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Abstract

Motivated by a generalization of Sturm-Lott-Villani theory to discrete spaces and
by a conjecture stated by Shepp and Olkin about the entropy of sums of Bernoulli
random variables, we prove the concavity in t of the entropy of the convolution of a
probability measure a, which has the law of a sum of independent Bernoulli variables,
by the binomial measure of parameters n ≥ 1 and t.
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1 Introduction

Throughout this article, a probability measure a on Z will be considered as a family
of non-negative real numbers (a(k))k∈Z satisfying

∑
k∈Z a(k) = 1. The entropy of a

probability measure a is defined by the formula

H(a) :=
∑
k∈Z

U(a(k)),

where the function U : R+ → R is defined by U(0) := 0 and U(x) := −x log(x) for x > 0.

Given an integer n ≥ 1 and a real parameter t ∈ [0, 1], the binomial measure
(bn,t(k))k∈Z is defined by

∀k ∈ {0, ...n}, bn,t(k) :=
(
n

k

)
tk(1− t)n−k

and by bn,t(k) := 0 elsewhere.

Given a probability measure a = (a(k))k∈Z and an integer n ≥ 1, the binomial con-
volution of a (of order n) is the family of measures (an,t(k))k∈Z defined for t ∈ [0, 1]

by

an,t(k) :=
∑
l∈Z

a(k − l)bn,t(l) =
∑
l∈Z

a(l)bn,t(k − l).

It is easy to see that an,0 is exactly the measure a and an,1 is the measure a shifted n
times on its right.

The goal of this paper is to prove the following:
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Concavity of entropy along binomial convolutions

Theorem 1.1. Let a be a probability measure on Z which has the law of a sum of
independent Bernoulli variables, and an,t its binomial convolution for some n ≥ 1. Then
the function H(t) := H(an,t) is concave in t.

Let us recall what a sum of independent Bernoulli variables (which will often be
abbreviated in s.o.i.B.) is:

Definition 1.2. Given a family of numbers (p1, . . . pr) ∈ [0, 1]r, the probability measure
Bp1,...pr

defined recursively by B∅ := δ0 and

Bp1,...pl+1
(k) := (1− pl+1)Bp1,...pl+1

(k) + pl+1Bp1,...pl+1
(k − 1)

is called the s.o.i.B. of parameters p1, . . . pr.

It follows from the definition that if a is the s.o.i.B. of parameters (p1, ...pr), then
its binomial convolution an,t is the s.o.i.B. of parameters (p1, . . . , pr, t, . . . , t), where the
variable t is repeated n times. In this special case, Theorem 1.1 can be seen as a
particular case of the Shepp-Olkin conjecture:

Conjecture 1.3. Given some r ≥ 1, the function (p1, . . . pr) 7→ H(Bp1,...pr
) is concave in

the r variables (p1, . . . pr).

This conjecture was stated in [6], and the same article gives a proof of the concavity
of t 7→ H(Bp,...p), which can also be seen as a consequence of Theorem 1.1 when the
measure a is the Dirac measure δ0.

Shepp-Olkin conjecture has later been proven true in other cases; for instance John-
son and Yu (see [9]) proved the concavity of t 7→ H(Bt,...t,1−t,...1−t), where the variables
t and 1− t are not necessarily repeated the same number of times. It seems that Theo-
rem 1.1 gives a proof of new special cases of Conjecture 1.3.

Another motivation for Theorem 1.1 comes from the fact that binomial measures
satisfy a discrete version of the transport equation:

∀f : {0, . . . n} → R,
∂

∂t

n∑
k=0

f(k)bn,t(k) = n

n∑
k=0

∇[0,n]f(k)bn,t(k), (1.1)

where the "natural derivation" operator ∇[0,n] is defined on the set of functions f :

{0, . . . , n} → R by

∇[0,n]f(k) :=
k

n
(f(k)− f(k − 1)) +

n− k
n

(f(k + 1)− f(k)).

Some properties of this operator can be found in the (forthcoming) article [2].

Equation (1.1) can be seen as a discrete version of the continuous transport equation

∂

∂t
at(x) = −n

∂

∂x
at(x) (1.2)

(where n can be any real number) whose solutions are be defined by an initial measure
a0 and by the formula at := a0 ∗ δnt. In other words, the family of measures (at)t∈[0,1]
describes the translation of the measure a0 on a distance n on its right. Consequently,
binomial convolutions can be seen as a canonical way to translate smoothly a probabilty
measure on the discrete line on a distance n on its right.

A curve (at)t∈[0,1] in the space of probability measures on R is a translation if and
only if it is a Wasserstein geodesic between two measures a0 and a1 such that a1 = a0∗δn
for some n ∈ R.
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Concavity of entropy along binomial convolutions

Since the works of Sturm ([7], [8]) and Lott-Villani ([4]), geometric properties of
a measured length space (X, d, ν) are linked to concavity properties of the entropy
(with respect to ν) functional along the geodesics of the Wasserstein space associated
to (X, d). In particular, these authors have proven the concavity of the entropy func-
tional along Wasserstein geodesics on the real line. Moreover, the worst cases in this
concavity theorem correspond to translations of measures, along which the entropy is
constant.

This shows that a proof of the concavity of entropy along binomial convolutions could
be an important first step in the description of the "non-negatively curved" behavior of
the discrete line.

The paper is organized as follows. We begin by stating some non-rigorous argu-
ments, based on a classical Gaussian approximation of binomial laws, that let us hope
that Theorem 1.1 should be true. The next section is technical, and presents the two
main tools used in the proof of Theorem 1.1, which are a re-statement of the trans-
port equation and the "modulus of log-concavity" whose non-negativity will be used in
controlling some Taylor expansions. The last section is devoted to the proof itself of
Theorem 1.1.

2 Heuristics

In this section, we provide some non-rigorous arguments that explain why we should
expect Theorem 1.1 to be true. More precisely, we prove two results about concavity of
entropy: the first for solutions of the transport equation and the second for convolutions
of functions by a well-chosen Gaussian kernel.

Let f(x, t) be a positive function satisfying the transport equation

∂

∂t
f(x, t) = −n ∂

∂x
f(x, t). (2.1)

We want to prove that its entropy function H(t) :=
∫
R
U(ρ(x, t))dx is constant (and thus

concave). Using the change of variable y = x + nt gives that H(t) = H(0), so H is
constant.

The major drawback of this argument is that it does not seem possible to adapt it
directly in the discrete case. But it is possible to give another proof of this fact avoiding
the change of variable, by writing

∂2

∂t2
H(t) =

∫
R

(
∂2

∂t2
f(x, t)

)
U ′(f(x, t)) +

(
∂

∂t
f(x, t)

)2

U ′′(x, t)dx

= n2
∫
R

(
∂2

∂x2
f(x, t)

)
U ′(f(x, t)) +

(
∂

∂x
f(x, t)

)2

U ′′(x, t)dx

= n2
∫
R

∂2

∂x2
U(f(x, t))dx

= 0.

Remark: Here we used an integration by parts, and this method has a discrete coun-
terpart which is the use of telescopic series. We will use this fact in the proof of Theo-
rem 1.1.

So far, the heuristic discussion suggests us that the entropy of a binomial convolution
is almost constant. In the rest of this section, we will show that a better continuous
approximation let us hope that this entropy function is actually concave.
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In order to construct this “better approximation”, we notice that, although con-
structed to be a discrete version of δnt, the binomial measure bin(n, t) is known to be
better approximated by the continuous Gaussian measure γ(nt, nt(1− t)) whose density
ρ(x, t) is the fundamental solution of a "modified transport equation"

∂

∂t
ρ(x, t) = −n ∂

∂x
ρ(x, t) + n

1− 2t

2

∂2

∂x2
ρ(x, t). (2.2)

Now, let f(x, t) denote the convolution of a smooth probability density f(0, x) by ρ(x, t).
Then f(x, t) is a family of smooth probability densities satisfying the equation (2.2).
The next proposition establishes the concavity of the entropy H(t) := H(f(., t)) :=∫
R
U(f(x, t))dx.

Proposition 2.1. The function t 7→ H(t) satisfies

∂2

∂t2
H(t) = −n2

(
1− 2t

2

)2 ∫
R

f(x, t)

(
∂

∂x2
log(f(x, t))

)2

dx ≤ 0.

Remark: The statement of Proposition 2.1 is similar to de Bruijn’s identity (see
for example [1, Lem.1]), but studies the second derivative of H(t) instead of the first
derivative.

Proof of Proposition 2.1: Let us first consider the auxilliary family of densities
g(x, t) := f(x+ nt, t), which satisfies

H(g(., t)) = H(f(., t)) = H(t)

and is solution to the PDE

∂

∂t
g(x, t) = n

1− 2t

2

∂2

∂x2
g(x, t). (2.3)

Until the end of the proof, we simplify the notations, denoting by g′, g′′, . . . the successive
partial differentials of g with respect to x.

∂2

∂t2
H(t) =

∫
R

−g′′ log(g)− (g′)2

g
dx

=

∫
R

(
−n2

(
1− 2t

2

)2

g(4)

)
log(g)−

(
n
1− 2t

2
g′′
)2

1

g
dx

= −n2
(
1− 2t

2

)2 ∫
R

g(4) log(g) +
(g′′)2

g
dx.

To prove the concavity of H, it thus suffices to show that the last integral is non-
negative, and this can be done by tricky integrations by parts:∫

R

g(4) log(g) +
(g′′)2

g
dx =

∫
R

g′′(log(g))′′dx+

∫
R

(g′′)2

g
dx

=

∫
R

2
(g′′)2

g
− (g′)2g′′

g2
dx

=

∫
R

2
(g′′)2

g
− (g′)2g′′

g2
dx−

∫
R

(
(g′)3

g2

)′
dx

=

∫
R

2
(g′′)2

g
− g′2g′′

g2
dx−

∫
R

(
3
(g′)2g′′

g2
− 2

(g′)4

g3

)
dx

= 2

∫
R

g

(
g′′

g
− (g′)2

g2

)2

dx

= 2

∫
R

g(log(g)′′)2dx.
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This proves the concavity of H(t) and gives an explicit value for its second derivative:

∂2

∂t2
H(t) = −n2 (1− 2t)2

2

∫
R

f(x, t)

(
∂

∂x2
log(f(x, t))

)2

dx.�

Remark: Actually, the proof of Theorem 1.1 will provide an upper bound on ∂2

∂t2H(t)

which will be very similar to the exact value of ∂2

∂t2H(t) found in this continuous approx-
imation (equation (4.7)).

3 Technical tools

In this chapter, we isolate some technical lemmas in order to make the proof of
Theorem 1.1 more readable. We first study some "differential" properties of binomial
convolutions. Then we introduce the modulus of log-concavity and see how it can be
recovered in various formulas involving binomial convolutions.

From now, we will often omit the dependence in t of the measures (an,t(k))k∈Z.

3.1 The transport equation revisited

The discrete transport equation (1.1) satisfied by binomial measures is in fact not
expressed in a way that can be easily used for our purposes. Moreover, there is no nice
way to generalize this equation to binomial convolutions. It is more convenient to use
instead the following well-konwn formula.

Definition 3.1. We denote by ∇1 (resp. ∇2) the left derivation (resp. the "twice left"
derivation) operator, which satisfies, for every function f : Z→ R,

∇1f(k) := f(k)− f(k − 1), resp. ∇2f(k) := f(k)− 2f(k − 1) + f(k − 2).

Let us fix an integer n ≥ 2 and a probability measure a = (a(k))k∈Z. The next
proposition can be seen as another way to express the transport equation, which will
be easier to use in the proof of Theorem 1.1:

Proposition 3.2. For any binomial convolution an,

i : ∂
∂tan(k) = −n∇1an−1(k),

ii : ∂2

∂t2 an(k) = n(n− 1)∇2an−2(k).

Proof: By elementary properties of convolution products, it suffices to prove the
first point of Proposition 3.2 in the special case where an,t(k) = bn,t(k), and this points
follows from a direct calculation and the elementary formulas k

(
n
k

)
= n

(
n−1
k−1
)

and (n −
k)
(
n
k

)
= n

(
n−1
k

)
.

The second point of the proposition follows from a double application of the first point.
�

Remark: It is easy to link the measures an, an−1 and an−2 by the formulas

an(k) = (1− t)an−1(k) + tan−1(k − 1), (3.1)

an(k) = (1− t)2an−2(k) + 2t(1− t)an−2(k − 1) + t2an−2(k − 2). (3.2)

Remark: We recover in some twisted way the modified transport equation (see
Equation (2.2)) in the first point of Proposition 3.2 by noticing that

∇1an−1(k) =
an(k + 1)− an(k − 1)

2
− 1

2
((1− t)∇2an−1(k + 1)− t∇2an−1(k)) .
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3.2 The modulus of log-concavity

A measure (a(k))k∈Z is said to be log-concave if it satisfies,for every k ∈ Z, a(k)2 ≥
a(k − 1)a(k + 1). A well-known property states that any s.o.i.B. (and thus any binomial
convolution of a s.o.i.B.) is a log-concave measure (see for instance the introduction
of [3]). This suggests us to introduce the modulus of log-concavity:

Definition 3.3. For any n ≥ 2 and any binomial convolution (an(k))k∈Z, the modulus of
log-concavity is the function (vn(k))k∈Z defined by

vn(k) := an−2(k − 1)
2 − an−2(k)an−2(k − 2).

Remark: The choice of defining vn(k) in terms of the (an−2(k)) instead of the (an(k))

will be justified by the simpler forms the next equations will take.

The main interest in introducing the modulus of log-concavity is the fact that, when
(a(k))k∈Z is a s.o.i.B., the log-concavity of the binomial convolution an−2 implies that
vn(k) is always non-negative. A closer look at this fact allows us to be more precise.
The formula

∇2 log(an−2(k)) = log

(
1− vn(k)

(an−2(k − 1))2

)
can be compared to its continuous analogue log(f)′′ = ff ′′−f ′2

f2 , which let us hope that,

at least when vn(k) � (an−2(k − 1))2, the modulus vn(k) is close to some expression of
the form (∇1an(k))

2 − an(k)∇2an(k). This intuition is made rigorous by the following:

Proposition 3.4. For any binomial convolution (an(k))k∈Z with n ≥ 2, we have:

vn(k) := (∇1an−1(k))
2 − an(k)∇2an−2(k).

Proof: The idea of the proof consists in writing (∇1an−1(k))
2 − an(k)∇2an−2(k) only

in terms of the (an−2(k))k∈Z, using formulas (3.1) and (3.2). The equality is reached
after a few lines of calculations. �

The same method can be used to find another formulas which are more difficult to
be interpreted, but will be useful in the proof of Theorem 1.1:

Proposition 3.5. For any binomial convolution an(t),

i: an−1(k)
2 − an(k)an−2(k) = t2vn(k).

ii: an−1(k)an−1(k − 1)− an(k)an−2(k − 1) = −t(1− t)vn(k).

iii: an−1(k − 1)
2 − an(k)an−2(k − 2) = (1− t)2vn(k).

4 Proof of Theorem 1.1

The proof of Theorem 1.1 is inspired by the heuristic proof given at the beginning
of the second section. This proof was based on two ingredients: the transport equa-
tion (2.1) and the use of integrations by parts which lead to the identity∫

R

(
∂2

∂x2
f(x, t)

)
U ′(f(x, t))dx = −

∫
R

(
∂

∂x
f(x, t)

)2

U ′′(f(x, t))dx. (4.1)

As in the heuristic proof, Theorem 1.1 will be proven by a tricky use of integrations
by parts, that in the discrete case will take the form of sums of telescopic series. Equa-
tion (4.1) suggests the use of the two following telecospic sums (where by convention
0. log(0) = 0):
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∑
k∈Z

∇2(an−2(k) log(an−2(k))) = 0 (4.2)

and ∑
k∈Z

∇1 (∇1(an−2(k)) log(an−1(k))) = 0. (4.3)

The next proposition shows that a tricky use of these two sums gives a very useful
inequality:

Proposition 4.1. For any k ∈ Z such that an(k) 6= 0 we have the inequality:

∇2(an−2(k)) log(an(k))

−2∇1 (∇1(an−2(k)) log(an−1(k))) +∇2(an−2(k) log(an−2(k)))

≥ −vn(k)
an(k)

.

Proof: We begin the proof by writing:

∇2(an−2(k)) log(an(k))

−2∇1 (∇1(an−2(k)) log(an−1(k))) +∇2(an−2(k) log(an−2(k)))

= an−2(k) log

(
an−2(k)an(k)

an−1(k)
2

)
(4.4)

−2an−2(k − 1) log

(
an−2(k − 1)an(k)

an−1(k)an−1(k − 1)

)
(4.5)

+an−2(k − 2) log

(
an−2(k − 2)an(k)

an−1(k − 1)
2

)
. (4.6)

The next step of the proof consists in studying (and bounding by below) each term (4.4), (4.5)
and (4.6) of the right-hand side of the above equation separately. In each case, the
method consists in using Proposition 3.5 to make appear the modulus of log-concavity
and then use some elementary inequalities involving the function U .

For the first term, we write:

an−2(k) log

(
an−2(k)an(k)

an−1(k)
2

)
=

an−1(k)
2

an(k)
U

(
an−2(k)an(k)

an−1(k)
2

)

=
an−1(k)

2

an(k)
U

(
1− t2 vn(k)

an−1(k)
2

)

≥ an−1(k)
2

an(k)

(
−t2 vn(k)

an−1(k)
2 +

t4

2

vn(k)
2

an−1(k)
4

)

= −t2 vn(k)
an(k)

+
t4

2

vn(k)
2

an−1(k)
2 .

We used here the non-negativity of vn(k) and the elementary inequality

∀x ≥ 0, U(1− x) ≥ −x+
x2

2
.
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The same method leads to similar bounds for the term (4.6):

an−2(k − 2) log

(
an−2(k − 2)an(k)

an−1(k − 1)
2

)
≥ −(1− t)2 vn(k)

an(k)
+

(1− t)4

2

vn(k)
2

an−1(k − 1)
2 .

The term (4.5) is bounded by using the inequality

∀x ≥ 0,−U(1 + x) ≥ −x− x2

2
,

which gives

an−2(k − 1) log

(
an−2(k − 1)an(k)

an−1(k)an−1(k − 1)

)
≤ t(1− t)vn(k)

an(k)
+
t2(1− t)2

2

vn(k)
2

an−1(k)an−1(k − 1)
.

Combining these three inequalities gives

∇2an−2(k) log(an(k))

−2∇1 (∇1(an−2(k)) log(an−1(k))) +∇2(an−2(k) log(an−2(k)))

≥ −vn(k)
an(k)

+
1

2
(vn(k))

2

(
t2

an−1(k)
− (1− t)2

an−1

)2

≥ −vn(k)
an(k)

.�

The rest of the proof of Theorem 1.1 is now straightforward.

Proof of Theorem 1.1:
Let (p1, . . . , pr) ∈ [0, 1]r be such that a is the s.o.i.B. of parameters p1, . . . pr. We can

suppose that each pi is different from 0 and 1. In this case, for every t ∈]0, 1[, the support
of an,t is exactly {0, . . . N}, where N := n+ r.

Moreover, the telescopic series (4.2) and (4.3) can be rewritten (still with the con-
vention that 0. log(0) = 0)

N∑
k=0

∇2(an−2(k) log(an−2(k))) = 0

and
N∑

k=0

∇1 (∇1(an−2(k)) log(an−1(k))) = 0.

As each function t 7→ an,t(k) is smooth, we have

∂2

∂t2
H(t) = −

N∑
k=0

∂2

∂t2
an(k)U

′(an(k)) +

(
∂

∂t
an(k)

)2

U ′′(an(k))

= −
N∑

k=0

n(n− 1)∇2an−2(k)U
′(an(k)) + n2(∇1an−1(k))

2U ′′(an(k))

≤ −n(n− 1)

N∑
k=0

∇2an−2(k)U
′(an(k)) + (∇1an−1(k))

2U ′′(an(k)),

The inequality comes from the fact that U ′′(an(k)) = 1
an(k)

≥ 0. Theorem 1.1 will
thus be proven if the last sum is non-negative.
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Using Proposition 4.1 gives

N∑
k=0

∇2an−2(k)U
′(an(k)) + (∇1an−1(k))

2U ′′(akn) =

N∑
k=0

∇2an−2(k) log(an(k))− 2∇1 (∇1(an−2(k)) log(an−1(k)))

+∇2(an−2(k) log(an−2(k))) +

N∑
k=0

(∇1an−1(k))
2

akn

≥
N∑

k=0

−vn(k)
an(k)

+
(∇1an−1(k))

2

an(k)
.

By Lemma 3.4,
N∑

k=0

−vn(k)
an(k)

+
(∇1an−1(k))

2

an(k)
=

N∑
k=0

∇2an−2(k) = 0.

Then
N∑

k=0

∇2an−2(k)U
′(an(k)) + (∇1an−1(k))

2U ′′(akn) ≥ 0,

which proves Theorem 1.1. �

Remark: A careful look at the proof of Proposition 4.1 gives the bound

∂2

∂t2
H(t) ≤ −n(n− 1)

2

N∑
k=0

(vn(k))
2

(
t2

an−1(k)
− (1− t)2

an−1(k − 1)

)2

, (4.7)

which is very similar to the exact value of ∂2

∂t2H(t) found in Proposition 2.1.
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