · ‖ denotes Euclidean norm
in RI d.
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Remark 1.2 It follows from [14], that the constant c is necessarily strictly positive.

For proofs on existence of local times and their continuity properties in the multiparam-
eter context see [3] and [4].

Recall that an exact Hausdorff measure function for a set E is meant a function ψ(r)
defined for small r ≥ 0, vanishing at the origin, increasing and continuous, such that the
Hausdorff ψ-measure of the set E defined by

mψ(E) = lim
δ→0

inf
{Ii}
{
∞
∑

i=1

ψ(|Ii|) : E ⊂ ∪∞i=1Ii, |Ii| < δ},

is almost sure positive and finite, where |Ii| is the diameter of the set Ii. See [2] or [11].
Essentially, there is at most one correct function ψ for a given set E, in the sense that

if mψ1(E) ∈ (0,∞) and if

lim
r↓0

ψ1(r)

ψ2(r)
= 0, then mψ2(E) =∞,

while if

lim
r↓0

ψ1(r)

ψ2(r)
=∞, then mψ2(E) = 0.

A natural covering of, say, the zero set of X in the interval [1, 2]N , is to divide up the
cube into 2Nn subcubes of side length 2−n and to take as a cover the collection of subcubes
which intersect the zero set. Now, since the variation of X on such a cube is of order 2−n/2,
we can see that the probability that a given subcube intersects the zero set is of the order
2−nd/2 and so, for the resulting cover,

E[
∞
∑

i=1

|Ii|N−d/2] ≤ K,

for some finite constant K not depending on n. By Fatou’s lemma, a.s. there exists a
sequence of covers of the zero set intersected with [1, 2]N , {Ini }n≥1, for which the maximal
diameter tends to zero and for which

lim inf
n→∞

∞
∑

i=1

|Ini |N−d/2 <∞.

This implies that
mψ({t : X(t) = 0} ∩ [1, 2]N ) <∞ a.s.,

for ψ(r) = rN−d/2. But it does not, conversely, show thatmψ > 0 : mψ is defined via optimal
coverings rather than individual, given coverings. In fact there exist better coverings for
which the lengths of the diameters vary, and ultimately it can be shown thatmψ({t : X(t) =
0}) = 0.

For our purposes we note that, restricting to planar axes Pi = {t : ti = 0}, we have, for
all R, mψ({t : X(t) = 0}∩Pi∩BR) <∞ a.s., for ψ(r) = rN−1−d/2 and BR = {t : ‖t‖ ≤ R}.
Finally, one can show the following result.

Lemma 1.3 For X a multiparameter additive Brownian motion from RI N to RI d and φ as
previously defined,

mφ({t : X(t) = 0} ∩ (∪Ni=1Pi)) = 0 a.s.
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A natural way to get good coverings of an awkward set such as the zero set of X is
to exploit a kernel L : Ω × B(RI N ) → RI + which is a.s. supported by the zero set. If we
could choose a disjoint random cover {Ii} of, say, {t : X(t) = 0} ∩ [1, 2]N for which a.s.
L(w, Ii(w)) ≥ φ(|Ii|), then, necessarily

∞
∑

i=1

φ(|Ii|) ≤
∞
∑

i=1

L(w, Ii(w))

= (by disjointness) L(ω,∪∞i=1Ii(w))

≤ L(ω, [1, 2]N ) <∞.

We propose to follow this heuristic with the kernel L given by multidimensional local time
defined by (1.1).

A problem is that it may be unavoidable that a covering includes some intervals for which
the inequality φ(|Ii|) ≤ L(w, Ii) does not hold. We need a way of picking the covering so
that

∑

φ(|Ii)) is small where the sum is over Ii for which the relation φ(|Ii|) ≤ L(w, Ii)
fails.

For us this amounts to finding good probability bounds on the law of the iterated
logarithm failing for local times in multidimentional setting and represents the bulk of our
work. Essentially we want to get a reasonable lower bound on the probability of local
time being large: we begin with product Wiener measure, P, over the space of RI d valued
continuous functions defined over [0, t], V i, i = 1, ..., N . We then consider the (equivalent)
measure Q with respect to which the V i are independent Ornstein-Uhlenbeck processes
dV i(r) = dBi(r)− cV i(r)dr, where the Bi are independent Wiener processes under Q, and
use the equality

P{A} =
∫

A

dP
dQ

dQ

to estimate Wiener measure of an event A.
The paper is planned as follows. In Section Two we analyze certain additive Ornstein-

Uhlenbeck processes and establish various “laws of large numbers”. In terms of the above
equation, this means to find good bounds on Q{A} for relevant A. In Section Three we
use Girsanov’s theorem to transform information from Section Two concerning Ornstein-
Uhlenbeck processes to information on multiparameter Brownian motions. This results in
good bounds for dP

dQ . This is then used to obtain a large deviations result for multi-parameter
Brownian motions and local times. The fourth section proves (see Corollary 4.2) that for
X an additive Brownian motion, there exists a positive finite constant K such that on any
interval I ⊂ RI N

mφ({t : X(t) = 0} ∩ I) ≤ K L(I) a.s.

Finally, in Section 5 we arrive at the proof of Theorem 1.1.

Notation: in this paper we use the standard analogies for one dimensional terms, that
is, an interval I ⊂ RI N is of the form I1 × I2 × · · · × IN where the Ii are one dimensional
intervals, be they open, closed or half open, half closed. We say multi-time interval when
we wish to emphasize the higher dimensional aspect. Two points u = (u1, u2, ..., uN ), v =
(v1, v2, ..., vN ) ∈ RI N satisfy the relation u < v (resp. u ≤ v) if and only if for every
i = 1, 2, ..., N, ui < vi (resp. ui ≤ vi). For two such vectors, [u, v] will denote the interval
[u1, v1]× [u2, v2]× · · · × [uN , vN ].
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Given a real number s and a given dimension, the vector s will denote the vector of the
given dimension, all of whose components are equal to s in value. Given a vector u and a
scaler s, u+ s will denote the vector u+ s.

As is common, throughout c, C, k,K will denote constants and their specific value may
change from line to line or even from one side of an inequality to another. For v a vector in
RI d and Σ a positive definite d× d matrix, N (v,Σ) will denote the corresponding Gaussian
distribution.

2 Local times for Ornstein-Uhlenbeck processes

Let (Ω,F ,Q) be a complete probability space and let Xc : RI N
+ → RI d be an additive

Ornstein-Uhlenbeck process, that is,

Xc(t) =
N
∑

i=1

Xc,i(ti), t = (t1, ..., tN ) ∈ RI N
+ ,

where the (Xc,i(r), r ≥ 0), i = 1, ..., N , are d-dimensional Ornstein-Uhlenbeck processes
defined on (Ω,F ,Q), each independent of the others, and so that

dXc,i(r) = dW i(r)− cXc,i(r)dr, r > 0,

where the W i are d-dimensional independent Brownian motions on (Ω,F ,Q).
As is well known, we can write

Xc,i(r)
D
= e−cr

(

Xc,i(0) + W̃
i
(

e2cr − 1

2c

))

, (2.1)

where W̃
i
is a standard d-dimensional Brownian motion on (Ω,F ,Q) independent ofX c,i(0).

We consider the local time at 0 of Xc in the time interval [0, t]N , defined as in (1.1),
that is,

Lct = lim
ε↓0

1

cdεd

∫

[0,t]N
1{‖Xc(r)‖<ε} dr.

We start by proving the following result.

Lemma 2.1 Let t be small but positive and let c =
h log log( 1

t
)

t , where h is a fixed positive
finite constant. Then, on the event {‖Xc,i(0)‖ ≤ 1√

c
}, as t tends down to zero,

E[Lct |Xc(0)] = tN (2c)d/2(2πN)−d/2 +O





tNcd/2
√

log log(1
t )



 (2.2)

and

E[(Lct)2|Xc(0)] = (E[Lct |Xc(0)])2



1 +O





1
√

log log(1
t )







 , (2.3)

where for f, g real functions, f = O(g) means that there exists a finite positive constant K
such that |f | ≤ K|g|.
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Proof. We start by proving (2.2). One can easily check that

E[Lct |Xc(0)] =

∫

[0,t]N
pc(0, r) dr,

where pc(0, r) is the conditional density at 0 of Xc(r) given Xc(0). Note that by (2.1),

(Xc(r)|Xc(0))
D
= N

(

N
∑

i=1

e−criXc,i(0), (
N
∑

i=1

1− e−2cri

2c
)Id)

)

,

where Id denotes the d× d identity matrix.
Now, let H = {r ∈ [0, t]N : ri ≥ t

√

log log( 1
t
)
, ∀ i = 1, ..., N}. Then, if r ∈ H, using the

condition on Xc(0), it is easily checked that, for t << 1,

pc(0, r) ∈ [(2c)d/2(2πN)−d/2e−N , (2c)d/2(2πN)−d/2].

Therefore,
∣

∣

∣

∣

∫

H
pc(0, r) dr − tN (2c)d/2(2πN)−d/2

∣

∣

∣

∣

≤ K
tNcd/2

√

log log(1
t )
,

where K is a positive finite constant.
On the other hand, if r ∈ Hc ∩ [0, t]N , then r ∈ ⋃N

i=1Bi, where,

Bi = [0, t]i−1 × [0,
t

√

log log(1
t )
]× [0, t]N−i.

Now, for r ∈ Bi, if max1≤j≤N rj ≥ 1
c , the density pc(0, r) is bounded by

(2π)−d/2(2c)d/2(1− e−2)−d/2,

and, if rj ≤ 1
c , for all j = 1, ..., N the density pc(0, r) is bounded by

K

(
∑N

j=1 rj)
d/2

,

where K is a positive finite constant not depending on t. Hence,

∫

Hc∩[0,t]N
pc(0, r) dr ≤

N
∑

i=1

∫

Bi

pc(0, r) dr

≤ Kcd/2
N
∑

i=1

|Bi|+K ′
∫

[0, t

h log log( 1
t )

]N

1

(
∑N

i=1 ri)
d/2

dr

≤ K ′′
h

tNcd/2
√

log log(1
t )
,

and this concludes the proof of (2.2).
In order to prove (2.3) we write

E[(Lct)2|Xc(0)] =

∫

[0,t]N
dr

∫

[0,t]N
dr′pc(0, 0, r, r′),
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where pc(0, 0, r, r′) denotes the conditional joint density at (0, 0) of the random vector
(Xc(r), Xc(r′)) given Xc(0).

Note that, by (2.1), pc(0, 0, r, r′) can be written as the product of pc(0, r′) and the
conditional density at the random point −∑N

i=1 e
−criXc,i(0) of the (Gaussian) random

variable
∑N

i=1 e
−criW̃

i
( e

2cri−1
2c ) given that

N
∑

i=1

e−cr
′

iW̃
i
(

e2cr
′

i − 1

2c

)

= −
N
∑

i=1

e−cr
′

iXc,i(0).

The latter is a Gaussian density with mean

(
N
∑

i=1

(1− e−2cr′i))−1(
N
∑

i=1

(1− e−2c(ri∧r′i)))(−
N
∑

i=1

e−cr
′

iXc,i(0))

and covariance matrix given by

(∑N
i=1(1− e−2cri)

2c

)

(1− ρ2(r, r′))Id,

where

ρ(r, r′) =

∑N
i=1(1− e−2c(ri∧r′i))

∑N
i=1(1− e−2cr′i)

∑N
i=1(1− e−2cri)

.

Then, the proof of (2.3) follows along the same lines as the proof of (2.2) by considering
the different cases of r, r′ of being in H and Hc ∩ [0, t]N , and using the estimates of ρ(r, r′)
obtained in [1, Section 3] and the condition on Xc(0).

♣

Using Lemma 2.1 one easily deduces the following result.

Proposition 2.2 Let Xc be an additive Ornstein-Uhlenbeck process defined as above and

such that ‖Xc,i(0)‖ ≤ 1√
c
a.s. with c =

h log log( 1
t
)

t , where h is a positive finite constant.

Then, as t tends down to 0,
Lc
t

E[Lc
t |Xc(0)] tends to 1 in probability conditioning on X c(0),

uniformly over {‖Xc,i(0)‖ ≤ 1√
c
}.

Finally, we shall need the following additional result.

Proposition 2.3 Let Xc,i, i = 1, ..., N be independent Ornstein-Uhlenbeck processes de-

fined as above and such that ‖Xc,i(0)‖ ≤ 1√
c
a.s. with c =

h log log( 1
t
)

t , where h is a positive

finite constant. Then, as t tends down to zero,

∫ t

0
c2

N
∑

i=1

‖Xc,i(s)‖2ds

ct/2

pr→ Nd.

Proof. Let Z(t) :=
∫ t
0 c

2
∑N

i=1 ‖Xc,i(s)‖2ds. By (2.1),

E[‖Xc,i(s)‖2] = e−2cs

(

E[‖Xc,i(0)‖2] + d(e2cs − 1)

2c

)

.
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Therefore,

E[Z(t)] ≥
∫ t

0
c2Nd

(

1− e−2cs

2c

)

ds

=
dNct

2
+
dN

4
(e−2ct − 1)

=
dNct

2
+O(1).

A similar calculation shows that

E[Z(t)2] = c4
∫ t

0
ds

(

∫ t

0
E[

N
∑

i=1

‖Xc,i(s)‖2
N
∑

i=1

‖Xc,i(s′)‖2]ds′
)

= 2c4
∫ t

0
ds

(

∫ s

0
E[

N
∑

i=1

‖Xc,i(s)‖2
N
∑

i=1

‖Xc,i(s′)‖2]ds′
)

≤ N2d2(
c2t2

4
+O(h log log(

1

t
)) +O(1)).

Therefore, as t tends down to 0,

E

[(

Z(t)

E[Z(t)]
− 1

)2]

→ 0,

and the desired result follows. ♣

3 Girsanov’s theorem

For the following, we refer the reader to [10, Chapter VIII].
Let X : RI N → RI d be an additive Brownian motion on the standard d-dimensional

Wiener space (Ω,F ,P), that is,

X(t) =
N
∑

i=1

Xi(ti), t = (t1, ..., tN ) ∈ RI N ,

where the X i are independent d-dimensional Brownian motions. We define a probability
measure Q on (Ω,F) such that

dQ
dP

∣

∣

∣

∣F t

= exp

(

−
N
∑

i=1

∫ t

0
cXi(s) · dX i(s)−

N
∑

i=1

1

2
c2
∫ t

0
‖X i(s)‖2ds

)

, (3.1)

where {F t}t≥0 denotes the natural filtration of the Brownian motion.
By Girsanov’s theorem, under Q, the processes (X i(s), 0 ≤ s ≤ t) are independent

d-dimensional Ornstein-Uhlenbeck processes, for i = 1, ..., N , and

M i(s) = X i(s) +

∫ s

0
cXi(u)du, 0 ≤ s ≤ t,

are martingales, and in fact Brownian motions. Moreover,
∫ t

0
cXi(s) · dX i(s) =

∫ t

0
cXi(s).dM i(s)−

∫ t

0
c2‖X i(s)‖2ds.
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Therefore,

dQ
dP

∣

∣

∣

∣F t

= exp

(

−
N
∑

i=1

∫ t

0
cXi(s) · dM i(s) +

N
∑

i=1

1

2
c2
∫ t

0
‖X i(s)‖2ds

)

,

and so

dP
dQ

∣

∣

∣

∣F t

= exp

( N
∑

i=1

∫ t

0
cXi(s) · dM i(s)−

N
∑

i=1

1

2
c2
∫ t

0
‖X i(s)‖2ds

)

.

Then, we have the following result.

Lemma 3.1 Let X be an additive Brownian motion on (Ω,F ,P) defined as above and

such that ‖Xc,i(0)‖ ≤ 1√
c
a.s. with c = h log log(1/t)

t , where h a positive finite constant not

depending on t. Consider the event

At =

{

dP
dQ

∣

∣

∣

∣F t

≥ e−hNd log log(1/t)

}

.

Then, as t tends down to 0, Q{At} tends to 1.

Proof. Since the M i(s) = X i(s) +
∫ s
0 cX

i(u)du, i = 1, ..., N , are d-dimensional Brownian
motions under Q, v →

∫ v
0 cX

i(s) · dM i(s) are time-changed Brownian motions with clock
∫ v
0 c

2‖X i(s)‖2ds, that is, there exist independent Brownian motions W i for i = 1, 2, ..., N
such that

∫ v

0
cXi(s) · dM i(s) =W i(

∫ v

0
c2‖X i(s)‖2ds).

Fix ε > 0 and consider the event
{

inf
v≤τ dh

2 log log( 1
t )(1+ε)

∫ v

0
cXi(s) · dM i(s) ≥ −dh

4
log log(

1

t
)

}

,

where τg = inf{s :
∫ s
0 c

2‖X i(u)‖2du = g}. This event is equal to
{

inf
s ≤ dh

2
log log( 1

t
)(1+ε)

W i(s) ≥ −dh
4

log log(
1

t
)

}

,

which, by the reflection principle, has Q-probability equal to

2√
2π

∫

dh
4 log log( 1

t )√
dh
2 log log( 1

t )(1+ε)

0
e−x

2/2dx,

which tends to 1 as t tends down to 0.
Now, consider the events

Bt =

{ N
∑

i=1

∫ t

0
c2‖X i(s)‖2ds ∈

(

(1− ε)Ndh
2

log log(
1

t
), (1 + ε)

Ndh

2
log log(

1

t
)

)}

and

Ct =

{ N
∑

i=1

∫ t

0
cXi(s) · dM i(s) ≥ −Ndh

4
log log(

1

t
)

}

.

602



Under Q, the processes X i are Ornstein-Uhlenbeck processes with drift indexed by c and
so, by the argument above and Proposition 2.3, we have

Q{Bt ∩ Ct} → 1, as t ↓ 0.

Thus, given ε fixed to be less than 1/2, we have

Q{At} ≥ Q{Bt ∩ Ct} → 1, as t ↓ 0.

♣
We finally arrive at a lower bound for a local time large deviations of the process X.

Proposition 3.2 Let X be an additive Brownian motion on (Ω,F ,P) defined as above.
Then, for h fixed and sufficiently small and for all t sufficiently small, we have, on the

event {‖X(0)‖ ≤
√

t
h log log(1/t)},

P
{

L([0, t]N ) ≥ (πN)−d/2tN−d/2(h log log(
1

t
))d/2 |X(0)

}

≥ 1

log(1
t )

1/4
.

Proof. Note that by linearity it makes no difference if we assume that

‖X i(0)‖ ≤
√

t

h log log(1/t)
, for i = 1, ..., N.

Let Q be the probability measure on (Ω,F) defined in (3.1) with c =
h log log( 1

t
)

t , and consider
the event

Dt =

{

L([0, t]N ) ≥ (πN)−d/2tN−d/2(h log log(
1

t
))d/2 |X(0)

}

.

By Lemma 2.1 and Proposition 2.2, as t tends down to 0, Q{Dt} tends to 1, uniformly over

{‖X(0)‖ ≤
√

t
h log log(1/t)}.

On the other hand, by Lemma 3.1, as t tends down to 0,

Q
{

dP
dQ

∣

∣

∣

∣F t

≥ e−h log log( 1
t
)Nd =

1

(log(1
t ))

Ndh

}

→ 1,

on the event {‖X(0)‖ ≤
√

t
h log log(1/t)}. Then, taking h = 1

8Nd , we have, for t sufficiently

small,

P{Dt} =

∫

Dt

dP
dQ

dQ

≥
∫

Dt∩{ dP
dQ
≥ 1

(log( 1
t ))Ndh

}

dP
dQ

dQ

≥ 1

(log(1
t ))

Ndh
Q
{

Dt ∩
{

dP
dQ

>
1

(log(1
t ))

Ndh

}}

≥ 1

(log(1
t ))

1/4
.

♣
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We will use Proposition 3.2 in the following way. Fix i ∈ ZZN and consider the 2−2n

side cube

[
i1
22n

,
(i1 + 1)

22n
]× [

i2
22n

,
(i2 + 1)

22n
]× · · · × [

iN
22n

,
(iN + 1)

22n
].

We consider intervals

ΠNj=1

[

T rj , T
r
j +

n2r+1/4

22n

]

,

where

T rj =
ij
22n

+
n2r

22n
, r = 1, ...,

√
n.

We note that, as for large n, 2−2n ≤ n2r

22n + n2r+1/4

22n << 2−n, for all r = 1, ...,
√
n, we have

that

sup
r≤√n

∣

∣

∣

∣

log log((T rj + n2r+1/4

22n − ij
22n )

−1)

log(n)
− 1

∣

∣

∣

∣

→ 0, as n→∞. (3.2)

Fix h ∈ (0, 1) and consider the event A(r, h) := A(i, r, h) defined by

{

L

( N
∏

j=1

[T rj , T
r
j +

n2r+1/4

22n
]

)

≥
(

n2r+1/4

22n

)N−d/2

(h log n)d/2
}

.

Lemma 3.3 Let Fr = σ(Xj(s), j = 1, ..., N, s ≤ T rj ). Then, if h is chosen sufficiently
small, for all n sufficiently large and uniformly over 1 ≤ r ≤ √n, we have

P{A(r, h)|Fr} ≥
1

n1/4
on the event {‖X(T r)‖ ≤ nr+1/16

2n
}.

Proof. Note that by the strong Markov property, the process (
∑N

j=1X
j(T rj + sj) : s ≥

0) conditioned on Fr, is equal in law to the process (
∑N

j=1X
j(sj) : s ≥ 0) started at

∑N
j=1X

j(T rj ).
Then, for n sufficiently large and h sufficiently small, and uniformly over 1 ≤ r ≤ √n,

‖
N
∑

j=1

Xj(T rj )‖ ≤
nr+1/16

2n
<<

√

t

h log log(1
t )

for t =
n2r+1/4

22n
.

Therefore, using Proposition 3.2 we obtain the desired result for n large.
♣

We now fix h > 0 such that Lemma 3.3 holds for all n sufficiently small and let A(r)
denote the event A(r, h) for this h fixed.

Corollary 3.4 Uniformly for i > c > 0,

P
{

{‖X(
i

22n
)‖ ≤ n2−n} ∩ {∩

√
n

r=1A(r)
c}
}

≤ knd+1/22−nde−n
1/8/4N ,

for k depending on c but not on n.
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Proof. Consider the event

B =

{

‖X(
i

22n
)‖ ≤ n2−n, ∃1 ≤ r ≤ √n so that ‖X(T r)‖ ≥ nr+1/16

2n

}

.

By the independent increments property scaling and standard Brownian bounds, we have

P{B} ≤
√
n

∑

r=1

P
{

‖X(
i

22n
)‖ ≤ n2−n, ‖X(T r)‖ ≥ nr+1/16

2n

}

≤ n1/2C(n2−n)dke−n
1/8/4N .

Finally, by Lemma 3.3,

P
{

{‖X(
i

22n
)‖ ≤ n2−n} ∩ {∩

√
n

r=1A(r)
c} ∩Bc

}

≤ C(n2−n)d
(

1− 1

n1/4

)

√
n

≤ C(n2−n)de−n
1/4
.

♣
Corollary 3.5 For h fixed sufficiently small, i > c > 0, and n sufficiently large, the prob-
ability that X(t) = 0 for some t in [ i

22n ,
i+1
22n ], but there is no 0 ≤ s ≤ 2−n so that

L

([

i

22n
,
i

22n
+ s

])

≥ sN−d/2
(

h log log(
1

s
)

)d/2

,

is bounded by knd+1/22−nde−n
1/8/4N , for k not depending on n.

Proof. Let s = n2r

22n + n2r+1/4

22n , r = 1, ...,
√
n. Note that, by (3.2), uniformly over 1 ≤ r ≤ √n,

∣

∣

∣

∣

log log(1
s )

log n
− 1

∣

∣

∣

∣

→ 0, as n→∞.

On the other hand, by definition, on the event
⋃

√
n

r=1A(r),

L

( N
∏

j=1

[

T rj , T
r
j +

n2r+1/4

22n

])

≥
(

n2r+1/4

22n

)N−d/2
(h log n)d/2,

for some r. As for n sufficiently large, the cube [ i
22n ,

i
22n +s] contains

∏N
j=1[T

r
j , T

r
j +

n2r+1/4

22n ],
we obtain, for n sufficiently large, that on this event

L

([

i

22n
,
i

22n
+ s

])

≥ sN−d/2
(

h log log(
1

s
)

)d/2

.

Thus, by Corollary 3.4, the probability that ‖X( i
22n )‖ ≤ n2−n and there does not exist

0 ≤ s ≤ 2−n such that

L

([

i

22n
,
i

22n
+ s

])

≥ sN−d/2
(

h log log(
1

s
)

)d/2

is bounded by knd+1/22−nde−n
1/8/4N .

The proof is completed by noting that by standard Brownian large deviations estimates

P

{

‖X(
i

22n
)‖ ≥ n2−n, X(t) = 0 for some t ∈

[

i

22n
,
i+ 1

22n

]}

≤ Ke−n
2/4N2

.

♣
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4 The Hausdorff measure function

In this section, we suppose that h has been fixed at a strictly positive value small enough
so that Corollary 3.5 holds. We prove the following result.

Proposition 4.1 Let X : RI N → RI d be an additive Brownian motion. Then, there exists
a positive finite constant k such that for any closed interval I which does not intersect the
planar axes,

mφ({t : X(t) = 0} ∩ I) ≤ kL(I) a.s.,

where φ(r) = rN−d/2
(

log log(1
r )
)d/2

.

Proof. Suppose without loss of generality that I ⊂ (0,∞)N . We first divide up I into the
order of 22nN cubes of side length 2−2n. Given a cube [ i

22n ,
i+1
22n ], i ∈ ZZN , intersecting I,

either

(i) it does not contain a point in {t : X(t) = 0};

(ii) it contains a point in {t : X(t) = 0} but the variation of X in the cube is greater than
n2−n;

(iii) (i) & (ii) above do not apply, but there is no 2−2n ≤ s ≤ 2−n so that

L

([

i

22n
,
i

22n
+ s

])

≥ sN−d/2
(

h log log(
1

s
)

)d/2

;

(iv) (i), (ii) & (iii) do not apply.

We now proceed to the construction of the covering of {t : X(t) = 0}∩ I. We denote by
i the cube [ i

22n ,
i+1
22n ]. Given a cube i satisfying (i), let Ci be ∅. For cubes satisfying (ii) or

(iii), let Ci =
[

i
22n ,

i+1
22n

]

. Finally, for cubes satisfying (iv), let Ci =
[

i
22n ,

i
22n + s

]

, where s

is the largest s ≤ 2−n such that

L

([

i

22n
,
i

22n
+ s

])

≥ sN−d/2
(

h log log(
1

s
)

)d/2

.

Now, let
D = ∪i satisfies (iv)Ci.

By Vitali covering theorem (see e.g. [2]), we can find a subcollection E of the set of i
satisfying (iv), such that

(A) Ci ∩ Cj = ∅, for all i, j ∈ E;

(B) D ⊂ ∪i∈EDi, where Di is the cube with the same centre as Ci but 5 times the side
length.

Consequently, we consider as a covering of {t : X(t) = 0} ∩ I,

(∪
i satisfies (ii) or (iii) Ci) ∪ (∪i∈EDi).
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Now, by definition of the Di and condition (iv), for i ∈ E,

φ(|Di|) ≤ 5N−d/2φ(|Ci|) ≤ 5N−d/2
(

1

h

)d/2

L(Ci),

where, as before, φ(r) = rN−d/2
(

log log(1
r )
)d/2

. Therefore, since the Ci are disjoint for
i ∈ E,

∑

i satisfies (ii) or (iii)

φ(|Ci|) + 5N−d/2
(

1

h

)d/2
∑

i∈E
L(Ci)

≤ φ(2−2n)× ] of i satisfying (ii) or (iii) + 5N−d/2
(

1

h

)d/2

L(∪i∈ECi).

Now, by Corollary 3.5,

E [ ] of i satisfying (ii) or (iii)] ≤ 22Nnknd+1/22−nde−cn
1/8
,

and so by Fatou’s lemma and the a.s. continuity of L(
∏N
i=1[xi, yi]) with respect to xi, yi

(see e.g. [3]), we have, a.s.,

lim inf
n→∞

∑

i satisfies (ii) or (iii)

φ(|Ci|) + 5N−d/2
(

1

h

)d/2

L(∪i∈ECi) ≤ 5N−d/2
(

1

h

)d/2

L(I).

♣

Corollary 4.2 Let X : RI N → RI d be an additive Brownian motion. Then, for any interval
I and h as fixed at the start of the section,

mφ({t : X(t) = 0} ∩ I) ≤ 5N−d/2
(

1

h

)d/2

L(I) a.s.,

where φ(r) = rN−d/2
(

log log(1
r )
)d/2

.

Proof. We write I as the disjoint sum of intersections of I with the planar axes Pi, and
open rectangles which are disjoint from planar axes but whose closures are not. For the
first case, by Lemma 1.3,

mφ({t : X(t) = 0} ∩ (I ∩ (∪Ni=1Pi))) = 0 a.s.

For the second case, without loss of generality we consider a rectangle R contained in the
”quadrant” (0,∞)N . Then, by Proposition 4.1 and the a.s. continuity of L(

∏N
i=1[xi, yi])

with respect to xi, yi, we have, a.s.,

mφ({t : X(t) = 0} ∩R) = lim
ε↓0

mφ({t : X(t) = 0} ∩R ∩ [ε,∞)N )

≤ lim
ε↓0

5N−d/2
(

1

h

)d/2

L(R ∩ [ε,∞)N )

= 5N−d/2
(

1

h

)d/2

L(R).

The final result follows from the additivity of the local time and the Hausdorff measure. ♣
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5 Proof of Theorem 1.1

As a prelude to the proof of Theorem 1.1, we show the result for a fixed interval I bounded
away from the axes. The extension to the ultimate result will then be standard.

Theorem 5.1 Let X : RI N → RI d be an additive Brownian motion. Let I be a closed
interval bounded away from the planar axes. Then, there exists a positive finite constant c,
not depending on I, such that

mφ({t : X(t) = 0} ∩ I) = cL(I), a.s.,

where φ(r) = rN−d/2(log log(1
r ))

d/2.

Proof. In order to simplify the notation we assume I = [1, 2]N . It will be clear that the
proof covers all the cases claimed.

We will construct a set of random variables {V n
M , n,M ≥ 0} such that

(i) for all δ > 0 there exists M0 such that for all n and M ≥M0,

E[
∣

∣mφ({t : X(t) = 0} ∩ [1, 2]N )− V n
M

∣

∣] < δ; (5.1)

(ii) for M fixed,
E[(V n

M − cML([1, 2]N ))2]→ 0, as n→∞, (5.2)

for some constants cM → c ∈ (0,∞), as M →∞. This will imply the desired result.
Let DI n denote the set of time points in RI N

+ of the form ( i1
22n ,

i2
22n , · · · , iN22n ), where the

ij are integers. For every n and x ∈ DI n ∩ [1, 2]N , we write

Lnx = L([x, x+ 2−2n]),

Y n
x = mφ({t : X(t) = 0} ∩ [x, x+ 2−2n]).

Note that by Proposition 4.1, there exists a finite, non random constant k such that

Y n
x ≤ kLnx. (5.3)

We need some preliminary lemmas.

Lemma 5.2 There exist two positive finite constants c1, c2 not depending on n, such that
uniformly over x, y ∈ DI n ∩ [1, 2]N ,

(a) E[Lnx] ≤ c12
−2nN ;

(b) E[LnxLny ] ≤ c22
−4nN (‖x− y‖+ 2−2n)−d/2.

Proof. Let gt(·) denote the density of X(t). Then, for x ≥ 1,

E[Lnx] =
∫

[x,x+2−2n]
gt(0) dt ≤ (2πN)−d/2

∫

[x,x+2−2n]
dt = (2πN)−d/22−2Nn.

This proves (a). In order to prove (b), let gs,t(·, ·) denote the joint density of the random
vector (X(s), X(t)). Then,

E[LnxLny ] =
∫ ∫

[x,x+2−2n]×[y,y+2−2n]
gs,t(0, 0) dsdt.

As is easily seen, for s, t ≥ 1, gs,t(0, 0) ≤ c‖t − s‖−d/2 for c not depending on s or t, from
which the desired result follows. ♣
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Lemma 5.3 For any ε > 0 and M ≥ (dN)1/2, uniformly on n and x ≥ 1,

(a) E[Lnx1{‖X(x)‖≥M2−n}] ≤ ε2−2nN ;

(b) E[Y n
x 1{‖X(x)‖≥M2−n}] ≤ ε2−2nN .

Proof. We start by proving (a). As before gt(z) denotes the density of X(t) at z. Given
z ∈ RI d, with ‖z‖ ≥M2−n and M ≥ (dN)1/2, we have

E[Lnx|X(x) = z] =

∫

[0,2−2n]N
gt(z)dt ≤ 2−2Nn sup

t∈[0,2−2n]N
gt(z)

= C2−(2Nn−nd) exp(− ‖z‖
2

c2−2n
),

where C, c do not depend on M,n or z. Consequently,

E[Lnx1{‖X(x)‖≥M2−n}] ≤ C2−(2Nn−nd)
∫

‖z‖≥M2−n

exp(− ‖z‖
2

c2−2n
)dz

≤ C2−2Nn

∫

‖z‖≥M
exp(−‖z‖

2

c
)dz

= C2−2Nn

∫ ∞

M
exp(−r

2

c
)rd−1dr

≤ ε2−2Nn,

if M is chosen sufficiently large. This proves (a).
The proof of (b) follows from (a) and inequality (5.3). ♣

We define

Y n,M
x = Y n

x 1{‖X(x)‖≤M2−n}

V n
M =

∑

x∈DI n∩[1,2]N

Y n,M
x .

Then, by Lemma 5.3 (b), we have that for all δ > 0, there exists M0 such that for all n and
M ≥M0,

E[|mφ({t : X(t) = 0} ∩ [1, 2]N )− V n
M |] = E[mφ({t : X(t) = 0} ∩ [1, 2]N )− V n

M ] < δ.

This proves (5.1).
We now address (5.2). Define fM : RI d → RI + by

fM (z) = E[mφ({t : X(t) = 0} ∩ [0, 1]N )|X(0) = z]1{‖z‖≤M}.

The function fM is obviously bounded, given Proposition 4.1. By scaling, for x ≥ 0 and in
particular for x ∈ [1, 2]N ,

E[Y n,M
x |X(x)] =

fM (2nX(x))

22nN−nd .

In order to prove (5.2) (and therefore complete the proof of Theorem 5.1) it suffices to
prove
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Proposition 5.4 For M fixed,

E
[

(
∑

x∈DI n∩[1,2]N

fM (2nX(x))

22nN−nd −
∫

RI d

fM (z)dz L([1, 2]N ))2
]

→ 0, as n→∞, (5.4)

and

E
[

(
∑

x∈DI n∩[1,2]N

(
fM (2nX(x))

22nN−nd − Y n,M
x ))2

]

→ 0, as n→∞. (5.5)

This will ensure that equation (5.2) holds with cM =
∫

RI d fM (z)dz. Since
∫

RI d fM (z)dz is
increasing as M increases,

∫

RI d fM (z)dz → c as M tends to infinity. This limit must be
finite by inequality (5.3), while, as noted in Remark 1.2, it is necessarily strictly positive.

Proof of Proposition 5.4
We will detail the proof of (5.5). The proof of (5.4) follows along the same lines and is
left to the reader. In order to simplify the notation we only treat the case N = 2 but the
approach extends to all time dimensions. The approach has some similarities with that of
[6].

In order to prove (5.5), we write

E

[

(
∑

x∈DI n∩[1,2]N

(
fM (2nX(x))

22nN−nd − Y n,M
x ))2

]

=
∑

x,y∈DI n∩[1,2]N

E

[

(
fM (2nX(x))

22nN−nd − Y n,M
x )(

fM (2nX(y))

22nN−nd − Y n,M
y )

]

.

We consider two different cases:

(A) |x1 − y1| ∧ |x2 − y2| ≤ 2−n/2.

E[(
fM (2nX(x))

22nN−nd − Y n,M
x )(

fM (2nX(y))

22nN−nd − Y n,M
y )]

≤ E[
fM (2nX(x))fM (2nX(y))

24nN−2nd
] + E[Y n,M

x Y n,M
y ]

≤ K

24Nn
gx,y(0, 0) + k2E[LnxLny ]

≤ K

24Nn

1

(‖x− y‖+ 2−2n)d/2
,

by bounds for gx,y(0, 0) and Lemma 5.2.

Thus, the sum of E[( fM (2nX(x))
22nN−nd − Y n,M

x )(
fM (2nX(y))

22nN−nd − Y n,M
y )] over x, y satisfying (A)

tends to zero as n tends to infinity.

(B) |x1 − y1| ∧ |x2 − y2| > 2−n/2.

We need to consider different cases. We first assume that y1 > x1 (and so y1 > x1+2−n/2)
and y2 > x2 (and so y2 > x2+2−n/2). Then, by the definition of fM and Markov properties
of X, we have

E[(
fM (2nX(y))

22nN−nd − Y n,M
y )|X(x+ 2−2n)] = 0.
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Therefore,

E[(
fM (2nX(y))

22nN−nd − Y n,M
y )(

fM (2nX(x))

22nN−nd − Y n,M
x )] = 0.

The case x1 > y1 and x2 > y2 follows similarly.
In order to treat the other cases we shall need some basic lemmas.

Lemma 5.5 For y ∈ [1, 2]2,

E[Y n
y |X(y), X(y + (0, 2−2n))] ≤ K2−2nN+nd,

uniformly over X(y), X(y + (0, 2−2n)).

Proof. It is sufficient to show the corresponding inequality for Lny . We have

E[Lny |X(y), X(y + (0, 2−2n))] =

∫ ∫

[0,2−2n]2
dsdt g2−2n

s,t (0|u, v),

where u = X(y), v = X(y+(0, 2−2n)) and g2−2n

s,t (0|u, v) is the density at 0 of an independent

N (0, sId) in RI d convoluted with a d-dimensional Brownian bridge at time t going from u

at time 0 to v at time 2−2n (i.e. N (u+ (v − u) t
2−2n ,

t(2−2n−t)
2−2n Id)). Since

g2−2n

s,t (0|u, v) ≤ K

(

1

(s+ t)d/2
+

1

(2−2n − t+ s)d/2

)

the desired result follows. ♣

Lemma 5.6 Let x, y ∈ DI n ∩ [1, 2]2 with y1 − x1 > 2−n/2 and x2 − y2 > 2−n/2. Then

E[WxWy1{‖X2(x2)‖≥n2}] ≤ Ke−hn
2
,

for some constants K and h independent of x, y and n, where

Wx =
fM (X(x)2n)

22nN−nd or Y n,M
x

Wy =
fM (X(y)2n)

22nN−nd or Y n,M
y .

Remark 5.7 The inequalities hold with 1{‖X2(x2)‖≥n2} replaced by 1{‖X1(x1)‖≥n2} and the
corresponding inequalities hold for x1 > y1 and x2 < y2.

Proof. By basic inequalities for the joint densities, we have

E[Wy|X2(x2),Wx] ≤ K
2−2nN

‖x− y‖d/2 ,

so, it suffices to treat E[Wx1{‖X2(x2)‖≥n2}]. On the other hand, it is easy to see that

E[Wx|X2(x2)] ≤ K2−2nN .

Therefore,

E[Wx1{‖X2(x2)‖≥n2}] ≤ K2−2nNP{‖X2(x2)‖ ≥ n2}
≤ K2−2nNe−hn

2
,

and the desired result follows. ♣
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Lemma 5.8 Let (B(t), t ≥ 0) be a Brownian motion in RI d with B(0) = 0. Let g2−2n(y|v, x)
denote the conditional density of B(2−2n) given B(v) = x. Then, for ‖x‖ ≤ 3n2 and
v ∈ [2−n/2, 1], we have

(i) |g2−2n(y|v, x)− g2−2n(y)| ≤ Kg2−2n(y)2−n/3, for ‖y‖ ≤ 2−nn,

(ii) |g2−2n(y|v, x)| ≤ K2nd exp(− ‖y‖2
42−2n ), for ‖y‖ ≥ 2−nn,

where K does not depend on n, y, v or x.

Proof. By the independence of the increments of the Brownian motion, we have

|g2−2n(y|v, x)− g2−2n(y)| = g2−2n(y)

∣

∣

∣

∣

gv−2−2n(x− y)
gv(x)

− 1

∣

∣

∣

∣

= g2−2n(y)

∣

∣

∣

∣

vd/2

(v − 2−2n)d/2

exp(− ‖x‖2
2(v−2−2n)

) exp(
x·y

v−2−2n ) exp(−
‖y‖2

2(v−2−2n)
)

exp(−‖x‖22v )
− 1

∣

∣

∣

∣

= g2−2n(y)

∣

∣

∣

∣

vd/2

(v − 2−2n)d/2
exp(− ‖x‖22−2n

2v(v − 2−2n)
) exp(

x · y
v − 2−2n

) exp(−
‖y‖2

2(v − 2−2n)
)− 1

∣

∣

∣

∣

.

As ‖x‖ ≤ 3n2, v ∈ [2−n/2, 1] and ‖y‖ ≤ n2−n, we have

‖x‖22−2n

v(v − 2−2n)
≤ 9n42−2n

2−n
≤ 9n42−n,

x · y
v − 2−2n

≤ 3n2n2−n

2−n/2 − 2−2n
≤ 3n32−n/2

1− 2−3n/2
,

‖y‖2
2(v − 2−2n)

≤ 4n22−2n

2(2−n/2 − 2−2n)
≤ 2n22−3n/2

1− 2−3n/2
.

Therefore for ‖x‖ ≤ 3n2, v ∈ [2−n/2, 1] and ‖y‖ ≤ n2−n, and n sufficiently large,

|g2−2n(y|v, x)− g2−2n(y)| ≤ g2−2n(y)2−n/3.

It now suffices to choose K sufficiently large in order to cover the remaining finite number
of n’s less. This proves (i).

Equally, with the same hypotheses on v and x but with ‖y‖ ≥ n2−n, it holds that

g2−2n(y|v, x) ≤ K exp(
x · y

v − 2−2n
) exp(−

‖y‖2
22−2n

)2nd

≤ K exp(−
‖y‖2
42−2n

)2nd

for K not depending on n or y. ♣

Proposition 5.9 Let x, y ∈ DI n ∩ [1, 2]2 with y1 − x1 > 2−n/2 and x2 − y2 > 2−n/2. Then

E

[

(
fM (2nX(x))

22nN−nd − Y n,M
x )(

fM (2nX(y))

22nN−nd − Y n,M
y )

]

≤ K
2−4Nn

‖x− y‖d/2 2
−n/3,

where K does not depend on n, y or x.
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Proof. By Lemma 5.6 it is enough to prove this upper bound for

E

[

(
fM (2nX(x))

22nN−nd − Y n,M
x )(

fM (2nX(y))

22nN−nd − Y n,M
y )1{‖X2(x2)‖≤n2}1{‖X2(y2)‖≤n2}

]

.

Let G = σ(X2(y2), X
2(x2), X(x), X(y), Y n,M

x ). It suffices to treat

E[
fM (2nX(y))

22nN−nd − Y n,M
y |G] =

fM (2nX(y))

22nN−nd − E[Y n,M
y |G]

for ‖X2(x2)‖ ≤ n2 and ‖X2(y2)‖ ≤ n2.
In the following we need only consider X(x) such that fM (2nX(x)) > 0. Now let us

define f(x, z) by

E[mφ({t : X(t) = 0} ∩ [0, 1]2)|X(0) = x,X(0, 1) = x+ z]1{‖x‖≤M}.

Note that this function is bounded, given Proposition 4.1 and Lemma 5.5. By definition,

fM (x) =

∫

RI d

e−‖z‖
2/2

(
√
2π)d

f(x, z)dz,

while by scaling on ‖X(y)‖ ≤M2−n, ‖X2(y2)‖ ≤ n2,

E[Y n,M
y |G] = 2−2Nn+nd

∫

RI d

g2−2n(z|x2 − y2, X
2(x2)−X2(y2))f(2

nX(y), 2nz)dz,

and so

|E[Y n,M
y −

fM (2nX(y))

22Nn−nd |G]|

= |2−2Nn+nd

∫

RI d

(

g2−2n(z|x2 − y2, X
2(x2)−X2(y2))− g2−2n(z)

)

f(2nX(y), 2nz)dz|,

on ‖X(y)‖ ≤M2−n, and is equal to zero on ‖X(y)‖ > M2−n.

By Lemmas 5.5 and 5.8 this is bounded by K2−2Nn+nd2−n/3 for K not depending on n.
Thus, since the conditional probability that ‖X(y)‖ ≤M2−n given Y n,M

x and fM (2nX(x))

is bounded by K2−nd

‖x−y‖d/2 , we obtain the claimed bound. ♣

Proposition 5.9 concludes the proof of Proposition 5.4 and therefore the proof of Theo-
rem 5.1.

♣
Proof of Theorem 1.1
Theorem 5.1 implies that for any interval I bounded away from the planar axes

mφ({t ∈ I : X(t) = 0}) = cL(I) a.s.

for c = limM→∞
∫

RI d fM (x)dx.
Thus, we have that outside a null set this relation holds for all such intervals I with

rational endpoints. By the a.s. continuity of L(
∏N
i=1[xi, yi]) with respect to xi, yi we

deduce the relation simultaneously for all intervals not intersecting the planar axes. Using
continuity again and Lemma 1.3, we extend the relation to all I contained in a closed
orthant, as in the proof of Corollary 4.2. The final result follows from the additivity of the
local time and the Hausdorff measure and the fact that any interval I can be split up into
disjoint subintervals contained in orthants. ♣
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