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Abstract

We investigate characteristics of random split trees introduced by Devroye [SIAM
J Comput 28, 409–432, 1998]; split trees include e.g., binary search trees, m-ary
search trees, quadtrees, median of (2k + 1)-trees, simplex trees, tries and digital
search trees. More precisely: We use renewal theory in the studies of split trees, and
use this theory to prove several results about split trees. A split tree of cardinality n is
constructed by distributing n balls (which often represent data) to a subset of nodes
of an infinite tree. One of our main results is a relation between the deterministic
number of balls n and the random number of nodes N . In [5] there is a central
limit law for the depth of the last inserted ball so that most nodes are close to depth
lnn
µ

+ O(
√
lnn), where µ is some constant depending on the type of split tree; we

sharpen this result by finding an upper bound for the expected number of nodes with

depths ≥ lnn
µ
− ln

1
2
+ε n or depths ≤ lnn

µ
+ ln

1
2
+ε n for any choice of ε > 0. We also

find the first asymptotic of the variances of the depths of the balls in the tree.
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1 Introduction

In this paper we use renewal theory as a powerful tool to gain results regarding
(random) split trees (introduced by Devroye [5]). The split trees constitute a large
class of random trees of logarithmic height, i.e., there exists a constant C such that
P( Hn

logn > C)→ 0, where Hn is the height (maximal depth) of the tree. Some important
examples of split trees are binary search trees [14], m-ary search trees [17], quadtrees
[10], median of (2k + 1)-trees [2], simplex trees, tries [11] and digital search trees [4].

1.1 Preliminaries

In this subsection we introduce the split tree model as defined by Devroye. We also
give some background and state a proposition concerning the depth of balls.
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1.1.1 The Split Tree Model

The formal definition of split trees is given in the “split tree generating algorithm”
below. To facilitate the penetration of this rather complex algorithm we first provide a
brief heuristic description. A skeleton tree Sb of branch factor b is an infinite rooted tree
in which each node has exactly b children. A split tree is a finite subtree of a skeleton
tree Sb. The split tree is constructed iteratively by distributing balls one at a time to a
subset of nodes of Sb. We say that the tree has cardinality n if n balls are distributed.
Since many of the common split trees come from algorithms in Computer Science the
balls often represent some “keys” or other data symbols. There is also a so-called node
capacity, s > 0, which means that each node can hold at most s balls. We say that a
node v is a leaf if v itself holds at least one ball but no descendants of v hold any balls.
The split tree consists of the leaves and all the ancestors of the leaves. See Figure 1
and Figure 2, which illustrate two split trees (the parameters s0 and s1 in the figures
are introduced in the formal algorithm).

The first ball is placed in the root of Sb. Each new ball is added by starting at the
root, and then letting the ball fall down in the tree until it reaches a leaf. Each node v of
Sb is given an independent copy of the so-called random split vector V = (V1, V2 . . . , Vb)

of probabilities, where
∑
i Vi = 1 and Vi ≥ 0. The split vectors control the path that the

ball takes until it reaches a leaf; when the ball falls from node v to one of its children, it
chooses the ith child of v with probability Vi, i.e., the ith component of the split vector
associated to v. When a full leaf gets a new ball it splits; hence, some of the s+ 1 balls
are given to its children, leading to new leaves. When all the n balls have been added
we get a split tree with a finite number of nodes which we denote by the parameter N .

The split tree generating algorithm: The (random) split tree has the parameters
b, n, s and V as we described above; there are also two other parameters: s0, s1 (related
to the parameter s) that occur in the algorithm. Let nv denote the total number of balls
that the nodes in the subtree rooted at node v hold together, and Cv be the number of
balls that are held by v itself. Note that v is a leaf if and only if Cv = nv > 0 and that a
node v ∈ Sb is included in the split tree if, and only if, nv > 0.

Initially there are no balls, i.e., Cv = 0 for each node v. Choose an independent copy
Vv of V for every node v ∈ Sb. Add balls one by one to the root by the following iterative
procedure for adding a ball to the subtree rooted at v:

1. If v is not a leaf, choose child i with probability Vi, and recursively add the ball to
the subtree rooted at child i, by the rules given in steps 1, 2 and 3.

2. If v is a leaf and Cv = nv < s, add the ball to v and stop. Thus, Cv and nv increase
by 1.

3. If v is a leaf and Cv = nv = s, there is no space for the new ball at v. In this
case let nv = s + 1 and Cv = s0, by placing s0 ≤ s randomly chosen balls at v
and s+ 1− s0 balls at its children. This is done by first giving s1 randomly chosen
balls to each of the b children. The remaining s + 1 − s0 − bs1 balls are placed by
choosing a child for each ball independently according to the probability vector
Vv = (V1, V2, . . . , Vb), and then using the algorithm described in steps 1, 2 and 3
applied to the subtree rooted at the selected child.

Once the original n balls are distributed the algorithm stops.
From step 3, it follows that s0 and s1 have to satisfy the inequality 0 ≤ bs1 ≤ s+1−s0.

Note that if s0 > 0 or s1 > 0, step 3 does not need to be repeated in this iteration of
the procedure since no child could reach the capacity s, whereas if s0 = s1 = 0 step 3
may have to be repeated several times. Note that every nonleaf has Cv = s0 and every
leaf has 0 < Cv ≤ s. The algorithm gives a recursive construction of the subtree sizes
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nv, v ∈ Sb. The tree consists of n items and the root σ has nσ = n. Given the cardinality
nv and the split vector Vv = (V1, . . . , Vb) the cardinalities (nv1 , . . . , nvb) of the b subtrees
rooted at v1, . . . , vb are distributed as

Mult(nv − s0 − bs1, V1, V2, . . . , Vb) + (s1, s1, . . . , s1). (1.1)

All internal nodes 
have s0=0  balls

All leaves have
between 1 and
s=4 balls
Note that s1≤1

b=2
s=4
s0=0

Figure 1: A split tree with b = 2, s = 4, s0 = 0 and s1 ≤ 1.

Figure 2: A split tree with b = 3, s = 5, s0 = 3 and s1 = 0.

We can assume that the components Vi of the split vector V are identically dis-
tributed. If this were not the case they can anyway be made identically distributed by
using a random permutation, see [5]. Let V be a random variable with this distribution;
hence E(V ) = 1

b . We use the notation Tn to denote a split tree with n balls. Note that
even conditioned on the fact that the split tree has n balls, the number of nodes N , is
still usually random.
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Example 1: Binary Search Tree The binary search tree is the graph of one of the most
used sorting algorithm Quicksort: Draw a (uniformly) random key κσ (a number) from
the set {1, 2 . . . , n}, and associate it to the root σ. Then sort the other keys into two sets,
where the keys that are smaller than κσ are sent to the left child and the keys that are
larger are sent to the right child. The sizes of the two subtrees of the root are κσ − 1

and n− κσ. Since κσ is equally likely to be {1, 2, . . . , n}, one has

(κσ − 1, n− κσ)
d
= Mult(n− 1;U, 1− U),

where U is a uniform U(0, 1) random variable and
d
= denotes distributional equality .

Thus, a binary search tree is a split tree with b = 2, s0 = 1, s = 1, s1 = 0 and V
d
= U .

Example 2: Tries Let X1, . . . , Xn be n infinite strings on the alphabet {1, . . . , b}. The
strings are drawn independently, and the symbols of each string are also independent
with distribution on {1, . . . , b} given by p1, . . . , pb. Each string naturally corresponds to
an infinite path in Sb: symbol i ∈ {1, . . . , b} is associated to the ith child. The trie is then
defined as the minimal subtree so that the paths corresponding to the infinite strings
are distinct. The internal nodes store no data, each leaf stores a unique string. For
tries, nv corresponds to the number of strings that have the first d symbols up to node
v at depth d in common; for all internal nodes nv > 1 and for the leaves nv = 1. One
clearly has for the b children of the root

(n1, . . . , nb)
d
= Mult(n; p1, . . . , pb).

The trie is thus a split tree with s = 1, s0 = s1 = 0 and V is a random permutation of
(p1, p2, . . . , pb).

1.1.2 A weak law and a central limit law for the depth

Recall that V is a random variable with the distribution of the identically distributed
components Vi, i ∈ {1, . . . , b} in the split vector V = (V1, . . . , Vb). Let ∆ = VS be the size
biased distribution of (V1, . . . , Vb), i.e., given (V1, . . . , Vb), let ∆ = Vj with probability Vj ,
see [5]. Let

µ := E(− ln ∆) = bE(−V lnV ), σ2 := Var(ln ∆) = bE(V ln2 V )− µ2. (1.2)

Note that the second equalities of µ and σ imply that they are bounded. Similarly all
moments of − ln ∆ are bounded.

In [5] Devroye presented a weak law of large numbers and a central limit law for Dn

(depth of the last inserted ball). Devroye [5, Theorem 1] showed that if P(V = 1) = 0,

then Dn
lnn

p→ µ−1 and

E(Dn)

lnn
→ µ−1. (1.3)

Let Dk,n be the depth of the kth inserted ball when n ≥ k balls have been added;
in particular Dn = Dn,n. Let D∗n be the average depth in a tree with n balls, i.e.,
D∗n = 1

n

∑n
k=1Dk,n. Note that Dk ≤ Dk,n, n ≥ k, since ball k can move during the

splitting process when new balls are added to the tree. From the following Proposition
it simply follows that (1.3) also holds for D∗n.

Proposition 1.1. For i ≤ j, we have that Di,n ≤ Dj,n in the stochastic sense.

This proposition is shown in Section 3.3.
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Corollary 1.1. For the average depth D∗n, we have

E(D∗n)

lnn
→ µ−1, as n→∞. (1.4)

Proof. Proposition 1.1 implies that for all k ≤ n,

E(Dk) ≤ E(Dk,n) ≤ E(Dn). (1.5)

By applying (1.3) and (1.5) we get 1
n

∑b n
ln2 n

c
k=1 E(Dk,n) = o(1), and for k ≥ n

ln2 n
we have

E(Dk,n) ∼ µ−1 lnn. Hence, E(D∗n)
lnn → µ−1.

For σ > 0, and assuming that P(V = 1) = 0 and that V is not monoatomic, i.e.,
V 6= ( 1

b , . . . ,
1
b ) Devroye showed [5, Theorem 1]

Dn − µ−1 lnn√
σ2µ−3 lnn

d→ N(0, 1), (1.6)

where N(0, 1) is the normal distribution. Tries, see Example 2 above, are split trees
with a random permutation of deterministic components (p1, p2, . . . , pb) and therefore
not as random as many other examples. Digital search trees are closely related to tries;
they also have split vector (p1, p2, . . . , pb) however their internal nodes are not empty.
Of all the most common examples of split trees only the symmetric tries and symmetric
digital search trees (i.e., with p1 = p2, · · · = pb) have a monoatomic distribution of V .
From (1.6) it follows that “most” nodes lie at depth µ−1 lnn+O(

√
lnn).

1.2 Main Results

In this section we present the main theorems of this work. Since we use renewal
theory in our proofs it is necessary to distinguish between lattice and non-lattice distri-
butions. This is the reason for the non-lattice assumption (A1) below.

(A1). We assume as in Section 1.1.2 that P(V = 1) = 0, and for simplicity we also
assume that − lnV has a non-lattice distribution.

Note that the assumption that V is not monoatomic in Section 1.1.2 is included in
assumption (A1). Again of the common split trees only for some special cases of tries
and digital search trees does − lnV have a lattice distribution.

Our first most important result is on the relation between the number of nodes N
(recall that this is a random variable) and the number of balls n.

Theorem 1.1. There is a constant α, depending on the type of split tree, such that

E(N) = αn+ o(n), (1.7)

and

Var(N) = o(n2). (1.8)

For specific cases of split trees the constant α in (1.7) can be calculated explicitly,
see e.g.,[16] for m-ary search trees and [3, 18] for non-lattice cases of tries.

Recall that there is a central limit law for Dn (the depth of the last ball) in (1.6) so
that most nodes are close to depth lnn

µ +O(
√

lnn) (where µ is the constant in (1.2)); our
next result sharpens this result. Given a constant ε > 0, we say that a node v in Tn is
good if

lnn

µ
− (lnn)

1
2 +ε ≤ d(v) ≤ lnn

µ
+ (lnn)

1
2 +ε,

and bad otherwise.
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Theorem 1.2. For any choice of ε > 0 and for any constant k the expected number of
bad nodes in Tn is O

(
n

lnk n

)
.

In the third main result we sharpen the limit laws in (1.3) and (1.4) for the expected
values of Dn and D∗n (the average depth). We also find the first asymptotic of the
variances of the kth ball Dk,n for all k, n

lnn ≤ k ≤ n.

Theorem 1.3. Let µ and σ2 be the constants in (1.2). For the expected value of the
depth of the last ball we have

E(Dn)− µ−1 lnn√
lnn

→ 0, as n→∞ (1.9)

and the same result holds for the average depth D∗n, i.e.,

E(D∗n)− µ−1 lnn√
lnn

→ 0, as n→∞. (1.10)

Furthermore, for all n
lnn ≤ k ≤ n the variance of the depth of the kth ball satisfies

Var(Dk,n)

lnn
→ σ2µ−3, as n→∞. (1.11)

1.3 Notation

In this section some of the notation that we use in the present study is collected.
Let Tn denote a split tree with n balls; for simplicity we sometimes write T . Let N

be the number of nodes in Tn. Let d(v) denote the depth of a node v, sometimes we just
write d for the depth of v. Recall that Dn is the depth of the last ball and that D∗n is the
average depth, and that we write Dk,n for the depth of the kth inserted ball when n ≥ k
balls have been added. Let Tv be a subtree rooted at v. We write nv for the number of
balls in Tv and we write Nv for the number of nodes.

We use the standard notation, N(µ, σ2) for a normal distribution with expected value
µ and variance σ2, and Bin(m, p) for a binomial distribution with parameters m and p.
We also use the notation mixed binomial distribution (X,Y ) or for short mBin(X,Y )

for a binomial distribution where at least one of the parameters X and Y is a random

variable (the other one could be deterministic). We write
d
= for equality in distribution

and ≤st respectively ≥st for inequality in the stochastic sense. We write |S| for the
number of elements in a set S.

We use the standard notation g(k) = O(f(k)) to denote that there exist constants C
and k0 such that |g(k)| ≤ Cf(k) for k ≥ k0; in fact the qualifier k ≥ k0 is not necessary
as long as f(k) > c > 0 for a given constant c > 0 and g(k), k ∈ [0, k0] is bounded, since
C can be replaced by C ′ = max(C, supk≤k0 |g(k)/f(k)|) < ∞. Furthermore, to simplify
the discussion, when we use the notation O(f(n, ε)) as n tends to infinity, we ensure
that the hidden constant in O does not depend on ε. More precisely, when we write
g(n, ε) = O(f(n, ε)) we mean that

∃C, ∀ε > 0, ∃nε, n ≥ nε :⇒ |g(n, ε)| ≤ Cf(n, ε).

We define Ωd as the σ-field generated by {nv, d(v) ≤ d}. Finally, we write Gd for the
σ-field generated by the V-vectors for all v, d(v) ≤ d.

1.4 Applying Renewal Theory to Split Trees

Let v be a node at depth d, conditioning on Gd (i.e., the σ-field generated by the V
vectors for all nodes v with d(v) ≤ d) and applying the fact that a mBin(X, p1) in which
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X is Bin(m, p2) is distributed as a Bin(m, p1p2), we get from (1.1) that

nv ≤st Bin(n,

d∏
j=1

Vj,v) + Bin(s1,

d∏
j=2

Vj,v) + · · ·+ Bin(s1, Vd,v) + s1, (1.12)

where Vj,v, j ∈ {1, . . . , d} are i.i.d. random variables Vj,v
d
= V , given by the split vectors

associated with the nodes in the unique path from v to the root. (Note that equivalently,
Gd is the σ-field generated by Vj,v, j ∈ {1, . . . , d} for all v with d(v) = d.) Note that the
terms in (1.12) are not independent. Similarly, we have a lower bound for nv, i.e., for v
at depth d, conditioning on Gd,

nv ≥st Bin(n,

d∏
j=1

Vj,v)− Bin(s,

d∏
j=2

Vj,v)− · · · − Bin(s, Vd,v); (1.13)

we can replace the term s by s0 + bs1 ≤ s for a sharper bound.
Recall that for a Bin(m, p) distribution, the expected value is mp and the variance is

mp(1−p). Thus, Chebyshev’s inequality applied to the dominating term Bin(n,
∏d
j=1 Vj,v)

in (1.12) gives that nv for v at depth d is close to

Mn
v := nV1,vV2,v . . . Vd,v; (1.14)

since the nv’s (conditioned on the split vectors) for all v at the same depth are identically
distributed, we sometimes skip the node index of Vj,v and just write Vj . We now state a
more precise relation between nv and Mn

v .

Lemma 1.1. For any node v, we have for all n large enough that

P
(
| nv −Mn

v |> n0.6
)
≤ 1

n0.1
. (1.15)

Proof. By using (1.12) and (1.13), the Chebyshev and Markov inequalities give for v
with d(v) = d, that for large n,

P
(
| nv −Mn

v |> n0.6
)
≤ 4

E
(
Var

(
Bin(n,

∏d
j=1 Vj)

∣∣Gd))
n1.2

+4E
(
E
(
Bin(s,

d∏
j=2

Vj) + Bin(s,

d∏
j=3

Vj) + · · ·+ s
∣∣Gd))/n0.6

≤ 4nb−d

n1.2
+

∑∞
k=1 4sb−k

n0.6
≤ 1

n0.1
.

Renewal theory is a widely used branch of probability theory that generalizes Pois-
son processes to arbitrary holding times. A classic in this field is Feller [7] on recurrent
events. First we recall some standard notation. Let X0 = 0 a.s.. Let Xk, k ≥ 1, be i.i.d.
nonnegative random variables distributed as X and let Sm, m ≥ 1, be the partial sums.
We write F for the distribution function of X and Fm for the distribution function of
Sm, m ≥ 0. Thus, for x ≥ 0,

F0(x) = 1, F1(x) = F (x), Fm(x) = Fm
∗
(x),

i.e., Fm equals the m-fold convolution of F . The renewal counting process {N (t), t ≥ 0}
is defined by N (t) := max{m : Sm ≤ t}. In the specific case when X

d
= Exp(λ), then
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{N (t), t ≥ 0} is a Poisson process. An important well studied function is the standard
renewal function

V (t) :=

∞∑
m=0

Fm(t) = E(N (t)). (1.16)

The renewal function V (t) satisfies the so-called renewal equation

V (t) = 1 + (V ∗ dF )(t), t ≥ 0.

For a broader introduction to renewal theory, see e.g. [1], [8], [9] and [12].
One of the main purposes of this study is to use renewal theory to study split trees.

Renewal theory has also been used in [18] to study tries and similar split tree structures
for which the parameters s0 = s1 = 0. Recall that nv is close to the productMn

v in (1.14).
Now let Yk := −

∑k
j=1 lnVj . Note that Mn

v = ne−Yk . For the specific case of the binary
search tree the sum Yk, (where Vj , j ∈ {1, . . . , k}, in this case are i.i.d. uniform U(0, 1)

random variables) is distributed as a Γ(k, 1) random variable; this fact was used by, e.g.,
Devroye [6] to determine the height of the tree. For general split trees, for which we
don’t know the common distribution function of Yk, renewal theory can be used instead.
Let νk(t) := bkP(Yk ≤ t). We define the renewal function

U(t) :=

∞∑
k=1

νk(t). (1.17)

Let ν(t) := ν1(t) = bP(− lnVj ≤ t). For U(t) we obtain the following renewal equation

U(t) = ν(t) +

∞∑
k=1

(νk ∗ dν)(t) = ν(t) + (U ∗ dν)(t). (1.18)

2 Some Fundamental Renewal Theory Results

The main goal of this section is to present a renewal theory lemma and a corollary
of this lemma, which are both frequently used in this study. In contrast to standard re-
newal theory the distribution function ν(t) in (1.18) is not a probability measure. How-
ever, to solve (1.18) we can apply [1, Theorem VI.5.1] which deals with non probability
measures to deduce the following result.

Lemma 2.1. The renewal function U(t) in (1.17) satisfies

U(t) = (µ−1 + o(1))et, as t→∞.

Proof. Since the distribution function ν(t) is not a probability measure, we define an-
other (“conjugate” or “tilted”) measure ω on [0,∞) by

dω(t) = e−tdν(t).

Recall from Section 1.1.2 that ∆ = VS is the size biased distribution of (V1, . . . , Vb). Note
that ω(x) is the distribution function (and therefore a probability measure) of − ln ∆

since

P(− ln ∆ ≤ x) = E(E(I{− lnVS ≤ x}|(V1, . . . , Vb))) = E(

b∑
i=1

I{− lnVi ≤ x}Vi) = ω(x).

Hence, (recalling µ = E(− ln ∆) and σ2 = Var(− ln ∆)) we have

E(ω) = µ, and Var(ω) = σ2. (2.1)
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Define Û(t) := e−tU(t) and ν̂(t) := e−tν(t). We shall apply [1, Theorem VI.5.1],
but first we need to show that the condition that ν̂(t) is “directly Riemann integrable”
(d.R.i.) is satisfied. Note that ν̂(t) ≤ be−t, and thus since ν̂(t) is also continuous almost
everywhere, by [1, Proposition IV.4.1.(iv)] it follows that ν̂(t) is d.R.i. if be−t is d.R.i..
That be−t is d.R.i. follows by applying [1, Proposition IV.4.1.(v)], since be−t is a nonin-
creasing and Lebesgue integrable function. Then by applying [1, Theorem VI.5.1] and
(2.1) we get

Û(t) = ν̂(t) + (Û ∗ dω)(t), (2.2)

where ω(t) is a probability measure, and

Û(t)→ µ−1

∫ ∞
0

ν̂(x)dx = µ−1

∫ ∞
0

ν(x)e−xdx =: κ. (2.3)

Integration by parts now gives

κ = µ−1
(
b
∣∣− e−tP(− lnV ≤ t)

∣∣∞
0
−
∫ ∞

0

−e−tdν(t)
)

= µ−1bE(elnV ) = µ−1, (2.4)

Thus, U(t) = (µ−1 + o(1))et.

The following result is a useful corollary of Lemma 2.1. Recall that we write

Mn
v = n

d(v)∏
j=1

Vj .

Corollary 2.1. Let Kn, n ≥ 1 be a sequence such that as n→∞ we have that n
Kn
→∞.

Then for the expected number of nodes with Mn
v ≥ Kn we have

E(
∣∣v ∈ Tn; Mn

v ≥ Kn

∣∣) = U(lnn− lnKn) + 1 = (µ−1 + o(1))
n

Kn
, as n→∞.

Proof. Lemma 2.1 gives

E(
∣∣v ∈ Tn; Mn

v ≥ Kn

∣∣) =

∞∑
d=0

bdP
(
Mn
v ≥ Kn

)
=

∞∑
d=0

bdP
(
Yd ≤ lnn− lnKn

)
= (µ−1 + o(1))

n

Kn
.

We complete this section with a more general result in renewal theory, and a corol-
lary of a more specific result that is valid for the renewal function U(t) in (1.17).

Theorem 2.1. Let F be a non-lattice probability measure and suppose that we have
0 < µ = E(X) =

∫∞
0
xdF (x) <∞ and E(X2) = σ2 + µ2 <∞. Let

Z(t) = z(t) +

∫ t

0

Z(t− u)dF (u), t ≥ 0,

where z(t) is a nonnegative function, such that a :=
∫∞

0
z(u)du <∞. Define

G(x) =

∫ x

0

(
Z(t)− a

µ

)
dt.

Then

lim
x→∞

G(x) = − 1

µ

∫ ∞
0

uz(u)du+ a
σ2 + µ2

2µ2
. (2.5)
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Proof. Let V (t) be the standard renewal function in (1.16), where

Fm(t) = P
( m∑
k=0

Xk ≤ t
)
.

By applying [1, Theorem IV.2.4],

Z(t) =

∫ t

0

z(t− u)dV (u) =

∫ ∞
0

z(u)dV (t− u), (2.6)

where the last equality follows because V (t) = 0 for t ≤ 0. By applying (2.6) and Fubini’s
Theorem we get

G(x) =

∫ ∞
0

z(u)

∫ x

0

dV (t− u)du− ax

µ
=

∫ ∞
0

z(u)V (x− u)du− ax

µ
.

Hence,

G(x) =

∫ ∞
0

z(u)
(
V (x− u)− x

µ

)
du

= − 1

µ

∫ x

0

z(u)udu− 1

µ

∫ ∞
x

z(u)xdu+

∫ x

0

z(u)
(
V (x− u)− x− u

µ

)
du. (2.7)

From [1, Proposition VI.4.1] we have V (t)− t
µ →

σ2+µ2

2µ2 and by [1, Proposition VI.4.2],

0 ≤ V (t) − t
µ ≤

σ2+µ2

µ2 . Hence, the Lebesgue dominated convergence theorem applied
to the last integral in (2.7) gives

lim
x→∞

∫ ∞
0

z(u)
(
V (x− u)− x− u

µ

)
I{u ≤ x}du =

∫ ∞
0

z(u)
σ2 + µ2

2µ2
du.

Note that for all x,
∫∞
x
z(u)(u− x)du ≥ 0. Thus, if

∫∞
0
z(u)udu is integrable, then

lim
x→∞

∫ ∞
x

z(u)xdu = 0,

and the convergence result in (2.5) obviously follows. If
∫∞

0
z(u)udu is not integrable

then we have a special case of (2.5), i.e., limx→∞G(x) = −∞.

We define the function

W (x) =

∫ x

0

e−t(U(t)− µ−1et)dt. (2.8)

The next result is a corollary of Theorem 2.1 which we apply in [15].

Corollary 2.2. The function W (x) in (2.8) satisfies

W (x) =
σ2 − µ2

2µ2
− µ−1 + o(1), as x→∞. (2.9)

Proof. We apply Theorem 2.1 to Z(t) = Û(t) = e−tU(t) defined in the proof of Lemma
2.1 (recall that Û(t) satisfies the renewal equation in (2.2)). Now, the constant a as
defined in Theorem 2.1, satisfies a =

∫∞
0
ν̂(u)du, thus (2.3) and (2.4) give a = 1. From

(2.1) and (2.3)–(2.4) we get∫ ∞
0

ν̂(u)udu =

∫ ∞
0

e−uν(u)udu =

∫ ∞
0

e−uν(u)du+

∫ ∞
0

ue−udν(u) = 1 + µ.
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3 Proofs of the Main Results

Below we will useO(·) notation to simplify the discussion as was described in Section
1.3. It is understood that the hidden constants in O(·) do not depend on n, ε, γ := ε2 or
B := ε−30.

3.1 Proof of Theorem 1.1

In this section we first present some crucial lemmas by which we can then prove
Theorem 1.1. The proof of Theorem 1.1 consists of two parts one concerning (1.7) and
one concerning (1.8). The proofs of these lemmas are given in Section 3.1.4.

3.1.1 Lemmas of Theorem 1.1

The first lemma is fundamental for the proof.

Lemma 3.1. For the first moment of the number of nodes N we have

E(N) = O(n), (3.1)

and for the second moment of N we have

E(N2) = O(n2). (3.2)

Lemma 3.2. Adding K balls to a split tree with n balls will only affect the expected
number of nodes by O(K), i.e., for all natural integers K and n,

0 ≤ E(|Tn+K |)−E(|Tn|) = O(K).

Let R be the set of nodes such that given the split vectors, r ∈ R, if

Mn
r = n

d(r)∏
j=1

Vj < B

but for all strict ancestors v of r we have Mn
v = n

∏d(v)
j=1 Vj ≥ B. We choose B = ε−30,

we can assume that ε is close to 0 making B fairly large. To show (1.7) we consider
all subtrees Tr, r ∈ R. Let nr be the number of balls and let Nr be the number of
nodes in the Tr, r ∈ R, subtree. Recall from Lemma 1.1 that with “large” probability
the cardinality nr is “close” to Mn

r . Corollary 2.1 implies that most nodes are in the
Tr, r ∈ R, subtrees, i.e.,

E(N) = E
(∑
r∈R

Nr
)

+O
( n
B

)
. (3.3)

Since the variance of a Bin(m, p) distribution is m(p−p2), the Chebyshev and Markov
inequalities give similarly as in Lemma (1.1) that for large B,

P
(
|nr −Mn

r | ≥ B0.6
)
≤ 4

E
(
Mn
r

)
B1.2

+

∑∞
k=1 4sb−k

B0.6
≤ 1

B0.1
. (3.4)

From (3.3) we have

E(N) = E
(∑
r∈R

NrI{|nr −Mn
r | ≥ B0.6}

)
+ E

(∑
r∈R

NrI{|nr −Mn
r | ≤ B0.6}

)
+ O

( n
B

)
.

(3.5)

The next lemma shows that the expected number of nodes in the Tr, r ∈ R, subtrees
with subtree sizes nr that differ significantly from Mn

r is bounded by a “small” error
term for large B.
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Lemma 3.3. The expected number of nodes in the Tr, r ∈ R, subtrees with subtree
size nr that differs from Mn

r with at least B0.6 balls, is

E(
∑
r∈R

NrI{|nr −Mn
r | ≥ B0.6}) = O

( n

B0.1

)
,

hence, from (3.5)

E(N) = E
(∑
r∈R

NrI{|nr −Mn
r | ≤ B0.6}

)
+O

( n

B0.1

)
. (3.6)

We also sub-divide the Tr, r ∈ R, subtrees into smaller classes, wherein the Mn
r ’s in

each class are close to each-other. Choose γ := ε2 and let

Z := {B,B − γB,B − 2γB, . . . , εB},

where ε = 1
k for some positive integer k. We write Rz ⊆ R, z ∈ Z, for the set of nodes

r ∈ R, such that Mn
r ∈ [z − γB, z) and Mn

v ≥ B for all strict ancestors v of r. (Note that
the intervals are of length γB and that the set Z contains at most 1

γ elements.) We write
|Rz| for the number of nodes in Rz. The next lemma is deduced from renewal theory
applied to the renewal function U(t) in (1.17).

Lemma 3.4. Let ε = 1
k for some positive integer k. Define S := {1, 1− γ, 1− 2γ, . . . , ε},

where γ = ε2, and let B = ε−30. Choose ζ ∈ S, then

E(|RζB |)
n
B

= cζ + o(1), as n→∞. (3.7)

for a constant cζ (only depending on ζ), and also
∑
ζ∈S cζ ≤

b
µ .

Before proving these lemmas we show how their use leads to the proof of Theorem
1.1.

3.1.2 Proof of part one of Theorem 1.1

Proof of Theorem 1.7. To show (1.7) it is enough to prove that there exists a constant C
such that for all ε > 0 there exists nε such that for two arbitrary values of the cardinality
n and n̂, where n̂ ≥ n ≥ nε, we have

∣∣E(N)

n
− E(N̂)

n̂

∣∣ ≤ Cε. (3.8)

Since (3.8) implies that E(N)
n is Cauchy it follows that E(N)

n converges to some constant
α > 0 as n tends to infinity; hence, we deduce (1.7).

We will now prove (3.8). Recall from Section 3.1.1 that we will consider the subtrees
Tr, r ∈ R. Let R′ ⊆ R be the set of nodes such that r ∈ R′ if

|nr −Mn
r | ≤ B0.6. (3.9)

Lemma 3.3 shows that we only need to consider the nodes in R′.
Let R′′ ⊆ R′ be the set of nodes such that r ∈ R′′ if r ∈ R′ and

εB < Mn
r < B.

We will now explain that it is enough to consider the nodes in R′′. Corollary 2.1 for
Kn = B gives that the expected number of nodes such that Mn

v ≥ B is O
(
n
B

)
; thus,
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since the branch factor is bounded, also the expectation of |R| is O
(
n
B

)
. Hence, for

r ∈ R′ by using (3.1) in Lemma 3.1, we get that the expected number of nodes in the
Tr, r ∈ R′, subtrees with Mn

r ≤ εB is O(εn). From (3.6) in Lemma 3.3, we get

E(N) = E(
∑
r∈R′′

Nr) +O(εn) +O
( n

B0.1

)
. (3.10)

Recall that Rz ⊆ R, z ∈ Z, for the set of nodes r ∈ R such that Mn
r ∈ [z− γB, z). Hence,

(3.10) gives

E(N) = E(
∑
z∈Z

∑
r∈R′∩Rz

Nr) +O(εn) +O
( n

B0.1

)
. (3.11)

We will now apply Lemma 3.2 to calculate the expected value in (3.11). Let rz be an
arbitrarily chosen node in R′ ∩Rz, where z ∈ Z. By using (3.9) and Lemma 3.2, for any
node rz ∈ R′ ∩Rz, we get that the expected number of nodes in a tree with the number
of balls in an interval [z−γB, z) is equal to E(Nrz ) +O(γB). By using (3.11) this implies
that

E(N) =
∑
z∈Z

E(|R′ ∩Rz|)
(
E(Nrz ) +O(γB)

)
+O(εn) +O

( n

B0.1

)
. (3.12)

From Lemma 3.4 we can deduce the asymptotics for E(|R′ ∩ Rz|), z ∈ Z. Recall that
R′ = {r ∈ R : |nr −Mn

r | ≤ B0.6}. Clearly, E(|R′ ∩ RζB |) ≤ E(|RζB |). Furthermore, by
applying (3.4) we get

E(|R′ ∩RζB |) =
∑
r∈R

P(|nr −Mn
r | ≤ B0.6, (ζ − γ)B ≤Mn

r < ζB)

=
∑
r∈R

P((ζ − γ)B ≤Mn
r < ζB)P(|nr −Mn

r | ≤ B0.6 | (ζ − γ)B ≤Mn
r < ζB)

≥ E(|RζB |)(1−O(B−0.1)). (3.13)

By using (3.7) in Lemma 3.4 and applying (3.13), we deduce that for each choice of
γ = ε2 and ζ ∈ S = {1, 1 − γ, 1 − 2γ, . . . , ε}, there is a Kγ such that for a constant cζ
(depending on ζ), ∣∣E(|R′ ∩RζB |)

n
B

− cζ
∣∣ ≤ γ2 +O

( 1

B0.1

)
, (3.14)

whenever n
B ≥ Kγ (recall that B = ε−30).

Note that since
∑
ζ∈S cζ ≤

b
µ , we have that

∑
ζ∈S cζ

O(Bγ)
B = O(γ). Define a(x) as

the quotient of the expected number of nodes in a tree with cardinality bxc divided by
bxc. Note from Lemma 3.1 that a(x) is bounded by some uniform constant. Thus, for
a constant cζ (depending on ζ) and a(ζB) bounded by some uniform constant, we get
from (3.12) and (3.14) that

E(N) = n
∑
ζ∈S

cζ
1

B

(
ζBa(ζB) +O(Bγ)

)
+ n

∑
ζ∈S

O(γ2) +O(εn)

= n
∑
ζ∈S

ζcζa(ζB) +O(εn).

In analogy also for n̂ ≥ n,

E(N̂) = n̂
∑
ζ∈S

ζcζa(ζB) +O(εn̂).

Thus, (3.8) follows, which shows (1.7).
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3.1.3 Proof of part two of Theorem 1.1

Proof of (1.8) in Theorem 1.1. First note that (3.2) in Lemma 3.1 implies that

Var(N) = O(n2).

We intend to use the variance formula

Var(Y ) = E(Var(Y |G )) + Var(E(Y |G )), (3.15)

where Y is a random variable and G is a sub-σ-field, see e.g.[13, exercise 10.17-2]. For
some arbitrary small ε > 0 there is a constant c > 0 such that the number of nodes
ZD between depth D = bc lnnc and the root is bounded by nε. Choose the constant c
corresponding to ε = 1

2 and consider the subtrees Ti, 1 ≤ i ≤ bD at depth D = bc lnnc.
Let ni be the number of balls and Ni the number of nodes in Ti. By applying (1.7) in
Theorem 1.1 gives

E(N |ΩD) =

bD∑
i=1

(
αni + o(ni)

)
+ E(ZD|ΩD). (3.16)

By applying (3.16) and the fact that ZD ≤
√
n we get

Var(E(N |ΩD)) = Var(αn+ o(n)) = o(n2). (3.17)

Recall that ΩD is the σ-field generated by {nv, d(v) ≤ D}. Conditioned on ΩD, the
sizes Ni, 1 ≤ i ≤ bD, are independent, hence

Var(N |ΩD) = Var(

bD∑
i=1

Ni + ZD|ΩD) =

bD∑
i=1

Var(Ni|ΩD) =

bD∑
i=1

O(n2
i ). (3.18)

Taking expectation in (3.18) gives

E(Var(N |ΩD)) =

bD∑
i=1

O(E(n2
i )). (3.19)

Lemma 3.5. Fix a constant c > 0 and let D = bc lnnc, then there is a δ > 0 such that

E(

bD∑
i=1

n2
i ) = O(n2−δ).

Proof. From (1.12) we get that conditioning on GD, for i at depth D,

ni ≤st Bin(n,

D∏
j=1

Vj) + s1D. (3.20)

The fact that the second moment of a Bin(m, p) is m2p2 +mp−mp2 and the bound of ni
in (3.20) give

E(ni
2|GD) ≤ n2

D∏
j=1

V 2
j +O(nD

D∏
j=1

Vj) +O(D2).

Note that E(V 2) < E(V ) = 1
b , since V ∈ (0, 1). Hence, there is an ε > 0 such that

E(ni
2) ≤ n2

D∏
j=1

E(V 2) +O(
nD

bD
) +O(D2)

≤ n2

(b+ ε)D
+O(

nD

bD
) +O(D2),

and thus there is a δ > 0 such that E(
∑bD

i=1 n
2
i ) = O(n2−δ).
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Thus, (3.19) and Lemma 3.5 (where we choose the constant c such that ZD ≤
√
n)

give

E(Var(N |ΩD)) = O(n2−δ). (3.21)

By applying the variance formula in (3.15) we get from (3.21) and (3.17) that

Var(N) = o(n2).

Remark 3.1. The proof shows that if we can improve the result in (1.7) such that
E(N) = αn+O(n1−c1) for some constant c1 > 0, we also get a sharper variance result,
i.e., Var(N) = o(n2−c2) for some constant c2 > 0.

Remark 3.2. There is no uniform bound for the variance of N on the form o(nα), that
holds for all split trees, which is sharper than o(n2). E.g., for the case of m-ary search
trees [16], for each ε > 0 there exists m0 such that for m-ary search trees where m ≥ m0

we have Var(N) ≥ n2−ε as n tends to infinity.

3.1.4 Proofs of the Lemmas of Theorem 1.1

Proof of Lemma 3.1. Note that if s0 > 0 it is always true that N ≤ n and if s1 > 0 also
N ≤ 2n holds. For s0 = s1 = 0 we can argue as follows: When a new ball is added to
the tree the expected number of additional nodes is bounded by the expected number
of nodes one gets from a splitting node. Let Z be the number of nodes that one gets
when a node of s+ 1 balls splits, then

N ≤st
n∑
i=1

Zi; where Zi
d
= Z; (3.22)

hence E(N) ≤ nE(Z). We have

E(Z) =

∞∑
k=1

kP(Z = k). (3.23)

Note that once a node gives balls to at least 2 children the splitting process ends. Thus,
for k > b

P(Z1 = k|Gk) ≤
∑
v;

d(v)=k−b−1

k−b−1∏
j=1

V s+1
j,v .

Hence, (3.23) implies,

E(Z) ≤
∞∑

k=b+2

k(bE(V s+1))k−b−1 + (b+ 1)2. (3.24)

There is a δ > 0 such that bE(V s+1) ≤ b−δ since E(V s+1) < E(V ) = 1
b , for V ∈ (0, 1).

Thus, (3.24) gives that there exists a constant C such that

E(Z) ≤ C
∞∑
k=1

kb−kδ = C
b−δ

(1− b−δ)2
<∞. (3.25)

This shows (3.1).
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Now we show (3.2). By applying the well-known Minkowski’s inequality to (3.22) we
get

E(N2) ≤ n2E(Z2). (3.26)

By similar calculations as in (3.24)–(3.25) we get that there exist constants C1 and δ > 0

such that

E(Z2) ≤
∞∑
k=1

k2P(Z = k) ≤
∞∑
k=1

k2C1b
−kδ <∞. (3.27)

Thus, (3.2) follows from (3.26) and (3.27).

Proof of Lemma 3.2. The proof of this lemma is in analogy with the proof of (3.1) in
Lemma 3.1. Adding one ball to the tree will only increase the number of nodes if it is
added to a leaf with s balls. Recall that Z is the number of nodes that one gets when
a node of s + 1 balls splits. From (3.24) we have that E(Z) ≤ C

′
for some constant C

′

implying that K balls can create at most KE(Z) ≤ C ′K additional nodes.

Proof of Lemma 3.3. By applying (3.4) we get for B large enough, that with probability
at least 1− 1

B0.1 ,

|nr −Mn
r | ≤ B0.6. (3.28)

We have

E
(∑
r∈R

nrI{|nr −Mn
r | ≥ B0.6}

)
= E1 + E2, (3.29)

where

E1 = E
(∑
r∈R

nrI{|nr −Mn
r | ≥ B0.6}I{nr ≤ 2Mn

r }
)
,

E2 = E
(∑
r∈R

nrI{|nr −Mn
r | ≥ B0.6}I{nr > 2Mn

r }
)
.

Hence, the facts that
∑
r∈RM

n
r = O(n) and that the bound in (3.28) holds with proba-

bility 1− 1
B0.1 , give

E1 ≤ E
(∑
r∈R

2Mn
r I{|nr −Mn

r | ≥ B0.6}
)

= O
( n

B0.1

)
.

Recall that R is the set of nodes such that r ∈ R, if r is the root of a Tr, r ∈ R,
subtree. We obviously have

E2 ≤ E
(∑

v

2(nv −Mn
v )I{nv > 2Mn

v }I{v ∈ R}
)
.

By summing over nodes v at depth k we get

E2 ≤
∞∑
k=0

2bkE
(
(nv −Mn

v )I{nv > 2Mn
v }
)
P(v ∈ R). (3.30)

We write F for the expected value in (3.30), i.e., F := E
(
(nv −Mn

v )I{nv > 2Mn
v }
)
.
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Hence, the conditional Cauchy-Schwarz and the conditional Markov inequalities give

F : ≤ E

(√
E
((
nv −Mn

v

)2|Gd)√P
(
nv > 2Mn

v |Gd
))

≤ min

(
E

(
E
((
nv −Mn

v

)2|Gd)
Mn
v

)
,E

(√
E
((
nv −Mn

v

)2|Gd))) . (3.31)

From (1.12) we have that for all v with d(v) = d, conditioned on Gd, nv ≤st n′v + n′′v ,
where

n′v := Bin(n,

d∏
j=1

Vj,v),

n′′v := Bin(s1,

d∏
j=2

Vj,v) + · · ·+ Bin(s1, Vd,v) + s1.

Thus, (3.31) gives for Mn
v ≥ 1,

F ≤ E

(
E
((
nv −Mn

v

)2∣∣Gd)
Mn
v

)

= E

(
E
((
n′v −Mn

v

)2∣∣Gd)
Mn
v

+
E
(
(n′′v)2 + 2n′vn

′′
v − 2n′′vM

n
v

∣∣Gd)
Mn
v

)

≤ E

(
E
((
n′v −Mn

v

)2∣∣Gd)
Mn
v

)
+ E

(
(n′′v)2

)
+ 2E

(
n′′v
)
, (3.32)

where we in the last inequality applied that E(n′v|Gd) = Mn
v . For Mn

v < 1 we apply that
(3.31) gives

F ≤ E

(√
E
((
nv −Mn

v

)2∣∣Gd)) . (3.33)

By using that the variance of a Bin(m, p) distribution is m(p− p2) we get

E
((
n′v −Mn

v

)2∣∣Gd) ≤Mn
v ,

and from Minkowski’s inequality we easily deduce that E
(
(n′′v)2

)
is bounded by some

constant C not depending on d. Hence, by using that we can bound F as in (3.32) for
Mn
v ≥ 1, and by the bound in (3.33) for Mn

v < 1, we get that F ≤ C2 for some constant
C2. Thus, from (3.30) we get E2 ≤ C2

∑∞
k=0 b

kP(v ∈ R). Note that v ∈ R only if Mn
w ≥ B

for all strict ancestors w of v. Hence, by applying Corollary 2.1 for Kn = B, we get that
E2 = O

(
n
B

)
. By applying Lemma 3.1 in combination with (3.29) and using the bounds

of E1 and E2 we get

E
(∑
r∈R

NrI{|nr −Mn
r | ≥ B0.6}

)
= O

(
E
(∑
r∈R

nrI{|nr −Mn
r | ≥ B0.6}

))
= O

( n

B0.1

)
.

Proof of Lemma 3.4. Recall the definition of Yk = −
∑k
j=1 lnVj and

ν(t) = bP(− lnV ≤ t).
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Novel characteristics of split trees by use of renewal theory

Also recall that we write S = {1, 1 − γ, 1 − 2γ, . . . , ε} for γ = ε2 and ε = 1
k for some

positive integer k. We have for ζ ∈ S

E(|RζB |) =

∞∑
k=0

bk+1
(
P
(
{Yk − lnVk+1 > ln

n

B
− ln ζ} ∩ {Yk ≤ ln

n

B
}
)

−P
(
{Yk − lnVk+1 > ln

n

B
− ln

(
ζ − γ

)
} ∩ {Yk ≤ ln

n

B
}
))
.

We write q := ln n
B . We have that E(|RζB |) is equal to

Z(q) :=

∫ q

0

b
(
P
(
− lnV > q − t− ln ζ

)
−P

(
− lnV > q − t− ln

(
ζ − γ

)))
dU(t);

recalling the definition of U(t) in (1.17). Hence,

Z(q) :=

∫ q

0

bP
(
q − t− ln ζ < − lnV ≤ q − t− ln

(
ζ − γ

))
dU(t). (3.34)

We write

G(t) := bP
(
t− ln ζ < − lnV ≤ t− ln

(
ζ − γ

))
.

Thus, Z(q) = (G ∗ dU)(q). Recall that we write dω(t) = e−tdν(t) where ω(t) is a proba-
bility measure. Recall from (2.2) that we have

Û(t) = ν̂(t) + (Û ∗ dω)(t),

where Û(t) := e−tU(t) and ν̂(t) := e−tν(t). Thus, by using [1, Theorem VI.5.1] we have
for Ẑ(x) = e−xZ(x) and Ĝ(x) = e−xG(x) that Ẑ(q) = (Ĝ ∗ dω)(q). By using (3.34) this
implies that

Ẑ(q) =

∫ q

0

bet−qP
(
q − t− ln ζ < − lnV ≤ q − t− ln

(
ζ − γ

))
dω(t).

Applying the key renewal theorem [12, Theorem II.4.3] to Û(t) we get

lim
q→∞

Ẑ(q) =
b

µ

∫ ∞
0

e−tP
(
t− ln ζ < − lnV ≤ t− ln

(
ζ − γ

))
dt.

Note that limq→∞ Ẑ(q) := cζ , for some constant cζ only depending on ζ. Thus, by using

Ẑ(x) = e−xZ(x) we get that E(|RζB |) = n
B cζ + o

(
n
B

)
, which shows (3.7).

Also note that we have∑
ζ∈S

cζ =
b

µ

∫ ∞
0

e−t
∑
ζ∈S

P
(
t− ln ζ < − lnV ≤ t− ln

(
ζ − γ

))
dt

=
b

µ

∫ ∞
0

e−tP
(
t < − lnV ≤ t− ln

(
ε− γ

))
dt ≤ b

µ
.

3.2 Proof of Theorem 1.2

Proof of Theorem 1.2. We use large deviations to show this theorem.
Note that a node v belongs to Tn, if and only if, nv ≥ 1. Recall from (1.12) that given

Gd,

nv ≤st Bin(n,

d∏
j=1

Vj) + Bin(s1,

d∏
j=2

Vj) + · · ·+ Bin(s1, Vd) + s1, (3.35)
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where Vj , j ∈ {1, . . . , d}, are i.i.d. random variables distributed as V . It is enough to

consider the first term Bin(n,
∏d
j=1 Vj) in (3.35), and prove that the expected number of

bad nodes with Bin(n,
∏d
j=1 Vj) ≥ 1 is O

(
n

lnk+1 n

)
. If s1 = 0, then Bin(n,

∏d
j=1 Vj) is the

only term in (3.35). We now explain the fact that we can ignore the terms in nv that
occur because of the parameter s1. Assume that for split trees with s1 = 0, the expected
number of bad nodes is O

(
n

lnk+1 n

)
. We first consider the nodes with d ≤ lnn

µ − (lnn)
1
2 +ε.

If s1 > 0, we assume that we first add the n balls as in the construction of a split tree with
s1 = 0. Hence, the expected number of nodes v with d ≤ lnn

µ − (lnn)
1
2 +ε, is O

(
n

lnk+1 n

)
.

We now repay the subtree sizes for their potential loss of balls because of s1 > 0. A node
v at depth d can at most have a loss of s1d balls in the subtree rooted at v. These balls
cannot give more than s1bd nodes to the tree (since only if s0 = s1 = 0 it is possible for
an increment of more than b nodes when a new ball is added to the tree). Thus, since
d ≤ lnn

µ and the fact that we assume that we haveO
(

n
lnk+1 n

)
nodes in expectation before

the repayment of the loss of balls, these additional balls cannot give more than O
(

n
lnk n

)
nodes in expectation. Now we consider the nodes with d ≥ lnn

µ + (lnn)
1
2 +ε. Again we

first distribute the n balls assuming that s1 = 0, and then repay for the potential loss of
balls in the subtrees if s1 > 0. Note that for d = O(lnn) we can argue as in the previous
case. This means that the expected number of nodes with lnn

µ + (lnn)
1
2 +ε ≤ d ≤ K lnn

for some arbitrary constant K is O
(

n
lnk n

)
. For larger d we argue as follows: For any

constant K > 0,

mBin(s1,

d∏
j=2

Vj) + mBin(s1,

d∏
j=3

Vj) + · · ·+ mBin(s1, Vd,v) + s1

≤ mBin(s1,

d∏
j=2

Vj) + · · ·+ mBin(s1,

d∏
j=d−bK lnnc

Vj) +Ks1 lnn.

The Markov inequality gives that for any constant K > 0 there exists a constant C
such that

P(mBin(s1,

d∏
j=2

Vj) + · · ·+ mBin(s1,

d∏
j=d−bK lnnc

Vj) ≥ 1
)

≤ E
(
Bin(s1,

d∏
j=2

Vj) + · · ·+ Bin(s1,

d∏
j=d−bK lnnc

Vj)
)
≤ Cb−K lnn, (3.36)

where the last equality is obtained by first condition on Gd and then take the expected
value twice. Thus, the expected number of nodes that gets a repayment of at least
Ks1 lnn + 1 balls is O

(
n

bK lnn

)
. Since s1 > 0, we can assume that d ≤ n. Hence, the

expected number of balls of this contribution is O
(

n2

bK lnn

)
; choosing K large enough

this number is o(1).
It remains to prove that if s1 = 0 the expected number of nodes v, where d(v) ≤

lnn
µ − (lnn)

1
2 +ε or d(v) ≥ lnn

µ + (lnn)
1
2 +ε, with nv ≥ 1 is O

(
n

lnk+1 n

)
for any constant k.

Note that an upper bound of the expected number of nodes at depth d is given by

bdP(nv ≥ 2), (3.37)

where v is a node at depth d − 1. Note that this is true also when s0 = 0, since for
all internal nodes nv ≥ s + 1. Choosing t > 0, an application of the Markov inequality
implies that

P(nv ≥ 2) ≤ P(nv(nv − 1) ≥ 2) ≤ P(ntv(nv − 1)t ≥ 2t) ≤ E(ntv(nv − 1)t)

2t
. (3.38)
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Thus, an upper bound of the expected profile for the nodes at depth d is

bdE(ntv(nv − 1)t), (3.39)

where v is a is a node at depth d− 1.
First we show (assuming s1 = 0) that the expected number of nodes v where

d(v) ≥ lnn

µ
+ (lnn)

1
2 +ε

is O
(

n
lnk+1 n

)
. We prove this by choosing t = 1+ε(n)

2 , where ε(n) > 0 is a decreasing
function of n that we specify below, and show that

∞∑
d=b lnnµ +(lnn)

1
2
+εc−1

bdE
(
n

1+ε(n)
2

v (nv − 1)
1+ε(n)

2

)
= O

( n

lnk+1 n

)
. (3.40)

Let Xd be distributed as mBin(n,
∏d
j=1 Vj). To show (3.40) it is enough to show that the

expected value of

∞∑
d=b lnnµ +(lnn)

1
2
+εc−1

bdE
(
X

1+ε(n)
2

d (Xd − 1)
1+ε(n)

2

∣∣Gd), (3.41)

is O
(

n
lnk+1 n

)
. That this is enough follows from (3.35), since we assume that s1 = 0.

Suppose that ε(n) < 1, thus the Lyapounov inequality (which is a special case of the
well-known Hölder inequality) gives

E
(
X

1+ε(n)
2

d (Xd − 1)
1+ε(n)

2

∣∣Gd) ≤ (n2 − n)
1+ε(n)

2

d∏
j=1

V
1+ε(n)
j ≤

(
n

d∏
j=1

Vj
)1+ε(n)

. (3.42)

Hence, to show (3.40) we deduce from the right hand-side of the second inequality in
(3.42) that it is enough to show that

S1 :=

∞∑
d=b lnnµ +(lnn)

1
2
+εc−1

bd
(
E(V 1+ε(n))

)d
n1+ε(n) = O

( n

lnk+1 n

)
. (3.43)

Taylor expansion gives

V 1+ε(n) = V eε(n) lnV = V
(

1 + ε(n) lnV +
ln2 V

2
ε2(n)

)
+O

(
V ln3 V ε3(n)

)
. (3.44)

Thus, by taking expectations in (3.44) we get

S1 =

∞∑
d=b lnnµ +(lnn)

1
2
+εc−1

(
1− µε(n) +

σ2 + µ2

2
ε2(n) +O(ε3(n))

)d
n1+ε(n)

=

∞∑
d=b lnnµ +(lnn)

1
2
+εc−1

ed ln
(

1−µε(n)+σ2+µ2

2 ε2(n)+O(ε3(n))
)

+(1+ε(n)) lnn

=

∞∑
d=b lnnµ +(lnn)

1
2
+εc−1

ed
(
−µε(n)+σ2

2 ε
2(n)+O(ε3(n))

)
+(1+ε(n)) lnn

= O
(n1−µε(n)(lnn)−

1
2
+ε+O(ε2(n))

ε(n)

)
. (3.45)
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Let ε(n) := δ(lnn)−
1
2 +ε for some small enough constant δ > 0, then the last inequality in

(3.45) implies that for some constant C > 0 and any constant k,

S1 = O
(
ne−C ln2ε n

)
= O

( n

lnk+1 n

)
. (3.46)

We argue similarly for the nodes v, d(v) ≤ lnn
µ − (lnn)

1
2 +ε. In (3.39) let t = 1−ε(n)

2 where

ε(n) = δ(lnn)−
1
2 +ε as above. In analogy with (3.40) the expected number of nodes v

such that d(v) ≤ lnn
µ − (lnn)

1
2 +ε is bounded by

S2 :=

b lnnµ −(lnn)
1
2
+εc∑

d=0

bdE
(
n

1−ε(n)
2

v (nv − 1)
1−ε(n)

2

)
.

We use similar calculations as in (3.43)–(3.46) to show that

b lnnµ −(lnn)
1
2
+εc∑

d=0

bd
(
E(V 1−ε(n))

)d
n1−ε(n) = O

(
ne−B ln2ε n

)
.

This implies in analogy with (3.40)–(3.43) that for some constant C and any constant k,

S2 = O
(
ne−C ln2ε n

)
= O

( n

lnk+1 n

)
. (3.47)

Hence, if s1 = 0 the expected number of bad nodes is O
(

n
lnk+1 n

)
, for any constant k,

and from our previous explanation it follows that the expected number of bad nodes for
s1 ≥ 0 is O

(
n

lnk n

)
.

Remark 3.3. We note from (3.45), (3.46) and (3.47) that a sharper bound for the ex-
pected number of bad nodes is O

(
ne−C

′ ln2ε n
)

for some constant C ′ > 0.

Remark 3.4. From the calculations in (3.45), we see that a smaller error term holds
for larger depths, i.e., for any constant r > 0 there is a constant K > 0, such that the
expected number of nodes with d(v) ≥ K lnn is O

(
1
nr

)
.

3.3 Proof of Theorem 1.3 and Proposition 1.1

Proof of Theorem 1.3. We write Zn := Dn−µ−1 lnn√
lnn

. By a classical result in probability
theory, see e.g. [13, Theorem 5.5.4], the limit law in (1.6) implies that (1.9) holds if
Zn is uniformly integrable. In particular this is true if Z2

n is uniformly integrable. This
uniformly integrability also gives

E
(
Z2
n

)
:=

E
((
Dn − µ−1 lnn

)2)
lnn

→ E
(
N
(
0, σ2µ−3

)2)
= σ2µ−3. (3.48)

Furthermore, the convergence results in (1.9) and (3.48) imply (1.11) for Dn. By using
the same coupling argument as in (1.4) it is easy to show that the convergence result
of the expected depth in (1.9) implies the convergence result of the expected average
depth in (1.10).

Thus, it remains to show that Z2
n is uniformly integrable and that (1.11) for Dn

implies that (1.11) also holds for Dk,n, where n
lnn ≤ k < n. By a standard argument,

see e.g. [13, Theorem 5.5.4], Z2
n is uniformly integrable if for some p > 1 and n0 large

enough,

sup
n>n0

E
(
|Z2
n|p
)

: = sup
n>n0

E
(∣∣∣ (Dn − µ−1 lnn

)2
lnn

∣∣∣p), (3.49)
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is uniformly bounded. We choose p = 3
2 . We show that this is true by using similar

calculations as Devroye used in [5] for proving the limit law of Dn in (1.6). First, con-
sider an infinite random path u1, u2, . . . , in the skeleton tree Sb, where u1 is the root.
Given u1 and the split vector Vui = (V1, . . . , Vb) for ui, then ui+1 is the jth child of i with
probability Vj . Construct a random split tree with n balls and let u∗ be the unique leaf
in the infinite path. Then by a natural coupling, letting the nth ball follow the random
path, Dn is in stochastic sense less than or equal to the distance between u∗ and the
root. In the coupling Dn is less than this distance, if the nth ball is sent to a leaf which
splits and does not send this ball to one of its children (i.e, the nth ball is one of the s0

balls). If the nth ball is one of the s1 balls it is added to a sister of u∗, i.e., it ends up at
the same depth as u∗. For all β > 0 we have

P
(
Dn > k + β

)
≤ P

(
n(uk) > β

)
+ P

(
Hβ > β

)
; (3.50)

where Hj denotes the height of a split tree with j balls. Furthermore,

P
(
Dn < k

)
≤ P

(
n(uk) ≤ s+ 1

)
. (3.51)

Recall that ∆ = VS , where given (V1, . . . , Vb), S = j with probability Vj . Then

n(uk) ≤st mBin(n,
k∏
j=1

∆j) + mBin(s1,

k∏
j=2

∆j) + · · ·+ mBin(s1,∆k) + s1, (3.52)

where ∆j are i.i.d random variables distributed as ∆.
Consider the probability P(Dn > k + β), where k = bµ−1 lnn + x

2

√
lnnc for x ∈ R+.

We bound this by bounding the probabilities in the right hand-side of (3.50), choosing
β = bx2 ln0.2 nc. First note that (3.52) implies that

n(uk) ≤st mBin
(
n,

k∏
j=1

∆j

)
+ · · ·+ mBin

(
s1,

k∏
j=k−b x2 ln0.1 nc+1

∆j

)
+ bs1x

2
ln0.1 nc.

Thus, we can bound the first probability in the right hand-side of (3.50) by

P(n(uk) > β) ≤ P
(

mBin
(
n,

k∏
j=1

∆j

)
+ bs1x

2
ln0.1 nc ≥ β − 1

)

+ P
(

mBin
(
s1,

k∏
j=2

∆j

)
+ · · ·+ mBin

(
s1,

k∏
j=k−b x2 ln0.1 nc

∆j

)
> 1
)
. (3.53)

We bound the first probability in the right hand-side of the inequality in (3.53), by using
[5, Lemma 4] which states a general result for bounding tail probabilities for mixed
binomial (m,Z) distributions where Z is a random variable. Thus, we obtain

P1 := P
(

mBin
(
n,

k∏
j=1

∆j

)
> β − bs1x

2
ln0.1 nc − 1

)

≤ P
( k∑
j=1

ln ∆j > ln
(β − b s1x2 ln0.1 nc − 1

2n

))
+
(e

4

) β−b s1x2 ln0.1 nc−1

2 . (3.54)

Recall that we write µ = E(− ln ∆) and σ2 = Var(ln ∆). From (3.54) we deduce that for
n large enough

P1 ≤ P
(∑k

j=1 ln ∆j + kµ
√
kσ2

>
ln
(β−b s1x2 ln0.1 nc−1

2n

)
+ kµ

√
kσ2

)
+
(e

4

) β−b s1x2 ln0.1 nc−1

2

≤ P
(∑k

j=1 ln ∆j + kµ
√
kσ2

>
xµ

3
2

3σ

)
+
(e

4

) β−b s1x2 ln0.1 nc−1

2 . (3.55)
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Since the ∆j , j ∈ {1, . . . , k}, are i.i.d random variables we can use the Marcinkiewicz-
Zygmund inequality, see e.g. [13, Corollary 3.8.2], which gives for q ≥ 2,

E
(∣∣∣ k∑

j=1

ln ∆j + kµ
∣∣∣q) ≤ Bqk q2E(∣∣ ln ∆j + µ

∣∣q), (3.56)

where Bq is a constant only depending on q. By using the Markov inequality and (3.56)
we get from (3.55) that for n large enough

P1 ≤
E
((∑k

j=1 ln ∆j + kµ
√
kσ2

)4)
(xµ 3

2

3σ

)4
+
(e

4

) β−b s1x2 ln0.1 nc−1

2

≤
B4E

(∣∣ ln ∆j + µ
∣∣4)(xµ 3

2

3

)4
+
(e

4

) β−b s1x2 ln0.1 nc−1

2 =
C

x4
+
(e

4

) β−b s1x2 ln0.1 nc−1

2 , (3.57)

for the constant C =
B4E(| ln ∆j+µ|4)34

µ6 <∞ (recall from Section 1.1.2 that all moments of

| ln ∆| are bounded). Note that c := E(∆) = bE(V 2) < 1. The Markov inequality implies
that

P
(

mBin
(
s1,

k∏
j=2

∆j

)
+ · · ·+ mBin

(
s1,

k∏
j=k−b x2 ln0.1 nc+1

∆j

)
≥ 1
)

≤ E
(

mBin
(
s1,

k∏
j=2

∆j

)
+ · · ·+ mBin

(
s1,

k∏
j=k−b x2 ln0.1 nc+1

∆j

))
= O

(
cb
x
2 ln0.1 nc), for c = E(∆) < 1. (3.58)

We now consider the other probability i.e., P
(
Hβ > β

)
. (Note that this probability is

0 if s0 > 0 or s1 > 0.) By applying (3.37) we get P
(
Hβ > β

)
≤ bβP

(
n(v) ≥ 2

)
, where v is

a node at depth β − 1. From (3.38) we deduce for t = 0.75,

P(nv ≥ 2) ≤ E(n0.75
v (nv − 1)0.75). (3.59)

Let Xβ be distributed as mBin(n,
∏β
j=1 Vj). Note similarly as in (3.41) that (3.59) is

bounded by the expectation of E
(
X0.75
β (Xβ − 1)0.75

∣∣Gβ). In analogy to (3.42) the Lya-
pounov inequality gives

E
(
X0.75
β (Xβ − 1)0.75

∣∣Gβ) ≤ (β β∏
j=1

Vj
)1.5

.

Again the fact that E(V 2) < E(V ) = 1
b (since V ∈ (0, 1)), gives that there is a δ > 0 such

that

P
(
Hβ > β

)
≤ b−δββ1.5. (3.60)

We now consider the probability P(Dn < k), where k = bµ−1 lnn − x
√

lnnc for x ∈ R+,
and use the bound of the larger probability in (3.51). We have

P(n(uk) ≤ s+ 1) ≤ P
(
− ks+ Bin(n,

k∏
j=1

∆j) ≤ s+ 1
)
.
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Again by applying [5, Lemma 4] and using similar calculations as in (3.54)–(3.57), we
get that for n large enough

P2 ≤ P
(∑k

j=1 ln ∆j + kµ
√
kσ2

<
ln
( 2(s(k+1)+1)

n

)
+ kµ

√
kσ2

)
+
(2

e

)s(k+1)+1

≤ P
(∑k

j=1 ln ∆j + kµ
√
kσ2

<
xµ

3
2

3σ

)
+
(2

e

)s(k+1)+1

≤
B4E

(∣∣ ln ∆j + µ
∣∣4)(xµ 3

2

3

)4
+
(2

e

)s(k+1)+1

= C
1

x4
+
(2

e

)s(k+1)+1
, for C =

B4E(| ln ∆j + µ|4)34

µ6
<∞. (3.61)

It now follows that supn>n0
E
(
|Z2
n|

3
2

)
in (3.49) is uniformly bounded: By the choice of k

and β, we get from (3.57), (3.58), (3.60) and (3.61) that for for n0 large enough

sup
n>n0

E
(
|Z2
n|

3
2

)
:= sup

n>n0

E
(∣∣∣ (Dn − µ−1 lnn

)2
lnn

∣∣∣ 32)
= sup
n>n0

∫ ∞
x=0

3x2P
(∣∣∣Dn − µ−1 lnn√

lnn

∣∣∣ > x
)
dx

≤ sup
n>n0

{∫ ∞
x=1

(6C

x2
+ 3x2

(e
4

) β−b s1x2 ln0.1 nc−1

2 + 3x2
(2

e

)s(k+1)+1

+O
(
x2cb

x
2 ln0.1 nc)+ 3x2b−δββ1.5

)
dx
}

+ 1 <∞, (3.62)

and thus Z2
n is uniformly integrable so that (3.48) holds, which shows (1.11) for Dn.

It is now easy to show that (1.11) also holds for Dk,n, n
lnn ≤ k < n. Proposition 1.1

implies that

Dk ≤st Dk,n ≤st Dn, for k ≤ n. (3.63)

From (1.6) it follows that for all n
lnn ≤ k ≤ n,

Dk − µ−1 lnn√
σ2µ−3 lnn

d→ N(0, 1).

By using this and (3.63), for n
lnn ≤ k ≤ n, we have

Dk,n − µ−1 lnn√
σ2µ−3 lnn

d→ N(0, 1).

We need to show that for n
lnn ≤ k ≤ n, we have

E
((
Dk,n − µ−1 lnn

)2)
lnn

→ E
(
N
(
0, σ2µ−3

)2)
.

As for Dn this follows if for n0 large enough,

sup
n>n0

E
(∣∣∣(Dk,n − µ−1 lnn

)2
lnn

∣∣∣ 32) <∞. (3.64)
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We have for k ≤ n,

P
(Dk − µ−1 lnn√

lnn
≥ x

)
≤ P

(Dk,n − µ−1 lnn√
lnn

≥ x
)
≤ P

(Dn − µ−1 lnn√
lnn

≥ x
)

and

P
(Dn − µ−1 lnn√

lnn
< x

)
≤ P

(Dk,n − µ−1 lnn√
lnn

< x
)
≤ P

(Dk − µ−1 lnn√
lnn

< x
)
.

Thus, (3.64) follows from the calculations in (3.62). This shows that (1.11) holds for
Dk,n, n

lnn ≤ k < n, follows from the fact that (1.11) holds for Dn.

Proof of Proposition 1.1. We will prove that for an arbitrary i ∈ {1, . . . , n − 1}, Di,n ≤st
Di+1,n. In the proof coupling arguments will be used.

First consider two identical copies T and T̂ of the split tree when i−1 balls have been
added, where we let v̂ in T̂ denote the corresponding node of v in T . More precisely, we
consider two split trees T and T̂ with the same split vectors in all nodes of the infinite
skeleton tree, and if a ball k, k ≤ i− 1, is added to v in T then ball k is added to v̂ in T̂ .
Now assume that we add the two balls i and i+ 1 to T and T̂ .

If ball i and ball i + 1 are added to different leaves l1 and l2 in T then in T̂ we let
them switch positions, i.e., ball i is added to l̂2 and ball i + 1 is added to l̂1. Recall that
Dj is the last ball added in a tree with j balls. It is obvious for reasons of symmetry that

Di
d
= Di+1. When the balls ∈ {i+2, . . . , n} are added, we add them to the corresponding

nodes in T and T̂ . Thus, the two trees are identical in the whole process except for
that ball i and ball i + 1 always have switched positions in T and T̂ . By symmetry

Di,n
d
= Di+1,n.

If ball i and ball i+ 1 are added to the same leaf l in T then there are three different
cases:

If nl ≤ s− 2, so that l does not split when also ball i and ball i+ 1 have been added,
then T and T̂ are still identical since ball i and ball i+ 1 stay in l. When more balls are
added we can again assume that ball i and ball i + 1 have switched positions in T and
T̂ at every step of the the iterative construction until all n balls are added. Hence, by

symmetry Di,n
d
= Di+1,n.

If nl = s−1, so that l gets s+1 balls when the new balls are added, l splits according
to the usual splitting process when ball i+ 1 is added. Again we let ball i and ball i+ 1

switch positions in T and T̂ . This means that if ball i is added to v1 and ball i+1 is added
to v2 in T , then in T̂ ball i is added to v̂2 and ball i+ 1 is added to v̂1. Again by symmetry

Di
d
= Di+1. By the same type of argument as in the cases above Di,n

d
= Di+1,n.

If nl = s, so that l in T gets s + 2 balls when the new balls are added, let l split
according to the usual splitting process where l keeps s0 balls and sends the other balls
to its children.

If ball i is one of the s0 balls then it is obvious without using the coupling that
Di ≤ Di+1 and also Di,n ≤ Di+1,n.

If ball i is not one of the s1 balls in the children of l in T and ball i is added to v1 and
ball i + 1 is added to v2, then in T̂ we can again assume that ball i is added to v̂2 and

ball i+ 1 is added to v̂1. Thus, Di
d
= Di+1, and Di,n

d
= Di+1,n.

If ball i is one of the s1 balls in T , we use a related but not an identical type of
coupling argument as in the previous cases. In this case ball i is added by uniformly
choosing one of the b children of l each with probability 1

b , while ball i + 1 is added
by using the probabilities given by the components in the split vector Vl of l. Again T

and T̂ are identical until i− 1 balls are added barring the possibility of variation in the
split vectors of the nodes below the leaves as described below. If ball i in T goes to
a child v1 of l related to a component Vj in Vl, then we add ball i + 1 in T̂ to v̂1 with
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probability min{1, Vj1/b} and to one of the other children related to a component Vk > 1/b

with probability max{0, 1 − Vj
1/b}, so that the sum of the probabilities gives the right

marginal distribution. Assume that ball i is added to the child v of l in T and ball i + 1

is added to the child ŵ of l̂ in T̂ . This means that ŵ relates to a component of the split
vector of l̂ at least as large as the component of the split vector of l related to v. Now
we can assume that the split vectors in the nodes in Tv correspond to the split vectors
in the nodes in T̂ŵ. This means that we can assume that when ball number j in the
subtrees, is added it goes to the corresponding node in both of the subtrees. However,
note that the balls could have different labels if we consider their original label in the
whole tree, since T̂ŵ could have more balls than Tv. Thus, as long as the subtrees have
the same number of balls, new balls are added to the corresponding positions in these
subtrees, and ball i and ball i + 1 are also held by nodes of corresponding positions.
This construction shows that if the subtrees T̂ŵ and Tv have k and l balls, respectively,
where k > l, and ball i in Tv is in node h ∈ T , then ball i + 1 in T̂ is in a subtree of T̂ŵ
with root corresponding to the position of h. This shows that Di,n ≤st Di+1,n.

Hence, in all cases, Di,n ≤st Di+1,n and thus for i < j, it follows that

Di,n ≤st Dj,n.

Acknowledgments. Professor Svante Janson is gratefully acknowledged for invaluable
support and advice. I also thank Dr Nicolas Broutin for helpful discussions.

References

[1] S. Asmussen, Applied Probability and Queues. John Wiley Sons, Chichester, 1987. MR-
0889893

[2] C.J. Bell, An Investigation into the Principles of the Classification and Analysis of Data on an
Automatic Digital Computer. PhD Thesis 1965.

[3] J. Clément, P. Flajolet, and B. Vallée, Dynamical source in information theory: a general
analysis of trie structures. Algorithmica 29 (2001), 307–369. MR-1887308

[4] E. G. Coffman, and J. Eve, File structures using hashing functions. Communications of the
ACM 13 (1970), 427–436.

[5] L. Devroye, Universal limit laws for depths in random trees. SIAM J. Comput. 28 (1998), no
2, 409–432. MR-1634354

[6] L. Devroye Applications of Stein’s method in the analysis of random binary search trees.
Stein’s Method and Applications, Inst. for Math. Sci. Lect. Notes Ser. 5, World Scientific
Press, Singapore, (2005), 47–297. MR-2205340

[7] W. Feller, Fluctuation theory and recurrent events. Trans. Amer. Math. Soc. 67 (1949),
98–119. MR-0032114

[8] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. 1. 3rd ed., Wiley,
New York, 1968. MR-0228020

[9] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II. 2nd ed., Wiley,
New York, 1971. MR-0270403

[10] R.A. Finkel and J.L. Bentley, Quad trees, a data structure for retrieval on composite keys.
Acta Inform 4 (1974), 1–9.

[11] E. Fredkin, Trie memory. Communications of the ACM 3 (1960), no. 9, 490–499.

[12] A. Gut, Stopped Random Walks. Springer Verlag, New York, Berlin, Heidelberg, 1988. MR-
0916870

[13] A. Gut, Probability: A Graduate Course, Springer, New York, 2005. MR-2125120

[14] C.A.R. Hoare, Quicksort. The Computer Journal 5, (1962), 391–424. MR-0142216

EJP 17 (2012), paper 5.
Page 26/27

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=0889893
http://www.ams.org/mathscinet-getitem?mr=0889893
http://www.ams.org/mathscinet-getitem?mr=1887308
http://www.ams.org/mathscinet-getitem?mr=1634354
http://www.ams.org/mathscinet-getitem?mr=2205340
http://www.ams.org/mathscinet-getitem?mr=0032114
http://www.ams.org/mathscinet-getitem?mr=0228020
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=0916870
http://www.ams.org/mathscinet-getitem?mr=0916870
http://www.ams.org/mathscinet-getitem?mr=2125120
http://www.ams.org/mathscinet-getitem?mr=0142216
http://dx.doi.org/10.1214/EJP.v17-1723
http://ejp.ejpecp.org/


Novel characteristics of split trees by use of renewal theory

[15] C. Holmgren, A weakly 1-stable limiting distribution for the number of random records and
cuttings in split trees. Adv. in Appl. Probab. 43 (2011), 151-177. MR-2761152

[16] H. Mahmoud and B. Pittel, Analysis of the space of search trees under the random insertion
algorithm. J. Algorithms 10 (1989), no. 1, 52–75. MR-0987097

[17] R. Pyke, Spacings. Journal of the Royal Statistical Society. Series B (Methodological) 27
(1965), no 3, 395–449. MR-0216622

[18] H. Mohamed and P. Robert, A probabilistic analysis of some tree algorithms. Ann. Appl.
Probab. 15 (2005), no. 4, 2445–2471. MR-2187300

EJP 17 (2012), paper 5.
Page 27/27

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2761152
http://www.ams.org/mathscinet-getitem?mr=0987097
http://www.ams.org/mathscinet-getitem?mr=0216622
http://www.ams.org/mathscinet-getitem?mr=2187300
http://dx.doi.org/10.1214/EJP.v17-1723
http://ejp.ejpecp.org/

	Introduction
	Preliminaries
	The Split Tree Model
	A weak law and a central limit law for the depth

	Main Results
	Notation
	Applying Renewal Theory to Split Trees

	Some Fundamental Renewal Theory Results
	Proofs of the Main Results
	Proof of Theorem 1.1
	Lemmas of Theorem 1.1
	Proof of part one of Theorem 1.1
	Proof of part two of Theorem 1.1
	Proofs of the Lemmas of Theorem 1.1

	Proof of Theorem 1.2
	Proof of Theorem 1.3 and Proposition 1.1

	References

