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1 Introduction

Let {bα(t), t ∈ R} be the fractional Brownian motion with parameter 0 < α < 1.
Consider ϕ, a positive kernel with L1 norm equal to one, and let ϕε(·) = 1

ε
ϕ( ·

ε
) and

then define bεα(t) = ϕε ∗ bα(t), the regularized fractional Brownian motion.
Recently, there has been some interest in modeling a stock price X(t) by a frac-

tional version of Black-Scholes model (see Black and Scholes (1973)), say:

dX(t) = X(t)(σ dbα(t) + µ dt),

with X(0) = c and α > 1/2 (see also Cutland et al. (1993)). More generally, let X(t)
be the solution of

dX(t) = σ(X(t)) dbα(t) + µ(X(t)) dt,

with X(0) = c.
First, assume that µ = 0. The model becomes

dX(t) = σ(X(t)) dbα(t),

with X(0) = c.
Lin (1995) proved that such a solution can be written as X(t) = K(bα(t)) where

K is solution of the ordinary differential equation K̇ = σ(K) with K(0) = c.
We shall consider the statistical problem that consists in observing, instead of

X(t), the regularization Xε(t) := 1
ε

∫ +∞
−∞ ϕ((t− x)/ε)X(x) dx with ϕ as before and to

make inference about σ(·). To achieve this purpose we establish first in section 4.1.1
a convergence result for the number of crossings of Xε(·), using the following theorem
(Azäıs and Wschebor (1996))

Theorem 1.1 Let {bα(t), t ∈ R} be the fractional Brownian motion with parameter
0 < α < 1. Then, for every continuous function h

√
π

2

ε1−α

σ2α

∫ +∞

−∞
h(x)N bα

ε (x) dx

=

√
π

2

∫ 1

0

h(bεα(u))|Zε(u)| du a.s.−→
∫ 1

0

h(bα(u)) du

=

∫ +∞

−∞
h(x)`bα(x) dx,

where
a.s.−→ denotes the almost-sure convergence, N bα

ε (x) the number of times the
regularized process bεα(·) crosses level x before time 1, Zε(u) = ε(1−α)ḃεα(u)/σ2α with

σ2
2α = V

[
ε(1−α)ḃεα(u)

]
, and process `bα(x) is the local time in [0, 1] of bα(·) at level x.

To show the result quoted above for Xε(u), we shall use the fact that Xε(u) is
close to K(bεα(u)) and Ẋε(u) is close to K̇(bεα(u))ḃεα(u) = σ(K(bεα(u)))ḃεα(u), and this
enables us to prove that

√
π

2

ε1−α

σ2α

∫ +∞

−∞
h(x)NX

ε (x) dx '
√
π

2

∫ 1

0

h(K(bεα(u)))σ(K(bεα(u)))|Zε(u)| du,
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converges almost surely to

∫ 1

0

h(K(bα(u)))σ(K(bα(u))) du =

∫ 1

0

h(X(u))σ(X(u)) du =

∫ +∞

−∞
h(x)σ(x)`X(x) dx,

where `X(·) is the local time for X in [0, 1].
Now suppose that 1

4
< α < 3

4
, we have the following result about the rates of

convergence in Theorem 1.1 proved in section 3.4: there exists a Brownian motion
Ŵ (·) independent of bα(·) and a constant Cα,ϕ such that,

1√
ε

[√
π

2

ε1−α

σ2α

∫ ∞

−∞
h(x)N bα

ε (x) dx−
∫ ∞

−∞
h(x)`bα(x) dx

]

D−→ Cα,ϕ

∫ 1

0

h(bα(u)) dŴ (u).

Using this last result for 1
2
< α < 3

4
, we can get the same one for the number of

crossings of the process Xε(·) and we obtain in section 4.1.1

1√
ε

[√
π

2

ε1−α

σ2α

∫ ∞

−∞
h(x)NX

ε (x) dx−
∫ ∞

−∞
h(x)σ(x)`X(x) dx

]

D−→ Cα,ϕ

∫ 1

0

h(X(u))σ(X(u)) dŴ (u).

A similar result can be obtained under contiguous alternatives for σ(·) and pro-
vides in section 4.1.2 a test of hypothesis for such a function.

We study also the rate of convergence in the following result proved by Azäıs and
Wschebor (1996) concerning the increments of the fractional Brownian motion given
here as Theorem 1.2.

Theorem 1.2 Let {bα(t), t ∈ R} be the fractional Brownian motion with parameter
0 < α < 1. Then, for all x ∈ R and t ≥ 0

λ

{
0 ≤ u ≤ t :

bα(u+ ε) − bα(u)

εαv2α

≤ x

}
a.s.−→ tPr{N ∗ ≤ x},

where v2
2α = V [bα(1)], λ is the Lebesgue measure and N ∗ is a standard Gaussian

random variable.

This result also implies that for a smooth function f , we have for all t ≥ 0

∫ t

0

f

(
bα(u+ ε) − bα(u)

εαv2α

)
du

a.s.−→ tE [f(N ∗)] . (1)

It also can be shown for regularizations bεα(u) = ϕε∗bα(u), where ϕε(·) = 1
ε
ϕ( ·

ε
), ϕ

defined before. In the special case where ϕ = 1[−1,0], we have εḃεα(u) = bα(u+ε)−bα(u).
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Hence, we can write (1) in an other form say, for all t ≥ 0

∫ t

0

f

(
ε(1−α)ḃεα(u)

σ2α

)
du

a.s.−→ tE [f(N ∗)] . (2)

We find the convergence rate in (2) for a function f ∈ L2(φ(x) dx) where φ(x) dx
stands for the standard Gaussian measure. We can formulate the problem in the
following way:

Suppose that g(N)(x) = f(x) − E [f(N ∗)] is a function in L2(φ(x) dx), whose first
non-zero coefficient in the Hermite expansion is aN , i.e. g(N)(x) =

∑∞
n=N anHn(x),

(N ≥ 1) for which ‖g(N)‖2
2,φ =

∑∞
n=N a

2
nn!. The index N is called the Hermite’s rank.

Find an exponent a(α,N) and a process Xg(N)(·) such that the functional defined by

S
(N)
ε (t) = ε−a(α,N)

∫ t

0
g(N)(Zε(u)) du converges in distribution to Xg(N)(t).

Note that similar problems have been studied by Breuer and Major (1983), Ho and
Sun (1990) and Taqqu (1977) for summations instead of integrals.

The limit depends on the value of α, and as stated in Section 3.1, α = 1− 1/(2N)
is a breaking point. As pointed out in Section 3.3, if instead of considering the first
order increments, we take the second ones, then there is no more breaking points and
the convergence is reached for any value of α in (0, 1).

As applications of the previous results, we get in Section 4.2 the following:

ε−a(α,2)

∫ t

0

(
|Zε(u)|β − E

[
|N∗|β

])
du

D−→ Xg(2)(t),

and in Section 4.3 we get the rate of convergence in Theorem 1.2 and we obtain that
for all x ∈ R

ε−a(α,1)

[
λ{0 ≤ u ≤ t, Zε(u) ≤ x} −

∫ t

0

Pr(N ∗ ≤ x) du

]
D−→ Xg(1)(t),

giving the form of the limit, depending also of x, and suggesting the convergence rate
in the case where 1/2 < α < 1.

We observe that all the results quoted above for the fractional Brownian motion,
have been considered in Berzin-Joseph and León (1997) for the Wiener process (cor-
responding to the case where α = 1/2), in Berzin et al. (2001) for the F -Brownian
motion, in Berzin et al. (1998) for a class of stationary Gaussian processes and in
Perera and Wschebor (1998) for semimartingales.

It is worth noticing that in the case of stationary Gaussian processes the results
are quite similar to those obtained in the present article for N = 2.

The paper is organized as follows. In this section we introduced the problems and
their applications. In section 2 we state some notations and the hypotheses under
which we work. Section 3 is devoted to establish the main results. The applications
are developed in section 4. Section 5 contains the proofs.
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2 Hypotheses and notations

Let {bα(t), t ∈ R} be the fractional Brownian motion with parameter 0 < α < 1
(see for instance Mandelbrot and Van Ness (1968)), i.e. bα(·) is a centered Gaussian
process with the covariance function

E [bα(t)bα(s)] =
1

2
v2

2α

[
|t|2α + |s|2α − |t− s|2α

]
,

with v2
2α =

1

Γ(2α + 1) sin(πα)
.

For each t ≥ 0 and ε > 0, we define the regularized processes

bεα(t) = ε−1

∫ t+ε

t

bα(u) du and Zε(t) =
bα(t+ ε) − bα(t)

εαv2α

.

We also define, for a C1 density ϕ with compact support included in [−1, 1] satisfying∫∞
−∞ ϕ(x) dx = 1,

bεα(t) =
1

ε

∫ ∞

−∞
ϕ

(
t− x

ε

)
bα(x) dx and Zε(t) =

ε(1−α)ḃεα(t)

σ2α

,

with

σ2
2α := V

[
ε(1−α)ḃεα(t)

]
=

1

2π

∫ +∞

−∞
|x|1−2α|ϕ̂(−x)|2 dx.

(Note that for α = 1/2, σ2
2α = ||ϕ||22 :=

∫ +∞
−∞ ϕ2(x) dx.)

We shall use the Hermite polynomials, which can be defined by exp(tx− t2/2) =∑∞
n=0Hn(x)tn/n!. They form an orthogonal system for the standard Gaussian mea-

sure φ(x) dx and, if h ∈ L2(φ(x) dx), h(x) =
∑∞

n=0 ĥnHn(x) and ||h||22,φ =
∑∞

n=0 ĥ
2
nn!.

Mehler’s formula (see Breuer and Major (1983)) gives a simple form to compute
the covariance between two L2 functions of Gaussian random variables. Actually, if
k ∈ L2(φ(x) dx), k(x) =

∑∞
n=0 k̂nHn(x) and if (X,Y ) is a Gaussian random vector

such that X and Y are standard Gaussian random variables with correlation ρ then

E [h(X)k(Y )] =
∞∑

n=0

ĥnk̂nn!ρn. (3)

We will also use the following well-known property

∫ z

−∞
Hk(y)φ(y)dy = −Hk−1(z)φ(z), z ∈ R, k ≥ 1. (4)

Let g(N) be a function in L2(φ(x) dx) such that g(N)(x) =
∑∞

n=N anHn(x), N ≥ 1,
with ||g(N)||22,φ =

∑∞
n=N a

2
nn! < +∞.
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For 0 < α < 1 − 1/(2N) or α = 1/2 and N = 1, we shall write

(σ(N)
a )2 = 2

∞∑

l=N

a2
l l!

∫ +∞

0

ρl
α(x) dx,

where we define ρ
(ε)
α (v) = E [Zε(v + u)Zε(u)] and

ρα(x) = ρ(ε)
α (εx) =

−v2
2α

2σ2
2α

∫ ∞

−∞
ϕ̇ ∗ ˜̇ϕ(y)|x− y|2α dy

=
1

2πσ2
2α

∫ ∞

−∞
|y|1−2αeixy|ϕ̂(−y)|2 dy,

where ˜̇ϕ(y) = ϕ̇(−y). (If α = 1/2, ρα(x) = ϕ ∗ ϕ̃(x)/||ϕ||22.) For ϕ = 1[−1,0], it is easy
to show that

ρα(x) =
1

2
[|x+ 1|2α − 2|x|2α + |x− 1|2α] and

v2
2α

σ2
2α

= 1.

Note that for N = 1 and 0 < α < 1/2, since
∫ +∞

0
ρα(x) dx = 0, (σ

(1)
a )2 = (σ

(2)
a )2, and

for α = 1/2 with N = 1, (σ
(1)
a )2 = a2

1/||ϕ||22 + (σ
(2)
a )2.

For N ≥ 1 and 0 ≤ t ≤ 1, define

S(N)
ε (t) = ε−a(α,N)

t∫

0

g(N)(Zε(u)) du,

a(α,N) will be defined later.
Throughout the paper, C shall stand for a generic constant, whose value may

change during a proof. N ∗ will denote a standard Gaussian random variable.

3 Results

3.1 Convergence for S
(N)
ε (t)

3.1.1 Case 0 < α < 1 − 1/(2N) or α = 1/2 and N = 1

If N = 1, let us define A := {k : k ≥ 2 and ak 6= 0}. We suppose A 6= ∅ and we define
N0 = inf{k : k ∈ A}.

Theorem 3.1 a(α,N) = 1/2 and

1)

S(N)
ε (·) D−→ σ(N)

a Ŵ (·),
where Ŵ (·) is a Brownian motion.
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2) Furthermore,

(a) If 1/(2N) < α < 1 − 1/(2N)

(bεα(·), S(N)
ε (·)) D−→ (bα(·), σ(N)

a Ŵ (·));

(b) If 1/(2N0) < α < 1/2 and N = 1

(bεα(·), S(1)
ε (·)) D−→ (bα(·), σ(N0)

a Ŵ (·));

(c) If α = 1/2 and N = 1

(bεα(·), S(1)
ε (·)) D−→ (bα(·), a1

||ϕ||2
bα(·) + σ(N0)

a Ŵ (·)).

The processes bα(·) and Ŵ (·) are independent. The convergence taking place in 1)
and 2) is in finite-dimensional distributions.

Remark 1: If the cœfficients of the function g(N) verify the condition

∞∑

k=N

3k/2
√
k!|ak| <∞,

(cf. Chambers and Slud (1989), p.328), the sequence S
(N)
ε (·) is tight and the conver-

gence takes place in C[0, 1] for 1) and in C[0, 1]×C[0, 1] for 2). This will be the case
for g(N) a polynomial.

Remark 2: In case 1), when 0 < α < 1/2, (N = 1), note that σ
(N)
a = σ

(N0)
a .

Remark 3: In case 1), when 0 < α < 1/2, (N = 1) and ak ≡ 0 for k ≥ 2,
(i.e. A = ∅), the limit gives zero, so the normalization must be changed; in fact in

this case, a(α, 1) = 1− α is the convenient normalization and S
(1)
ε (·) converges in L2

towards a1bα(·)/σ2α; this last result is also true when α ≥ 1/2.

Furthermore with this normalization, for 0 < α < 1, (bε
α(·), S(1)

ε (·)) D−→ (bα(·), a1

σ2α
bα(·)).

3.1.2 Case α = 1 − 1/(2N) and N > 1

Theorem 3.2 a(α,N) = 1
2

and

(bε1−1/(2N)(·), [ln(ε−1)]−
1
2S

(N)
ε (·)) D−→ (b1−1/(2N)(·),

√
2N ![(1− 1

2N
)(1− 1

N
)]N/2(

v2−1/N

σ2−1/N
)NaNŴ (·)),

where Ŵ (·) is a Brownian motion and the processes b1−1/(2N)(·) and Ŵ (·) are inde-
pendent.
The convergence taking place is in finite-dimensional distributions.
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3.1.3 Case 1 − 1/(2N) < α < 1

Theorem 3.3 a(α,N) = N(1 − α) and for fixed t in [0, 1]

S
(N)
ε (t)

L2

−→
√
N !aN

(
i√

2πσ2α

)N ∫ +∞

−∞
. . .

∫ +∞

−∞
Kt

(
N∑

i=1

λi

)
×

N∏

i=1

(
λi|λi|−

1
2
−α
)

dW (λ1) . . . dW (λN),

where

Kt(λ) =
exp(itλ) − 1

iλ
.

Remark: Note that for N = 1 (α > 1
2
) the limit is a1

σ2α
bα(t).

3.2 Rate of convergence for S
(1)
ε (t) and 1

2 < α < 1

Remember that for 1
2
< α < 1, S

(1)
ε (t) = εα−1

∑∞
k=1 ak

∫ t

0
Hk(Zε(u)) du. We shall

prove that for fixed t ∈ [0, 1], S
(1)
ε (t) converges in L2 towards

a1

σ2α

bα(t) (see the

remark below Theorem 3.3). We can also give the rate of this convergence using the
three last theorems. Let consider A = {k : k ≥ 2 and ak 6= 0}. If A 6= ∅, we define
N0 = inf{k : k ∈ A} and for 0 ≤ t ≤ 1,

Vε(t) =





ε−d(α,N0)

(
S

(1)
ε (t) − a1

σ2α

bα(t)

)
, if A 6= ∅

ε−α

(
S

(1)
ε (t) − a1

σ2α

bα(t)

)
, otherwise.

The exponent d(α,N0) will be defined later.
We have the following corollary.

Corollary 3.1 1. If A 6= ∅,
(i) For 1

2
< α < 1 − 1

2N0
,

d(α,N0) = α− 1

2
and Vε(·) D−→ σ(N0)

a Ŵ (·),

where (σ
(N0)
a )2 = 2

∑∞
l=N0

a2
l l!
∫ +∞

0
ρl

α(x) dx.
(ii) For α = 1 − 1

2N0
, d(α,N0) = 1

2
− 1

2N0
and

[ln(ε−1)]−
1
2Vε(·) D−→

√
2N0!

[(
1 − 1

2N0

)(
1 − 1

N0

)]N0/2(v2−1/N0

σ2−1/N0

)N0

aN0Ŵ (·).

333



(iii) For 1 − 1
2N0

< α < 1, d(α,N0) = (N0 − 1)(1 − α) and for fixed t in [0, 1],

Vε(t)
L2

−→
√
N0!aN0

(
i√

2πσ2α

)N0
∫ +∞

−∞
. . .

∫ +∞

−∞
Kt

(
N0∑

i=1

λi

)
×

N0∏

i=1

(
λi|λi|−

1
2
−α
)

dW (λ1) . . . dW (λN0).

2. If A = ∅, for 1
2
< α < 1,

Vε(·) D−→ a1

σ2α

√
cα,ϕ [B(·) −B(0)],

where cα,ϕ = V

[∫∞
−∞ ϕ(x)bα(x) dx

]
and B(·) is a cylindrical standard Gaussian pro-

cess with zero correlation independent of bα(·). The symbol
D−→ means weak conver-

gence in finite-dimensional distributions.

Remark: Statement 2. is also true for 0 < α ≤ 1
2

with the same definition for S
(1)
ε (·).

3.3 2nd-order increments

Instead of considering the first order increments of bα(·), we study the asymptotic be-
haviour of the second order increments. We also get convergence for the corresponding
functionals to a Brownian motion for all the values of α in (0, 1).

Thus, if ϕ is now in C2 instead of in C1, we define

Z̃ε(u) =
ε2−αb̈εα(u)

σ̃2α

,

with

σ̃2
2α = V

[
ε2−αb̈εα(u)

]
=

1

2π

∫ +∞

−∞
|x|3−2α|ϕ̂(−x)|2 dx.

Note that if ϕ = ϕ1 ∗ ϕ2 with ϕ1 = 1[−1,0] and ϕ2 = 1[0,1] then ε2b̈εα(u) = bα(u+ ε) −
2bα(u) + bα(u− ε).

Now for N ≥ 1 and 0 ≤ t ≤ 1, define

S̃(N)
ε (t) :=

1√
ε

∫ t

0

g(N)(Z̃ε(u)) du,

where we suppose as in Theorem 3.1 that A := {k : k ≥ 2 and ak 6= 0} is not an
empty set and we define N0 = inf{k : k ∈ A}. With the technics used in Theorem
3.1, we can prove Corollary 3.2.
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Corollary 3.2 For 0 < α < 1,

(i) S̃
(N)
ε (·) D−→ σ̃

(N0)
a Ŵ (·).

Furthermore,
(ii) If 1/(2N0) < α < 1,

(bεα(·), S̃(N)
ε (·)) D−→ (bα(·), σ̃(N0)

a Ŵ (·)),

where we have noted (σ̃
(N0)
a )2 = 2

∑∞
l=N0

a2
l l!
∫ +∞

0
ρ̃l

α(x) dx, ρ̃α(x) = E

[
Z̃ε(εx+ u)Z̃ε(u)

]
.

Remark: If A = ∅ (N = 1), the convenient normalization for S̃
(1)
ε (t) is ε−1 and in

this case for 0 < α < 1, (bεα(·), S̃(1)
ε (·)) D−→ (bα(·), a1σ2α/σ̃2α(B(·)−B(0))) where B(·)

is again a cylindrical standard Gaussian process with zero correlation independent of
bα(·).

3.4 Crossings and Local time

Let us define the following random variable

Σε(h) = ε−e(α,2)

∫ +∞

−∞
h(x)

[√π

2

ε1−α

σ2α

N bα
ε (x) − `bα(x)

]
dx,

where N bα
ε (x) is the number of times that the process bεα(·) crosses level x before time

1 and `bα(·) is the local time for the fractional Brownian motion in [0, 1] (see Berman
(1970)) that satisfies, for every continuous function h

∫ +∞

−∞
h(x)`bα(x) dx =

∫ 1

0

h(bα(u)) du,

and then by Banach-Kac (Banach (1925) and Kac (1943)), Σε(h) can be expressed as

Σε(h) = ε−e(α,2)
[∫ 1

0

h(bεα(u))

√
π

2
|Zε(u)| du−

∫ 1

0

h(bα(u)) du
]
.

Using Theorem 3.1 2)(a) we can get Theorem 3.4.

Theorem 3.4 Let h be C3 such that |h(3)(x)| ≤ P (|x|), where P is a polynomial.
(i) If 0 < α < 1

4
, then e(α, 2) = 2α and

Σε(h)
L2

−→ Kα,ϕ

∫ +∞

−∞
ḧ(x)`bα(x) dx = Kα,ϕ

∫ 1

0

ḧ(bα(u)) du,

where Kα,ϕ =
−v2

2α

4

(∫∞
−∞
∫∞
−∞ ϕ(x)ϕ(y)|x− y|2α dxdy

)
.

(ii) If 1
4
< α < 3

4
and furthermore h is C4 such that |h(4)(x)| ≤ P (|x|), then e(α, 2) =

1
2

and Σε(h) converges stably towards a random variable Y (h)

Y (h) := Cα,ϕ

∫ 1

0

h(bα(u))dŴ (u),
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where C2
α,ϕ = 2

∑+∞
l=1 a

2
2l(2l)!

∫ +∞
0

ρ2l
α (x) dx and a2l is defined by

√
π
2
|x| − 1 =∑+∞

l=1 a2lH2l(x) := g(2)(x).

Remark 1: If 0 < α ≤ 1
2
, Theorem 3.4 is true under weaker hypotheses. Indeed,

if 0 < α < 1
2
, it is enough to ask for h ∈ C3 with |h(3)(x)| ≤ P (|x|), and if α = 1

2
, for

h ∈ C2 with |ḧ(x)| ≤ P (|x|).

Remark 2: It can be proved that, under the same hypotheses as in (ii) and
for general f , with (2 + δ)-moments with respect to the standard Gaussian measure,
δ > 0, even, or odd with Hermite’s rank greater than or equal to three,

1√
ε

[∫ 1

0

f(Zε(u))h(b
ε
α(u)) du− E [f(N ∗)]

∫ 1

0

h(bα(u)) du

]
D−→ Cα,ϕ(f)

∫ 1

0

h(bα(u))dŴ (u),

where Cα,ϕ(f) is similar to Cα,ϕ, but now a2l are the Hermite’s coefficients of f −
E(f(N ∗)). So taking, f(x) =

√
π
2
|x|, we can see the last convergence as a generaliza-

tion of (ii).

Remark 3: If h ≡ 1, the convenient normalization for Σε(h) is e(α, 2) = 1
2

but

for all 0 < α < 3
4

and we can prove that 1√
ε

∫ +∞
−∞ [

√
π
2

ε1−α

σ2α
N bα

ε (x)−`bα(x)] dx converges

in distribution towards Cα,ϕŴ (1) by Theorem 3.1 1).

4 Applications

4.1 Pseudo-diffusion

4.1.1 Estimation of the variance of a pseudo-diffusion.

As is well-known, the process bα(·) is not a semimartingale. Thus we cannot, in
general, integrate

∫ t

0
a(u) dbα(u) for a predictable process a(·). However if the coeffi-

cient α is greater than 1
2
, the integral with respect to bα(·) can be defined pathwise

as the limit of Riemann sums (see for example the works of Lin (1995) and Lyons
(1994)). This allows us to consider, under certain regularity conditions for µ and σ,
the “pseudo-diffusion” equations with respect to bα(·)

X(t) = c+

∫ t

0

σ(X(u)) dbα(u) +

∫ t

0

µ(X(u)) du,

for t ≥ 0, α > 1
2

and positive σ. We consider the problem of estimating σ when µ ≡ 0.
Suppose we observe instead of X(t) a regularization Xε(t) = 1

ε

∫∞
−∞ ϕ( t−x

ε
)X(x) dx,

with ϕ as in section 2, where we have extended X(·) by means of X(t) = c, if
t < 0. It is easy to see that the process X(t) has a local time `X(x) in [0, 1] for
every level x, in fact we have `X(x) = `bα(K−1(x))/σ(x) where K is solution of the
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ordinary differential equation (ODE), K̇ = σ(K) with K(0) = c. Considering NX
ε (x)

the number of times that the process Xε(·) crosses level x before time 1 and using
Theorem 1.1 we can prove:

Proposition 4.1 Let 1
2
< α < 1, if h ∈ C0 and σ ∈ C1 then

√
π

2

ε1−α

σ2α

∫ ∞

−∞
h(x)NX

ε (x) dx
a.s.−→

∫ ∞

−∞
h(x)σ(x)`X(x) dx.

Moreover, using Theorem 3.4 (ii) we can also obtain the following theorem.

Theorem 4.1 Let us suppose that 1
2
< α < 3

4
, h ∈ C4, σ ∈ C4, σ is bounded and

sup{|σ(4)(x)|, |h(4)(x)|} ≤ P (|x|), where P is a polynomial, then

1√
ε
[

√
π

2

ε1−α

σ2α

∫ ∞

−∞
h(x)NX

ε (x) dx−
∫ ∞

−∞
h(x)σ(x)`X(x) dx],

converges stably towards

Cα,ϕ

∫ 1

0

h(X(u))σ(X(u))dŴ (u).

Here, Ŵ (·) is still a standard Brownian motion independent of bα(·), C2
α,ϕ given by

C2
α,ϕ = 2

+∞∑

l=1

a2
2l(2l)!

∫ +∞

0

ρ2l
α (v) dv and g(2)(x) =

√
π

2
|x| − 1 =

+∞∑

l=1

a2lH2l(x).

Remark: This type of result was obtained for a class of semimartingales, and in
particular for diffusions, in Perera and Wschebor (1998).

4.1.2 Proofs of hypothesis

Now, we observe Xε(·), solution of the stochastic differential equation, for t ≥ 0,

dXε(t) = σε(Xε(t)) dbα(t) with Xε(0) = c,

Xε(t) = c, for t < 0 and we consider testing the hypothesis

H0 : σε(·) = σ0(·),
against the sequence of alternatives

Hε : σε(·) = σ0(·) +
√
εd(·) +

√
εF (·,√ε),

where F (·, 0) = 0, σ0, d and F are C1.
Let us define the observed process Yε(·) := 1

ε

∫ +∞
−∞ ϕ( .−x

ε
)Xε(x) dx with ϕ as in section

2. We are interested in observing the following functionals

Tε(h) :=
1√
ε

[√
π

2

ε1−α

σ2α

∫ ∞

−∞
h(x)NY

ε (x) dx−
∫ 1

0

h(Xε(u))σ0(Xε(u)) du

]
.

Using Theorem 3.1 2)(a) we can prove Theorem 4.2.
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Theorem 4.2 Let us suppose that 1
2
< α < 3

4
, h ∈ C4, σ0 ∈ C4, d ∈ C2, F ∈ C1,

σ0 is bounded and sup{|σ(4)
0 (x)|, |h(4)(x)|, |d(2)(x)|} ≤ P (|x|) where P is a polynomial

then Tε(h) converges stably towards

Cα,ϕ

∫ 1

0

h(X(u))σ0(X(u))dŴ (u) +

∫ 1

0

h(X(u))d(X(u)) du,

where X(·) = K(bα(·)) a.s.
= lim

ε→0
Xε(·), and K is solution of the ODE, K̇ = σ0(K) with

K(0) = c and Ŵ (·) is a standard Brownian motion independent of X(·).

Remark 1: There is a random asymptotic bias, and the larger the bias the easier it
is to discriminate between the two hypotheses.

Remark 2: We can consider the very special case h ≡ 1 and σ0 constant. The limit
random variable is

Cα,ϕσ0N
∗ +

∫ 1

0

d(σ0bα(u) + c) du.

Recall that the two terms in the sum are independent.

4.2 β-increments

Let

Sβ
ε (t) = ε−a(α,2)

∫ t

0

{
|Zε(u)|β − E

[
|N∗|β

]}
du, for β > 0 and 0 ≤ t ≤ 1.

As an application of Theorems 3.1 1), 3.2 (i) and 3.3, we obtain the following corollary.

Corollary 4.1 (i) If 0 < α < 3
4
,

a(α, 2) =
1

2
and Sβ

ε (·) D−→ σ
(2)
β Ŵ (·),

where

(σ
(2)
β )2 =

2β+1

π




+∞∑

l=1

(2l)!

(
l∑

p=0

(−1)l−p

(2p)!(l − p)!2l−p
2pΓ(p+

β + 1

2
)

)2 ∫ +∞

0

ρ2l
α (x) dx


 .

(ii) If α = 3
4
,

a(α, 2) =
1

2
and [ln(ε−1)]−

1
2Sβ

ε (·) D−→ 3β2β/2−1

4
√
π

Γ((β + 1)/2)
v2

3/2

σ2
3/2

Ŵ (·).
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(iii) If 3
4
< α < 1,

a(α, 2) = 2(1−α) and for fixed t in [0, 1], Sβ
ε (t)

L2

−→ −β 2(β−1)/2

√
π

Γ

(
β + 1

2

)( 1√
2πσ2α

)2

×
(∫ +∞

−∞

∫ +∞

−∞
Kt(λ+ µ)λ|λ|−α− 1

2µ|µ|−α− 1
2 dW (λ) dW (µ)

)
.

4.3 Lebesgue measure

Let

Sλ
ε (t) = ε−a(α,1)

[
λ{0 ≤ u ≤ t, Zε(u) ≤ x}−

∫ t

0

Pr(N ∗ ≤ x) du
]

for x ∈ R and 0 ≤ t ≤ 1.

Thanks to Theorems 3.1 1) and 3.3 we have the following corollary.

Corollary 4.2 (i) If 0 < α < 1
2
, a(α, 1) = 1

2
and

Sλ
ε (·) D−→ σ

(2)
λ Ŵ (·),

where (σ
(2)
λ )2 = 2

∑+∞
l=2

1
l!
H2

l−1(x)φ
2(x)

[∫ +∞
0

ρl
α(y) dy

]
.

(ii) If α = 1
2
, a(α, 1) = 1

2
and

Sλ
ε (·) D−→ σ

(2)
λ Ŵ (·) − φ(x)

||ϕ||2
bα(·).

(iii) If 1
2
< α < 1, a(α, 1) = 1 − α and for fixed t in [0, 1]

Sλ
ε (t)

L2

−→ −φ(x)

σ2α

bα(t).

Remark: In case (ii), if ϕ = 1[−1,0], then (σ
(2)
λ )2 = 2

∑+∞
l=2

1
(l+1)!

H2
l−1(x)φ

2(x).

Thanks to Corollary 3.1.1 we can give the rate of convergence when 1
2
< α < 1.

Indeed for 0 ≤ t ≤ 1 and x ∈ R
∗, let

V λ
ε (t) = ε−d(α,2)

(
Sλ

ε (t) +
φ(x)

σ2α

bα(t)

)
.

We have the following corollary.

Corollary 4.3 (i) If 1
2
< α < 3

4
, d(α, 2) = α− 1

2
and

V λ
ε (·) D−→ σ

(2)
λ Ŵ (·),
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where σ
(2)
λ is the same as previous corollary.

(ii) If α = 3
4
, d(α, 2) = 1

4
and

[ln(ε−1)]−
1
2V λ

ε (·) D−→ −3

8
xφ(x)

v2
3/2

σ2
3/2

Ŵ (·).

(iii) If α > 3
4
, d(α, 2) = 1 − α and for fixed t in [0, 1]

V λ
ε (t)

L2

−→ 1√
2
xφ(x)

( 1√
2πσ2α

)2
∫ +∞

−∞

∫ +∞

−∞
Kt(λ+µ)λ|λ|−α− 1

2µ|µ|−α− 1
2 dW (λ) dW (µ).

5 Proofs of the results

5.1 Asymptotic variance of S
(N)
ε (t)

5.1.1 Case where 0 < α < 1 − 1/(2N) or α = 1/2 and N = 1

Proposition 5.1 a(α,N) = 1/2 and E

[
S

(N)
ε (t)

]2
−→
ε→0

t(σ
(N)
a )2.

Proof of Proposition 5.1. By Mehler’s formula (see Equation (3))

E
[
S(N)

ε (t)
]2

=
2

ε

+∞∑

l=N

a2
l l!

∫ t

0

(t− u)(ρ(ε)
α )l(u) du.

If we let u = εx, we get

E
[
S(N)

ε (t)
]2

= 2
+∞∑

l=N

a2
l l!

∫ t
ε

0

(t− εx)ρl
α(x) dx.

But |ρα(x)| is equivalent to x2α−2α|2α − 1|v2
2α/σ

2
2α when x tends to infinity and is

bounded from above by Cx2α−2.
Since α < 1 − 1/(2N) or α = 1/2 and N = 1, ||g(N)||22,φ < +∞ and |ρα(x)| ≤ 1, we
can use the Lebesgue’s dominated convergence theorem to get the result. 2

Proof of Theorem 3.1. 1) We give the proof for the special case where N = 2
(0 < α < 3/4) to propose a demonstration rather different than in 2)(a). Using the
Chaos representation for the increments of the fractional Brownian motion (see Hunt
(1951)), we can write

bα(t) =
1√
2π

∫ ∞

−∞
[exp(iλt) − 1]|λ|−α− 1

2 dW (λ),

thus

Zε(t) =
1√
2π

ε1−α

σ2α

∫ ∞

−∞
exp(iλt)iλϕ̂(−λε)|λ|−α− 1

2 dW (λ),
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making the change of variable x = ελ in the stochastic integral, we get

Zε(t) =
1√
2π

1

σ2α

∫ ∞

−∞
exp

(
i
xt

ε

)
ixϕ̂(−x)|x|−α− 1

2 dW (x).

We shall consider the following functional

S(2)
ε (t) =

1√
ε

∫ t

0

g(2)(Zε(u)) du =
√
ε

∫ t
ε

0

g(2)(Zε(εx)) dx,

where the function g(2) verifies E
[
g(2)(N ∗)

]
= 0 and E

[
N∗g(2)(N ∗)

]
= 0. Notice that

Z(x) := Zε(εx) is a stationary Gaussian process having spectral density

fα(x) =
x2|ϕ̂(x)|2

2πσ2
2α|x|2α+1

.

The function fα belongs to L2 only if 0 < α < 3
4
. The correlation function is

ρα(x) =

∫ ∞

−∞
exp(iyx)fα(y) dy.

Now, for k ∈ N
∗ and 0 = t0 < t1 < t2 < · · · < tk, let

S(2)
ε (t) =

k∑

i=1

αi[S
(2)
ε (ti) − S(2)

ε (ti−1)],

where t := (t0, . . . , tk) and αi, i = 1, . . . , k, are defined by

αi =
ci

[
∑k

i=1 c
2
i (ti − ti−1)]

1
2

,

while cj, j = 1, . . . , k, are real constants. We want to prove that

S(2)
ε (t)

D−→
ε→0

N (0; (σ(2)
a )2),

where

(σ(2)
a )2 = 2

∞∑

l=2

a2
l l!

∫ +∞

0

ρl
α(x) dx.

Let

S
(2)
ε,M (t) =

k∑

i=1

αi[S
(2)
ε,M (ti) − S

(2)
ε,M (ti−1)],

where

S
(2)
ε,M (t) =

√
ε

∫ t
ε

0

g
(2)
M (Z(x)) dx and g

(2)
M (y) =

M∑

l=2

alHl(y).

First, let us prove the following lemma
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Lemma 5.1
S

(2)
ε,M (t)

D−→
ε→0

N (0; (σ
(2)
a,M )2),

where (σ
(2)
a,M )2 = 2

M∑

l=2

a2
l l!

∫ +∞

0

ρl
α(x) dx.

Proof of Lemma 5.1. Let n be the integer part of 1
ε
, i.e. n := b1/εc. To study the

weak convergence of S
(2)
ε,M (t) it is sufficient to consider that of S

(2)
n,M(t) where

S
(2)
n,M (t) =

k∑

i=1

αi

√
ti − ti−1√

bntic − bnti−1c

∫ bntic

bnti−1c
g

(2)
M (Z(x)) dx.

We consider the following functional

S
(2,m)
n,M (t) =

k∑

i=1

αi

√
ti − ti−1√

bntic − bnti−1c

∫ bntic

bnti−1c
g

(2)
M (Z(m)(x)) dx,

where Z(m)(·) is an approximation of Z(·) defined as follows, let ψ defined by

ψ(x) =

{
2(1 − 2|x|), − 1

2
≤ x ≤ 1

2
,

0, otherwise.

Note that
∫
ψ(x) dx = 1. Let Ψ(x) = ψ ∗ψ(x) and ξ(λ) = 1

2π
Ψ(λ)/Ψ(0), then Ψ ≥ 0,

supp Ψ ⊂ [−1, 1] and
∫
ξ̂(λ)dλ = 1. We define ξ̂(m)(λ) = mξ̂(mλ) and

Z(m)(x) :=

∫ +∞

−∞
exp(ixy)[fα ∗ ξ̂(m)]

1
2 (y) dW (y).

Then (Z(x), Z(m)(x)) is a mean zero Gaussian vector verifying

E [Z(0)Z(x)] = ρα(x), E
[
Z(m)(0)Z(m)(x)

]
= ρα(x)

Ψ(x/m)

Ψ(0)
,

and

E
[
Z(x)Z(m)(0)

]
= r(m)(x) =

∫ ∞

−∞
exp(ixy)[fα]

1
2 (y)[fα ∗ ξ̂(m)]

1
2 (y) dy.

The covariance for Z(m)(·) has support in [−m,m] and thus Z (m)(·) is m-dependent.

Lemma 5.2 gives the asymptotic value of E

[
S

(2)
n,M (t) − S

(2,m)
n,M (t)

]2
.

Lemma 5.2

E

[
S

(2)
n,M (t) − S

(2,m)
n,M (t)

]2
≤ k c

(m)
M −→

m→+∞
0,
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where

c
(m)
M = 2

√
2(

M∑

l=2

a2
l l!l)

(∫ +∞

0

(ρ2
α(x) + (r(m))2(x)) dx

) 1
2 ×

[
2
(∫ +∞

0

(r(m)(x) − ρα(x))2 dx
) 1

2
+
(∫ +∞

0

ρ2
α(x)

[
1 − Ψ(x/m)

Ψ(0)

]2

dx
) 1

2
]
.

Proof of Lemma 5.2. Let

Xi = αi

√
ti − ti−1√

bntic − bnti−1c

∫ bntic

bnti−1c
[g

(2)
M (Z(m)(x)) − g

(2)
M (Z(x))] dx = αi

√
ti − ti−1Yi.

Applying the Schwarz inequality
(∑k

i=1 ai

)2

≤ k
(∑k

i=1 a
2
i

)
to ai = αi

√
ti − ti−1 Yi

and since
∑k

i α
2
i (ti − ti−1) = 1, it is enough to prove that E [Yi]

2 ≤ c
(m)
M . Notice that

E [Yi]
2 = E

[
S

(2)
bntic−bnti−1c,M − S

(2,m)
bntic−bnti−1c,M

]2
where

S
(2)
n,M =

1√
n

∫ n

0

g
(2)
M (Z(x)) dx and S

(2,m)
n,M =

1√
n

∫ n

0

g
(2)
M (Z(m)(x)) dx.

Applying Lemma 4.1 of Berman (1992), which gives the required inequality not ex-

actly for g
(2)
M but for an Hermite polynomial Hl, and Mehler’s formula (see Equation

(3)), we get Lemma 5.2. 2

Now, we write S
(2,m)
n,M (t) as

S
(2,m)
n,M (t) =

jn∑

i=1

bi,nξi,

where jn = bntkc, bi,n =
αj

√
tj−tj−1√

bntjc−bntj−1c
for bntj−1c + 1 ≤ i ≤ bntjc, j ∈ [1, k] and

ξi =

∫ i

i−1

g
(2)
M (Z(m)(x)) dx.

{ξi}i∈N∗ is a strictly stationary m-dependent sequence (and then strongly mixing se-
quence) of real-valued random variables with mean zero and strong mixing coefficients
(βn)n≥0. Furthermore,

∑jn

i=1 b
2
i,n = 1 and limn→+∞ maxi∈[1,jn] |bi,n| = 0.

On the other hand, as in Rio (1995), defining

M2,α(Qξ1) =

∫ 1
2

0

[β−1(t/2)Qξ1(t)]
2 dt

β−1(t/2)
,
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where Qξ1 is the inverse function of t → Pr(|ξ1| > t), β(t) = βbtc the cadlag rate
function, β−1 the inverse function of this rate function β.
We have

M2,α(Qξ1) ≤
∫ 1

0

β−1(t)Q2
ξ1

(t) dt.

This last integral is finite if, and only if, E(ξ2
1) < ∞ (see Doukhan et al. (1994)).

But E(ξ2
1) ≤

∑M
l=2 a

2
l l! < +∞, so M2,α(Qξ1) < +∞.

Moreover,
M∑

l=2

a2
l l!

∫ +∞

0

ρl
α(x) dx > 0,

for M ≥ 2, because all the terms are limits of variances hence greater or equal to
zero, and for l = 2 we have, by Plancherel’s theorem

∫ ∞

0

ρ2
α(x) dx = π

∫ ∞

−∞
f 2

α(x) dx > 0.

Then,

lim
n→+∞

E

[
S

(2,m)
n,M (t)

]2
= A

(m)
M = 2

M∑

l=2

a2
l l!

∫ +∞

0

(ρα(x)Ψ( x
m

)

Ψ(0)

)l

dx > 0,

for M ≥ 2 and m ≥ mM and then applying Application 1 (Corollary 1, p.39 of Rio
(1995)), we finally get that

S
(2,m)
n,M (t)

D−→
n→∞

N (0;A
(m)
M ),

for M ≥ 2 and m ≥ mM . Also,

N (0;A
(m)
M )

D−→
m→∞

N (0; (σ
(2)
a,M )2),

and by Lemma 5.2, limm→+∞ supn E

[
S

(2)
n,M (t) − S

(2,m)
n,M (t)

]2
= 0. Applying Lemma

1.1 of Dynkin (1988), we proved that S
(2)
n,M (t)

D−→
n→∞

N (0; (σ
(2)
a,M )2) for M ≥ 2 and then

Lemma 5.1 follows. 2

Now since

lim
M→∞

sup
ε>0

E

[
S

(2)
ε,M (t) − S(2)

ε (t)
]2

= 0,

applying the Dynkin’s result, the proof is completed for the case where N = 2 and
0 < α < 3

4
. Note that this demonstration uses the crucial fact that ρα belongs to

L2([0,∞[) and so can not be implemented for the other cases. For those cases, The-
orem 3.1 1) can be proved using the diagram formula, going in the same way as in
Chambers and Slud (1989); indeed for this it is sufficient to adapt the following proof

344



of 2)(a).

2)(a). The following result heavily depends on the N value, known in the literature
as the Hermite’s rank.
Suppose that 1/(2N) < α < 1 − 1/(2N). As before, it is enough to prove that

Aε,M (t) = (bεα(t0) = bεα(0), . . . , bεα(tk), S
(N)
ε,M (t1), . . . , S

(N)
ε,M (tk) − S

(N)
ε,M (tk−1)),

converges weakly when ε→ 0 to

AM(t) = (bα(t0) = bα(0) = 0, . . . , bα(tk), σ
(N)
a,MŴ (t1), . . . , σ

(N)
a,M (Ŵ (tk) − Ŵ (tk−1))),

where

S
(N)
ε,M (t) =

1√
ε

∫ t

0

g
(N)
M (Zε(u)) du with g

(N)
M (x) =

M∑

l=N

alHl(x),

and

(σ
(N)
a,M)2 = 2

M∑

l=N

a2
l l!

∫ +∞

0

ρl
α(x) dx.

Furthermore (bα(t1), . . . , bα(tk)) and (Ŵ (t1), . . . , Ŵ (tk)) are independent Gaussian
vectors. We shall follow closely the arguments of Ho and Sun (1990) with necessary
modifications due to the fact that we are considering a non-ergodic situation.

Let c0, . . . , ck, d1, . . . , dk, be real constants, we are interested in the limit distribu-
tion of

k∑

j=0

cjb
ε
α(tj) +

k∑

j=1

dj

[
S

(N)
ε,M (tj) − S

(N)
ε,M (tj−1)

]
.

To simplify the notation we shall write

Γε(t) =
k∑

j=0

cjb
ε
α(tj) and Uε(t) =

k∑

j=1

dj

[
S

(N)
ε,M (tj) − S

(N)
ε,M (tj−1)

]
,

then Γε(t) is a mean zero Gaussian random variable and

a2
ε(t) ≡ V [Γε(t)] =

∑

i,j=0,···,k
cicjγε(ti, tj),

where γε(s, t) ≡ E [bεα(s)bεα(t)] is given by Lemma 5.3 whose proof is an easy compu-
tation.

Lemma 5.3

γε(s, t) =
v2

2α

2

[∫ ∞

−∞
ϕ(x)|s− εx|2α dx −

∫ ∞

−∞

∫ ∞

−∞
ϕ(x)ϕ(y)|s− t− ε(x− y)|2α dx dy +

∫ ∞

−∞
ϕ(x)|t− εx|2α dx

]
.
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We normalize Γε(t) defining Γ′
ε(t) = Γε(t)/aε(t). The correlation between Γ′

ε(t)
and Zε(s) is denoted by νε(s, t) and

νε(s, t) =
k∑

j=0

cjαε(s, tj)/aε(t),

where αε(s, t) ≡ E [bεα(t)Zε(s)] is given by the following lemma, whose proof is a
straightforward calculation.

Lemma 5.4

αε(s, t) =
αv2

2αε
1−α

σ2α

[∫ ∞

−∞
ϕ(x)|s− εx|2α−1sign(s− εx) dx−

∫ ∞

−∞

∫ ∞

−∞
ϕ(x)ϕ(y)|t− s− ε(y − x)|2α−1sign(s− t+ εy − εx) dy dx

]
.

Thus we deduce the following Lemma 5.5.

Lemma 5.5 Let β = min{α, 1 − α},

|νε(s, t)| ≤ C εβ.

The proof is a direct consequence of Lemma 5.4, according to |tj − s| > 2ε or
|tj − s| ≤ 2ε and to s > ε or s ≤ ε.

We want to study the asymptotic behaviour of

Dε = E [Γm
ε (t)U r

ε (t)] = [aε(t)]
m

∑

l1,...,lr=N,···,M
al1al2 · · · alr

∑

j1,...,jr=1,···,k
dj1dj2 · · · djr

× 1

εr/2

∫ tj1

tj1−1

∫ tj2

tj2−1

. . .

∫ tjr

tjr−1

E [Hm
1 (Γ′

ε(t))Hl1(Zε(s1))Hl2(Zε(s2)) · · ·Hlr(Zε(sr))] ds,

where ds = ds1 ds2 . . . dsr. We use the diagram formula. In this case:

E [Hm
1 (Γ′

ε(t))Hl1(Zε(s1))Hl2(Zε(s2)) · · ·Hlr(Zε(sr))]

=
∑

G∈Γ

∏

w∈G(V ),d1(w)<d2(w)

ρ̂(sd1(w), sd2(w)),

where G is an undirected graph with l1 + l2 + · · ·+ lr +m vertices and r+m levels (for
definitions, see Breuer and Major (1983), p.431), Γ = Γ(1, 1, . . . , 1, l1, . . . , lr) denotes
the set of diagrams having these properties, G(V ) denotes the set of edges of G; the
edges w are oriented, beginning in d1(w) and finishing in d2(w).
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To the set Γ belong the diagrams such that the first m levels correspond to the
Γ′

ε(t) variables, ρ̂ is defined as




ρ
(ε)
α (si − sj), if i and j are in the last r levels,
νε(sj, t), if the edge w joins the first m levels with the last r levels,
1, otherwise.

We say that an edge belongs to the first group if it links two among the first m levels,
and to the second if not.

We shall classify the diagrams in Γ(1, 1, . . . , 1, l1, l2, . . . , lr) as in Ho and Sun
(1990), p. 1166, calling R the set of the regular graphs and Rc the rest. We start by
considering R.

In a regular graph, since N > 1, the levels are paired in such a way that it is
not possible for a level of the first group to link with one of the second, yielding a
factorization into two graphs, both regular, and then m and r are both even. We can
show as in Berzin et al. (1998) that the contribution of such graphs tends to

(
v2

2α

2

∑

i,j=0,···,k
cicj(|ti|2α + |tj|2α − |ti − tj|2α)

)m
2

×(m−1)!! (r−1)!!

(
k∑

j=1

d2
j(tj − tj−1)

) r
2
(

2
M∑

l=N

l! a2
l

∫ ∞

0

ρl
α(x) dx

) r
2

.

Using the notations of Ho and Sun (1990), p. 1167, and callingDε/R
c the contribution

of the irregular graphs in Dε:

Dε/R
c =

∑

G∈Rc

Aε
1 × Aε

2 × Aε
3 × ε−

r
2 .

Any diagram G ∈ Rc can be partitioned into three disjoint subdiagrams VG,1, VG,2

and VG,3 which are defined as follows. VG,1 is the maximal subdiagram of G which
is regular within itself and all its edges satisfy 1 ≤ d1(w) < d2(w) ≤ m or m + 1 ≤
d1(w) < d2(w) ≤ m+ r. Define

V ∗
G,1(1) = {j ∈ V ∗

G,1 | 1 ≤ j ≤ m},
V ∗

G,1(2) = {j ∈ V ∗
G,1 | m+ 1 ≤ j ≤ m+ r},

where V ∗
G,1 are the levels of VG,1.

Aε
i is the factor of the product corresponding to the edges of VG,i, i = 1, 2, 3. The

normalization for Aε
1 is therefore ε−|V ∗

G,1(2)|/2 and as shown in Berzin et al. (1998),
ε−|V ∗

G,1(2)|/2Aε
1 tends to

(
v2

2α

2

∑

i,j=0,...,k

cicj(|ti|2α + |tj|2α − |ti − tj|2α)

)|V ∗

G,1(1)|/2

(|V ∗
G,1(1)| − 1)!!(2q − 1)!!

×
(

k∑

j=1

d2
j(tj − tj−1)

)q(
2

M∑

l=N

a2
l l!

∫ ∞

0

ρl
α(x) dx

)q

,
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as ε→ 0, where q = |V ∗
G,1(2)|/2. The limit is then O(1).

Consider now Aε
2 and define VG,2 to be the maximal subdiagram of G−VG,1, whose

edges satisfy m+1 ≤ d1(w) < d2(w) ≤ m+r. The normalization for Aε
2 is ε−|V ∗

G,2(2)|/2,
where V ∗

G,2(2) are the levels of VG,2. A graph in VG,2 is necessarily irregular, otherwise,

it would have been taken into account in Aε
1. As in Berzin et al. (1998), ε−|V ∗

G,2(2)|/2 Aε
2

tends to zero as ε goes to zero. For Aε
3 define

VG,3 = G − (VG,1 ∪ VG,2),

V ∗
G,3(1) = {j ∈ V ∗

G,3 | 1 ≤ j ≤ m},
V ∗

G,3(2) = {j ∈ V ∗
G,3 | m+ 1 ≤ j ≤ m+ r},

where V ∗
G,3 are the levels of VG,3. The normalization for Aε

3 is ε−|V ∗

G,3(2)|/2.

We assume now that l1, l2,. . . ,lr, are fixed by the graph. Let L = |V ∗
G,3(2)|,

ε−|V ∗

G,3(2)|/2Aε
3 ≤ ε−|V ∗

G,3(2)|/2

×
∑

jξ(1),...,jξ(L)=1,...,k

L∏

i=1

|djξ(i)
|
∫ tjξ(i)

tjξ(i)−1

∏

e∈E(VG,3),d1(e)∈V ∗

G,3(1)

|νε(sd2(e), t)|

×
∏

w∈E(VG,3),d1(w)∈V ∗

G,3(2)

|ρ(ε)
α (sd1(w) − sd2(w))| dsξ(i), (5)

where E(VG,3) are the edges of VG,3 and νε(s, t) = 1
aε(t)

∑k
j=0 cjαε(s, tj) where αε(s, t)

is given by Lemma 5.4. V ∗
G,3(2) can be decomposed in two parts,

BG = {i ∈ V ∗
G,3(2) : g(i)(2 − 2α) ≤ 1},

CG = {i ∈ V ∗
G,3(2) : g(i)(2 − 2α) > 1},

where g(i) is the number of edges in the i-th level not connected by edges to any of
the first levels. Furthermore we note B∗

G = {i ∈ BG : k(i)(2 − 2α) = 1} where k(i)
is the number of edges such that d1(w) = i. As in Ho and Sun (1990), p. 1169, we
can rearrange the levels in V ∗

G,3(2) in such a way that the levels of BG are followed
by the levels of CG. Within BG and CG, the levels are also rearranged so that those
with smaller g(i) come first. We have |V ∗

G,3(2)| = |BG| + |CG|.
If i ∈ V ∗

G,3(2), we have (li − g(i)) edges coming from levels in the first group

and thanks to Lemma 5.5 their contribution to Aε
3 is bounded by C εβ(li−g(i)) and

in total for these levels we get the bound C εβ
�

i∈BG
(li−g(i))+β

�
i∈CG

(li−g(i)); now the
other terms are of the form: ρ

(ε)
α (sd1(w) − si) which are bounded by 1, or of that one:

∫ tji

tji−1

k(i)∏

l=1

ρ(ε)
α (si − sjl

) dsi.
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This last integral can be bounded by

C

(
ε

k(i)
g(i) 1i∈CG

+ ε(2−2α)k(i)

(
1i∈BG/B∗

G
+ ln(

1

ε
) 1i∈B∗

G

))
,

hence, by (5)

ε−|V ∗

G,3(2)|/2Aε
3 = O

(
ε−(|BG|+|CG|)/2εβ

�
i∈BG

(li−g(i))ε
�

i∈CG
β(li−g(i))

× ε((2−2α)
�

i∈BG
k(i)+

�
i∈CG

k(i)
g(i))(ln(

1

ε
))|B

∗

G|
)

,

and since li ≥ N , then we have

ε−|V ∗

G,3(2)|/2Aε
3 = O

(
ε((2−2α)

�
i∈BG

k(i)+
�

i∈CG

k(i)
g(i)

−(1−α)
�

i∈BG
g(i)−|CG|/2)

× ε(1−α−β)
�

i∈BG
g(i)ε(βN− 1

2
)|BG|εβ

�
i∈CG

(li−g(i))(ln(
1

ε
))|B

∗

G|
)

.(6)

We have the following bounds

(1 − α− β)
∑

i∈BG

g(i) ≥ 0,

(βN − 1

2
)|BG| ≥ 0,

β
∑

i∈CG

(li − g(i)) ≥ 0,

(2 − 2α)
∑

i∈BG

k(i) +
∑

i∈CG

k(i)

g(i)
≥ (1 − α)

∑

i∈BG

g(i) +
1

2
|CG|.

The last inequality is obtained by the same argument for showing (27) in Ho and Sun
(1990), p. 1170.

Three cases can occur: |BG| 6= 0, |BG| = 0 and |CG| = 0, or |BG| = 0 and
|CG| 6= 0.
First case: |BG| 6= 0.

Since β > 1/(2N), one has (βN−1/2)|BG| > 0 and then ε(βN− 1
2
)|BG|(ln(1

ε
))|B

∗

G| = o(1)
thus (6) tends to zero with ε.

Second case: |BG| = 0 (then |B∗
G| = 0) and |CG| = 0.

In this case VG,3 = ∅ (otherwise it would have been taken in account before in VG,1)

and then VG,2 6= ∅ thus ε−|V ∗

G,2(2)|/2Aε
2 tends to zero with ε and this gives the required

limit.
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Third case: |BG| = 0 (then |B∗
G| = 0) and |CG| 6= 0.

In this case εβ
�

i∈CG
(li−g(i)) = εβ |V ∗

G,3(1)| with |V ∗
G,3(1)| > 0 (otherwise it would have

been taken in account before in VG,2) and (6) tends to zero with ε.

(b). Suppose that 1/(2N0) < α < 1
2

and N = 1, since Zε(u) = ε1−α

σ2α
ḃεα(u), and

H1(x) = x, then S
(1)
ε (t) = ε

1
2
−α a1

σ2α
(bεα(t) − bεα(0)) + S

(N0)
ε (t) and the result follows by

2)(a).

(c). To conclude the proof, suppose that α = 1
2

and N = 1. As in (b) and since

in this case σ2α = ||ϕ||2, S(1)
ε (t) = a1

||ϕ||2 (b
ε
α(t)− bεα(0)) + S

(N0)
ε (t) and we get the result

by using 2)(a).

Remark 3 also follows from the fact that a1

ε1−α

∫ t

0
H1(Zε(u)) du = a1

σ2α
(bεα(t)−bεα(0)).

2

5.1.2 Case where α = 1 − 1/(2N) and N > 1

Proposition 5.2

[ln(ε−1)]−1
E
[
S(N)

ε (t)
]2 −→

ε→0
2N !

[(
1 − 1

2N

)(
1 − 1

N

)]N

ta2
N

(
v2−1/N

σ2−1/N

)2N

.

Proof of Proposition 5.2. We suppose t > 0. As in Proposition 5.1, we use Mehler’s
formula and we make the change of variable u = εx to get

[ln(ε−1)]−1
E
[
S(N)

ε (t)
]2

=
−2

ln(ε)

+∞∑

l=N

a2
l l!

∫ t
ε

0

(t− εx)ρl
1−1/(2N)(x) dx.

Now, since |ρ1−1/(2N)(x)| is equivalent to (1− 1/(2N))(1− 1/N)x−1/Nv2
2−1/N/σ

2
2−1/N ,

when x tends to infinity, and since ||g(N)||22,φ < +∞, we have

[ln(ε−1)]−1
E
[
S(N)

ε (t)
]2

=
−2

ln(ε)
a2

NN !

∫ t
ε

0

(t− εx)ρN
1−1/(2N)(x) dx+O(−1/ln(ε)).

Since

ρN
1− 1

(2N)
(x) =

(
1 − 1

2N

)N (
1 − 1

N

)N

x−1
v2N

2−1/N

σ2N
2−1/N

+
1

x2
ε

(
1

x

)
,

with x large enough, the result follows. 2

Proof of Theorem 3.2. From Proposition 5.2 we prove that

[ln(ε−1)]−
1
2S(N)

ε (t) ' aN√
ε ln(1

ε
)

∫ t

0

HN(Zε(u)) du := [ln(ε−1)]−
1
2F (N)

ε (t),
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i.e. limε→0[ln(ε−1)]−1
E

[
S

(N)
ε (t) − F

(N)
ε (t)

]2
= 0 and the result is an adaptation of

Theorem 3.1 2)(a). 2

5.1.3 Case where 1 − 1/(2N) < α < 1

Proposition 5.3 a(α,N) = N(1 − α) and

E
[
S(N)

ε (t)
]2 −→

ε→0

[(
(2α− 2)N + 1

)(
(α− 1)N + 1

)]−1

N !

×a2
N

(
α(2α− 1)

v2
2α

σ2
2α

)N

t(2α−2)N+2.

Proof of Proposition 5.3. We suppose t > 0 and then t ≥ 4ε. As in Propositions
5.1 and 5.2, we use Mehler’s formula and we break the integration domain into two
intervals: [0, 4ε] and [4ε, t].
For the first one, making the change of variable u = εv, we get

2ε2N [α−(1−1/(2N))]

+∞∑

l=N

a2
l l!

∫ 4

0

(t− εv)ρl
α(v) dv.

Since |ρα(v)| ≤ 1 and ||g(N)||22,φ < +∞ this term is O(ε2N [α−(1−1/(2N))]) = o(1).

Now, let us have a closer look to the second interval

2

ε2N(1−α)

+∞∑

l=N

a2
l l!

∫ t

4ε

(t− u)
[
− v2

2α

2σ2
2α

∫ ∞

−∞

∫ ∞

−∞
ϕ̇(z − x)ϕ̇(z)

∣∣∣u
ε
− x
∣∣∣
2α

dx dz
]l

du.

Using a second order Taylor’s expansion of (u− εx)2α in the neighborhood of x = 0,
it becomes

2
+∞∑

l=N

a2
l l!

∫ t

4ε

(t− u)

[
α(2α− 1)

2

(−v2
2α

σ2
2α

)

×
∫ ∞

−∞

∫ ∞

−∞
ϕ̇(z − x)ϕ̇(z)x2(u− θεx)2α−2 dx dz

]l

ε2(1−α)(l−N) du,

with 0 ≤ θ < 1.
Then, since 1 − 1/(2N) < α and ||g(N)||22,φ < ∞, we can apply the Lebesgue’s domi-
nated convergence theorem and the limit is given by the first term in the sum. 2

Proof of Theorem 3.3. Define

G(N)
ε (t) =

aN

εN(1−α)

∫ t

0

HN(Zε(u)) du.
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A straightforward calculation shows that E

[
S

(N)
ε (t) −G

(N)
ε (t)

]2
→ 0 as ε → 0: the

proof is similar to the one of Proposition 5.3.
Thus studying the asymptotic behaviour of G

(N)
ε (t) allows us to obtain the same for

S
(N)
ε (t). We have seen in the proof of Theorem 3.1 1) that

Zε(u) = ε1−α

∫ +∞

−∞
iλ exp(iλu) dWε(λ),

where the stochastic measure dWε(λ) is defined as

dWε(λ) =
1√

2πσ2α

ϕ̂(−ελ)|λ|−α− 1
2 dW (λ),

and then

G(N)
ε (t) =

aN

εN(1−α)

∫ t

0

HN

(
ε1−α

∫ +∞

−∞
iλ exp(iλu) dWε(λ)

)
du.

Using Itô’s formula for the Wiener-Itô integral (see Dobrushin and Major (1979)), we
obtain

G(N)
ε (t) =

√
N !aN

∫ t

0

∫ +∞

−∞
. . .

∫ +∞

−∞
w(λ1, u) · · ·w(λN , u) dWε(λ1) · · · dWε(λN) du,

where

w(λ, u) = iλ exp(iλu).

As in Chambers and Slud (1989) p. 330, integrating this expression with respect to
u, we get

G(N)
ε (t) =

√
N !iNaN

∫ +∞

−∞
· · ·
∫ +∞

−∞
Kt(λ1 + · · · + λN)λ1 · · ·λN dWε(λ1) · · · dWε(λN),

where Kt(λ) = (exp(iλt) − 1)/(iλ).
So

E

[
G

(N)
ε (t)

]2
= a2

NN !
(

1√
2πσ2α

)2N ∫
RN |Kt

(∑N
i=1 λi

)
|2 ∏N

i=1

(
|ϕ̂(−ελi)|2|λi|1−2α dλi

)
.

On one hand the inner integrand converges to |Kt

(∑N
i=1 λi

)
|2
(∏N

i=1 |λi|1−2α
)

when

ε tends to zero.
On the other hand, we can bound this integrand by |Kt

(∑N
i=1 λi

)
|2
(∏N

i=1 |λi|1−2α
)
.

Thus if we prove that
∫

RN |Kt

(∑N
i=1 λi

)
|2∏N

i=1

(
|λi|1−2αdλi

)
< +∞ then E

[
G

(N)
ε (t)

]2
→
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E
[
G(N)(t)

]2
when ε→ 0 where

G(N)(t) =
√
N !aN

(
i√

2πσ2α

)N ∫ +∞

−∞
. . .

∫ +∞

−∞
Kt

(
N∑

i=1

λi

)
×

N∏

i=1

(
λi|λi|−

1
2
−α
)

dW (λ1) . . . dW (λN),

which is well defined.
Let us define

It :=

∫

RN

|Kt

( N∑

i=1

λi

)
|2

N∏

i=1

(
|λi|1−2α dλi

)
=

∫

RN

4 sin2
(
t(
∑N

i=1 λi)/2
)

(∑N
i=1 λi

)2

N∏

i=1

(
|λi|1−2α dλi

)
.

It is always well defined with the possible value +∞. Making the change of variables:
λ1 = 2y1(1 − y2 − . . .− yN)/t, and λi = 2y1yi/t, for i = 2, . . . , N , we get

It =

(
2

t

)2N(1−α)

t2
[∫ +∞

−∞
sin2(y1)|y1|(2N−3−2Nα) dy1

]
×

[∫

RN−1

|1 − y2 − . . .− yN |1−2α|y2|1−2α · · · |yN |1−2α dy2 · · · dyN

]
.

Now, let the following change of variables y2 + y3 + . . . + yN = w2, y3 = w2w3,. . . ,
yN = w2wN .
Then y2 = w2(1 − w3 − . . .− wN) and the Jacobian is w

(N−2)
2 . Thus

∫

RN−1

|1 − y2 − . . .− yN |1−2α|y2|1−2α · · · |yN |1−2α dy2 · · · dyN =

(∫ ∞

−∞
|1 − w2|1−2α|w2|(N−1)(1−2α)+(N−2) dw2

)

×
(∫

RN−2

|1 − w3 − · · · − wN |1−2α

N∏

i=3

(
|wi|1−2α dwi

))
.

Therefore we can apply the iteration and we have

It =
(2

t

)2N(1−α)

t2
(∫ +∞

−∞
sin2(y1)|y1|(2N−3−2Nα) dy1

)

×
N∏

k=2

(∫ ∞

−∞
|1 − wk|1−2α|wk|(k−1)(1−2α)+(k−2) dwk

)
< +∞,

since 1 − 1/(2N) < α < 1.
Consider now

D(N)(ε) =
√
N !aN

(
i√

2πσ2α

)N

Kt

( N∑

i=1

λi

) N∏

i=1

(
ϕ̂(−ελi)λi|λi|−

1
2
−α
)
.
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D(N)(ε) converges pointwise to

D(N)(0) =
√
N !aN

(
i√

2πσ2α

)N

Kt

( N∑

i=1

λi

) N∏

i=1

(
λi|λi|−

1
2
−α
)
,

and from the previous calculations and Lebesgue’s theorem D(N)(ε) → D(N)(0) as
ε → 0 in the L2-norm with respect to Lebesgue’s measure and Theorem 3.3 follows.
2

Proof of Corollary 3.1. Since Zε(u) = ε1−α

σ2α
ḃεα(u), and H1(x) = x, if A 6= ∅,

Vε(t) =
a1

σ2α

[bεα(t) − bεα(0) − bα(t)] ε−d(α,N0) + S(N0)
ε (t).

A straightforward calculation shows that the second order moment of the first term
above is O(ε2(α−d(α,N0))) = O(ε). So 1. (i), (ii) and (iii) follows by Theorem 3.1 1),
3.2 (i) and 3.3.

Now if A = ∅, Vε(t) = a1

σ2α

√
cα,ϕ[Bε(t)−Bε(0)] where Bε(t) =

bεα(t) − bα(t)

εα√cα,ϕ

and when

0 < α < 1, Bε(t)
D−→ B(t) and this concludes the proof of the corollary. 2

5.1.4 Asymptotic behaviour of the second order increments

Proof of Corollary 3.2. The proof of corollary follows by using the technics developed
in the proof of Theorem 3.1 1) and 2)(a). We just give a sketch of this proof.
We can show that

ρ̃α(x) =
1

2πσ̃2
2α

∫ +∞

−∞
|y|3−2αeixy|ϕ̂(−y)|2 dy =

−v2
2α

2σ̃2
2α

∫ +∞

−∞
ϕ̈ ∗ ˜̈ϕ(y)|x− y|2α dy,

and ρ̃α(x) ' −v2
2α2α(2α − 1)(α − 1)(2α − 3)x2α−4/σ̃2

2α, when x tends to infinity, so
it holds that ρ̃α ∈ L1([0,∞[) and furthermore

∫ +∞
0

ρ̃α(x) dx = 0, for all α ∈ (0, 1),
so (i) follows. In case of the first order increments we required α < 1 − 1/(2N) or
α = 1/2 and N = 1 to ensure that ρα ∈ LN([0,∞[).
Furthermore, we can show that |E [bεα(t)Z̃ε(u)]| ≤ C εα and that the first coefficient of

S̃
(1)
ε (t), that is, (

√
εa1/σ̃2α)ε1−α(ḃεα(t)−ḃεα(0)), does not contribute to the limit because

tending to zero in L2, so (ii) follows. For the first order increments the bound was εβ

with β = inf{α, 1−α} (see Lemma 5.5 in the proof of Theorem 3.1) and we required
β > 1/(2N) and N > 1 to obtain independence between the limit processes. 2
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5.2 Some particular functionals

5.2.1 Crossings and Local time

We have to prove the result corresponding to crossings. Recall that

Σε(h) = ε−e(α,2)

∫ +∞

−∞
h(x)

[√π

2

ε1−α

σ2α

N bα
ε (x) − `bα(x)

]
dx.

Proof of Theorem 3.4. The proof follows along the lines of Berzin et al. (1998) and
uses Theorem 3.1 2)(a). By Banach-Kac (Banach (1925) and Kac (1943)), Σε(h) can
be expressed as

Σε(h) = ε−e(α,2)

∫ 1

0

h(bεα(u))g(2)(Zε(u)) du+ ε−e(α,2)

∫ 1

0

(
h(bεα(u)) − h(bα(u))

)
du

= ε−e(α,2)S1 + ε−e(α,2)S2,

where g(2)(x) =
√

π
2
|x| − 1 =

∑+∞
l=1 a2lH2l(x).

We will show on the one hand, that under hypotheses of (ii) and if 0 < α < 3
4

(not
only for 1

4
< α < 3

4
as is required for the theorem), E [S2

1 ] = O(ε) and that

lim
ε→0

ε−1
E
[
S2

1

]
= C2

α,ϕ

∫ 1

0

E
[
h2(bα(u))

]
du, (7)

and on the other hand, if α ∈ (0, 1) (instead of 0 < α < 1
4
), E [S2

2 ] = O(ε4α) + o(ε).
Moreover we can show that equality (7) is true under the less restrictive hypotheses:
h ∈ C2 with |ḧ(x)| ≤ P (|x|) when 0 < α ≤ 1

2
and furthermore in case where α ≥ 1

2
,

we will show that E [S2
2 ] = o(ε). Thus the term S2 only matters when α < 1

4
and we

will prove in this case that, limε→0 ε
−4α

E [S2
2 ] = K2

α,ϕE

[∫ 1

0
ḧ(bα(u)) du

]2
.

Let us look more closely at S1.

We decompose S1 into two terms

S1 =

∫ 1

Mε

h(bεα(u))g(2)(Zε(u)) du+

∫ Mε

0

h(bεα(u))g(2)(Zε(u)) du := J1 + J2,

with M big enough.
Using Hölder’s inequality it’s easy to see that

E
[
J2

2

]
≤ C ε2 = o(ε). (8)

Let Dε = {(u, v) ∈ [0, 1]2/ u ≥ Mε, v ≥ Mε, |u − v| < Mε} and Cε = {(u, v) ∈
[0, 1]2/ u ≥Mε, v ≥Mε, |u− v| ≥Mε}.
We decompose E [J2

1 ] into two terms

E
[
J2

1

]
=

∫

Dε

+

∫

Cε

,
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where ∫

Dε

=

∫

Dε

E
[
h(bεα(u))h(bεα(v))g(2)(Zε(u))g

(2)(Zε(v))
]
du dv.

Let us see

∫

Dε

.

Applying the change of variable v = u+ εx, one has
∫

Dε

= ε

∫

D′
ε

E
[
h(bεα(u))h(bεα(u+ εx))g(2)(Zε(u))g

(2)(Zε(u+ εx))
]
du dx,

where D′
ε = {(u, x)/Mε ≤ u ≤ 1, Mε ≤ u+ εx ≤ 1, |x| < M}.

A straightforward calculation shows that
(
bεα(u), bεα(u+ εx), Zε(u), Zε(u+ εx)

)
con-

verges weakly when ε goes to zero towards
(
bα(u), bα(u), Y (u), Zx(u)

)
where Y (u)

and Zx(u) are standard Gaussian variables with correlation ρα(x); furthermore the

Gaussian vector
(
Y (u), Zx(u)

)
is independent of bα(u).

Using the Lebesgue’s dominated convergence theorem one obtains

lim
ε→0

1

ε

∫

Dε

=
∞∑

l=1

a2
2l (2l)!

∫

|x|<M

ρ2l
α (x) dx

∫ 1

0

E
[
h2(bα(u))

]
du. (9)

Let us look at

∫

Cε

.

We now fix (u, v) ∈ Cε and we consider the change of variables

bεα(u) = Z1,ε(u, v) + A1,ε(u, v)Zε(u) + A2,ε(u, v)Zε(v),

bεα(v) = Z2,ε(u, v) +B1,ε(u, v)Zε(u) +B2,ε(u, v)Zε(v),

with (Z1,ε(u, v), Z2,ε(u, v)) a mean zero Gaussian vector independent of (Zε(u), Zε(v))
and

A1,ε(u, v) =
αε(u, u) − ρε

α(v − u)αε(v, u)

∆ε(u, v)
,

A2,ε(u, v) =
αε(v, u) − ρε

α(v − u)αε(u, u)

∆ε(u, v)
,

where αε(u, v) is given by Lemma 5.4, ρ
(ε)
α (v − u) = E [Zε(u)Zε(v)] = ρα(

v − u

ε
) and

∆ε(u, v) = 1 − (ρ
(ε)
α )2(v − u).

Two similar formulas hold for B1,ε(u, v) and B2,ε(u, v).
A straightforward computation shows that for M big enough, ε ≤ ε(M) and (u, v) ∈
Cε,

max
i=1,2

|Ai,ε(u, v), Bi,ε(u, v)| ≤ C ε1−α [u2α−1 + v2α−1 + |u− v|2α−1], (10)
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and

|ρ(ε)
α (v − u)| ≤ C ε2−2α |v − u|2α−2. (11)

Writing the Taylor development of h one has,

h(bεα(u)) =
3∑

j=0

1

j!
h(j)(Z1,ε(u, v))[A1,ε(u, v)Zε(u) + A2,ε(u, v)Zε(v)]

j

+
1

4!
h(4)(θ1,ε(u, v))[A1,ε(u, v)Zε(u) + A2,ε(u, v)Zε(v)]

4,

with θ1,ε(u, v) between bεα(u) and Z1,ε(u, v).
A similar formula holds for h(bεα(v)).
We can decompose

∫
Cε

as the sum of twenty five terms. We use the notations Jj1,j2

for the corresponding integrals, where j1, j2 = 0, . . . ,4 are the subscripts involving
h(j1) and h(j2). We only consider Jj1,j2 with j1 ≤ j2. Then we obtain the followings

(A) One term of the form

J0,0 =

∫

Cε

E [h(Z1,ε(u, v))h(Z2,ε(u, v))] E
[
g(2)(Zε(u))g

(2)(Zε(v))
]
du dv.

Making the change of variable u − v = εx and applying the Lebesgue’s dominated
convergence theorem we get

lim
ε→0

ε−1 J0,0 =
[ ∞∑

l=1

a2
2l (2l)!

∫

|x|≥M

ρ2l
α (x) dx

] [∫ 1

0

E
[
h2(bα(u))

]
du
]
. (12)

(B) Two terms of the form J0,1 ≡ 0 by a symmetry argument: if L(U, V ) = N(0,Σ)
then E

[
Ug(2)(U)g(2)(V )

]
= 0.

(C) Two terms of the form

J0,2 =
1

2

∫

Cε

E

[
h(Z1,ε(u, v))ḧ(Z2,ε(u, v))

]
×

E
[
g(2)(Zε(u))g

(2)(Zε(v))[B1,ε(u, v)Zε(u) +B2,ε(u, v)Zε(v)
]2

] du dv.

Since |ρ(ε)
α (u− v)| ≤ 1,

∣∣∣E
[
g(2)(Zε(u))g

(2)(Zε(v))[B1,ε(u, v)Zε(u) +B2,ε(u, v)Zε(v)
]2

]
∣∣∣

≤ C max
i=1,2

|B2
i,ε(u, v)| |ρ(ε)

α (u− v)|,

using (10) and (11), we get

J0,2 = O(ε1+2α)10<α< 1
2

+O(ε2ln(
1

ε
))1α= 1

2
+O(ε4−4α)1 1

2
<α< 3

4
= o(ε).
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(D) Two terms of the form J0,3 ≡ 0 by a symmetry argument: if L(U, V ) = N(0,Σ)
then E

[
(aU + bV )3g(2)(U)g(2)(V )

]
= 0 for any two constants a and b .

(E) Two terms of the form

J0,4 =
1

4!

∫

Cε

E[h(Z1,ε(u, v))h
(4)(θ2,ε(u, v))g

(2)(Zε(u))g
(2)(Zε(v))

×[B1,ε(u, v)Zε(u) +B2,ε(u, v)Zε(v)]
4]dudv.

Therefore

|J0,4| ≤ C

∫

Cε

max
i=1,2

[A4
i,ε(u, v), B

4
i,ε(u, v)] du dv.

Using (10), one obtains

J0,4 = O(ε1+4α)10<α< 3
8

+O(ε
5
2 ln(

1

ε
))1α= 3

8
+O(ε4−4α)1 3

8
<α< 3

4
= o(ε).

Using the same type of arguments as for (C), (D), (E) we can prove that the other
terms are all o(ε).

Using (8), (9) and (12) we have shown that lim
ε→0

1

ε
E
[
S2

1

]
= C2

α,ϕ

∫

[0,1]2
E
[
h2(bα(u))

]
du.

Note that if α ≤ 1
2
, we must only make the Taylor development of h until ḧ and a

similar proof gives the result (for α = 1
2
, we use furthermore the fact that for i = 1, 2,

ε−
1
2Ai,ε(u, v) and ε−

1
2Bi,ε(u, v) have a limit when ε goes to zero, and then by the

Lebesgue’s dominated convergence theorem , ε−3/2J1,2, ε
−1J0,2 and ε−1J1,1 have a

limit that is zero since E
[
N∗g(2)(N∗)

]
= E

[
g(2)(N ∗)

]
= 0).

Now for S2, we write the Taylor development of h

h(bεα(u)) − h(bα(u)) = (bεα(u) − bα(u)) ḣ(bα(u)) +
1

2
(bεα(u) − bα(u))2 ḧ(θε(u)),

with θε(u) between bεα(u) and bα(u).
To this development correspond two terms S2,i, i = 1, 2.
Consider the first one, let S2,2,

S2,2 =
1

2

∫ 1

0

(bεα(u) − bα(u))2 ḧ(θε(u)) du.

ε−4α
E
[
S2

2,2

]
=

1

4
c2α,ϕ

∫ 1

0

∫ 1

0

E

[
B2

ε (u)B
2
ε (v)ḧ(θε(u))ḧ(θε(v))

]
du dv,

with

Bε(u) =
bεα(u) − bα(u)

εα√cα,ϕ

→ N(0, 1) and cα,ϕ = V

[∫ ∞

−∞
ϕ(x) bα(x) dx

]
.
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A computation shows that (Bε(u), Bε(v), θε(u), θε(v)) converges weakly when ε goes
to zero towards (B(u), B(v), bα(u), bα(v)) where B(u) and B(v) are standard Gaussian
independent variables; furthermore (bα(u), bα(v)) is independent of (B(u), B(v)).
Using the Lebesgue’s dominated convergence theorem we get

ε−4α
E
[
S2

2,2

]
→ 1

4
c2α,ϕE

[∫ 1

0

ḧ(bα(u)) du

]2

. (13)

Now let us consider S2,1.

S2,1 =

∫ 1

0

(bεα(u) − bα(u)) ḣ(bα(u)) du = εα√cα,ϕ

∫ 1

0

Bε(u) ḣ(bα(u)) du,

so

E
[
S2

2,1

]
= ε2αcα,ϕ

∫ 1

0

∫ 1

0

E

[
Bε(u)Bε(v)ḣ(bα(u))ḣ(bα(v))

]
du dv. (14)

Applying the Lebesgue’s dominated convergence theorem we get, with the same no-
tations as before

ε−2α
E
[
S2

2,1

]
→
∫ 1

0

∫ 1

0

E [B(u)] E [B(v)] E
[
ḣ(bα(u))ḣ(bα(v))

]
du dv = 0,

and then

E
[
S2

2,1

]
= o(ε), if α ≥ 1

2
. (15)

Using (13) and (15), we have then proved that if α ≥ 1
2
, h ∈ C2 and |ḧ(x)| ≤ P (|x|),

E [S2
2 ] = o(ε).

Now let α < 1
2
, using (14) one gets

E
[
S2

2,1

]
=

∫

Cε

+

∫

Cc
ε

= K1 +K2,

where Cε was defined before. It is obvious that

|K2| ≤ C ε1+2α. (16)

Now we look at K1.
We fix u and v and consider the change of variables

bα(u) = α1Bε(u) + α2Bε(v) + α3Z3,

bα(v) = β1Bε(u) + β2Bε(v) + β3Z3 + β4Z4,

with (Z3, Z4) standard Gaussian vector independent of (Bε(u), Bε(v)).
A simple calculus gives

α1 =
aε(u) − ρε(u, v)bε(u, v)

∆ε(u, v)
,
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α2 =
bε(u, v) − ρε(u, v)aε(u)

∆ε(u, v)
,

α2
3 = E

[
b2α(u)

]
− α2

1 − α2
2 − 2α1α2ρε(u, v),

β1 =
bε(v, u) − ρε(u, v)aε(v)

∆ε(u, v)
,

β2 =
aε(v) − ρε(u, v)bε(v, u)

∆ε(u, v)
,

β3 =
E [bα(u)bα(v)] − α1β1 − (α1β2 + α2β1)ρε(u, v) − α2β2

α3

,

and

β2
4 = E

[
b2(v)

]
− β2

1 − β2
2 − β2

3 − 2β1β2ρε(u, v),

where aε(u) = E [bα(u)Bε(u)], ρε(u, v) = E [Bε(u)Bε(v)], bε(u, v) = E [bα(u)Bε(v)]
and ∆ε(u, v) = 1 − ρ2

ε(u, v).
We can show that for M big enough and ε ≤ ε(M),

|ρε(u, v)| ≤ C ε2−2α |u− v|2α−2, (17)

max
i=1,2

(|αi|, |βi|) ≤ C εα and max
i=3,4

(|βi|, |α3|) ≤ C. (18)

Furthermore we have the following limits

lim
ε→0

α1

εα
= lim

ε→0

β2

εα
=

−v2
2α[
∫ +∞
−∞ ϕ(u)|u|2αdu]

2
√
cα,ϕ

,

lim
ε→0

α2

εα
= lim

ε→0

β1

εα
= 0,

lim
ε→0

α3 =
√

E [b2α(u)], lim
ε→0

β3 =
E [bα(u)bα(v)]√

E [b2α(u)]
and (19)

lim
ε→0

β2
4 =

E [b2α(u)] E [b2α(v)] − (E [bα(u)bα(v)])2

E [b2α(u)]
.

So

K1 = ε2αcα,ϕ

∫

Cε

∫

R4

xy ḣ(α1x+ α2y + α3z) ḣ(β1x+ β2y + β3z + β4w)

× pBε(u),Bε(v)(x, y)φ(z)φ(w) dz dw dx dy du dv,

where pBε(u),Bε(v)(x, y) stands for the density of vector (Bε(u), Bε(v)) in (x, y).
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Writing the third order Taylor development for h one has

ḣ(α1x+ α2y + α3z) = ḣ(α3z) + (α1x+ α2y) ḧ(α3z) +
1

2
(α1x+ α2y)

2 h(3)(θ1),

and

ḣ(β1x+ β2y + β3z + β4w) = ḣ(β3z + β4w) + (β1x+ β2y) ḧ(β3z + β4w)

+
1

2
(β1x+ β2y)

2 h(3)(θ2),

with θ1 between α3z and (α1x+ α2y + α3z) and θ2 between (β3z + β4w) and (β1x+
β2y + β3z + β4w).

Therefore K1 is decomposed as the sum of nine terms.

(A) One term of the type

K1,1 = ε2αcα,ϕ

∫

Cε

∫

R4

xy ḣ(α3z) ḣ(β3z + β4w)pBε(u),Bε(v)(x, y)φ(z)φ(w) dz dw dx dy du dv

= ε2αcα,ϕ

∫

Cε

ρε(u, v)

∫

R2

ḣ(α3z) ḣ(β3z + β4w)φ(z)φ(w) dz dw du dv.

By (17) and (18), we get

|K1,1| ≤ C ε2α

∫

Cε

|ρε(u, v)| du dv

≤ C ε2

∫

Cε

|u− v|2α−2 du dv,

proving that
K1,1 = O(ε1+2α) = o(ε).

(B) Two terms of the type

K1,2 = ε2αcα,ϕ

∫

Cε

∫

R4

xy (β1x+ β2y) ḣ(α3z) ḧ(β3z + β4w)

×pBε(u),Bε(v)(x, y)φ(z)φ(w) dz dw dx dy du dv,

and this term is zero by Mehler’s formula (3).

(C) Two terms of the type

K1,3 = cα,ϕ ε
2α

∫

Cε

∫

R4

xy
1

2
(β1x+ β2y)

2 ḣ(α3z)h
(3)(θ2)

×pBε(u),Bε(v)(x, y)φ(z)φ(w) dz dw dx dy du dv.
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By (18) and (19), we can apply the Lebesgue’s dominated convergence theorem getting

lim
ε→0

ε−4αK1,3 = C

∫

[0,1]2

∫

R2

1

2
xy3

E

[
ḣ(bα(u))h(3)(bα(v))

]
φ(x)φ(y) dx dy du dv = 0.

(D) One term of the type

K1,4 = ε2αcα,ϕ

∫

Cε

∫

R4

xy (α1x+ α2y) (β1x+ β2y) ḧ(α3z) ḧ(β3z + β4w)

× pBε(u),Bε(v)(x, y)φ(z)φ(w) dz dw dx dy du dv.

As for (C), we can apply the Lebesgue’s dominated convergence theorem and

lim
ε→0

ε−4αK1,4 = CE

[∫ 1

0

ḧ(bα(u)) du

]2

, (20)

with C =
(

−v2
2α

2
(
∫∞
−∞ ϕ(u)|u|2α du)

)2

.

(E) Two terms of the type

K1,5 = ε2α 1

2
cα,ϕ

∫

Cε

∫

R4

xy (α1x+ α2y) (β1x+ β2y)
2 ḧ(α3z)h

(3)(θ2)

× pBε(u),Bε(v)(x, y)φ(z)φ(w) dz dw dx dy du dv,

and with the same arguments as before K1,5 = O(ε5α).
(F) One term of the type

K1,6 = ε2α 1

4
cα,ϕ

∫

Cε

∫

R4

xy (α1x+ α2y)
2 (β1x+ β2y)

2 h(3)(θ1)h
(3)(θ2)

× pBε(u),Bε(v)(x, y)φ(z)φ(w) dz dw dx dy du dv.

As previous cases K1,6 = O(ε6α).
We have then proved that if α < 1

2
, K1 = O(ε4α) + o(ε) and then using (13) and (16)

that E [S2]
2 = O(ε4α) + o(ε).

Furthermore using (16) and (20) we have proved that if 0 < α < 1
4
,

lim
ε→0

ε−4α
E
[
S2

2,1

]
=
(−v2

2α

2
(

∫ ∞

−∞
ϕ(u)|u|2α du)

)2

E

[∫ 1

0

ḧ(bα(u)) du

]2

. (21)

To obtain the asymptotic behaviour of E [S2
2 ] when 0 < α < 1

4
, we have, by (13) and

(21), to compute E [S2,1S2,2].
With an argument similar to the one used before, we obtain for 0 < α < 1

4
,

lim
ε→0

2ε−4α
E [S2,1S2,2] =

(−v2
2α

2
cα,ϕ (

∫ ∞

−∞
ϕ(u)|u|2α du)

)
E

[∫ 1

0

ḧ(bα(u)) du

]2

, (22)
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and then using (13), (21) and (22) we proved that

lim
ε→0

ε−4α
E
[
S2

2

]
= K2

α,ϕE

[∫ 1

0

ḧ(bα(u)) du

]2

, if 0 < α <
1

4
.

Now let us achieve the proof of (i), proving that ε−2αS2
L2

→ Kα,ϕ

∫ 1

0
ḧ(bα(u)) du. It is

enough to show that

lim
ε→0

E

[
(ε−2αS2)

∫ 1

0

ḧ(bα(u)) du

]
= Kα,ϕ E

[∫ 1

0

ḧ(bα(u)) du

]2

For this we write the second order Taylor development for h and we study the two
inner corresponding integrals, and doing the same computations as before it yields
(i).
Now, to achieve the proof of the theorem, we consider, for 1

4
< α < 3

4
, a discrete

version of

T1 :=
1√
ε

∫ 1

0

h(bεα(u))g(2)(Zε(u)) du,

defining

Zn
ε (h) =

1√
ε

n∑

i=1

h(bεα(
i− 1

n
))

∫ i
n

i−1
n

g(2)(Zε(u)) du,

and Zn(h) = Cα,ϕ

n∑

i=1

h(bα(
i− 1

n
))[Ŵ (

i

n
) − Ŵ (

i− 1

n
)].

We know by Theorem 3.1 2)(a) that Zn
ε (h) → Zn(h), weakly as ε → 0. On the

other hand Z2n
(h) is a Cauchy sequence in L2(Ω), this implies that there exists a

r.v. Y (h) ∈ L2(Ω) such that Z2n
(h) → Y (h) in L2(Ω) as n → ∞; furthermore, we

can characterize this variable using the asymptotic independence between bα(·) and
Ŵ (·), say

L
(
Y (h)

/
bα(s), 0 ≤ s ≤ 1

)
= N

(
0;C2

α,ϕ

∫ 1

0

h2(bα(u)) du
)
. (23)

To finish the proof it is enough to show

lim
n→∞

lim
ε→0

E [T1 − Zn
ε (h)]2 = 0.

Such a proof goes on using the same technics that we have implemented above, for
the asymptotic of the second moment. 2
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5.2.2 Pseudo-diffusion

Estimation of the variance of a pseudo-diffusion.
Proof of Proposition 4.1. We just give an outline of the proof showing that it is enough
to consider the fractional Brownian motion case. Because bα(t) has zero quadratic
variation when α > 1

2
, it turns out that when σ ∈ C1 and µ ≡ 0 the solution for the

stochastic differential equation can be expressed as X(t) = K(bα(t)), for t ≥ 0, where
K(t) is the solution of the ordinary differential equation

K̇(t) = σ(K(t)); K(0) = c.

(for t < 0, X(t) = c). Using the Banach-Kac formula (Banach (1925) and Kac (1943))
we have√

π

2

ε1−α

σ2α

∫ ∞

−∞
h(x)NX

ε (x) dx =

√
π

2

ε1−α

σ2α

∫ 1

0

h(Xε(u))|Ẋε(u)| du

≈
√
π

2

ε1−α

σ2α

∫ 1

0

h(K(bεα(u)))K̇(bεα(u))|ḃεα(u)| du

=

√
π

2

∫ 1

0

h(K(bεα(u)))σ(K(bεα(u)))|Zε(u)| du.

We shall prove in Theorem 4.1 that
[ ε1−α

σ2α

∫ 1

0
h(Xε(u))|Ẋε(u)| du −

∫ 1

0
h(K(bεα(u)))σ(K(bεα(u)))|Zε(u)| du] is o(

√
ε), hence

the proposition follows from Theorem 1.1. 2

Proof of Theorem 4.1. For any δ > 0, if t ≥ ε,

|Xε(t) −K(bεα(t))| ≤
∫ ∞

−∞
ϕ(x)|K(bα(t− εx)) −K(bεα(t))| dx

=

∫ 1

−1

ϕ(v)|K̇(θ)(bα(t− εv) − bεα(t))| dv

≤ C sup
v∈[−1,1]

|bα(t− εv) − bεα(t)|

≤ C εα−δ,

where θ is a point between bα(t − εv) and bεα(t). A similar proof can be done for

0 ≤ t < ε. Hence, we get ε−
1
2 |Xε(t) −K(bεα(t))| = o(1) uniformly in t.

In a similar way, we can write for any δ > 0 and t ≥ ε
ε(Ẋε(t) − K̇(bεα(t))ḃεα(t))

=

∫ ∞

−∞
ϕ̇(x)[K(bα(t− εx)) −K(bεα(t)) − K̇(bεα(t))(bα(t− εx) − bεα(t))] dx,

we used the fact that
∫∞
−∞ ϕ̇(x) dx = 0. Taking the second order Taylor’s development

for the function K, we obtain

|ε(Ẋε(t) − K̇(bεα(t))ḃεα(t))| ≤ 1

2

∫ 1

−1

|ϕ̇(v)||K̈(θ)|(bα(t− εv) − bεα(t))2 dv ≤ C ε2α−δ.
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In a similar way, for 0 ≤ t < ε, we can prove that this expression is bounded by
C εα−δ. Thus, multiplying the last expression by ε−(α+ 1

2
) it holds uniformly in t

ε( 1
2
−α)(Ẋε(t) − K̇(bεα(t))ḃεα(t)) = o(1) 1ε≤t +O(ε−

1
2
−δ) 10≤t≤ε.

Now

1√
ε
[

√
π

2

ε1−α

σ2α

∫ 1

0

h(Xε(u))|Ẋε(u)| du−
√
π

2

ε1−α

σ2α

∫ 1

0

h(K(bεα(u)))σ(K(bεα(u)))|ḃεα(u)| du]

= L1 + L2,

where

L1 :=

∫ 1

0

1√
ε

[
h(Xε(u)) − h(K(bεα(u)))

]∣∣∣
√
π

2

ε1−α

σ2α

Ẋε(u)
∣∣∣ du

and

L2 :=
1√
ε

√
π

2

ε1−α

σ2α

∫ 1

0

h(K(bεα(u))){|Ẋε(u)| − σ(K(bεα(u)))|ḃεα(u)|} du.

Now, let us study L1 and L2. For L1, we have

L1 =

∫ 1

0

1√
ε
ḣ(θ′)

(
Xε(u) −K(bεα(u))

)∣∣∣
√
π

2

ε1−α

σ2α

Ẋε(u)
∣∣∣ du,

where θ′ is a point between Xε(u) and K(bεα(u)) and then

|L1| ≤ C

∫ 1

0

ε−
1
2

∣∣∣Xε(u) −K(bεα(u))
∣∣∣
∣∣∣
√
π

2

ε1−α

σ2α

Ẋε(u)
∣∣∣ du = o(1),

because of the boundness of

∫ 1

0

∣∣∣
√
π

2

ε1−α

σ2α

Ẋε(u)
∣∣∣ du.

Note that this last remark and the fact that h ∈ C0 imply that
√
εL1 tends to zero

when ε goes to zero.
Moreover, for L2 we have

|L2| ≤ C

∫ 1

0

ε
1
2
−α|Ẋε(u) − σ(K(bεα(u)))ḃεα(u)| du = o(1).

Therefore, we can conclude that the asymptotic behaviour of

1√
ε

[√
π

2

ε1−α

σ2α

∫ ∞

−∞
h(x)NX

ε (x) dx−
∫ ∞

−∞
h(x)σ(x)`X(x) dx

]
,

is equivalent to the asymptotic behaviour of Σε

(
(h ◦K) · (σ ◦K)

)
.

As an application of our result for the fractional Brownian motion in Theorem 3.4
(ii), this term converges stably towards

Cα,ϕ

∫ 1

0

h(K(bα(u)))σ(K(bα(u)))dŴ (u) = Cα,ϕ

∫ 1

0

h(X(u))σ(X(u))dŴ (u).

This equation completes the proof. 2

Remark: We conjecture that the same type of result holds for µ 6= 0, but for the
moment we do not have a proof of this statement.
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Proofs of hypothesis
Proof of Theorem4.2. Let K(t, δ) be the C2-function, solution of the ordinary differ-
ential equation

∂K

∂t
(t, δ) = σ(K(t, δ), δ) where σ(u, δ) = σ0(u) + δd(u) + δF (u, δ) and K(0, δ) = c.

Then for t ≥ 0, Xε(t) = K(bα(t),
√
ε) (for t < 0, Xε(t) = c) and almost surely,

uniformly for t ≥ 0 in a compact (see Pontryagin (1962), section “local theorems of
continuity and differentiability of solutions” p.170-180)

lim
ε→0

Xε(t) = X(t) where X(t) = K(bα(t), 0),

and
∂K

∂t
(t, 0) = σ0(K(t, 0)) with K(0, 0) = c.

Furthermore, we can prove that almost surely

lim
ε→0

ε−
1
2 (Xε(t) −X(t)) =

∂K

∂δ
(bα(t), 0) uniformly for t ≥ 0 in a compact. (24)

From now on, K will denote the function defined by K(t) := K(t, 0) and then X(t) =
K(bα(t)) for t ≥ 0.

Using that h, σ and σ0 are in C1, it holds uniformly for t ∈ [0, 1] that

ε−
1
2 |Yε(t) −Xε(t)| = o(1),

ε( 1
2
−α)|Ẏε(t) − σε(Xε(t)) ḃ

ε
α(t)| = o(1) 1ε≤t +O(ε−

1
2
−δ) 10≤t≤ε.

Thus as in in Theorem 4.1, we can show that the equivalent functional under the
alternatives is

1√
ε

[∫ 1

0

h(Xε(u))σε(Xε(u))

√
π

2
|Zε(u)| du−

∫ 1

0

h(Xε(u))σ0(Xε(u)) du

]

=
1√
ε

∫ 1

0

h(Xε(u))σ0(Xε(u))g
(2)(Zε(u)) du

+

∫ 1

0

h(Xε(u))d(Xε(u))

√
π

2
|Zε(u)| du

+

∫ 1

0

h(Xε(u))F (Xε(u),
√
ε)

√
π

2
|Zε(u)| du

= M1 +M2 +M3,

with g(2)(x) =
√

π
2
|x| − 1.

We are going to prove that

Tε(h) '
1√
ε

∫ 1

0

h(X(u))σ0(X(u))g(2)(Zε(u)) du+

∫ 1

0

h(X(u))d(X(u)) du. (25)
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Since almost-surely Xε(u) converges uniformly for u ∈ [0, 1] to X(u) when ε goes to

zero, and h, F are in C0, F (·, 0) = 0 and moreover
∫ 1

0
|Zε(u)| du is bounded, we get

that M3 goes almost-surely to zero with ε.
Let us look now at M1. Since (hσ0) is in C1, making a first order Taylor develop-

ment for this function we get

J1 =
1√
ε

∫ 1

0

h(X(u))σ0(X(u)) g(2)(Zε(u)) du

+

∫ 1

0

[
(hσ0)

′(θε(u))
(Xε(u) −X(u)√

ε

)
− (hσ0)

′(X(u))
∂K

∂δ
(bα(u), 0)

]
g(2)(Zε(u)) du

+

∫ 1

0

(hσ0)
′(K(bα(u))

∂K

∂δ
(bα(u), 0) g(2)(Zε(u)) du,

where the symbol ′ stands for the derivative and θε(u) is a point between Xε(u) and
X(u).

Using the facts that (hσ0)
′ is in C0, that almost-surely θε(u) converges uniformly

in u to X(u) when ε goes to zero, (24) and that
∫ 1

0
|g(2)(Zε(u))| du is bounded, we

can prove that the second integral almost-surely goes to zero when ε goes to zero.

Now, by using the fact that (hσ0)
′K(·) ∂K

∂δ
(·, 0) is in C0 and using a generalization

of Theorem 1.1, we can prove that almost-surely as ε goes to zero the last integral

goes to E
[
g(2)(N ∗)

] ∫ 1

0

(hσ0)
′(K(bα(u))

∂K

∂δ
(bα(u), 0) du ≡ 0.

To finish with the proof of (25) we look at M2.

M2 =

∫ 1

0

(
h(Xε(u)) d(Xε(u)) − h(X(u)) d(X(u))

)√π

2
|Zε(u)| du

+

∫ 1

0

h(K(bα(u))) d(K(bα(u))) g(2)(Zε(u)) du+

∫ 1

0

h(X(u))d(X(u)) du.

As before, since almost-surely Xε(u) converges uniformly in u to X(u) when ε goes

to zero, h, d are in C0 and that
∫ 1

0
|Zε(u)| du is bounded, the first term tends almost-

surely to zero with ε.
The second term tends to E

[
g(2)(N ∗)

] ∫ 1

0
h(K(bα(u))) d(K(bα(u))) du ≡ 0, since

h, d and K are in C0 and by using a generalization of Theorem 1.1.
Thus we have proved (25).
Now if we put H := (h ◦K) · (σ0 ◦K) and G := (h ◦K) · (d ◦K), we obtain

Tε(h) '
1√
ε

∫ 1

0

H(bα(u))g(2)(Zε(u)) du+

∫ 1

0

G(bα(u)) du.

The asymptotic behaviour of this functional can be treated in the same manner that
we have done in Theorem 3.4 (ii). Note that in the argument of functions H and G
it appears bα(·) instead of bεα(·). However the same type of proof can be done with
small changes. 2
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5.2.3 β-increments and Lebesgue measure

Proof of Corollary 4.1. This corollary is a consequence of Theorems 3.1 1), 3.2 (i)
and 3.3. Indeed, since

∫ +∞

−∞
H2l(x)|x|βφ(x) dx =

2(2l)!√
2π

l∑

p=0

(−1)l−p

(2p)!(l − p)!2l−p
2p+ β−1

2 Γ(p+
β + 1

2
),

(i) follows. To conclude the proof it’s enough to compute a2.

a2 = 1
2

∫ +∞
−∞ |x|βH2(x)φ(x) dx = β 2β/2−1√

π
Γ(β+1

2
) by the last calculation, thus (ii) and

(iii) follow. 2

Proof of Corollary 4.2. This corollary is a direct application of Theorem 3.1 1), 2)(c)
and Theorem 3.3. In fact, using formula (4) we obtain that al = −1

l!
Hl−1(x)φ(x) and

the result follows.
The remark is a consequence of a straightforward calculation of

∫ +∞
0

ρl
1/2(v) dv = 1

l+1
.

2

Proof of Corollary 4.3. This corollary is a direct application of Corollary 3.1.1. 2

6 Conclusion

It is interesting to pinpoint the main idea of our methods based on the Gaussian
structure of the underlying processes and remark the similarity of the limits obtained
in different models considered in Berzin-Joseph and León (1997), Berzin et al. (1998)
or Berzin et al. (2001).
Also note that our technics allow us the parameters estimation and the setup of tests
of hypothesis when the partition is finer.

Following the same approach, future investigations will be made in a more general
setup where a drift is introduced in the model.
Other results are expected, related with the second order increments, to estimate the
Hurst parameter α using variation technics.
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