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Abstract

This paper continues our previous work [4] where we have constructed a k-dimensio-
nal random walk conditioned to stay in the Weyl chamber of type A. The construction
was done under the assumption that the original random walk has k− 1 moments. In
this note we continue the study of killed random walks in the Weyl chamber, and as-
sume that the tail of increments is regularly varying of index α < k−1. It appears that
the asymptotic behaviour of random walks is different in this case. We determine the
asymptotic behaviour of the exit time, and, using this information, construct a condi-
tioned process which lives on a partial compactification of the Weyl chamber.
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1 Main results and discussion

1.1 Introduction

This note is a continuation of our paper [4]. In [4] we constructed a k-dimensional
random walk conditioned to stay in the Weyl chamber of type A. The conditional version
of the random walk was defined via Doob’s h-transform. The form of the corresponding
harmonic function has been suggested by Eichelsbacher and König [6]. This construc-
tion was performed under the optimal moment conditions and required the existence of
k − 1 moments of the random walk.

The main aim of the present work is to consider the case when that moment con-
dition is not fulfilled. Instead of the existence of (k − 1)-th moment of the increment,
we shall assume that the tail function is regularly varying of index 2 < α < k − 1. This
assumption significantly changes the behaviour of the random walk. It turns out that
the asymptotic behaviour of the exit time from the Weyl chamber depends not only on
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Ordered random walks with heavy tails

the number of walks but also on the index α. The typical sample path behaviour for the
occurrence of large exit times is different as well. The main reason for that is that the
large exit times are caused by one (or several) big jumps of the random walk.

We now introduce some notation. Let S = (S1, S2, . . . , Sk) be a k-dimensional random
walk with

Sj(n) =

n∑
i=1

Xj(i),

where {Xj(i)}i,j≥1 are independent copies of a random variable X. Let W denote the
Weyl chamber of type A, i.e.,

W =
{
x ∈ Rk : x1 < x2 < . . . < xk

}
.

Let τx denote the first exit time of random walk with starting point x ∈W , that is,

τx := min{n ≥ 1 : x+ S(n) /∈W}.

The main purpose of the present paper is to study the asymptotic behaviour of P(τx > n)

and to construct a model for ordered random walks. Recall that in order to define a
random walk conditioned to stay in W , one should find a Doob h-transform

E[h(x+ S(1)), τx > 1] = h(x) > 0, x ∈W.

We say that a function which satisfies the latter condition is harmonic. However, it
seems that it is not possible to find a harmonic function for the Doob h-transform under
present conditions. Therefore, we use a partial compactification of W , which is based
on the sample path behaviour of the random walk S on the event {τx > n}. (Recall
that a more formal way consists in applying an h-transform with a harmonic function.)
Finally, we prove a functional limit theorem for random walks conditioned to stay in the
Weyl chamber up to big, but finite, time.

To simplify our proofs we shall restrict our attention to the case α ∈ (k − 2, k − 1).
However, it will be clear from the proof, that our method works also for smaller values
of α.

1.2 Tail distribution of τx

We shall assume that EX = 0. This assumption does not restrict the generality,
since τx depends only on differences of coordinates of the random walk S. We consider
a situation when increments have k − 2 finite moments, i.e., E|X|k−2 < ∞. Under this
condition, for (S1, S2, . . . , Sk−1) we can construct a harmonic function by using results
of [4]. Denote this function by V (k−1). We introduce also the following functions:

v1(x) = V (k−1)(x1, x2, . . . , xk−1) and v2(x) = V (k−1)(x2, x3, . . . , xk), x ∈W.

It is easy to see that these functions are superharmonic for our original k-dimensional
random walk, i.e.,

E [vi(x+ S(1)), τx > 1] ≤ vi(x), i = 1, 2

and every inequality is strict at least for one x ∈W . Thus, the function

v(x) := pv1(x) + qv2(x)

is also superharmonic for all non-negative p, q ≥ 0 with p+ q = 1.
To state our first result we introduce a convolution of v with the Green function of

random walk in the Weyl chamber:

U(x) :=

∞∑
l=0

E [v(x+ S(l)), τx > l] , x ∈W.
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Ordered random walks with heavy tails

Theorem 1.1. Assume that

P(X > u) ∼ p

uα
and P(X < −u) ∼ q

uα
, as u→∞, (1.1)

for some α ∈ (k−2, k−1) and some k ≥ 4. Then U(x) is a strictly positive superharmonic
function, i.e., E [U(x+ S(1)), τx > 1] < U(x) for all x ∈W . Moreover,

P(τx > n) ∼ θU(x)n−α/2−(k−1)(k−2)/4 as n→∞, (1.2)

where θ is an absolute constant.

There is a very simple strategy behind formula (1.2). For the event {τx > n} to
occur either the random walk on the top or the random walk on the bottom should jump
away, i.e., Xk(l) ≈

√
n or X1(l) ≈ −

√
n for some l ≥ 1. After such a big jump we have

a system of k − 1 random walks with bounded distances between each other and one
random walk on the characteristic distance

√
n. This implies that the probability that

all k random walks stay in W up to time n is of the same order as the probability that
k − 1 random walk stay in W up to time n− l. But it follows from (1.1) that E[|X|k−2] <

∞. So we can apply Theorem 1 from [4], which says that the latter probability is of
order n−(k−1)(k−2)/4. Since P(|X| >

√
n) ∼ n−α/2, we see that P(τx > n) is of order

n−α/2−(k−1)(k−2)/4. This strategy sheds also some light on the structure of the function
U(x): the l-th summand in the series corresponds to the case when big jump occurs at
time l + 1.

1.3 Construction of a conditioned random walk

Since U is not harmonic, we can not use the Doob h-transform with this function
to define a random walk, conditioned to stay in W for all times. (More precisely, an h-
transform with a superharmonic function leads to strict substochastic transition kernel.)
An alternative approach via distributional limit does not work as well: using Theorem
1.1 we can define P̂ (x,A) for any x ∈W and for any bounded A ⊂W by the relation

P̂ (x,A) = lim
n→∞

P(x+ S(1) ∈ A|τx > n)

= lim
n→∞

∫
A

P(x+ S(1) ∈ dy, τx > 1)
P(τy > n− 1)

P(τx > n)

=

∫
A

P(x+ S(1) ∈ dy, τx > 1)
U(y)

U(x)

=
E [U(x+ S(1)), τx > 1, x+ S(1) ∈ A]

U(x)
.

Then we can extend P̂ (x, ·) to a finite measure on the Borel subsets of W . But this
measure is not probabilistic, since

P̂ (x,W ) =
E [U(x+ S(1)), τx > 1]

U(x)
=
U(x)− v(x)

U(x)
< 1.

We lose the mass because of an “infinite” jump in the first step. Indeed, according
to the optimal strategy in Theorem 1.1, one of the random walks should have a jump of
order n1/2, and we let n go to infinity. This infinite jump is the reason, why a Markov
chain, corresponding to the kernel P̂ (x,A) has almost sure finite lifetime. Similar ef-
fects have been observed already in other models. Bertoin and Doney [1] have proven
that a one-dimensional random walk with negative drift and regularly varying tail con-
ditioned to stay positive has finite lifetime. Jacka and Warren [10] have shown that the
same effect appears in the Kolmogorov K2 chain.
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Ordered random walks with heavy tails

Having in mind this picture with “infinite” jumps, we can construct a conditioned
random walk, which lives on the following set

Ŵ := W ∪W1 ∪W2,

where

W1 = {(x1, x2, . . . , xk−1,∞), x1 < x2 < . . . < xk−1}
W2 = {(−∞, x2, x3, . . . , xk), x2 < x3 < . . . < xk} .

We define the transition probability by the following relations:

1. If x ∈W and A ⊂W , then

P̂ (x,A) =
E [U(x+ S(1)), τx > 1, x+ S(1) ∈ A]

U(x)
.

2. If x ∈W and A = A′ × {∞} ⊂W1, then

P̂ (x,A) =
pE
[
v1(x+ S(1)), τ

(1)
x > 1, x+ S(1)(1) ∈ A′

]
U(x)

.

3. If x ∈W and A = {−∞} ×A′ ⊂W2, then

P̂ (x,A) =
qE
[
v2(x+ S(1)), τ

(2)
x > 1, x+ S(2)(1) ∈ A′

]
U(x)

.

4. If x ∈W1 and A = A′ × {∞} ⊂W1, then

P̂ (x,A) =
E
[
v1(x+ S(1)), τ

(1)
x > 1, x+ S(1)(1) ∈ A′

]
v1(x)

.

5. If x ∈W2 and A = {−∞} ×A′ ⊂W2, then

P̂ (x,A) =
E
[
v2(x+ S(1)), τ

(2)
x > 1, x+ S(2)(1) ∈ A′

]
v2(x)

.

Here
τ (i)x := min{n ≥ 1 : x(i) + S(i) /∈W (i)}, i = 1, 2,

x(1) := (x1, x2, . . . , xk−1), x(2) := (x2, x3, . . . , xk),

S(1) := (S1, S2, . . . , Sk−1), S(2) := (S2, S3, . . . , Sk)

and W (1) = W (2) = {x ∈ Rk−1 : x1 < x2 < . . . < xk−1}.
The asymptotic behaviour of the corresponding Markov chain, say {Ŝ(n), n ≥ 0}, can

be described as follows. One of the random walks jumps away at timemwith probability
E [v(x+ S(m− 1)), τx > m− 1] /U(x). Then we restart our process, which has from now
on one frozen coordinate, either −∞ or ∞, and k − 1 ordered random walks. But for
k − 1 random walks we can apply Theorem 3 of [4]. As a result we have that the limit

of
{
Ŝ([nt])/

√
n, t ∈ [rn/n, 1]

}
converges weakly to a process {X(t), t ∈ (0, 1]}, where rn

is such that rn → ∞. (We need this additional restriction because of jumps at bounded
times.) The limit can be constructed as follows: Let D(t) denote here the (k − 1)-
dimensional Dyson Brownian motion starting from zero. With some probability p(x) we
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add to D(t) one coordinate with constant value∞, and with probability q(x) = 1− p(x)

we add the coordinate with value −∞.
We have constructed a model of ordered random walks on an enlarged state space

by formalising an intuitive picture of big jumps. But it remains unclear whether one
can find a harmonic function for the substochastic kernel P(x + S(1) ∈ dy, τx > 1). If
such a function exists, then one can construct a model of ordered random walks on the
original Weyl chamber. We conjecture that there are no harmonic functions for ordered
random walks with heavy tails. The examples from [1, 10], which we have mentioned
above, support this conjecture.

The most standard way to describe the set of harmonic functions consists in the
study of the corresponding Martin boundary. We found only a few results on Martin
boundary for killed random walks. Doney [5] found sufficient and necessary conditions
for existence of harmonic functions in one-dimensional case. The proof relies on the
Wiener-Hopf factorisation, which seems to work in the one-dimensional case only. In a
series of papers [7, 8, 9] by Ignatiouk-Robert, and by Ignatiouk-Robert and Loree Martin
boundaries for killed random walks with non-zero drift in a half-space and in a quadrant
have been studied. In all these papers the Cramer condition has been imposed. Next-
neighbour random walks with zero mean in the Weyl chamber have been studied by
Raschel [13, 14]. In our situation all the increments are heavy-tailed. This means that
one needs another method for finding the Martin boundary.

1.4 Conditional limit theorem for S

In this paragraph we turn our attention to the behaviour of {S([nt])/
√
n, t ≤ 1}

conditioned on {τx > n}. Since one of the random walks should have a jump of order√
n on the event {τx > n}, this conditioning will not lead to an infinite jump, as it

happens in the case of conditioning on {τx =∞}.
We define

X(n)(t) :=
x+ S([nt] ∧ rn)√

n
, t ∈ [0, 1].

Here rn → ∞ and rn = o(n). (Again, we need to go away from zero, because of a big
jump occurring at the very beginning.) In order to state our limit theorem we have to
introduce a limiting process, say X. Denote

p(x) :=
p
∑∞
l=0 E [v1(x+ S(l)), τx > l]

U(x)
, q(x) :=

q
∑∞
l=0 E [v2(x+ S(l)), τx > l]

U(x)

and

ψ(r) := lim
a→0

P (B1(t) < a+B2(t) < . . . < (k − 2)a+Bk−1(t) < r +Bk(t), t ≤ 1)

P (B1(t) < a+B2(t) < . . . < (k − 2)a+Bk−1(t), t ≤ 1)
.

B(t) denote here a k-dimensional Brownian motion. The distribution of the starting
point, X(0), is given by

µx(dy) = q(x)f(−y1)dy1

k∏
i=2

δ0(dyi) + p(x)f(yk)dyk

k−1∏
i=1

δ0(dyi),

where f(x) = θ−1ψ(x)x−α−11R+
(x).

Further, given X(0) = y, we define

L (X) = lim
a→0
L
(
y(a) +B(t), t ∈ [0, 1]

∣∣∣τ bmy(a) > 1
)
,

where y(a) = y + a(0, 1, 2, . . . , k − 1) and τ bmy = min{t : y +B(t) /∈W}.
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Theorem 1.2. Under the conditions of Theorem 1.1,

{X(n)|τx > n} ⇒ X

in the Skorohod topology on C[0, 1].

It is worth mentioning that the limiting process is not invariant with respect to the
starting position of the random walk. More precisely, the distribution of X(0) depends
on x through p(x) and q(x). Clearly this happens because of one large jump i the begin-
ning. An analogous result can be proven also for random walks with E|X|k−1 <∞, but
the limiting process will start always at zero.

1.5 Some remarks on the general case.

Although the informal picture behind Theorems 1.1 and 1.2 is quite simple, the
proofs are very technical. In the case of smaller values of α, i.e. α < k − 2, one has
to overcome even more technical difficulties, which are of the combinatorial nature.
However, it is clear that our approach works in the case α < k − 2 as well. In this
paragraph we describe the behaviour of ordered random walks for such values of α.

First, in order to stay in W at least up to time n, the random walk S should have
kα := k − [α+ 1] big jumps. Then it may happen that at least two jumps go in the same
direction (upwards or downwards). The values of all these jumps should be ordered. As
a result one gets the following relation:

P(τx > n) ∼ U(x)n−αkα/2n−(k−kα)(k−kα−1)/4

with some superharmonic function U . Second, to construct ordered random walks we
need to add all vectors with kα infinite coordinates. Finally, in Theorem 1.2 one has to
change the distribution of X0 only: The limiting process will start from a random point
with kα non-zero coordinates.

Unfortunately, the case of integer values of α remains unsolved. If, for example,
α = k − 1, then, the jumps of order

√
n do not contribute to P(τx > n). Therefore, we

can not use the method proposed in the present work.
We next turn to the case α < 2. We believe that k−2 walks should jump away. But in

this situation the typical size of a ’big’ jump is n1/α. Thus, the probability of occurrence
of k − 2 such jumps is (n1/α)−α(k−2) = n2−k.

Noting further that, without any assumptions on the distribution of X, two random
walks do not change their order with probability n−1/2. As a result we have the following
conjecture: If (1.1) holds with some α ∈ (0, 2), then there exists a positive function U(x)

such that
P(τx > n) ∼ U(x)n−k+3/2.

Our next remark concerns other Weyl chambers. König and Schmid [11] have shown
that the approach proposed in [4] works also in Weyl chambers of types C and D. It
is easy to see that, using the method from the present paper, one can prove analogues
of Theorems 1.1 and 1.2 for chambers of types C and D. Moreover, since big negative
jumps lead to exit from these two regions, the corresponding optimal strategies are
even simpler then in the chamber of type A.

We conclude this subsection by commenting on our assumption (1.1). First, it is clear
that we could assume that the tail of |X| is regularly varying with index α. Second, it is
possible to consider slightly more general heavy-tailed distributions in order to derive
asymptotics for P(τx > n). The minimal assumptions we need are

(a) supu>0 P(X > cu)/P(X > u) <∞ for any fixed c ∈ (0, 1),
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(b) P(X > u−
√
u) ∼ P(X > u) as u→∞.

Without assumption (b) the asymptotics will be different. This happens due to the fact
that without (b) the resulting asymptotics will be influenced by the fluctuations corre-
sponding to the Central Limit Theorem, see [2] for one-dimensional case. Assumption
(a) is essential as well. The reasons for that are the following: in the heavy-tailed
setting the asymptotics of the exit time is closely connected with large deviations prob-
abilities P(Sn > x) of heavy-tailed random walks. In one-dimensional case this was
demonstrated in [2] using the Wiener-Hopf factorization. In turn, to find asymptotics
for the large deviations probabilities in the heavy-tailed setting one should make some
assumptions about the tail of the distribution. If Eξt = ∞ for some t, then one usu-
ally assumes (a) or regular variation, see for example [3]. Without any assumptions
asymptotics might simply be different.

However (a) and (b) are not a big generalization as for the regular varying distribu-
tions

P(X > cu)/P(X > u)→ c−α as u→∞.

2 Finiteness of the superharmonic function

Proposition 2.1. Under the assumptions of Theorem 1.1,

U(x) =

∞∑
l=0

E [v(x+ S(l)), τx > l] <∞.

We first introduce some notation. For every ε > 0 denote

Wn,ε :=
{
x ∈ Rk : |xj − xi| > n1/2−ε for all 1 ≤ i < j ≤ k

}
and let

ν(n) := min{j ≥ 1 : x+ S(j) ∈Wn,ε}

be the first time the random walk enters this region.

Proof. Fix δ > 0. Let η± be the times of first ’big’ jumps upwards and downwards, i.e.,

η+ = min
{
l ≥ 1 : Xk(l) > n(1−δ)/2

}
and η− = min

{
l ≥ 1 : X1(l) < −n(1−δ)/2

}
.

Let η = min{η+, η−} be the first big jump.

First we note that

E [v(x+ S(n)), τx > n] = E
[
v(x+ S(n)), τx > n, ν(n) ≤ n1−ε

]
+ E

[
v(x+ S(n)), τx > n, ν(n) > n1−ε

]
. (2.1)

To estimate the second term we apply Proposition 4 of [4] to obtain

c∗∆
(i)
1 (x) ≤ vi(x) ≤ c∗∆(i)

1 (x), i = 1, 2,

where

∆
(1)
1 (x) :=

∏
1≤i<j≤k−1

(1 + |xj − xi|) and ∆
(2)
1 (x) :=

∏
2≤i<j≤k

(1 + |xj − xi|).
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Then, according to Lemma 8 in [4],

E
[
v(x+ S(n)), τx > n, ν(n) > n1−ε

]
≤ pE

[
v1(x+ S(n)), τ (1)x > n, ν(n) > n1−ε

]
+ qE

[
v2(x+ S(n)), τ (2)x > n, ν(n) > n1−ε

]
≤ C

(
∆

(1)
1 (x) + ∆

(2)
1 (x)

)
exp{−Cnε}

≤ Cv(x) exp{−Cnε}. (2.2)

This gives us an estimate for the second term of (2.1).
The rest of the proof is devoted to estimation of the first summand in (2.1). We split

this term in three parts: with big jump upwards, big jump downwards and no big jumps,

E
[
v(x+ S(n)), τx > n, ν(n) ≤ n1−ε

]
≤ E

[
v(x+ S(n)), τx > n, η+ ≤ ν(n) ≤ n1−ε

]
+ E

[
v(x+ S(n)), τx > n, η− ≤ ν(n) ≤ n1−ε, η+ > ν(n)

]
+ E

[
v(x+ S(n)), τx > n, ν(n) ≤ n1−ε, η > ν(n)

]
=: Eup + Edown + Eno.

We construct estimates for each of terms separately and then combine them. We apply
the resulting estimate recursively several times and prove the claim.

Big jump upwards: Using the Markov property, we get

Eup =

n1−ε∑
l=1

∫
W

P(x+ S(l) ∈ dy, τx > l, η+ = l, ν(n) ≥ l)

×E[v1(y + S(n− l)), τy > n− l, ν(n) ≤ n1−ε − l].

Since v1 is harmonic for the system of k − 1 random walks,

E[v1(y + S(n)), τy > n] ≤ E[v1(y + S(n)), τ (1)y > n] = v1(y)

for all n ≥ 1. Therefore,

E[v1(y + S(n− l)), τy > n− l] ≤ v1(y)

and, consequently,

Eup ≤
n1−ε∑
l=1

E
[
v1(x+ S(l)), τx > l, η+ = l

]
.

Using the Markov property once again, we have

E
[
v1(x+ S(l)), τx > l, η+ = l

]
=

∫
W

P(x+ S(l − 1) ∈ dy, τx > l − 1, η+ > l − 1)

×E
[
v1(y +X(1)), τy > 1, Xk(1) > n(1−δ)/2

]
.

The random variable Xk is independent of X1, . . . , Xk−1,

E
[
v1(y +X(1)), τy > 1, Xk(1) > n(1−δ)/2

]
≤ E

[
v1(y +X(1)), τ (1)y > 1, Xk(1) > n(1−δ)/2

]
= E

[
v1(y +X(1)), τ (1)y > 1

]
P
(
Xk(1) > n(1−δ)/2

)
.
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Hence,

E
[
v1(x+ S(l)), τx > l, η+ = l

]
≤ pn−α(1−δ)/2E [v1(x+ S(l − 1)), τx > l − 1] .

Summing up over l ≤ n1−ε, we obtain

Eup ≤ pn−α(1−δ)/2
n1−ε∑
l=1

E [v1(x+ S(l − 1)), τx > l − 1] . (2.3)

Big jump downwards: We now turn our attention to the case when all jumps of the
random walk on the top are bounded by n(1−δ)/2. First of all we note that according to
one of Fuk-Nagaev inequalities, see Corollary 1.11 in [12],

P

(
max
j≤n1−ε

[
Sk(j)1{η+ > j}

]
> n1/2−r(δ)

)
≤ exp{−Cnδ

2/2}, (2.4)

where r(δ) = δ/2− δ2/2. This yields

E

[
v1(x+ S(n)), τx > n, max

j≤ν(n)
Sk(j) > n1/2−r(δ), ν(n) ≤ n1−ε, η+ > ν(n)

]
≤ E

[
v1(x+ S(n)), τ (1)x > n, max

j≤n1−ε

[
Sk(j)1{η+ > j}

]
> n1/2−r(δ)

]
= E

[
v1(x+ S(n)), τ (1)x > n

]
P

(
max
j≤n1−ε

[
Sk(j)1{η+ > j}

]
> n1/2−r(δ)

)
≤ v1(x) exp{−Cnδ

2/2}. (2.5)

Next we need to analyse the case when the top random walk is always less than n1/2.
Hence,

Edown ≤ v1(x) exp{−Cnδ
2/2}+

n1−ε∑
l=1

E

[
v1(x+ S(n)), τx > n, η− = l ≤ ν(n) ≤ n1−ε, max

j≤ν(n)
Sk(j) < n1/2, η+ > ν(n)

]
= v1(x) exp{−Cnδ

2/2}+
∑
l

Edown,l.

Clearly in the definition of Edown,l the big jump occurs at time l. Also note that we have
excluded the possibility that the top random walk goes up without a big jump. Applying
the Markov property again,

Edown,l =

∫
W

P
(
x+ S(l) ∈ dy, τx > l, η− = l

)
×E

[
v1(y + S(n− l)), τy > n− l, ν(n) < n1−ε − l, max

j≤ν(n)
Sk(j) < n1/2

]
=:

∫
W

P
(
x+ S(l) ∈ dy, τx > l, η− = l

)
Eafter,l(y).

Using the Markov property for the multiplier,

Eafter,l(y) =

n1−ε−l∑
r=1

∫
Wn,ε

P

(
y + S(r) ∈ dz, τy > r = ν(n),max

j≤r
Sk(j) < n1/2

)
×E [v1(z + S(n− l − r)), τz > n− l − r] .
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It follows from the martingale property of v1 that

E [v1(z + S(n− l − r)), τz > n− l − r]

≤ E
[
v1(z + S(n− l − r)), τ (1)z > n− l − r

]
= v1(z).

Consequently,

Eafter,l(y) ≤ E

[
v1(y + S(ν(n))), τy > ν(n), max

j≤ν(n)
Sk(j) < n1/2

]
. (2.6)

It follows from Proposition 4 of [4] that, uniformly in z ∈Wn,ε,

v1(z) ≤ C
∏

1≤i<j≤k−1

(zj − zi)

≤ C (zk − z1)k−2∏
2≤l≤k−1(zk − zl)

∏
2≤i<j≤k

(zj − zi)

≤ C(zk − z1)k−2n−(1/2−ε)(k−2)v2(z).

Therefore, since S(ν(n)) ∈Wn,ε and Sk(ν(n)) < n1/2 it follows from the latter inequality
and (2.6) that

Eafter,l(y)

≤ Cn−(1/2−ε)(k−2)

×E
[
(n1/2 − S1(ν(n)))k−2v2(y + S(ν(n))), τy > ν(n), ν(n) ≤ n1−ε − l

]
≤ Cn−(1/2−ε)(k−2)

×E

[(
n1/2 − y1 −M1(n1−ε)

)k−2
v2(y + S(ν(n))), τ (2)y > ν(n), ν(n) ≤ n1−ε − l

]
,

where M1(n) := mink≤n S1(k).

Using now the fact that the sequence v2(y + S(n))1{τ (2)y > n} is a martingale, we get

Eafter,l(y)

≤ Cn−(1/2−ε)(k−2)E
[(
n1/2 − y1 −M1(n1−ε)

)k−2
v2(y + S(n)), τ (2)y > n

]
= Cn−(1/2−ε)(k−2)E

[(
n1/2 − y1 −M1(n1−ε)

)k−2]
E
[
v2(y + S(n)), τ (2)y > n

]
= Cn−(1/2−ε)(k−2)E

[(
n1/2 − y1 −M1(n1−ε)

)k−2]
v2(y).

According to the Rosenthal inequality, see [15],

E|M1(n)|k−2 ≤ Cn(k−2)/2.

Combining this with the Doob inequality, we get

E|M1(n)|k−2 ≤
(
k − 2

k − 3

)k−2
E|M1(n)|k−2 ≤ Cn(k−2)/2.

Therefore,

Eafter,l(y) ≤ Cn−(1/2−ε)(k−2)v2(y)
(
|y1|k−2 + n(k−2)/2

)
.
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Using this bound, we get

Edown,l

≤ Cn−(1/2−ε)(k−2)
∫
W

P
(
x+ S(l) ∈ dy, τx > l, η− = l

)
v2(y)

(
|y1|k−2 + n(k−2)/2

)
= Cn−(1/2−ε)(k−2)E

[(
|x+ S1(l)|k−2 + n(k−2)/2

)
v2(x+ S(l)), τx > l, η− = l

]
We split the latter expectation in two parts. First on the event {S1(l − 1) ≥ −n1/2}

we have

E
[
|x+ S1(l)|k−2v2(x+ S(l)), η− = l, τx > l, S1(l − 1) ≥ −n1/2

]
≤ CE

[(
(−X1(l))k−2 + n(k−2)/2

)
v2(x+ S(l)), τx > l, η− = l

]
≤ CE [v2(x+ S(l − 1)), τx > l − 1]

×E
[(

(−X1(l))k−2 + n(k−2)/2
)
, X1(l) < −n(1−δ)/2

]
≤ Cn(k−2)/2−α(1−δ)/2E [v2(x+ S(l − 1)), τx > l − 1] . (2.7)

Second the probability of event {S1(l − 1) < −n1/2} is negligible due to the Fuk-
Nagaev inequality,

P
(
S1(l − 1) < −z, η− > l − 1

)
≤ exp

{
−Cz/n(1−δ)/2

}
, z > n1/2.

Therefore, in view of the martingale property of v2(y + Sn)1{τ (2)y > n},

E
[
|x+ S1(l − 1)|k−2v2(x+ S(l)), η− = l, τx > l, S1(l − 1) < −n1/2

]
≤ v2(x)E

[
|x+ S1(l − 1)|k−2η− > l − 1, S1(l − 1) < −n1/2

]
≤ v2(x) exp

{
−Cn−δ/2

}
.

Combining the latter estimate with (2.7) and using a bound

|x+ S1(l)|k−2 ≤ 2k−3
(
|x+ S1(l − 1)|k−2 + (−X1(l))k−2

)
,

we get

E
[
|x+ S1(l − 1)|k−2v2(x+ S(l)), η− = l, τx > l

]
≤ v2(x) exp

{
−Cn−δ/2

}
+ Cn(k−2)/2−α(1−δ)/2E [v2(x+ S(l − 1)), τx > l − 1] . (2.8)

From (2.7) and (2.8) we conclude

Edown,l ≤ v2(x) exp
{
−Cn−δ/2

}
+ Cn−α/2+δ1E [v2(x+ S(l − 1)), τx > l − 1] ,

where δ1 = ε(k− 2) +αδ/2. Summing up over l and taking into account (2.5), we obtain

Edown ≤ v2(x) exp
{
−Cn−δ/2

}
+ Cn−α/2+δ1

n1−ε∑
l=1

E [v2(x+ S(l − 1)), τx > l − 1] . (2.9)
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No big jumps: It remains to consider the case with no big jumps before the stopping
time ν(n). If all the jumps are bounded by n(1−δ)/2, then, as it was shown in the proof of
Lemma 16 of [4],

E
[
v1(x+ S(n)), τx > n, |S(ν(n))| > n1/2−δ/4, η ≥ ν(n), ν(n) ≤ n1−ε

]
≤ C exp

{
−Cn−δ/4

}
. (2.10)

If the random walk starts from y ∈ Wn,ε with |y| ≤ n1/2−δ/4, then one can use the
standard KMT-coupling to show that

E [v1(y + S(n)), τy > n] ∼ E
[
∆(1)(y + S(n)), τy > n

]
∼ E

[
∆(1)(y +B(n)), τ bmy > n

]
∼ ∆(1)(y)

n(k−1)/2
E
[
∆(1)(B(1))|τ bmy/√n > 1

]
, (2.11)

where
∆(1)(x) =

∏
1≤i<j≤(k−1)

(xj − xi).

Moreover, if γ is sufficiently small, γ < δ/8, then, using the same arguments,

E
[
v1(y + S(n1−γ)), τy > n1−γ

]
∼ E

[
∆(1)(y + S(n1−γ)), τy > n1−γ

]
∼ E

[
∆(1)(y +B(n1−γ)), τ bmy > n1−γ

]
∼ ∆(1)(y)

n(1−γ)(k−1)/2
E
[
∆(1)(B(1))|τ bmy/n(1−γ)/2 > 1

]
. (2.12)

Since y/n(1−γ)/2 → 0, we have

E
[
∆(1)(B(1))|τ bmy/√n > 1

]
∼ E

[
∆(1)(B(1))|τ bmy/n(1−γ)/2 > 1

]
.

From this relation, estimates (2.11) and (2.12), and the strong Markov property we
infer that

E
[
v1(x+ S(n)), τx > n, |S(ν(n))| ≤ n1/2−δ/4, η ≥ ν(n), ν(n) ≤ n1−ε

]
∼ n−γ(k−1)/2

×E
[
v1(x+ S(n1−γ)), τx > n1−γ , |S(ν(n))| ≤ n1/2−δ/4, η ≥ ν(n), ν(n) ≤ n1−ε

]
.

Hence

E
[
v1(x+ S(n)), τx > n, |S(ν(n))| ≤ n1/2−δ/4, η ≥ ν(n), ν(n) ≤ n1−ε

]
≤ Cn−γ(k−1)/2E

[
v1(x+ S(n1−γ)), τx > n1−γ

]
. (2.13)

Final recursion: Putting (2.2), (2.3), (2.9)–(2.13) together, we obtain

E [v1(x+ S(n)), τx > n] ≤ Cn−α/2+δ1
n1−ε∑
l=1

E [v(x+ S(l − 1)), τx > l − 1]

+Cn−γ(k−1)/2E
[
v1(x+ S(n1−γ)), τx > n1−γ

]
+ C exp{−Cnδ/4}.
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Because of the symmetry, an analogous bound holds for E [v2(x+ S(n)), τx > n]. Conse-
quently,

E [v(x+ S(n)), τx > n] ≤ Cn−α/2+δ1
n1−ε∑
l=1

E [v(x+ S(l − 1)), τx > l − 1]

+Cn−γ(k−1)/2E
[
v(x+ S(n1−γ)), τx > n1−γ

]
+ C exp{−Cnδ/4}.

Iterating this bound N times and recalling that α < k − 1, we obtain

E [v(x+ S(n)), τx > n] ≤ Cn−α/2+δ1
n∑
l=1

E [v(x+ S(l − 1)), τx > l − 1]

+Cn−(1−(1−γ)
N )(k−1)/2v(x) + C exp{−Cn(1−γ)

N−1δ/4}.

If N is such that (1− (1− γ)N )(k − 1)/ > α, then

E [v(x+ S(n)), τx > n]

≤ Cn−α/2+δ1
n∑
l=1

E [v(x+ S(l − 1)), τx > l − 1] + C(x)n−α/2. (2.14)

We know that E [v(x+ S(l − 1)), τx > l − 1] ≤ v(x). Entering with this into (2.14), we get

E [v(x+ S(n)), τx > n] ≤ C(x)n1−α/2+δ1 . (2.15)

If α > 4, then making δ1 sufficiently small, we see that E [v(x+ S(n)), τx > n] is summa-
ble. If α ≤ 4, then applying (2.15) to every expectation on the right hand side of (2.14),
we get

E [v(x+ S(n)), τx > n] ≤ C(x)n2−α+2δ1 .

We are done if α > 3. If it is not the case, then we enter with the new bound into
(2.14), and so on. The N -th iteration will give the bound of order nN(1−α/2+δ1). If
N(1− α/2 + δ1) < −1, then we have the desired summability.

3 Proof of Theorem 1.1

We start by estimating the tail of τx for paths without big jumps.

Lemma 3.1. Let Ar(n) denote the event {X1(l) ≥ −rn1/2, Xk(l) ≤ rn1/2 for all l ≤ n}.
Then

P (τx > n,Ar(n)) ≤ Crk−1−αn−α/2−(k−1)(k−2)/4.

Proof. First, if η > ν(n), then, repeating coupling arguments from the proof of Proposi-
tion 2.1, we obtain

P
(
τx > n,Ar(n), η > ν(n), ν(n) ≤ n1−ε

)
∼ n−γk(k−1)/4P

(
τx > n1−γ , Ar(n

1−γ), η > ν(n), ν(n) ≤ n1−ε
)

≤ n−γk(k−1)/4P
(
τx > n1−γ , Ar(n

1−γ)
)
. (3.1)

We next assume that the random walk on the bottom jumps before ν(n) but the
random walk on the top does not jump, i.e. η− ≤ ν(n) and η+ > ν(n). It follows from
(2.4) that

P
(
τx > n,Ar(n), η− ≤ ν(n) < η+, ν(n) ≤ n1−ε

)
≤ P

(
τx > n,Ar(n), η− ≤ ν(n) ≤ n1−ε, Sk(ν(n)) ≤ n1/2−r(δ)

)
+ exp{−Cnδ

2/2}.
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Applying now estimate (33) from [4], we get

P
(
τx > n,Ar(n), η− ≤ ν(n) ≤ n1−ε, Sk(ν(n)) ≤ n1/2−r(δ)

)
≤ C

nk(k−1)/4

×E
[
∆(x+ S(ν(n))), τx > ν(n), Ar(ν(n)), η− ≤ ν(n) ≤ n1−ε, Sk(ν(n)) ≤ n1/2−r(δ)

]
.

On Wn,ε holds

∆(x+ S(ν(n))) ≤ (xk − x1 + Sk(ν(n))− S1(ν(n)))
k−1

v1(x+ S(ν(n))).

Consequently,

E
[
∆(x+ S(ν(n))), τx > ν(n), Ar(ν(n)), η− ≤ ν(n) ≤ n1−ε, Sk(ν(n)) ≤ n1/2−r(δ)

]
≤ E

[(
n1/2−r(δ) − S1(ν(n))

)k−1
v2(x+ S(ν(n))), τx > ν(n), Ar(ν(n)), η− ≤ ν(n) ≤ n1−ε

]
.

Repeating arguments from the proof of Proposition 2.1, we get

E
[
∆(x+ S(ν(n))), τx > ν(n), Ar(ν(n)), η− ≤ ν(n) ≤ n1−ε, Sk(ν(n)) ≤ n1/2−r(δ)

]
≤
n1−ε∑
l=1

E [v2(x+ S(l − 1)), τx > l − 1]E
[
Xk−1, n(1−δ)/2 ≤ X ≤ an1/2

]
≤ rk−1−αn(k−1−α)/2

∞∑
l=1

E [v2(x+ S(l − 1)), τx > l − 1]

As a result we have

P
(
τx > n,Ar(n), η− ≤ ν(n) < η+, ν(n) ≤ n1−ε

)
≤ Crk−1−α

nα/2+(k−1)(k−2)/4

∞∑
l=1

E [v2(x+ S(l − 1)), τx > l − 1] . (3.2)

Analogously,

P
(
τx > n,Ar(n), η+ ≤ ν(n) < η−, ν(n) ≤ n1−ε

)
≤ Crk−1−α

nα/2+(k−1)(k−2)/4

∞∑
l=1

E [v1(x+ S(l − 1)), τx > l − 1] . (3.3)

Therefore, it remains to consider the case when η+ ≤ ν(n) and η− ≤ ν(n). Because
of the symmetry we may assume that η+ ≤ η−. Then

P
(
τx > n, η+ ≤ η− ≤ ν(n) ≤ n1−ε

)
≤
n1−ε∑
l=1

P
(
τx > n, η+ = η− = l

)
+

n1−ε∑
l=1

n1−ε∑
j=l+1

P
(
τx > n, η+ = l, η− = j

)
.

First we note

P
(
τx > n, η+ = η− = l

)
≤ C

∫
W

P(x+ S(l − 1) ∈ dy, τx > l − 1)n−α+δ
ṽ(y)

n(k−2)(k−3)/4
,

where
ṽ(x) = V (k−2)(x2, x3, . . . , xk−1).
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Using now the bound

E
[
ṽ(x+ S(l)), τ (1)x > l

]
≤ Cv1(x)l−(k−2)/2, l ≥ 1, (3.4)

we obtain

n1−ε∑
l=1

P
(
τx > n, η+ = η− = l

)
≤ C

nα−δ+(k−2)(k−3)/4

n∑
l=0

E
[
ṽ(x+ S(l)), τ (1)x > l

]
≤ Cv1(x)

nα−δ+(k−2)(k−3)/4

n∑
l=1

l−(k−2)/2

≤ Cv1(x)
log n

nα−δ+(k−2)(k−3)/4

= o
(
n−α/2−(k−1)(k−2)/4

)
.

Furthermore, applying (3.4) once again, we get

P
(
τx > n, η+ = l, η− = j

)
≤ C

∫
W

P(x+ S(j − 1) ∈ dy, τx > j − 1, η+ = l)n−α/2+δ/2
ṽ(y)

n(k−2)(k−3)/4

≤ C
∫
W

P(x+ S(l − 1) ∈ dy, τx > l − 1)n−α+δ
v1(y)

n(k−2)(k−3)/4
1

(j − l)(k−2)/2
.

This implies that

n1−ε∑
l=1

n1−ε∑
j=l+1

P
(
τx > n, η+ = l, η− = j

)
≤ C log n

nα−δ+(k−2)(k−3)/4

∞∑
l=0

E [v1(x+ S(l)), τx > l]

= o
(
n−α/2−(k−1)(k−2)/4

)
.

As a result we have the bound

P
(
τx > n, η+ ≤ η− ≤ ν(n) ≤ n1−ε

)
= o

(
n−α/2−(k−1)(k−2)/4

)
. (3.5)

Combining (3.1) – (3.5), we arrive at the inequality

P (τx > n,Ar(n)) ≤ n−γk(k−1)/4P
(
τx > n1−γ , Ar(n

1−γ)
)

+
Crk−1−α

nα/2+(k−1)(k−2)/4 .

Iterating N times we get

P (τx > n,Ar(n)) ≤ n−(1−(1−γ)
N )k(k−1)/4P

(
τx > n(1−γ)

N

, An(1−γ)N (a)
)

+
Crk−1−α

nα/2+(k−1)(k−2)/4 .

Choosing N sufficiently large, we arrive at the desired inequality.

Lemma 3.2. If S is as in Theorem 1 of [4], then there exists a constant C such that

P(τx > n) ≤ CV (x)

nk(k−1)/4
, x ∈W.
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Proof. It follows from Proposition 4 of [4] that V (x) ∼ ∆(x) uniformly in x ∈ Wn,ε. This
and inequality (33) from [4] imply that

P(τx > n, ν(n) ≤ n1−ε) ≤ C

nk(k−1)/4
E
[
V (x+ S(ν(n))), τx > ν(n), ν(n) ≤ n1−ε

]
.

Recalling that the sequence V (x+ S(n))1{τx > n} is a martingale, we conclude that

E
[
V (x+ S(ν(n))), τx > ν(n), ν(n) ≤ n1−ε

]
≤ E

[
V (x+ S(ν(n) ∧ n1−ε)), τx > ν(n) ∧ n1−ε

]
= V (x).

To complete the proof it remains to note that

P(ν(n) > n1−ε) ≤ e−Cn
ε

and that infx∈W V (x) > 0.

Lemma 3.3. If xk = r
√
n and x1, . . . , xk−1 are fixed, then

P(τx > n) ∼ ψ(r)
v1(x)

n(k−1)(k−2)/4
. (3.6)

Moreover,
ψ(a) ≤ Crk−1, r > 0. (3.7)

Proof. It is clear that

P(τx > n) = P(τx > n, ν(n) ≤ n1−ε) +O
(
e−Cn

ε
)
.

Furthermore,

P
(
τx > n, ν(n) ≤ n1−ε, |Sk(ν(n))| ≥ θn

√
n
)

≤ P

(
max
j≤n1−ε

|Sk(j)| ≥ θn
√
n

)
P(τ (1)x > n)

= o
(
n−(k−1)(k−2)/4

)
and, in view of Lemma 16 from [4],

P(τ (1)x > n, |S(ν(n))| >
√
n, ν(n) ≤ n1−ε) = o

(
n−(k−1)(k−2)/4

)
.

As a result we have

P(τx > n) = P(τx > n, |S(ν(n))| ≤ θn
√
n, ν(n) ≤ n1−ε) + o

(
n−(k−1)(k−2)/4

)
. (3.8)

Applying inequality (33) from [4], we obtain the bound

P
(
τx > n, ν(n) ≤ n1−ε, |S(ν(n))| ≤ θn

√
n
)

≤ C

nk(k−1)/4
E
[
∆(x+ S(ν(n))), τx > ν(n), |S(ν(n))| ≤ θn

√
n
]

≤ Crk−1

n(k−1)(k−2)/4
E
[
∆(1)(x+ S(ν(n))), τ (1)x > ν(n)

]
Noting that the expectation on the right converges to v1(x) and taking into account
(3.8), we obtain finally

n(k−1)(k−2)/4P(τx > n) ≤ Crk−1v1(x). (3.9)
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Using coupling one can show that, uniformly in x = (x1, x2, . . . , xk) ∈ Wn,ε with
|xj | ≤ θn

√
n and |xk − r

√
n| ≤ θn

√
n, holds

P(τx > n) ∼ P(τ bmx > n) ∼ ∆(1)(x)

n(k−1)(k−2)/4
ψ(r).

Consequently,

P
(
τx > n, ν(n) ≤ n1−ε, |S(ν(n))| ≤ θn

√
n
)

∼ ψ(r)

n(k−1)(k−2)/4
E
[
∆(1)(x+ S(ν(n)))τx > ν(n), ν(n) ≤ n1−ε, |S(ν(n))| ≤ θn

√
n
]

∼ ψ(r)

n(k−1)(k−2)/4
v1(x),

where in the last step we have used Lemmas 15 and 16 from [4]. Combining this relation
with (3.8), we get (3.6), and (3.7) follows from (3.9).

Proof of Theorem 1.1. Denote

T+ = min{j ≥ 1 : Xk(j) ≥ rn1/2}, T− = min{j ≥ 1 : X1(j) ≤ −rn1/2}

and
T = min{T+, T−}.

We first derive an upper bound for P(τx > n). Our starting point will be the following
inequality

P(τx > n) ≤
n/2∑
l=1

P(τx > n, T = l) + P(τx > n/2, T > n/2). (3.10)

According to Lemma 3.1,

P(τx > n/2, T > n/2) ≤ Crk−1−α

nα/2+(k−1)(k−2)/4 . (3.11)

Applying Lemma 3.2 to (S1, S2, . . . , Sk−1), we conclude that, for every l ≤ n/2, holds

P(τx > n, T+ = l) ≤
∫
W

P(x+ S(l) ∈ dy, τx > l, T+ = l)P(τ (1)y > n/2)

≤ C

n(k−1)(k−2)/4
E
[
v1(x+ S(l)), τx > l, T+ = l

]
≤ C

n(k−1)(k−2)/4
p

(rn1/2)α
E [v1(x+ S(l − 1)), τx > l − 1] .

And an analogous inequality holds for P(τx > n, T− = l). As a result we have

n/2∑
l=N

P(τx > n, T+ = l) ≤ Cr−α

nα/2+(k−1)(k−2)/4

∞∑
l=N

E [v(x+ S(l − 1)), τx > l − 1] . (3.12)

For every fixed l we have

P(τx > n, T+ = l) =

∫
W

P(x+ S(l) ∈ dy, τx > l, T+ = l)P(τy > n− l)

∼ n−(k−1)(k−2)/4E
[
v1(x+ S(l))ψ

(
Xk(l)√

n

)
, τx > l, T+ = l

]
∼ n−(k−1)(k−2)/4E

[
v1(x+ S(l))ψ

(
Xk(l)√

n

)
, τx > l, T+ = l

]
∼ n−(k−1)(k−2)/4E [v1(x+ S(l − 1)), τx > l − 1]E

[
ψ

(
Xk(l)√

n

)
, T+ = l

]
.
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Noting that

E

[
ψ

(
Xk(l)√

n

)
, T+ = l

]
∼ pn−α/2

∫ ∞
a

ψ(y)αy−α−1dy =: θ(r),

we obtain

P(τx > n, T+ = l) ∼ pθ(r)n−α/2−(k−1)(k−2)/4E [v1(x+ S(l − 1))τx > l − 1] .

In the same way one can get

P(τx > n, T− = l) ∼ qθ(r)n−α/2−(k−1)(k−2)/4E [v2(x+ S(l − 1))τx > l − 1] .

Therefore,

N−1∑
l=1

P(τx > n, T = l)

∼ θ(r)n−α/2−(k−1)(k−2)/4
N−1∑
l=1

E [v(x+ S(l − 1))τx > l − 1] . (3.13)

Combining (3.11) — (3.13) and noting that (3.7) yields θ(r) ≤ θ(0) <∞, we see that

lim sup
n→∞

nα/2+(k−1)(k−2)/4P(τx > n) ≤ θ(0)

∞∑
l=1

E [v(x+ S(l − 1))τx > l − 1]

+Cr−α
∞∑
l=N

E [v(x+ S(l − 1)), τx > l − 1] + Crk−1−α.

Letting here first N →∞ and then r → 0, we get

lim sup
n→∞

nα/2+(k−1)(k−2)/4P(τx > n) ≤ θ(0)U(x). (3.14)

To obtain a corresponding lower bound we note that, for every N ≥ 1,

P(τx > n) ≥
N−1∑
l=1

P(τx > n, T = l).

Using now (3.13), we have

lim inf
n→∞

nα/2+(k−1)(k−2)/4P(τx > n) ≥ θ(r)
N−1∑
l=1

E [v(x+ S(l − 1))τx > l − 1] .

Since N can be chosen arbitrary large

lim inf
n→∞

nα/2+(k−1)(k−2)/4P(τx > n) ≥ θ(r)U(x).

Finally, it follows from (3.7) that θ(r) = θ(0) +O(ak−1−α). Hence,

lim inf
n→∞

nα/2+(k−1)(k−2)/4P(τx > n) ≥ θ(0)U(x).

From this inequality and (3.14) we conclude that (1.2) holds with θ = θ(0).
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4 Proof of Theorem 1.2

We have to show that

E[f(X(n))|τx > n]→ E[f(X)] (4.1)

for every bounded and continuous f : C[0, 1]→ R.
We first note that it suffices to prove that

lim
r→0

lim
n→∞

nα/2+(k−1)(k−2)/4E[f(X(n)), T = l,Xk(l) > rn1/2, τx > n]

= pE[v1(x+ S(l − 1)), τx > l − 1]E[f(X), Xk(0) > 0]. (4.2)

for every fixed l. Indeed, in view of the symmetry,

lim
r→0

lim
n→∞

nα/2+(k−1)(k−2)/4E[f(X(n)), T = l,X1(l) < −rn1/2, τx > n]

= qE[v2(x+ S(l − 1)), τx > l − 1]E[f(X), X1(0) < 0]. (4.3)

Then, combining (4.2) and (4.3), we get

lim
r→0

lim
n→∞

E[f(X(n)), T ≤ N |τx > n]

∼
∑N−1
l=0 E[v(x+ S(l − 1)), τx > l − 1]

U(x)
E[f(X)]

Using Proposition 2.1 and Lemma 3.1, we get (4.1).
In order to prove (4.2) we assume first that our random walk starts from x with

|x1| < A, . . . , |xk−1| < A and xk > rn1/2. It is easy to see that

P
(
τx > n, ν(n) ≤ n1−ε, |Sk(ν(n))| > n1/2−ε/4

)
≤ P

(
max
j≤n1−ε

|Sk(ν(n))| > n1/2−ε/4
)
P(τ (1)x > n) = o

(
1

n(k−1)(k−2)/4

)
.

Furthermore, it follows from Lemma 16 of [4] that

P
(
τ (1)x > n, ν(n) ≤ n1−ε, |S(ν(n))| > θnn

1/2
)

= o

(
1

n(k−1)(k−2)/4

)
.

As a result we have the following representation

E
[
f(X(n)), τx > n

]
= E

[
f(X(n)), τx > n, |S(ν(n))| ≤ θnn1/2, ν(n) ≤ n1−ε

]
+ o

(
1

n(k−1)(k−2)/4

)
.

Further,

E
[
f(X(n)), τx > n, |S(ν(n))| ≤ θnn1/2, ν(n) ≤ n1−ε

]
=

n1−ε∑
l=1

∫
W

P
(
x+ S(l) ∈ dy, τx > l, ν(n) = l, |S(l)| ≤ θnn1/2

)
×E

[
fl,y(X(n)), τy > n− l

]
,

where

fl,y(u) = f
(
y1{t≤l/n} + u(t)1{t>l/n}

)
, u ∈ C[0, 1].
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Using coupling, we obtain

E
[
fl,y(X(n)), τy > n− l

]
∼ E[f(X)|Xk(0) = xk/

√
n]P(τ bmy > n)

∼ E[f(X)|Xk(0) = xk/
√
n]

∆(1)(y)ψ(xk/
√
n)

n(k−1)(k−2)/4
.

This implies that

E
[
f(X(n)), τx > n, |S(ν(n))| ≤ θnn1/2, ν(n) ≤ n1−ε

]
∼ E[f(X)|Xk(0) = xk/

√
n]ψ(xk/

√
n)

n(k−1)(k−2)/4

×E
[
∆(1)(x+ S(ν(n))), τx > ν(n), ν(n) ≤ n1−ε, |S(ν(n))| ≤ θnn1/2

]
∼ v1(x)

E[f(X)|Xk(0) = xk/
√
n]ψ(xk/

√
n)

n(k−1)(k−2)/4
,

where in the last step we used Lemmas 15 and 16 from [4]. Therefore,

E[f(X(n)), T = l,Xk(l) > rn1/2, τx > n]

∼
∫
W

P(x+ S(l) ∈ dy, τx > l, T = l,Xk(l) > rn1/2)

× v1(y)

n(k−1)(k−2)/4
E[f(X)|Xk(0) = yk/

√
n]ψ(yk/

√
n)

∼ pE[v1(x+ S(l − 1), τx > l − 1]

nα/2+(k−1)(k−2)/4

∫ ∞
a

E[f(X)|Xk(0) = z]ψ(z)αz−α−1dz.

Since

lim
r→0

∫ ∞
r

E[f(X)|Xk(0) = z]ψ(z)αz−α−1dz = E[f(X), Xk(0) > 0],

the previous relation implies (4.1). Thus, the proof is finished.
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