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Central limit theorems for the L2 norm
of increments of local times of Lévy processes∗

Michael Marcus† Jay Rosen‡

Abstract

Let X = {Xt, t ∈ R+} be a symmetric Lévy process with local time {Lxt ; (x, t) ∈
R1 × R1

+}. When the Lévy exponent ψ(λ) is regularly varying at zero with index
1 < β ≤ 2, and satisfies some additional regularity conditions,

lim
t→∞

∫∞
−∞(Lx+1

t − Lxt )2 dx− E
(∫∞
−∞(Lx+1

t − Lxt )2 dx
)

t
√
ψ−1(1/t)

L
= (8cψ,1)

1/2

(∫ ∞
−∞

(
Lxβ,1

)2
dx

)1/2

η,

where Lβ,1 = {Lxβ,1 ; x ∈ R1} denotes the local time, at time 1, of a symmetric stable
process with index β, η is a normal random variable with mean zero and variance one
that is independent of Lβ,1, and cψ,1 is a known constant that depends on ψ.

When the Lévy exponent ψ(λ) is regularly varying at infinity with index 1 < β ≤ 2

and satisfies some additional regularity conditions

lim
h→0

√
hψ2(1/h)

{∫ ∞
−∞

(Lx+h1 − Lx1)2 dx− E
(∫ ∞
−∞

(Lx+h1 − Lx1)2 dx
)}

L
= (8cβ,1)

1/2 η

(∫ ∞
−∞

(Lx1)
2 dx

)1/2

,

where η is a normal random variable with mean zero and variance one that is inde-
pendent of {Lx1 , x ∈ R1}, and cβ,1 is a known constant.
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Central limit theorems for the L2 norm of increments of local times

1 Introduction

The earliest result we know about the asymptotic behavior in time, of increments of
local times in the spatial variable, is due to Dobrushin, [6]. Let {Sn ; n = 0, 1, 2, . . .} be a
simple random walk on Z1 and let `xn =

∑n
j=1 1{Sj=x} denote its local time. Dobrushin

shows that

lim
n→∞

`1n − `0n
n1/4

L
= (2|Z|)1/2 η, (1.1)

where Z and η are independent normal random variables with mean zero and variance
one. Two aspects of this result are relevant to this paper. One is that it is a result about
fluctuations, since `0n grows like n1/2, (see for example [16, (10.1), (9.13)]). The other
is that the right-hand side of (1.1) is not a standard normal random variable, but is the
product of a standard normal random variable and an independent random variable.
Extensions of (1.1) to the local time of Brownian motion and other processes can be
found in Révész, [16, (11.10), (12.17), (12.19)], Marcus and Rosen, [13, 14], Rosen, [17]
and Yor, [19].

One of the motivations for considering increments of local times is interest in the
Hamiltonian for the critical attractive random polymer in one dimension, [8, 9],

Hn =
∑
x∈Z1

(
`x+1
n − `xn

)2
, (1.2)

where `xn is as defined above. Clearly, this is the square of the `2 norm of the increments
of the local time at time n.

We began our study of expressions like (1.2) in [4], with X. Chen and W. Li, by con-
sidering the continuous version of this problem for the local times of Brownian motion.

Let {Lxt ; (x, t) ∈ R1×R1
+} denote the local times of Brownian motion. In [4] we show

that

lim
t→∞

∫∞
−∞(Lx+1

t − Lxt )2 dx− 4t

t3/4
L
= (64/3)

1/2

(∫ ∞
−∞

(Lx1)
2
dx

)1/2

η, (1.3)

where η is a normal random variable with mean zero and variance one that is indepen-
dent of {Lx1 , x ∈ R1}.

The proof of this result in [4] makes extensive use of the scaling property of Brow-
nian motion. A different proof in [18] uses stochastic integrals and a theorem of Pa-
panicolaou, Stroock, and Varadhan, [15, Chapter XIII]. Neither of these approaches can
be used to extend (1.3) to general Lévy processes. In this paper we use the method of
moments.

Let X = {Xt, t ∈ R+} be a symmetric Lévy process with characteristic function

E
(
eiλXt

)
= e−ψ(λ)t (1.4)

and local time which we continue to denote by {Lxt ; (x, t) ∈ R1 × R1
+}. The behavior of

a suitably scaled version of
∫∞
∞ (Lx+1

t −Lxt )2 dx as t goes to infinity depends primarily on
the behavior of ψ(λ) as λ goes to 0. This is not surprising, since large time properties
of X, such as transience and recurrence, depend on the behavior of ψ(λ) as λ goes to
0; (see [1, Chapter 1, Theorem 17], which shows, in particular, that the processes we
consider are recurrent).

We assume that ψ(λ) satisfies the following conditions:

1. ψ(λ) is regularly varying at 0 with index 1 < β ≤ 2; (1.5)

2.

∫ ∞
−∞

1

1 + ψ(λ)
dλ <∞; (1.6)

EJP 17 (2012), paper 7.
Page 2/111

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/


Central limit theorems for the L2 norm of increments of local times

3. ψ is twice differentiable almost everywhere, and there exist constants D1, D2 < ∞
such that for 0 < λ ≤ 1

λ|ψ′(λ)| ≤ D1ψ(λ) and λ2|ψ′′(λ)| ≤ D2ψ(λ) (1.7)

and ∫ ∞
1

|ψ′(λ)|
ψ2(λ)

dλ <∞,
∫ ∞

1

|ψ′(λ)|2

ψ2(λ)
dλ <∞,

∫ ∞
1

|ψ′′(λ)|
ψ(λ)

dλ <∞. (1.8)

(Condition 1. is substantive. Condition 2. is the necessary and sufficient condition for
a symmetric Lévy process to have a local time. The criteria in Condition 3. are rather
weak.)

We prove the following theorem:

Theorem 1.1 Let {Lxt ; (x, t) ∈ R1×R1
+} be the local time of a symmetric Lévy process

X, with Lévy exponent ψ(λ), that is regularly varying at zero with index 1 < β ≤ 2 and
satisfies (1.6)–(1.8). Then

lim
t→∞

∫∞
−∞(Lx+1

t − Lxt )2 dx− E
(∫∞
−∞(Lx+1

t − Lxt )2 dx
)

t
√
ψ−1(1/t)

(1.9)

L
= (8cψ,1)1/2

(∫ ∞
−∞

(
Lxβ,1

)2
dx

)1/2

η,

where Lβ,1 = {Lxβ,1 ; x ∈ R1} is the local time, at time 1, of a symmetric stable process
of index β, η and Lβ,1 are independent, and

cψ,1 =
16

π

∫ ∞
0

sin4 p/2

ψ2(p)
dp. (1.10)

(Since ψ is regularly varying at zero, it is asymptotic to a monotonic function at zero.
We define ψ−1 as the inverse of this function.)

It follows from Lemma 3.2, in this paper, that

E

(∫ ∞
−∞

(Lx+1
t − Lxt )2 dx

)
= 4cψ,0t+ o

(
t
√
ψ−1(1/t)

)
, (1.11)

where

cψ,0 =
2

π

∫ ∞
0

sin2(p/2)

ψ(p)
dp. (1.12)

Therefore, we can replace the mean in (1.9) by 4cψ,0t.
In Remark 2.5, we evaluate the constants and make the necessary changes to verify

that when X is Brownian motion, (1.9) along with (1.11), is the same as (1.3).

Also note that by Lemma 2.4
∫∞
−∞(Lxt )2 dx grows like t2ψ−1(1/t), therefore (1.9) is

also a fluctuation result.

One can use the scaling relationship for the local times of β stable processes,

{Lxβ,t/δβ ; (x, t) ∈ R1 ×R1
+}
L
= {δ−(β−1)Lδxβ,t ; (x, t) ∈ R1 ×R1

+}, (1.13)

in Theorem 1.1 to get a central limit theorem for the L2 modulus of continuity of local
times of symmetric stable processes:

lim
h→0

∫∞
−∞(Lx+h

β,1 − Lxβ,1)2 dx− 4cψ,0h
β−1

h(2β−1)/2
(1.14)

L
= (8cψ,1)1/2

(∫ ∞
−∞

(
Lxβ,1

)2
dx

)1/2

η,
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Central limit theorems for the L2 norm of increments of local times

where ψ(λ) = |λ|β .
We were intrigued to obtain this result under much more general hypotheses, similar

to those in Theorem 1.1. We assume that

1. ψ(λ) is regularly varying at infinity with index 1 < β ≤ 2; (1.15)

2.ψ is twice differentiable almost surely and there exist constants D1, D2 < ∞
such that for all λ ≥ 1

λ|ψ′(λ)| ≤ D1ψ(λ) and λ2|ψ′′(λ)| ≤ D2ψ(λ) (1.16)

and ∫ 1

0

(ψ′(λ))2 dλ <∞,
∫ 1

0

|ψ′′(λ)| dλ <∞. (1.17)

3.

∫ 1

0

ψ(λ)

λ
dλ <∞. (1.18)

We obtain the following theorem:

Theorem 1.2 Let {Lxt ; (x, t) ∈ R1 × R1
+} be the local time of the symmetric Lévy pro-

cess X with Lévy exponent ψ(λ) that satisfies (1.15)–(1.18). Then

lim
h→0

√
hψ2(1/h)

{∫ ∞
−∞

(Lx+h
1 − Lx1)2 dx− E

(∫ ∞
−∞

(Lx+h
1 − Lx1)2 dx

)}
L
= (8cβ,1)1/2

(∫ ∞
−∞

(Lx1)2 dx

)1/2

η, , (1.19)

where

cβ,1 =
16

π

∫ ∞
0

sin4 p/2

p2β
dp. (1.20)

For symmetric stable processes we can give the mean explicitly and get (1.14).
The conditions in (1.16)–(1.18) are very general. Only the regularly varying condi-

tion, (1.15), is restrictive. However, it is not surprising that Theorem 1.2 depends on
the behavior of ψ(λ) as λ goes to infinity, since the behavior of ψ(λ) as λ goes to infinity
controls the small jumps of X.

A key ingredient in much of our work on sample path properties of local times is
the Eisenbaum Isomorphism Theorem which allows us transfer results on Gaussian
processes to the local times of related symmetric Markov processes. Unfortunately this
approach, which works so well for many almost sure results, is ineffective for weak
limits. Instead we obtain both Theorems 1.1 and 1.2 using the method of moments.
At first thought one might think that the proofs would be similar, but they are not. It
turns out that estimating the size of very small increments and the behavior of a fixed
increment as time goes to infinity requires very different sets of inequalities.

The proofs are quite detailed and very long. In all they require 111 pages. In
discussions with the referees and the editor we decided to write a brief paper, this one,
that states the main theorems and gives an overview of their proofs, and to relegate the
meat of the proofs to an Appendix, which a highly motivated reader may wish to tackle.

In Section 2 we show how the proof of Theorem 1.1 follows from four basic lemmas.
In Section 3 we discuss the main ingredients needed to prove them. Similarly, in Section
4 we show how the proof of Theorem 1.2 follows from a different set of lemmas. The
details of the proofs are contained in the Appendix to this paper. The sections of the
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Central limit theorems for the L2 norm of increments of local times

Appendix are labeled by letters A-K. A reference in this paper to equation (D.4), for
example, means an equation in the Appendix, Section D. Similarly, for references to
lemmas, theorems, etc.

We would like to point out that the main ideas in the proof Theorem 1.1 can also
be used to obtain a central limit theorem for the Hamiltonian of the critical attractive
random polymer in one dimension, which is usually written as

Hn = 2

n∑
i,j=1

1{Si=Sj} −
n∑

i,j=1

1{|Si−Sj |=1}. (1.21)

It is easy to see that this is the same as (1.2). We can show that

lim
n→∞

Hn − 4n

n3/4

L
=⇒ (12)

1/2

(∫ ∞
−∞

(Lx1)
2
dx

)1/2

η, (1.22)

where {Lx1 , x ∈ R1} is the local time of Brownian motion at time 1.
More generally, we can find a version of Theorem 1.1 for the local times of a large

class of symmetric random walks. Let Sn be a 1-dimensional symmetric random walk.
Assume that Sn is in the domain of attraction of a symmetric stable process {X(t), t ∈
R+} of index 1 < β ≤ 2, or equivalenty, that

lim
n→∞

Sn
b(n)

= X(1), (1.23)

where b(x) is a regularly varying function at infinity with index 1/β. Let

φ(λ) = E
(
eiλS1

)
. (1.24)

Therefore, for some δ > 0

φ(λ) = e−ψ(λ), |λ| ≤ δ, (1.25)

where ψ(λ) is regularly varying at zero with index β. (See, e.g., [10, Proposition 2.3].)
Assume for simplicity that Sn is strongly aperiodic. It follows from this that for some

γ > 0

|φ(λ)| ≤ e−γ , |λ| ≥ δ. (1.26)

Assume also that φ(λ) is twice continuously differentiable for λ 6= 0, φ′(0) = 0, and
for some δ > 0 there exist constants D1, D2 <∞ such that for 0 < λ ≤ δ

λ|ψ′(λ)| ≤ D1ψ(λ), λ2|ψ′′(λ)| ≤ D2ψ(λ). (1.27)

Let

Lxn =

n∑
i=1

1{Si=x}. (1.28)

and

cφ,1 =
16

π

∫ π

0

sin2 p/2

(1− φ(p))2
dp. (1.29)

Theorem 1.3 Let {Lxn ; (x, n) ∈ Z1 × Z1
+} be the local times of a symmetric random

walk Sn that satisfies (1.25)–(1.27). Then

lim
n→∞

∑
x∈Z1(Lx+1

n − Lxn)2 − E
(∑

x∈Z1(Lx+1
n − Lxn)2

)
n/
√
b(n)

(1.30)

L
= (8cφ,1)1/2

(∫ ∞
−∞

(
Lxβ,1

)2
dx

)1/2

η,

where Lxβ,· and η are independent.
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Central limit theorems for the L2 norm of increments of local times

We do not give a proof this theorem. It follows along the lines of the proof of Theorem
1.1.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 is long and difficult. In order to make it easier to follow we
first present the main steps of the proof heuristically. We then restate them, precisely,
in a series of lemmas and show how Theorem 1.1 follows from these lemmas. In Section
3 we ‘prove’ these lemmas using several other fundamental results that are proved in
the Appendix, Sections A–E.

As usual, let θt denote time translation of the path ω, so that θtω(r) = ω(t+ r). Let

Ij,k,t :=

∫
(Lx+1

t − Lxt ) ◦ θjt (Lx+1
t − Lxt ) ◦ θkt dx (2.1)

and

αj,k,t :=

∫
Lxt ◦ θjt Lxt ◦ θkt dx. (2.2)

(An integral sign without limits is to be read as
∫∞
−∞ .)

For any integer l set

Ĩl,t :=

l−1∑
j,k=0

j<k

Ij,k,t/l. (2.3)

Using the additivity property of local times we can write

Lxt =

l−1∑
j=0

Lxt/l ◦ θjt/l, (2.4)

so that ∫
(Lx+1

t − Lxt )2 dx =

l−1∑
j,k=0

Ij,k,t/l = 2Ĩl,t +

l−1∑
j=0

Ij,j,t/l. (2.5)

Consequently ∫
(Lx+1

t − Lxt )2 dx− E
(∫

(Lx+1
t − Lxt )2 dx

)
(2.6)

= 2Ĩl,t +


l−1∑
j=0

Ij,j,t/l − E
(∫

(Lx+1
t − Lxt )2 dx

) .

Similarly we set

α̃l,t =

l−1∑
j,k=0

j<k

αj,k,t/l, (2.7)

and write

αt :=

∫
(Lxt )

2
dx =

l−1∑
j,k=0

αj,k,t/l = 2α̃l,t +

l−1∑
j=0

αj,j,t/l. (2.8)

The main steps in the proof of Theorem 1.1 are to show that:

1. The ‘off-diagonal’ terms Ĩl,t and
√
α̃l,t are comparable asymptoticly as t→∞.

2. The diagonal term
∑l−1
j=0 αj,j,t/l is negligible, as t → ∞, compared to the terms in

1.

EJP 17 (2012), paper 7.
Page 6/111

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/


Central limit theorems for the L2 norm of increments of local times

3. The diagonal term
∑l−1
j=0 Ij,j,t/l is such that

l−1∑
j=0

Ij,j,t/l − E
(∫

(Lx+1
t − Lxt )2 dx

)
(2.9)

is negligible, as t→∞, compared to the terms in 1.

We now explain the precise meaning of these statements, and show how they imply
Theorem 1.1.

The precise meaning of step 1. is given by the following lemma. (Lemmas 2.1–2.3
are proved in Section 3.)

Lemma 2.1 Under the hypotheses of Theorem 1.1, for each m, with l = l(t) = [log t]q,
for any q > 0,

E
((
Ĩl,t

)m)
=


(2n)!

2nn!
(4cψ,1)

n
E {(α̃l,t)n}+ o((t2ψ−1(1/t))n) if m = 2n

O((t2ψ−1(1/t))m/2t−ε) otherwise.

(2.10)

This lemma is the crux of the proof of Theorem 1.1. We note that even though the sum-
mands Ij,k,t/l of Ĩl,t are not independent, the fact that j 6= k provides enough structure
for a proof.

The precise meaning of step 2. is given by the next lemma.

Lemma 2.2 Under the hypotheses of Theorem 1.1, for each n, with l = l(t) = [log t]q,
for any q > 0,

lim
t→∞

|E(2α̃l,t)
n − E(αt)

n|
(t2ψ−1(1/t))

n = 0. (2.11)

Lastly, the precise meaning of step 3. is given by the next lemma.

Lemma 2.3 Under the hypotheses of Theorem 1.1, with l = l(t) = [log t]q, for q suffi-
ciently large,

lim
t→∞

∑l−1
j=0

(
Ij,j,t/l − E

(∫
(Lx+1

t − Lxt )2 dx
))

t
√
ψ−1(1/t)

= 0 in L2. (2.12)

We also need to know the limiting behavior of the moments of αt. It is given by the
next lemma which is proved in the Appendix, Section D.

Lemma 2.4 Under the hypotheses of Theorem 1.1, for each n,

lim
t→∞

E

{(
αt

t2ψ−1(1/t)

)n}
= E {(αβ,1)

n} . (2.13)

Proof of Theorem 1.1 In (2.10) replace Ĩl,t by 2Ĩl,t and (4cψ,1)
n
E {(α̃l,t)n} by (8cψ,1)

n
E {(2α̃l,t)n}.

Set
E {(2α̃l,t)n} = E(αt)

n + E {(2α̃l,t)n} − E(αt)
n. (2.14)

Then use Lemmas 2.2 and 2.4 to see that for each integer m

lim
t→∞

E

((
2Ĩl,t

t
√
ψ−1(1/t)

)m)

=


(2n)!

2nn!
(8cψ,1)

n
E {(αβ,1)

n} if m = 2n

0 otherwise.

(2.15)
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Central limit theorems for the L2 norm of increments of local times

Note that the right-hand side of (2.15) is the 2n–th moment of (8cψ,1)
1/2

√
αβ,1 η when αβ,1 and η are independent. Furthermore, it follows from [5, (6.12)] that

E (αβ,1)
n ≤ Cn((2n)!)1/(2β). (2.16)

Consequently, since
√

(2n)! ≤ 2nn!

E
(

(8cψ,1)
1/2√

αβ,1 η
)m
≤ Cm(m!)(β+1)/(2β). (2.17)

This implies that (8cψ,1)
1/2√

αβ,1 η is determined by its moments; (see [7, p. 227-228]).
Therefore, by the method of moments, [2, Theorem 30.2]), it follows from (2.15) that

lim
t→∞

2Ĩl,t

t
√
ψ−1(1/t)

L
=⇒ (8cψ,1)

1/2√
αβ,1 η. (2.18)

Theorem 1.1 then follows from (2.6), (2.18) and Lemma 2.3.

Remark 2.5 For Brownian motion ψ(p) = p2/2. We have

cp2/2,0 =
4

π

∫ ∞
0

sin2(p/2)

p2
dp = 1; (2.19)

cp2/2,1 =
64

π

∫ ∞
0

sin4(p/2)

p4
dp =

8

3
. (2.20)

Also Lx2,1
L
= (1/2)Lx2

L
= (1/

√
2)L

x/
√

2
1 where {Lxt } denotes the local time of Brownian

motion, so that (∫ ∞
−∞

(
Lx2,1

)2
dx

)1/2

=
1

21/4

(∫ ∞
−∞

(Lx1)
2
dx

)1/2

. (2.21)

Since
√
ψ−1(1/t) = 21/4/t1/4, we see that (1.9) and (1.11) imply (1.3).

3 Partial proofs of Lemmas 2.1–2.3

The following key lemma is proved in the Appendix, Section B, in which it is restated
as Lemma B.1. The terms Ij,k,t and αj,k,t are defined in (2.1) and (2.2).

Lemma 3.1 Let mj,k, 0 ≤ j < k ≤ K be positive integers with
∑K
j,k=0,j<k

mj,k = m. If all the integers mj,k are even, then for some ε > 0

E

 K∏
j,k=0

j<k

(Ij,k,t)
mj,k

 (3.1)

=

K∏
j,k=0

j<k

(2nj,k)!

2nj,k(nj,k!)
(4cψ,1)

nj,k E

 K∏
j,k=0

j<k

(αj,k,t)
nj,k

+O
(
t(2−1/β)m/2−ε

)
,

where nj,k = mj,k/2.
If any of the mj,k are odd, then

E

 K∏
j,k=0

j<k

(Ij,k,t)
mj,k

 = O
(
t(2−1/β)m2 −ε

)
. (3.2)

In (3.1) and (3.2) the error terms may depend on m, but not on the individual terms
mj,k.
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Central limit theorems for the L2 norm of increments of local times

Proof of Lemma 2.1 Using the multinomial theorem on the sum in (2.3) we have

E
((
Ĩl,t

)m)
=
∑
m̃∈M

 m!∏l−1
j,k=0

j<k

(mj,k!)

E

 l−1∏
j,k=0

j<k

(
Ij,k,t/l

)mj,k
 , (3.3)

where

M =

m̃ = {mj,k, 0 ≤ j < k ≤ l − 1}

∣∣∣∣∣
l−1∑
j,k=0

j<k

mj,k = m

 .

We now use Lemma 3.1, with t replaced by t/l to compute the expectation on the
right-hand side of (3.3). We get that when all the mj,k are even, there exists an ε > 0

such that

E
((
Ĩl,t

)m)
(3.4)

=
∑
m̃∈M

 m!∏l−1
j,k=0

j<k

(mj,k!)

 l−1∏
j,k=0

j<k

(2nj,k)!

2nj,k(nj,k!)
(4cψ,1)

nj,k E

l−1∏
j,k=0

j<k

(
αj,k,t/l

)nj,k
+O(lm(t2ψ−1(1/t))nt−ε).

(Recall that when all the mj,k are even, mj,k = 2nj,k for all j and k and n = m/2.) Here
we use the fact that ∑

m̃∈M

 m!∏l−1
j,k=0

j<k

(mj,k!)

 = lm (3.5)

to compute the error term. It also follows from Lemma 3.1 that

E
((
Ĩl,t

)m)
= O(lm(t2ψ−1(1/t))m/2t−ε) (3.6)

if any of the mj,k are odd. (Lemma 3.1 is for a fixed partition of m. In (3.4) and (3.6)
we include the factor lm, to account for the number of possible partitions. ) Recall that
l = [log t]q for some q > 0.

When mj,k = 2nj,k for all j and k, m!∏l−1
j,k=0

j<k

(mj,k!)

 l−1∏
j,k=0

j<k

(2nj,k)!

2nj,k(nj,k!)
=

(2n)!

2nn!

n!∏l−1
j,k=0

j<k

(nj,k!)
. (3.7)

Using this in (3.4) we get

E
((
Ĩl,t

)m)
(3.8)

=
(2n)!

2nn!
(4cψ,1)

n
∑
N

 n!∏l−1
j,k=0

j<k

nj,k!

E


l−1∏
j,k=0

j<k

(
αj,k,t/l

)nj,k


+O(lm(t2ψ−1(1/t))nt−ε).,

where N is defined similarly to M. Using the multinomial theorem as in (3.3) we see
that the sum in (3.8) is equal to E {(α̃l,t)n}, which completes the proof of (2.10).
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Proof of Lemma 2.2 By the Kac Moment Formula; (see Theorem F.1),

E {(αt)n} = E

((∫
(Lxt )2 dx

)n)
(3.9)

= 2n
∑
π

∫ ∫
{
∑2n

i=1
ri≤t}

2n∏
i=1

pri(xπ(i) − xπ(i−1))

2n∏
i=1

dri

n∏
i=1

dxi,

where the sum runs over all maps π : [1, 2n] 7→ [1, n] with |π−1(i)| = 2 for each i. The
factor 2n comes from the fact that |π−1(i)| = 2 for each i.

It is not difficult to see that we can find a subset J = {i1, . . . , in} ⊆ [1, 2n], such
that each of x1, . . . , xn can be written as a linear combination of yj := xπ(ij) − xπ(ij−1),
j = 1, . . . , n. For i ∈ Jc we use the bound pri(xπ(i) − xπ(i−1)) ≤ pri(0), then change
variables and integrate out the yj , to see that∫ ( 2n∏

i=1

∫ t

0

pri(xπ(i) − xπ(i−1)) dri

)
n∏
i=1

dxi (3.10)

≤ C
(∫ t

0

pr(0) dr

)n ∫ (∏
i∈J

∫ t

0

pri(xπ(i) − xπ(i−1)) dri

)
n∏
i=1

dxi

= Cun(0, t)

(∏
i∈J

∫ ∫ t

0

pri(yi) dri dyi

)

= Cun(0, t)

(∫
u(x, t) dx

)n
≤ C

(
t2ψ−1(1/t)

)n
,

where we use (A.5) and (A.8) for the last line. This shows that

‖ αt‖n ≤ Ct2ψ−1(1/t), (3.11)

for all t sufficiently large, where C depends only on n, and where ‖ · ‖n := (E( · )n)1/n.
It follows from (3.11) that for l sufficiently large,

∣∣∣‖2α̃l,t‖n − ‖αt‖n∣∣∣ ≤ ‖2α̃l,t − αt‖n = ‖
l−1∑
j=0

αj,j,t/l‖n (3.12)

≤ l‖ α0,0,t/l‖n = l‖ αt/l‖n

≤ Ct2
ψ−1(l/t)

l
.

We next show that when l = l(t) = [log t]q for any q > 0,

lim
t→∞

∣∣∣‖2α̃l,t‖n − ‖αt‖n∣∣∣
t2ψ−1(1/t)

= 0. (3.13)

This follows from (3.12) since

lim
t→∞

ψ−1(l/t)

lψ−1(1/t)
= 0. (3.14)

To obtain (3.14) we use [3, Theorem 1.5.6, (iii)] to see that for all δ > 0, there exists a
t0, such that for all t ≥ t0

ψ−1(l/t)

ψ−1(1/t)
≤ l(1/β)+δ. (3.15)

Obviously, we pick δ such that (1/β) + δ < 1.
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The statement in (2.11) follows from (3.13).

For the proof of Lemma 2.3 we need the following lemma which is proved in the
Appendix, Section E.

Lemma 3.2 Under the hypotheses of Theorem 1.1

E

(∫
(Lx+1

t − Lxt )2 dx

)
= 4cψ,0t+O (g(t)) (3.16)

as t→∞, where

g(t) =


t2
(
ψ−1(1/t)

)3
3/2 < β ≤ 2

L(t) β = 3/2

C 1 < β < 3/2

(3.17)

and L( · ) is slowly varying at infinity. Also

Var

(∫
(Lx+1

t − Lxt )2 dx

)
≤ Ct2ψ−1(1/t) log t. (3.18)

Proof of Lemma 2.3 We prove this lemma by showing that

lim
t→∞

∑l−1
j=0E(Ij,j,t/l)− E

(∫
(Lx+1

t − Lxt )2 dx
)

t(ψ−1(1/t))1/2
= 0 (3.19)

and

lim
t→∞

∑l−1
j=0

(
Ij,j,t/l − E(Ij,j,t/l)

)
t(ψ−1(1/t))1/2

= 0 (3.20)

in L2, where l = l(t) = [log t]q, for some q sufficiently large.
Set

φ(t) = t2ψ−1(1/t). (3.21)

It follows from (3.15) that

lφ(t/l)

φ(t)
=

ψ−1(l/t)

lψ−1(1/t)
≤ l(1/β)+δ−1, (3.22)

for all δ > 0. Recall l = [log t]q. We choose a δ and q <∞ such that

l(t)φ(t/l(t))

φ(t)
= O

(
1

log2 t

)
, (3.23)

as t→∞.
We see from (3.16) that

lim
t→∞

∑l−1
j=0E(Ij,j,t/l)− E

(∫
(Lx+1

t − Lxt )2 dx
)

t(ψ−1(1/t))1/2
(3.24)

= lim
t→∞

l(t)O (g(t/l(t))) +O (g(t))

t(ψ−1(1/t))1/2
= 0.

The last equality follows from the fact that t(ψ−1(1/t))1/2 is regularly varying as t→∞
with index 1 − 1/(2β) > 1/2, since β > 1, whereas g(t) is regularly varying as t → ∞
with index (2− 3/β)+ ≤ 1/2 since, β ≤ 2, and l(t) is slowly varying.
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Since Ij,j,t/l are independent and identically distributed, we obtain (3.20) by showing
that

lim
t→∞

l(t)Var

(
Ij,j,t/l

t(ψ−1(1/t))1/2

)
= 0. (3.25)

Using (3.18) and (3.21) we see that

l(t)Var

(
Ij,j,t/l

t(ψ−1(1/t))1/2

)
= O

(
l(t)φ(t/l(t))

φ(t)
log t

)
. (3.26)

as t→∞. Thus (3.25) follows from (3.23).

4 Proof of Theorem 1.2

We follow the same procedure in the proof of Theorem 1.2 that we used in the proof
of Theorem 1.1. We first present the main steps of the proof heuristically and then
restate them, precisely, in a series of lemmas and show how Theorem 1.2 follows from
the lemmas. The lemmas are proved in the Appendix, Sections G through K.

Let

Jj,k,l,h :=

∫
(Lx+h

1/l − L
x
1/l) ◦ θj/l (Lx+h

1/l − L
x
1/l) ◦ θk/l dx (4.1)

and

J̃l,h :=

l−1∑
j,k=0

j<k

Jj,k,l,h. (4.2)

Using the additivity property of local time we can write

Lx1 =

l−1∑
j=0

Lx1/l ◦ θj/l. (4.3)

so that ∫
(Lx+h

1 − Lx1) (Lx+h
1 − Lx1) dx =

l−1∑
j,k=0

Jj,k,l,h = 2J̃l,h +

l−1∑
j=0

Jj,j,l,h. (4.4)

Consequently ∫
(Lx+h

1 − Lx1)2 dx− E
∫

(Lx+h
1 − Lx1)2 dx (4.5)

= 2J̃l,h +

l−1∑
j=0

(
Jj,j,l,h − E

(∫
(Lx+h

1 − Lx1)2 dx

))
.

Similarly, let

α̃l :=

l−1∑
j,k=0

j<k

αj,k,1/l, (4.6)

where, as in (2.2)

αj,k,1/l =

∫
Lx1/l ◦ θj/l L

x
1/l ◦ θk/l dx. (4.7)

Recall that in (2.8) we defined

αt =

∫ ∞
−∞

(Lxt )2 dx. (4.8)

EJP 17 (2012), paper 7.
Page 12/111

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/


Central limit theorems for the L2 norm of increments of local times

Therefore,

α1 =

∫
Lx1 L

x
1 dx =

l−1∑
j,k=0

αj,k,1/l = 2α̃l +

l−1∑
j=0

αj,j,1/l. (4.9)

In what follows we take l to be a function of h such that limh→0 l(h) =∞.

The main steps in the proof of Theorem 1.2 are to show that:

1. The ‘off-diagonal’ terms J̃l,h and
√
α̃l are comparable, asymptoticly as h→ 0.

2. The diagonal term
∑l−1
j=0 αj,j,1/l is negligible, as h → 0, compared to the terms in

1.

3. The diagonal term
∑l−1
j=0 Jj,j,l,h is such that

l−1∑
j=0

Jj,j,l,h − E
(∫

(Lx+h
1 − Lx1)2 dx

)
(4.10)

is negligible, as h→ 0, compared to the terms in 1.

We now explain the precise meaning of these statements, and show how they imply
Theorem 1.2.

The precise meaning of step 1. is given by the following lemma. (Lemmas 4.1–4.3
are proved in the Appendix, Section I.)

Lemma 4.1 Under the hypotheses of Theorem 1.2 and with l = l(h) = [log 1/h],

E
((
J̃l,h

)m)
=


(2n)!

2nn!
(4cψ,h,1)

n
E {(α̃l)n}+ o((hψ2(1/h))−n) m = 2n

O(hε(hψ2(1/h))−n) otherwise,

(4.11)

for some ε > 0, where

cψ,h,1 :=

∫ (∫ (
∆h∆−h ps(x)

)
ds

)2

dx. (4.12)

This lemma is the crux of the proof of Theorem 1.2. Although the appearance of
(4.11) and (2.10) might seem similar, the proof of this lemma is very different from the
proof of of Lemma 2.1.

The precise meaning of step 2. is given by the next lemma.

Lemma 4.2 Under the hypotheses of Theorem 1.2, for each n, with l = l(h) = [log 1/h]q,
for any q > 0,

lim
h→0

E(α̃l)
n = E(α1/2)n. (4.13)

The precise meaning of step 3. is given by the next lemma.

Lemma 4.3 Under the hypotheses of Theorem 1.2, with l = l(h) = [log 1/h]q, for q
sufficiently large,

lim
h→0

√
hψ2(1/h)

l−1∑
j=0

(
Jj,j,l,h − E

(∫
(Lx+h

1 − Lx1)2 dx

))
= 0. (4.14)

in L2.
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Finally, to prove Theorem 1.2, we also need the following limit.

Lemma 4.4 Under the hypotheses of Theorem 1.2,

lim
h→0

hψ2(1/h)cψ,h,1 = cβ,1 (4.15)

Lemma 4.4 is proved in the Appendix, Section J.

Proof of Theorem 1.2 Let l = [log 1/h]q, for some q sufficiently large. In (4.11) we
replace J̃l,h by 2J̃l,h and (4cψ,h,1)

n
E {(α̃l)n} by (8cψ,h,1)

n
E {(2α̃l)n} and write

E {(2α̃l)n} = E {(α1)
n} − E {(2α̃l)n}+ E {(α1)

n} . (4.16)

It follows from Lemmas 4.2 and 4.4 that for each m

lim
h→0

E
((

2
√
hψ2(1/h)J̃l,h

)m)

=


(2n)!

2nn!
(8cβ,1)

n
E {(α1)

n} if m = 2n

0 otherwise.

(4.17)

We now show that the distribution of (8cβ,1)
1/2√

α1 η is determined by its moments.
It follows from [5, (6.12)] that for the β-stable process, with β > 1,

E

{(∫
(Lx1)2 dx

)n}
≤ Cn((2n)!)1/(2β). (4.18)

(This was used in (2.16)). When ψ is regularly varying at infinity with index β, for all
ε > 0, there exists a constant D = Dε such that∫ ∞

0

e−sψ(p) dp ≤ C
(

1 +

∫ ∞
1

e−sDp
β−ε

dp

)
. (4.19)

Using this, and the same proof as in [5], one can show that (4.18) holds, with β replaced
by β − ε for any ε > 0, for any Lévy process with Lévy exponent ψ(λ) which is regularly
varying at infinity with index β. Consequently

E {(α1)
n} ≤ Cn((2n)!)1/(2(β−ε)), (4.20)

for any ε > 0. As in the paragraph containing (2.16), this implies that the weak limit
(8cβ,1)

1/2√
α1 η is determined by its moments; (see [7, p. 227-228]). Therefore, by the

method of moments, [2, Theorem 30.2]), it follows from (4.17) that

lim
h→0

2
√
hψ2(1/h)J̃l,h

L
=⇒ (8cβ,1)

1/2√
α1 η. (4.21)

Theorem 1.2 now follows from (4.5), (4.21) and Lemma 4.3 .
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Appendix

When we say, ‘the paper’ we mean the paper to which this is an appendix. Sections
B–F contain the proofs of many of the fundamental lemmas needed to give complete
proofs of Lemmas 2.1–2.4, which are used in Section 3 of the paper to prove Theorem
1.1. The most critical ingredient in the proof of these lemmas is Lemma B.1, which is
the same as Lemma 3.1 in the paper. To prove Lemma B.1 we need estimates on the
asymptotic behavior of fixed differences of the transition probability densities for the
Lévy processes under consideration.

Sections G–K provide the details for the proof of Theorem 1.2. We discuss this in
greater detail when we get to them.

In this Appendix, references such as (3.2) are to Section 3 of ‘the paper’. Similarly,
all citations are to the References at the end of ‘the paper’.
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A Estimates for the asymptotic behavior of fixed differences of
the transition probability densities of certain Lévy processes

Let ps(x) denote the density of the symmetric Lévy process X with Lévy exponent
ψ(λ) as described in (1.4). Let ∆γ

x denote the finite difference operator on the variable
x, i.e.

∆γ
x f(x) = f(x+ γ)− f(x). (A.1)

We write ∆γ for ∆γ
x when the variable x is clear.

Let

u(x, t) :=

∫ t

0

ps(x) ds (A.2)

vγ(x, t) :=

∫ t

0

|∆γ ps(x)| ds (A.3)

wγ(x, t) :=

∫ t

0

|∆γ∆−γ ps(x)| ds (A.4)

We also write v(x, t) for v1(x, t) and w(x, t) for w1(x, t).

The Lemmas in this section are proved in Section C.

Lemma A.1 Under the hypotheses of Theorem 1.1, for all t sufficiently large

sup
x∈R1

u(x, t) ≤ Ctψ−1(1/t); (A.5)

sup
x∈R1

v(x, t) ≤ C log t; (A.6)

sup
x∈R1

w(x, t) ≤ C, (A.7)

and ∫
u(x, t) dx = t; (A.8)∫
v(x, t) dx ≤ Ct

(
ψ−1(1/t)

)
log t; (A.9)∫

w(x, t) dx ≤ C(log t)2; (A.10)∫
w2(x, t) dx ≤ C log t; (A.11)∫

|x|≥u
w2(x, t) dx ≤ C

(log t)2

u
. (A.12)

Lemma A.2 Under the hypotheses of Theorem 1.1, for all t sufficiently large

|∆1pt(0)| ≤ C
(
ψ−1(1/t)

)3
, (A.13)

and ∫ 2t

0

∫ 2t

0

|∆1pr+s(0)| dr ds ≤ C
(
t2
(
ψ−1(1/t)

)3
+ L(t) + 1

)
, (A.14)

where L(t) is a slowly varying function at infinity.

Lemma A.3 Under the hypotheses of Theorem 1.1,
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∫ ∞
0

∆1 ps(0) ds = − cψ,0; (A.15)∫ (∫ ∞
0

∆1∆−1 ps(x) ds

)2

dx = cψ,1; (A.16)

and ∫ (∫ t

0

∆1∆−1 ps(x) ds

)2

dx = cψ,1 +O(t−1/3), (A.17)

as t→∞.

B Moments of increments of local times.

We use the method of moments to prove Theorem 1.1. In the next lemma we cal-
culate the moments that we need. The terms Ij,k,t and αj,k,t are defined in (2.1) and
(2.2).

Lemma B.1 Let mj,k, 0 ≤ j < k ≤ K be positive integers with
∑K
j,k=0,j<k

mj,k = m. If all the integers mj,k are even, then for some ε > 0

E

 K∏
j,k=0

j<k

(Ij,k,t)
mj,k

 (B.1)

=

K∏
j,k=0

j<k

(2nj,k)!

2nj,k(nj,k!)
(4cψ,1)

nj,k E

 K∏
j,k=0

j<k

(αj,k,t)
nj,k

+O
(
t(2−1/β)m/2−ε

)
,

where nj,k = mj,k/2.
If any of the mj,k are odd, then

E

 K∏
j,k=0

j<k

(Ij,k,t)
mj,k

 = O
(
t(2−1/β)m2 −ε

)
. (B.2)

In (B.1) and (B.2) the error terms may depend on m, but not on the individual terms
mj,k.

Proof We can write

E

 K∏
j,k=0

j<k

(Ij,k,t)
mj,k

 (B.3)

= E

 K∏
j,k=0

j<k

mj,k∏
i=1

(∫
(∆1

xj,k,i
L
xj,k,i
t ◦ θjt) (∆1

xj,k,i
L
xj,k,i
t ◦ θkt) dxj,k,i

)

=

∫ 
K∏

j,k=0

j<k

mj,k∏
i=1

∆1,j
xj,k,i

∆1,k
xj,k,i

E

 K∏
j,k=0

j<k

mj,k∏
i=1

(
(L

xj,k,i
t ◦ θjt) (L

xj,k,i
t ◦ θkt)

)
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K∏
j,k=0

j<k

mj,k∏
i=1

dxj,k,i,

where the notation ∆1,j
xj,k,i

indicates that we apply the difference operator ∆1
xj,k,i

to

L
xj,k,i
t ◦ θjt. Note that there are 2m applications of the difference operator ∆1.

Consider

E

 K∏
j,k=0

j<k

mj,k∏
i=1

(
(L

xj,k,i
t ◦ θjt) (L

xj,k,i
t ◦ θkt)

) . (B.4)

We collect all the factors containing θlt and write

E

 K∏
j,k=0

j<k

mj,k∏
i=1

(
(L

xj,k,i
t ◦ θjt) (L

xj,k,i
t ◦ θkt)

) (B.5)

= E

 K∏
l=0


l−1∏
j=0

mj,l∏
i=1

L
xj,l,i
t

( K∏
k=l+1

ml,k∏
i=1

L
xl,k,i
t

) ◦ θlt


= E

(
K∏
l=0

Hl ◦ θlt

)
,

where

Hl =

l−1∏
j=0

mj,l∏
i=1

L
xj,l,i
t

( K∏
k=l+1

ml,k∏
i=1

L
xl,k,i
t

)
. (B.6)

By the Markov property

E

(
K∏
l=0

Hl ◦ θlt

)
= E

(
H0E

Xt

(
K∏
l=1

Hl ◦ θ(l−1)t

))
. (B.7)

Let

ml =

K∑
k=l+1

ml,k +

l−1∑
j=0

mj,l, l = 0, . . . ,K − 1, (B.8)

and note that ml is the number of local time factors in Hl.
Let

f(y) = Ey

(
K∏
l=1

Hl ◦ θ(l−1)t

)
. (B.9)

It follows from Kac’s Moment Formula, Theorem F.1, that for any z ∈ R1

Ez

(
K∏
l=0

Hl ◦ θlt

)
(B.10)

= Ez (H0 f(Xt))

=
∑
π0

∫
{
∑m0

q=1
r0,q≤t}

pr0,1(xπ0(1) − z)
m0∏
q=2

pr0,q (xπ0(q) − xπ0(q−1))

(∫
p(t−

∑m0

q=1
r0,q)

(y − xπ0(m0))f(y) dy

) m0∏
q=1

dr0,q,
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where the sum runs over all bijections π0 from [1,m0] to

I0 =

K⋃
k=1

{(0, k, i), 1 ≤ i ≤ m0,k}. (B.11)

Clearly, I0 is the set of subscripts of the terms x · appearing in the local time factors in
H0.

By the Markov property

f(y) = Ey

(
H1E

X2t

(
K∏
l=2

Hl ◦ θ(l−2)t

))
(B.12)

=: Ey (H1g(X2t)) .

Therefore, by (B.7)–(B.12), for any z′ ∈ R1

Ez
′

(
K∏
l=0

Hl ◦ θlt

)
(B.13)

= Ez
′ (
H0E

Xt (H1 g(X2t))
)

=
∑
π0

∫
{
∑m0

q=1
r0,q≤t}

pr0,1(xπ0(1) − z′)
m0∏
q=2

pr0,q (xπ0(q) − xπ0(q−1))

(∫
p(t−

∑m0

q=1
r0,q)

(y − xπ0(m0))E
y (H1 g(X2t)) dy

) m0∏
q=1

dr0,q

=
∑
π0

∫
{
∑m0

q=1
r0,q≤t}

pr0,1(xπ0(1) − z′)
m0∏
q=2

pr0,q (xπ0(q) − xπ0(q−1))

p(t−
∑m0

q=1
r0,q)

(y − xπ0(m0))∑
π1

∫
{
∑m1

q=1
r1,q≤t}

pr1,1(xπ1(1) − y)

m1∏
q=2

pr1,q (xπ1(q) − xπ1(q−1))

(∫
p(t−

∑m1

q=1
r1,q)

(y′ − xπ1(m1))g(y′) dy′
) m1∏
q=1

dr1,q dy

m0∏
q=1

dr0,q

where the second sum runs over all bijections π1 from [1,m1] to

I1 = {(0, 1, i), 1 ≤ i ≤ m0,1}
K⋃
k=2

{(1, k, i), 1 ≤ i ≤ m1,k} (B.14)

As above, I1 is the set of subscripts of the terms x · appearing in the local time
factors in H1.

We now use the Chapman-Kolmogorov equation to integrate with respect to y to get

Ez
′ (
H0E

Xt (H1 g(Xt))
)

(B.15)

=
∑
π0,π1

∫
{
∑m0

q=1
r0,q≤t}

pr0,1(xπ0(1) − z′)
m0∏
q=2

pr0,q (xπ0(q) − xπ0(q−1))∫
{
∑m1

q=1
r1,q≤t}

p(t−
∑m0

q=1
r0,q)+r1,1

(xπ1(1) − xπ0(m0))

m1∏
q=2

pr1,q (xπ1(q) − xπ1(q−1))
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(∫
p(t−

∑m1

q=1
r1,q)

(y′ − xπ1(m1))g(y′) dy′
) m1∏
q=1

dr1,q

m0∏
q=1

dr0,q.

Iterating this procedure, and recalling (B.5) we see that

E

 K∏
j,k=0

j<k

mj,k∏
i=1

(
(L

xj,k,i
t ◦ θjt) (L

xj,k,i
t ◦ θkt)

) (B.16)

=
∑

π0,...,πK

K∏
l=0

∫
{
∑ml

q=1
rl,q≤t}

p(t−
∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1))

ml∏
q=2

prl,q (xπl(q) − xπl(q−1))

ml∏
q=1

drl,q,

where π−1(m−1) := 0 and 1−
∑m−1

q=1 r−1,q := 0. In (B.16) the sum runs over all π0, . . . , πK
such that each πl is a bijection from [1,ml] to

Il =

l−1⋃
j=0

{(j, l, i), 1 ≤ i ≤ mj,l}
K⋃

k=l+1

{(l, k, i), 1 ≤ i ≤ ml,k}. (B.17)

As in the observations about I0 and I1, we see that Il is the set of subscripts of the terms
x · terms appearing in the local time factors in Hl. Since there are 2m local time factors
we have that

∑K
l=0ml = 2m.

We now use (B.16) in (B.3) and continue to develop an expression for the left-hand
side of (B.3). Let B to denote the set of (K + 1)–tuples, π = (π0, . . . , πK), of bijections
described in (B.17). Clearly

|B| =
K∏
l=0

ml! ≤ (2m)!. (B.18)

Also, similarly to the way we obtain the first equality in (B.5), we see that

K∏
j,k=0

j<k

mj,k∏
i=1

∆1,j
xj,k,i

∆1,k
xj,k,i

=

K∏
l=0

ml∏
q=1

∆1,l
xπl(q)

. (B.19)

Consequently

E

 K∏
j,k=0

j<k

(Ij,k,t)
mj,k

 =
∑

π0,...,πK

∫
T̃t(x; π)

∏
j,k,i

dxj,k,i (B.20)

where we take the product over {0 ≤ j < k ≤ K, 1 ≤ i ≤ mj,k}, π ∈ B and

T̃t(x; π) (B.21)

=

K∏
l=0

ml∏
q=1

∆1
xπl(q)

∫
{
∑ml

q=1
rl,q≤t}

p(t−
∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1))

ml∏
q=2

prl,q (xπl(q) − xπl(q−1))

ml∏
q=1

drl,q.

We continue to rewrite the right-hand side of (B.20).
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In (B.21), each difference operators, say ∆1
u is applied to the product of two terms,

say p · (u− a) p · (u− b), using the product rule for difference operators we see that

∆1
u{p · (u− a)p · (u− b)} (B.22)

= ∆1
u p · (u− a)p · (u+ 1− b) + p · (u− a)∆1

u p · (u− b).

Consider an example of how the term ∆1
a∆1

up · (u − a) may appear. It could be by the
application

∆1
a

(
∆1
u p · (u− a)p · (v − a)

)
, (B.23)

in which we take account of the two terms to which ∆1
a is applied. Using the product

rule in (B.22) we see that (B.23)

=
(
∆1
a∆1

u p · (u− a)
)
p · (v − (a+ 1)) + ∆1

u p · (u− a)∆1
ap · (v − a). (B.24)

Consider one more example

∆1
a

(
∆1
u p · (u− a)∆1

v p · (v − a)
)

(B.25)

=
(
∆1
a∆1

u p · (u− a)
)

∆1
v p · (v − (a+ 1))

+∆1
u p · (u− a)∆1

a∆1
vp · (v − a).

Note that in both examples the arguments of probability densities with two difference
operators applied to it does not contain a 1. This is true in general because the differ-
ence formula, (B.22), does not add a 1 to the argument of a term to which a difference
operator is applied. Otherwise we may have a ±1 added to the arguments of probability
densities to which one difference operator is applied, as in (B.25), or to the arguments
of probability densities to which no difference operator is applied, as in (B.24).

Based on the argument of the preceding paragraph we write (B.21) in the form

E

 K∏
j,k=0

j<k

(Ij,k,t)
mj,k

 =
∑
a

∑
π0,...,πK

∫
T ′t (x; π, a)

∏
j,k,i

dxj,k,i, (B.26)

where

T ′t (x; π, a) =

K∏
l=0

∫
Rl

((
∆1
xπl(1)

)a1(l,1) (
∆1
xπl−1(ml−1)

)a2(l,1)

(B.27)

p]
(t−
∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1))

)
ml∏
q=2

((
∆1
xπl(q)

)a1(l,q) (
∆1
xπl(q−1)

)a2(l,q)

p]rl,q (xπl(q) − xπl(q−1))

) ml∏
q=1

drl,q.

In (B.27) Rl = {
∑ml
q=1 rl,q ≤ t}. In (B.26) the first sum is taken over all

a = (a1, a2) : {(l, q), 0 ≤ l ≤ K, 1 ≤ q ≤ ml} 7→ {0, 1} × {0, 1} (B.28)

with the restriction that for each triple j, k, i, there are exactly two factors of the form
∆1
xj,k,i

, each of which is applied to one of the terms p]r·(·) that contains xj,k,i in its
argument. This condition can be stated more formally by saying that for each l and
q = 1, . . . ,ml − 1, if πl(q) = (j, k, i), then {a1(l, q), a2(l, q + 1)} = {0, 1} and if q = ml then
{a1(l,ml), a2(l+1, 1)} = {0, 1}. (Note that when we write {a1(l, q), a2(l, q+1)} = {0, 1} we
mean as two sets, so, according to what a is, we may have a1(l, q) = 1 and a2(l, q+1) = 0
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or a1(l, q) = 0 and a2(l, q+ 1) = 1 and similarly for {a1(l,ml), a2(l+ 1, 1)}.) Also, in (B.27)
we define (∆1

xi)
0 = 1 and (∆1

0) = 1.
In (B.27), p]r·(z) can take any of the values pr·(z), pr·(z+1) or pr·(z−1). (We must con-

sider all three possibilities, as explained in the paragraph containing (B.22), ) Finally, it
is important to emphasize that in (B.27) each of the difference operators is applied to
only one of the terms p]r·(·).

Rather than (B.26), we first analyze∑
a

∑
π0,...,πK

∫
Tt(x; π, a)

∏
j,k,i

dxj,k,i, (B.29)

where

Tt(x; π, a) =

K∏
l=0

∫
Rl

((
∆1
xπl(1)

)a1(l,1) (
∆1
xπl−1(ml−1)

)a2(l,1)

(B.30)

p(t−
∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1))

)
ml∏
q=2

((
∆1
xπl(q)

)a1(l,q) (
∆1
xπl(q−1)

)a2(l,q)

prl,q (xπl(q) − xπl(q−1))

) ml∏
q=1

drl,q.

The difference between Tt(x; π, a) and T ′t (x; π, a) is that in the former we replace p] by
p. It is easier to analyze (B.29) than (B.26). At the conclusion of this proof we show that
both (B.29) and (B.26) have the same asymptotic limit as t goes to infinity.

We first obtain (B.1). Let m = 2n, since mj,k = 2nj,k, ml = 2nl for some integer nl.
(Recall (B.8)). To begin we consider the case in which a = e, where

e(l, 2q) = (1, 1) and e(l, 2q − 1) = (0, 0) ∀q. (B.31)

When a = e we have

Tt(x; π, e) =

K∏
l=0

∫
Rl
p(t−

∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1))

nl∏
q=2

prl,2q−1
(xπl(2q−1) − xπl(2q−2)) (B.32)

nl∏
q=1

∆1∆−1 prl,2q (xπl(2q) − xπl(2q−1))

ml∏
q=1

drl,q.

Here we use the following notation: ∆1p(u−v) = p(u−v+1)−p(u−v), i.e., when ∆1 has
no subscript, the difference operator is applied to the whole argument of the function.
In this notation,

∆1
u∆1

vp(u− v) = ∆1∆−1p(u− v). (B.33)

Consider the multigraph Gπ with vertices {(j, k, i), 0 ≤ j < k ≤ K, 1 ≤ i ≤ mj,k}.
Assign an edge between the vertices πl(2q−1) and πl(2q) for each 0 ≤ l ≤ K and 1 ≤ q ≤
nl. Each vertex is connected to two edges. To see this suppose that πl(2q) = {(j, k, i)},
with j = l and k = l′ 6= l, then there is a unique q′ such that πl′(2q′) or πl′(2q′ − 1) is
equal to {(j, k, i)}. Therefore all the vertices lie in some cycle. Assume that there are S
cycles. We denote them by Cs, s = 1, . . . , S. Clearly, it is possible to have cycles of order
two, in which case two vertices are connected by two edges.
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It is important to note that the graph Gπ does not assign edges between πl(2q) and
πl(2q + 1), although these vertices may be connected by the edge assigned between
πl′(2q

′ − 1) and πl′(2q′) for some l′ and q′.

We proceed to estimate (B.30) by breaking the calculation into two cases: when
a = e and all the cycles of Gπ are of order two; when a = e and not all the cycles of Gπ
are of order two or when a 6= e.

B.1 a = e, with all cycles of order two

Let P = {(γ2v−1, γ2v) , 1 ≤ v ≤ n} be a pairing of the m vertices

{(j, k, i), 0 ≤ j < k ≤ K, 1 ≤ i ≤ mj,k}

of Gπ, that satisfies the following special property: whenever (j, k, i) and (j′, k′, i′) are
paired together, j = j′ and k = k′. Equivalently,

P =

K⋃
j,k=0

j<k

Pj,k (B.34)

where each Pj,k is a pairing of the mj,k vertices

{(j, k, i), 1 ≤ i ≤ mj,k}.

We refer to such a pairing P as a special pairing and denote the set of special pairings
by S.

Given a special pairing P ∈ S, let π be such that for each 0 ≤ l ≤ K and 1 ≤ q ≤ nl,

{πl(2q − 1), πl(2q)} = {γ2v−1, γ2v} (B.35)

for some, necessarily unique, 1 ≤ v ≤ nl. In this case we say that π is compatible with
the pairing P and write this as π ∼ P. (Recall that when we write {πl(2q − 1), πl(2q)} =

{γ2v−1, γ2v}, we mean as two sets, so, according to what πl is, we may have πl(2q− 1) =

γ2v−1 and πl(2q) = γ2v or πl(2q − 1) = γ2v and πl(2q) = γ2v−1.) Clearly

|S| ≤ (2n)!

2nn!
(B.36)

the number of pairings of m = 2n objects.
Let π ∈ B be such that Gπ consists of cycles of order two. It is easy to see that π ∼ P

for some P ∈ S. To see this note that if {(j, k, i), (j′, k′, i′)} form a cycle of order two,
there must exist l and l′ with l 6= l′ and q and q′ such that both {(j, k, i), (j′, k′, i′)} =

{πl(2q − 1), πl(2q)} and {(j, k, i), (j′, k′, i′)} = {πl′(2q′ − 1), πl′(2q
′)}. This implies that

j = j′, k = k′ and {j, k} = {l, l′}. Furthermore, by (B.35) we have

{πl(2q − 1), πl(2q)} = {πl′(2q′ − 1), πl′(2q
′)} = {γ2v−1, γ2v} (B.37)

When π ∼ P and all cycles are of order two we can write

K∏
l=0

nl∏
q=1

∆1∆−1 prl,2q (xπl(2q) − xπl(2q−1)) (B.38)

=

n∏
v=1

∆1∆−1 pr2ν (xγ2v − xγ2v−1
)∆1∆−1 pr′2ν (xγ2v − xγ2v−1

),
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where r2ν and r′2ν are the rearranged indices rl,2q and rl′,2q′ . We also use the fact that∑K
l=0 nl = 2n.
For use in (B.44) below we note that∫ t

0

∫ t

0

|∆1∆−1 pr2ν (xγ2v − xγ2v−1)| |∆1∆−1 pr′2ν (xγ2v − xγ2v−1)| dr2ν dr
′
2ν

=

(∫ t

0

|∆1∆−1 pr(xγ2v − xγ2v−1
)| dr

)2

= w2(xγ2v − xγ2v−1
, t), (B.39)

(see (C.7).)

We want to estimate the integrals in (B.29). However, it is difficult to integrate
Tt(x; π, e) directly, because the variables,

{xπl(1) − xπl−1(ml−1), xπl(2q−1) − xπl(2q−2), xπl(2q) − xπl(2q−1);

l ∈ [0,K], q ∈ [1, nl]},

are not independent. We begin the estimation by showing that over much of the domain
of integration, the integral is negligible, asymptotically, as t→∞. To begin, we write

1 =

n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤t(β−1)/(4β)} + 1{|xγ2v−xγ2v−1
|≥t(β−1)/(4β)}

)
(B.40)

and expand it as a sum of 2n terms and use it to write∫
Tt(x; π, e)

∏
j,k,i

dxj,k,i (B.41)

=

∫ n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤t(β−1)/(4β)}

)
Tt(x; π, e)

∏
j,k,i

dxj,k,i + E1,t.

We now show that

E1,t = O
(
t−(β−1)/(5β)

(
t2ψ−1(1/t)

)n)
. (B.42)

Note that every term in E1,t can be written in the form

Bt(π, e,D) :=

∫ n∏
v=1

1DvTt(x; π, e)
∏
j,k,i

dxj,k,i (B.43)

where each Dv is either {|xγ2v − xγ2v−1
| ≤ t(β−1)/(4β)} or {|xγ2v − xγ2v−1

| ≥ t(β−1)/(4β)},
and at least one of the Dv is of the second type.

Consider (B.43) and the representation of Tt(x; π, e) in (B.32). We take absolute
values in the integrand in (B.32) and take all the integrals with r· between 0 and t and
use (B.39) to get

|Bt(π, e,D)| ≤
∫ n∏

v=1

1Dvw
2(xγ2v − xγ2v−1 , t)

K∏
l=0

u(xπl(1) − xπl−1(ml−1), t)

nl∏
q=2

u(xπl(2q−1) − xπl(2q−2), t)
∏
j,k,i

dxj,k,i. (B.44)

We now take

{xγ2v − xγ2v−1
, v = 1, . . . , n} (B.45)
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and an additional n variables from the 2n arguments of the u terms,

∪Kl=0{xπl(1) − xπl−1(ml−1), xπl(2q−1) − xπl(2q−2), q = 2, . . . , nl} (B.46)

so that the chosen 2n variables generate the space spanned by the 2n variables {xj,k,i}.
There are n variables in (B.46) that are not used. We bound the functions u of these
variables by their sup norm, which by (C.5) is bounded by Ctψ−1(1/t). Then we make a
change of variables and get that

|Bt(π, e,D)| ≤ C
(
tψ−1(1/t)

)n ∫ n∏
v=1

1Dvw
2(yv, t)

2n∏
v=n+1

u(yv, t))

2n∏
v=1

dyv

≤ C
(
t2ψ−1(1/t)

)n ∫ n∏
v=1

1Dvw
2(yv, t))

n∏
v=1

dyv,

= O
(
t−(β−1)/(5β)

(
t2ψ−1(1/t)

)n)
. (B.47)

Here we use (A.8) to see that the integral of a u term is t. Then we use (A.11) and (A.12)
to obtain (B.42). (Note that it is because at least one of the Dv is of the second type
that we can use (A.12).)

We now study ∫ n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤t(β−1)/(4β)}

)
Tt(x; π, e)

∏
j,k,i

dxj,k,i. (B.48)

We identify the relationships in (B.37) by setting v = σl(q) so that

{πl(2q − 1), πl(2q)} = {γ2σl(q)−1, γ2σl(q)}, (B.49)

for each 0 ≤ l ≤ K and 1 ≤ q ≤ nl. We use both (B.37) and (B.49) in what follows.
We now make a change of variables that, eventually, enables us to make the argu-

ments of the u terms and the w terms independent. For q ≥ 2 we write

prl,2q−1
(xπl(2q−1) − xπl(2q−2)) (B.50)

= prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
) + ∆hl,qprl,2q−1

(xγ2σl(q)−1
− xγ2σl(q−1)−1

),

where hl,q = (xπl(2q−1) − xγ2σl(q)−1
) + (xγ2σl(q−1)−1

− xπl(2q−2)). When q = 1 we can make
a similar decomposition

p(t−
∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1)) (B.51)

= p(t−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

+∆hl,1p(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

),

where hl,1 = (xπl(1)−xγ2σl(1)−1
) + (xγ2σl−1(nl−1)−1

−xπl−1(ml−1)). Note that because of the

presence of the term
∏n
v=1

(
1{|xγ2v−xγ2v−1

|≤t(β−1)/(4β)}

)
in the integral in (B.48) we need

only be concerned with values of |hl,q| ≤ 2t(β−1)/(4β), 0 ≤ l ≤ K and 1 ≤ q ≤ nl.
For q = 1, . . . , nl, l = 0 . . . ,K, we substitute (B.50) and (B.51) into the term Tt(x; π, e)

in (B.48), (see also (B.32)), and expand the products so that we can write (B.48) as a

sum of 2
∑K

l=0
nl terms, which we write as∫ n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤t(β−1)/(4β)}

)
Tt(x; π, e)

∏
j,k,i

dxj,k,i (B.52)

=

∫ n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤t(β−1)/(4β)}

)
Tt,1(x; π, e)

∏
j,k,i

dxj,k,i + E2,t,
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where

Tt,1(x; π, e) =

K∏
l=0

∫
Rl
p(t−

∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
) (B.53)

nl∏
q=1

∆1∆−1 prl,2q (xπl(2q) − xπl(2q−1))

ml∏
q=1

drl,q.

Using (B.38) we can rewrite this as

Tt,1(x; π, e) (B.54)

=

∫
R0×···×RK

(
K∏
l=0

p(t−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
)

)
(

n∏
v=1

∆1∆−1 pr2ν (xγ2v − xγ2v−1
)∆1∆−1 pr′2ν (xγ2v − xγ2v−1

)

)
K∏
l=0

ml∏
q=1

drl,q,

where r2ν and r′2ν are the rearranged indices rl,2q and rl′,2q′ .
The usefulness of the representations in (B.50) and (B.51) is now apparent. Since

the variables xγ2v , v = 1, . . . , n, occur only in the last line of (B.54), we make the change
of variables xγ2v − xγ2v−1

→ xγ2v and xγ2v−1
→ xγ2v−1

and get that∫
Tt,1(x; π, e)

∏
j,k,i

dxj,k,i (B.55)

=

∫ ∫
R0×···×RK

(
K∏
l=0

p(t−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
)

)
(

n∏
v=1

∆1∆−1 pr2ν (xγ2v )∆1∆−1 pr′2ν (xγ2v )

)
K∏
l=0

ml∏
q=1

drl,q
∏
j,k,i

dxj,k,i.

Now, since the variables xγ2v , v = 1, . . . , n occur only in the last line of (B.55) and the
variables xγ2v−1

, v = 1, . . . , n occur only in the second and third lines of (B.55), we can
write (B.55) as∫

Tt,1(x; π, e)
∏
j,k,i

dxj,k,i (B.56)

=

∫
R0×···×RK

∫ ( K∏
l=0

p(t−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
)

)
n∏
v=1

dxγ2v−1
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(
n∏
v=1

∫
∆1∆−1 pr2ν (xγ2v )∆1∆−1 pr′2ν (xγ2v ) dxγ2v

)
K∏
l=0

ml∏
q=1

drl,q.

Note that we also use Fubini’s Theorem, which is justified since the absolute value of
the integrand is integrable, (as we point out in the argument preceding (B.44)). (In
the rest of this section use Fubini’s Theorem frequently for integrals like (B.56) without
repeating the explanation about why it is justified.)

We now show that

E2,t = O
(
t−(β−1)/(3β)

(
t2ψ−1(1/t)

)n)
. (B.57)

To see this note that the terms in E2,t are of the form∫ n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤t(β−1)/(4β)}

)
(B.58)

K∏
l=0

∫
Rl
p̃(t−

∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

p̃rl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
)

nl∏
q=1

∆1∆−1 prl,2q (xπl(2q) − xπl(2q−1))

ml∏
q=1

drl,q
∏
j,k,i

dxj,k,i,

where p̃rl,2q−1
is either prl,2q−1

or ∆hl,qprl,2q−1
. Furthermore, at least one of the terms

p̃rl,2q−1
is of the form ∆hl,qprl,2q−1

.
As in the transition from (B.43) to (B.44) we bound the absolute value of (B.58) by∫ n∏

v=1

(
1{|xγ2v−xγ2v−1

|≤t(β−1)/(4β)}

)
w2(xγ2v − xγ2v−1

, t) (B.59)

K∏
l=0

ũ(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

, t)

nl∏
q=2

ũ(xγ2σl(q)−1
− xγ2σl(q−1)−1

, t)

∏
j,k,i

dxj,k,i,

where each ũ( · , t) is either of the form u( · , t) or vhl,q ( · , t); (see (A.3)).

We need to introduce the following notation and estimates. The next lemma is
proved in Section C. Let

v∗(x, t) :=

(
log t ∧ tψ

−1(1/t)

|x|
∧ t1 + log+ x

x2

)
, (B.60)

Lemma B.2 Under the hypotheses of Theorem 1.1, for all t sufficiently large,

vhl,q (x, t) ≤ Ch2
l,qv∗(x, t) (B.61)

sup
x∈R1

v∗(x, t) ≤ log t (B.62)∫
v∗(x, t) dx ≤ Ct

(
ψ−1(1/t)

)
log t. (B.63)

EJP 17 (2012), paper 7.
Page 27/111

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/


Central limit theorems for the L2 norm of increments of local times

Proof of Lemma B.1 continued: We have J terms of the type vhl,q ( · , t), for some
J ≥ 1. It follows from (B.61) and and the fact that |hl,q| ≤ 2t(β−1)/(4β), that we can
bound the integral in (B.59) by

CtJ(β−1)/(2β)

∫ n∏
v=1

w2(xγ2v − xγ2v−1
, t) (B.64)

K∏
l=0

ũ(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

, t)

nl∏
q=2

ũ(xγ2σl(q)−1
− xγ2σl(q−1)−1

, t)

∏
j,k,i

dxj,k,i,

where ũ( · , t) is either u( · , t) or v∗( · , t), and we have precisely J of the latter.
Since the variables xγ2ν , ν = 1, . . . , n, occur only in the w terms in (B.64) and the

variables xγ2v−1
, v = 1, . . . , n occur only in the ũ terms in (B.64) , (refer to the change of

variables arguments in (B.55) and (B.56)), we can write (B.64) as

Ctt
J(β−1)/(2β)

∫ ( K∏
l=0

ũ(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

, t) (B.65)

nl∏
q=2

ũ(xγ2σl(q)−1
− xγ2σl(q−1)−1

, t)

)
n∏
v=1

dxγ2v−1

n∏
v=1

w2(xγ2v , t)

n∏
v=1

dxγ2v

≤ Ctt
J(β−1)/(2β)

(log t)
n
∫ ( K∏

l=0

ũ(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

, t)

nl∏
q=2

ũ(xγ2σl(q)−1
− xγ2σl(q−1)−1

, t)

)
n∏
v=1

dxγ2v−1

where the last inequality uses (A.11).
As we have been doing we extract a linearly independent set of variables from the

arguments of the ũ terms. The other ũ terms we bound by their supremum. Then we
make a change of variables and integrate the remaining ũ terms.

Compare (A.5) with (B.62). Replacing the sup of a u term by the sup of a v∗ term
reduces the upper bound by a factor of 1/(tψ−1(1/t)), (neglecting the factor of log t

which is irrelevant.) On the other hand, considering (A.8) and (B.63), we see that
replacing the integral of a u term by the integral of a v∗ term reduces the upper bound
by a factor of ψ−1(1/t), (again neglecting the factor of log t.) Counting the initial factor
of tJ(β−1)/(2β) we have a reduction with is at least(

t(β−1)/(2β)(tψ−1(1/t))−1
)J

= o

((
t−(β−1)/(3β)

)J)
(B.66)

for all ε > 0. Since J ≥ 1, we get (B.57).

Analogous to (B.41) we note that∫
Tt,1(x; π, e)

∏
j,k,i

dxj,k,i (B.67)

=

∫ n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤t(β−1)/(4β)}

)
Tt,1(x; π, e)

∏
j,k,i

dxj,k,i + Ẽ1,t,

where Ẽ1,t = O
(
t−(β−1)/(5β)

(
t2ψ−1(1/t)

)n)
. The proof of (B.67) is the same as the proof

of (B.42).
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Since ψ is regularly varying with index β > 1 we see that there exists an ε(β) := ε > 0

such that
E1,t + E2,t + Ẽ2,t = O

(
t(2−1/β)n−ε

)
. (B.68)

Therefore, it follows from (B.41), (B.52) and (B.67) that∫
Tt(x; π, e)

∏
j,k,i

dxj,k,i (B.69)

=

∫
Tt,1(x; π, e)

∏
j,k,i

dxj,k,i +O
(
t(2−1/β)n−ε

)
.

We now obtain a sharp estimate , (asymptotically as t → ∞), of the second integral
in (B.69) that leads to the (B.1). Let R̃l(s) = {

∑nl
q=1 rl,2q−1

≤ t− s} and σ̃l(q) := γ2σl(q)−1. We define

Ft(σ̃, s0, . . . , sK) (B.70)

=

∫ (∫
R̃0(s0)×···×R̃K(sK)

K∏
l=0

p(t−
∑nl−1

q=1
rl−1,2q−1−sl−1)+rl,1

(x
σ̃l(1)

− x
σ̃l−1(nl−1)

)

nl∏
q=2

prl,2q−1
(x
σ̃l(q)

− x
σ̃l(q−1)

)

nl∏
q=1

drl,2q−1

)
dx,

where (t −
∑n−1

q=1 r−1,2q−1 − s−1) := 0 and σ̃−1(n−1) := 0. Here the generic term dx

indicates integration with respect to all the variables x· that appear in the integrand.
Since σ̃l(q) = γ2σl(q)−1 we can also write (B.70) as

Ft(σ̃, s0, . . . , sK) (B.71)

=

∫ (∫
R̃0(s0)×···×R̃K(sK)

K∏
l=0

p(t−
∑nl−1

q=1
rl−1,2q−1−sl−1)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
)

nl∏
q=1

drl,2q−1

)
dx,

with xγ2σ−1(n−1)−1
:= 0.

Consider (B.71). By extending the time integration we have

Ft(σ̃, s0, . . . , sK) (B.72)

≤
∫ K∏

l=0

u(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

(

nl∏
q=2

url,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
) dx.

Note that there are n different x · variables, each one of which appears twice. There-
fore, by an argument similar to the one in the paragraph containing (B.47), we see
that

Ft(σ̃, s0, . . . , sK) ≤ C
(
t2ψ−1(1/t)

)n
, (B.73)

for some constant depending only on m = 2n.
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Let R̂l = {
∑nl
q=1 rl,2q ≤ t}, l = 0, . . . ,K. We break up the integration over R0 × · · · ×

RK in (B.56) into integration over R̃0× · · · × R̃K and R̂0× · · · × R̂K ; (see (B.71)). If one
carefully examines the time indices in (B.30) and (B.70) and uses Fubini’s Theorem, one
sees that ∫

Tt(x; π, e)
∏
j,k,i

dxj,k,i (B.74)

=

∫
R̂0×···×R̂K

Ft(σ̃,

n0∑
q=1

r0,2q , . . . ,

nK∑
q=1

rK,2q)

n∏
i=1

(∫ (
∆1∆−1 pri(x)

) (
∆1∆−1 pr′

i
(x)
)
dx

) n∏
i=1

dri dr
′
i.

The variables {ri, r′i | i = 1, . . . , n} are simply a relabeling of the variables {rl,2q | 0 ≤ l ≤
K, 1 ≤ q ≤ nl}. (The exact form of this relabeling does not matter in what follows.)
Here, as always, we set pr(x) = 0, if r ≤ 0.

By Parseval’s Theorem∫ (
∆1∆−1 pr(x)

) (
∆1∆−1 pr′(x)

)
dx (B.75)

=
1

2π

∫
|2− eip − e−ip|2e−rψ(p)e−r

′ψ(p) dp

=
16

π

∫ ∞
0

sin4(p/2)e−rψ(p)e−r
′ψ(p) dp ≥ 0.

Using this, (B.73) and Fubini’s Theorem, we see that∫(
R̂0×···×R̂K

)
∩([0,

√
t]2n)c

Ft(σ̃,

n0∑
q=1

r0,2q , . . . ,

nK∑
q=1

rK,2q) (B.76)

n∏
i=1

(∫ (
∆1∆−1 pri(x)

) (
∆1∆−1 pr′

i
(x)
)
dx

) n∏
i=1

dri dr
′
i

≤ C
(
t2ψ−1(1/t)

)n∫
([0,
√
t]2n)c

n∏
i=1

(∫ (
∆1∆−1 pri(x)

) (
∆1∆−1 pr′

i
(x)
)
dx

) n∏
i=1

dri dr
′
i

≤ C
(
t2ψ−1(1/t)

)n(∫ (∫
(∆1∆−1 pr(x)) dr

)2

dx

)n−1

∫ {∫ ∞
0

∫ ∞
√
t

(
∆1∆−1 pri(x)

) (
∆1∆−1 pr′

i
(x)
)
dri dr

′
i

}
dx

≤ C
(
t2ψ−1(1/t)

)n∫ {∫ ∞
0

∫ ∞
√
t

(
∆1∆−1 pri(x)

) (
∆1∆−1 pr′

i
(x)
)
dri dr

′
i

}
dx,

by (A.11). By (A.16) and (A.17) the integral in the final line of (B.76)

≤ cψ,1 −
∫ (∫ √t

0

∆1∆−1 ps(x) ds

)2

dx ≤ O
(
t−1/6

)
. (B.77)

Therefore the first integral in (B.76) is O(t(2−1/β)n−ε), for some ε > 0.
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Since
(
R̂0 × · · · × R̂K

)
⊇ [0,

√
t]2n, for 2n

√
t ≤ t, it follows from (B.74) and the

preceding sentence, that∫
Tt(x; π, e)

∏
j,k,i

dxj,k,i (B.78)

=

∫
[0,
√
t]2n

Ft(σ̃,

n0∑
q=1

r0,2q , . . . ,

nK∑
q=1

rK,2q)

n∏
i=1

(∫ (
∆1∆−1 pri(x)

)
(

∆1∆−1 pr′
i
(x)
)
dx

) K∏
l=0

nl∏
q=1

drl,2q +O(t(2−1/β)n−ε)

We use the next lemma which is proved in Subsection B.3.

Lemma B.3 Under the hypotheses of Theorem 1.1, for any fixed m and s0, . . . , sK ≤
m
√
t and 1 < β ≤ 2, there exists an ε > 0 such that for all t > 0, sufficiently large,

|Ft(σ̃, s0, . . . , sK)− Ft(σ̃, 0, . . . , 0)| ≤ C
(
t2ψ−1(1/t)

)n−ε
. (B.79)

Proof of Lemma B.1 continued: It follows from (B.78) and Lemmas B.3 and A.3, that∫
Tt(x; π, e)

∏
j,k,i

dxj,k,i (B.80)

= Ft(σ̃, 0, . . . , 0)

∫
[0,
√
t]2n

n∏
i=1

(∫ (
∆1∆−1 pri(x)

)
(

∆1∆−1 pr′
i
(x)
)
dx

) K∏
l=0

nl∏
q=1

drl,2q +O
(
t(2−1/β)n−ε

)
= (cψ,1)

n
Ft(σ̃, 0, . . . , 0) +O

(
t(2−1/β)n−ε

)
,

for some ε > 0.

Consider the mappings σ̃l that are used in (B.70). Recall that σl(q) is defined by the
relationship {πl(2q − 1), πl(2q)} = {γ2σl(q)−1, γ2σl(q)}. Therefore, since σ̃l(q) = γ2σl(q)−1

we can have that either σ̃l(q) = πl(2q − 1) or σ̃l(q) = πl(2q). However, since the terms
σ̃l(q) are subscripts of the terms x, all of which are integrated, it is more convenient to
define σ̃l differently.

Recall that P, (see (B.34)), is a union of pairings Pj,k of the mj,k vertices

{(j, k, i), 1 ≤ i ≤ mj,k}.

Each Pj,k consists of nj,k pairs, that can ordered arbitrarily. Consider one such ordering.
If {γ2σl(q)−1,

γ2σl(q)} is the i-th pair in Pj,k, we set σ̃l(q) = (j, k, i). (Necessarily, l will be either j or
k, as we point out in the paragraph containing (B.37)). Thus, each σ̃l is a bijection from
[1, nl] to

Ĩl =

K⋃
k=l+1

{(l, k, i), 1 ≤ i ≤ nl,k}
l−1⋃
j=0

{(j, l, i), 1 ≤ i ≤ nj,l}. (B.81)

Let B̃ denote the set of K + 1 tuples, σ̃ = (σ̃0, . . . , σ̃K) of such bijections. Note that with
this definition of σ̃l(q), (B.70) remains unchanged since we have simply renamed the
variables of integration.
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By interchanging the elements in any of the 2n pairs {πl(2q − 1), πl(2q)} we obtain
a new π′ ∼ P. In fact we obtain 22n different permutations π, in this way, all of which
are compatible with P, and all of which give the same σ̃ in (B.70). Furthermore, by
permuting the pairs {πl(2q − 1), πl(2q)}, 1 ≤ q ≤ nl, for each l, we get all the possible
permutation π̃ ∼ P, and these give all possible mappings σ̃ ∈ B̃. Note that |B̃| =∏K
l=0 nl! ≤ (2n)!.
We now use the notation introduced in the paragraph containing (B.81), and the fact

that there are 22n permutations that are compatible with P, to see that∑
π∼P

∫
Tt(x; π, e)

∏
j,k,i

dxj,k,i (B.82)

= (4cψ,1)
n
∑
σ̃∈B̃

Ft(σ̃, 0, . . . , 0) +O
(
t(2−1/β)n−ε

)
.

Since |B̃| ≤ (2n)!, we see that the error term only depends on m. Consider (B.82) and
the definition of Ft(σ̃, 0, . . . , 0) in (B.70) and use (B.16), with mj,k replaced by nj,k, to
see that ∑

π∼P

∫
Tt(x; π, e)

∏
j,k,i

dxj,k,i (B.83)

= (4cψ,1)
n
E

 K∏
j,k=0

j<k

(αj,k,t)
nj,k

+O
(
t(2−1/β)n−ε

)
;

(αj,k,t is defined in (2.2)).
Recall the definition of S, the set of special pairings, given in the first paragraph of

this subsection. Since there are (2nj,k)!

2nj,knj,k!
pairings of the 2nj,k elements {1, . . . ,mj,k},

(recall that mj,k = 2nj,k), we see that when we sum over all the special pairings we get∑
P∈S

∑
π∼P

∫
Tt(x; π, e)

∏
j,k,i

dxj,k,i (B.84)

=

K∏
j,k=0

j<k

(2nj,k)!

2nj,knj,k!
(4cψ,1)

nj,k E


K∏

j,k=0

j<k

(αj,k,t)
nj,k

+O
(
t(2−1/β)n−ε

)
.

It follows from (B.36) that the error term, still, only depends on m.

The right-hand side of (B.84) is precisely the desired expression in (B.1). Therefore,
to complete the proof of Lemma B.1, we show that for all the other possible values of a,
the integral in (B.26) can be absorbed in the error term.

B.2 a = e but not all cycles are of order two or a 6= e

We show that when a = e but not all cycles are of order two or when a 6= e∣∣∣∣∣
∫
Tt(x; π, a)

∏
j,k,i

dxj,k,i

∣∣∣∣∣ = O
((
t2ψ−1(1/t)

)m
2 t−ε

)
, (B.85)

for some ε = εβ > 0. In this subsection we do not assume that m is even.
Consider the basic formula (B.30). Since we only need an upper bound, we take

absolute values in the integrand and extend all the time integrals to [0, t], as we have
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done several times above. We refer to this integral as the extended integral. We take
the time integrals and get an upper bound for (B.30) involving the terms u, v and w. As
we have done several times above, we choose m of the u, v and w terms with arguments
that span Rm. We then bound the remaining u, v and w terms and then make a change
of variables and integrate the u, v and w terms with the chosen arguments. Since we
want to find the smallest possible upper bound for the extended integral, it is obvious
that we first integrate as many of the w terms as possible, since such integrals are
effectively bounded. (We continue to ignore slowly varying functions of t). We then try
to integrate as many of the v terms as possible.

In order to do this efficiently, we divide the v and w terms into sets. As we construct
the sets of v and w terms, we also choose a subset I of the v and w terms with arguments
that are linearly independent. The cardinality of this subset is a lower bound on the
number of v and w terms that we can integrate.

This is how we divide the v and w terms into sets. For each π and a we de-
fine a multigraph Gπ,a with vertices {(j, k, i), 0 ≤ j < k ≤ K, 1 ≤ i ≤ mj,k}, and
an edge between the vertices πl(q − 1) and πl(q) whenever (a1(l, q), a2(l, q)) = (1, 1),
l = 0, . . .K, 2 ≤ q ≤ ml, and an edge between the vertices πl(1) and πl−1(ml), whenever
(a1(l, 1), a2(l, 1)) = (1, 1), 1 ≤ l ≤ K.

This graph divides the w terms into cycles and chains. Assume that there are S

cycles. We denote them by Cs = {φs,1, . . . , φs,l(s)}, written in cyclic order, where the
cycle length l(s) = |Cs| ≥ 1 and 1 ≤ s ≤ S. For each 1 ≤ s ≤ S we take the set of l(s)
terms

Gcycle
s = {w(xφs,2 − xφs,1), · · · , w(xφs,l(s) − xφs,l(s)−1

), w(xφs,1 − xφs,l(s))}. (B.86)

Let
yφs,i = xφs,i − xφs,i−1

, i = 2, . . . , l(s). (B.87)

It is easy to see that {yφs,i |i = 2, . . . , l(s)}, are linearly independent. We put the corre-
sponding w terms, w(xφs,2 − xφs,1), · · · , w(xφs,l(s) − xφs,l(s)−1

) into I. (On the other hand,
since

l(s)∑
i=2

yφs,i = −(xφs,1 − xφs,l(s)), (B.88)

we see that we can only extract l(s) − 1 linearly independent variables from the l(s)

arguments of w for a given s.)
A cycle of length 1 consists of a single point φs,1 = φl(s),1 in the graph, so in this case

Gcycle
s = {w(0)}. (B.89)

We explain below how this can occur. Obviously, w(0) is not put into I.
Next, suppose there are S′ chains. We denote them by C ′s = {φ′s,1, . . . ,

φ′s,l′(s)}, written in order, where l′(s) = |C ′s| ≥ 2 and 1 ≤ s ≤ S′. Note that there are
l′(s) − 1, w terms corresponding to C ′s. Then for each 1 ≤ s ≤ S′ we form the set of
l′(s) + 1 terms

Gchain
s = {v(xφ′s,1 − xa(s)), w(xφ′s,2 − xφ′s,1), · · · , (B.90)

· · · , w(xφ′
s,l(s)

− xφ′
s,l(s)−1

), v(xb(s) − xφ′
s,l(s)

)}

where v(xφ′s,1−xa(s)) is the unique v term associated with ∆1
xφ′
s,1

, and similarly, v(xb(s)−

xφ′
s,l(s)

) is the unique v term associated with ∆1
xφ′
s,l(s)

. (This deserves further clarifica-

tion. There may be other v terms containing the variable xφ′s,1 in the extended integral,
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but there is only one v term of the form∫ t

0

∣∣∣∆1
xφ′
s,1

ps(xφ′s,1 − u)
∣∣∣ ds, (B.91)

where u is some other x · variable which we denote by xa(s). This is because one op-
erator ∆1

xφ′
s,1

is associated with w(xφ′s,2 − xφ′s,1) and there are precisely two operators

∆1
xφ′
s,1

in (B.30)).

It is easy to see that variables yφ′
s,i

= xφ′
s,i
− xφ′

s,i−1
, i = 2, . . . , l(s), are linearly

independent. We put the w terms, w(xφ′s,2 − xφ′s,1), · · · , w(xφ′
s,l(s)

− xφ′
s,l(s)−1

) into I. We

leave the v terms in Gchain
s out of I.

At this stage we emphasize that the terms we have put in I from all cycles and chains
have linearly independent arguments. If fact, the set of x’s appearing in the different
chains and the cycles are disjoint. This is obvious for the cycles and the interior of the
chains since there are exactly two difference operators ∆x

h for each x. It also must be
true for the endpoints of the chains, since if this is not the case they could be made into
larger chains or cycles.

For the same reason, if a v term involving ∆h
x′ is not in any of the sets of chains, then

x′ will not appear in the arguments of the terms that are put in I from all the cycles and
chains.

Suppose, after considering the w terms and the v terms associated with the chains
of w terms, that there are p pairs of v terms left, each pair corresponding to difference
operators ∆1

zj , j = 1, . . . , p; (p may be 0). Let

Z := {z1, . . . , zp} (B.92)

A typical v term is of the form

v(j)(zj − uj′) := v(zj − uj′) =

∫ t

0

|∆h
zjpt(zj − uj′)| dt, (B.93)

where uj′ is some x · term. We use the superscript (j) is to keep track of the fact that
this v term is associated with the difference operator ∆1

zj . We distinguish between the
variables zj and uj′ by referring to zj as a marked variable. Note that if uj′ is also in Z,
say uj′ = zk, then uj′ is also a marked variable but in a different v term. (In this case,
in v(k)(zk − uk′), where uk′ is some other x · variable.)

Thus Z is the collection of marked variables. Consider the corresponding terms

v(j)(zj − uj) and v(j)(zj − vj), j = 1, . . . , p (B.94)

where uj and vj represent whatever terms x · and x′· are coupled with the two variables
zj .

There may be some j for which uj and vj in (B.94) are both in Z. Choose such a j.
Suppose uj = vj = zk. We set

GZ, 1j = {v(j)(zj − zk), v(j)(zj − zk), (B.95)

v(k)(zk − uk), v(k)(zk − vk)}

and put v(j)(zj − zk) into I. Here uk and vk are whatever two variables appear with the
two marked variables zk.

On the other hand, suppose uj and vj are both in Z but uj = zk and vj = zl with
k 6= l. We set

GZ, 2j = {v(j)(zj − zk), v(j)(zj − zl), (B.96)

v(k)(zk − uk), v(k)(zk − vk), v(l)(zl − ul), v(l)(zl − vl)}
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and put both v(j)(zj − zk) and v(j)(zj − zl) into I.
We then turn to the elements in Z which have not yet appeared in the arguments of

the terms that have been put into I. If there is another j′ for which uj′ and vj′ are both
in Z, choose such a j′ and proceed as above. If there are no longer any such elements
in Z, choose some remaining element, say, zi. Set

GZ, 3i = {v(i)(zi − ui), v(i)(zi − vi)} (B.97)

and if ui 6∈ Z, place v(i)(zi−ui) into I. If ui ∈ Z, so that vi 6∈ Z, place v(i)(zi− vi) into I.
We continue until we have exhausted Z.
The v and w terms in I have linearly independent arguments. We choose an addi-

tional I ′ = m− |I| terms from the remaining u, v and w terms so that the arguments of
the m terms are a spanning set of Rm. We bound the remaining terms by their supre-
mum. We then make a change of variables and integrate separately each of the m terms
in I ∪ I ′. Our goal is to integrate as few u terms as necessary.

Let S1 denote the number of cycles of length 1. The number of w terms in I from
cycles is

S∑
s=1

(l(s)− 1) ≥ 1

2

S∑
s=1

l(s)− S1

2
. (B.98)

The number of w terms in I from chains is

S′∑
s=1

(l′(s)− 1) ≥ 1

2

S′∑
s=1

(l′(s)− 1) +
S′

2
. (B.99)

The number of w terms may be less than m. (In general it is, but we see below that
it is possible that the number of w terms may be equal to m.) Suppose there are ρ terms
of type w. Then the number of v terms must be 2(m− ρ), and consequently, the number
of u terms must be ρ.

We note that

ρ =

S∑
s=1

l(s) +

S′∑
s=1

(l′(s)− 1). (B.100)

Since the total number of w terms is ρ, we see from (B.98) and (B.99) that the number
of w terms in I is at least

ρ

2
+
S′

2
− S1

2
. (B.101)

This shows that for a given ρ the the number of w terms in I is minimized when their
are no chains.

We now turn to the number of integrated v terms. Since the total number of v terms
is 2(m− ρ), and there are also two v terms in each set Gchain

s we see that

2(m− ρ) =
∑
i,j

|GZ, ij |+ 2S′. (B.102)

It is easily seen that we place in I at least 1/4 the number of v terms in the sets GZ, ij

for all i, j. Consequently, the number of v terms with arguments in I is at least

1

4

∑
i,j

|GZ, ij | = m

2
− ρ

2
− S′

2
. (B.103)

Combined with (B.101) we see that the number of w and v terms in I is at least(
m

2
− ρ

2
− S′

2

)
+

(
ρ

2
+
S′

2
− S1

2

)
=
m

2
− S1

2
. (B.104)
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Since m
2 −

S1

2 is an integer, it is at least

m

2
− S1

2
+

1̄

2
, (B.105)

where 1̄ = 0, if m− S1 is even, and 1̄ = 1, if m− S1 is odd.

Suppose that ρ ≥ m
2 + S1

2 − 1̄/2. Then, since there are m terms that are integrated,
the upper bound of the extended integral will be greatest if we integrate m

2 + S1

2 − 1̄/2

terms of the form u, and bound the remaining u terms by their supremum. (Note that
m
2 + S1

2 − 1̄/2 is also an integer.) This gives a bound for the u terms of

t
m
2 +

S1
2 −1̄/2

(
tψ−1(1/t)

)ρ−m2 −S12 +1̄/2
. (B.106)

(We ignore slowly varying function of t.)

Note that when we integrate m
2 + S1

2 − 1̄/2 terms of the form u, we only integrate
m
2 −

S1

2 + 1̄/2 terms of the form v and w. By Lemma A.1 integrated v terms are much
larger than integrated u terms. What is the maximum number of v terms that can be
integrated?

The maximum number of v terms that can be integrated occurs when all the w terms
are in cycles of length 1 or 2, in which case (ρ−S1)/2 terms of the form w are integrated.
This is easy to see, since in this case the right-hand side of (B.98) is realized. (We point
out in the paragraph containing (B.101) that to minimize the number of w terms that
are integrated there should be no chains.)

We are left with m
2 −

ρ
2 + 1̄/2 terms of the form v that are integrated. Since, by (A.6),

the supremum of the v terms are effectively bounded this gives a contribution from all

v terms of
(
tψ−1(1/t)

)m
2 −ρ/2+1̄/2

. Combining the bounds for u and v terms we obtain

t
m
2 +

S1
2 −1̄/2

(
tψ−1(1/t)

)ρ/2−S12 +1̄
(B.107)

=
(
t2ψ−1(1/t)

)m
2
(
tψ−1(1/t)

)−(m2 −ρ/2) (
ψ−1(1/t)

)−S12(
t
(
ψ−1(1/t)

)2)1̄/2

.

It follows from [11, (4.77)] that

t(ψ−1(1/t))2 ≤ C ∀ t ≥ t0. (B.108)

Therefore, when ρ ≥ m
2 + S1

2 − 1̄/2, (B.107) is bounded by

C
(
t2ψ−1(1/t)

)m
2
(
tψ−1(1/t)

)−(m2 −ρ/2) (
ψ−1(1/t)

)−S12 . (B.109)

On the other hand, when ρ < m
2 + S1

2 − 1̄/2, we get the largest upper bound for the
extended integral when we integrate all ρ of the u terms. As above, to get the most v
terms integrated, we only integrate (ρ−S1)/2 terms of the form w. Consequently, since
m terms are integrated, m − 3ρ

2 + S1

2 of the v terms are integrated. (The remaining v

terms are bounded by their supremum, which is effectively bounded.) Combining the
bounds for u and v terms we obtain

tρ
(
tψ−1(1/t)

)m− 3ρ
2 +

S1
2 (B.110)

=
(
t2ψ−1(1/t)

)m
2

(
t
(
ψ−1(1/t)

)3)−ρ/2 (
ψ−1(1/t)

)m
2
(
tψ−1(1/t)

)S1
2 .

EJP 17 (2012), paper 7.
Page 36/111

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/


Central limit theorems for the L2 norm of increments of local times

We now show that we obtain (B.85) when S1 = 0. Consider the case when ρ < m
2 −1̄/2

and refer to (B.110). Note that(
t
(
ψ−1(1/t)

)3)−ρ/2 (
ψ−1(1/t)

)m
2 = t(3/β−1)ρ/2−m/(2β)L(t)

< t(3/β−1)m/4−m/(2β)L(t)

= t−(β−1)m/(4β)L(t), (B.111)

where L(t) is slowly varying at infinity and we use the facts that (3/β)−1 > 0 and ρ < m
2 .

Now we consider the case when ρ ≥ m
2 − 1̄/2. In dealing with (B.109) we also have

that ρ ≤ m − 1, since we arrived at this inequality by assuming that all cycles are of
order two, but are excluding the case when the graph Gπ,a consists solely of cycles
of order two. Therefore m

2 − (ρ/2) in (B.109) is strictly positive. This observation and
(B.111) gives (B.85) when S1 = 0.

We now eliminate the restriction that S1 = 0. This requires additional work since the
estimates on the right-hand side of (B.107) and (B.110) are larger in this case. Actually
we show that the bounds in (B.107) and (B.110) that we obtained when S1 = 0, remain
the same when S1 6= 0.

The only way there can be cycles of length one is in terms of the type

∆1∆−1p(t−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

) (B.112)

when γ2σl(1)−1 = γ2σl−1(nl−1)−1. In this case∫ t

0

|∆1∆−1ps(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)| ds = w(0, t). (B.113)

Note that

|∆1∆−1p(t−
∑ml−1

q=1
rl−1,q)+rl,1

(0)| = 2|∆1p(t−
∑ml−1

q=1
rl−1,q)+rl,1

(0)|. (B.114)

This is how we bound the right-hand side of (B.85) when Gπ,a contains cycles of
length one. We return to the basic formulas (B.29) and (B.30). We obtain an upper
bound for (B.30) by taking the absolute value of the integrand. However, we do not,
initially extend the region of integration with respect to time. Instead we proceed as
follows: Let l′ be the largest value of l for which γ2σl(1)−1 = γ2σl−1(nl−1)−1. We extend the
integral with respect to rl,q to [0, t] for all l > l′, and also for l = l′ and q > 1, and bound
these integrals with terms of the form u( · , t), v( · , t) and w( · , t). We then consider the
integral of the term in (B.114) with respect to rl′,1.

Clearly∫ t

0

|∆1p
(t−
∑m

l′−1
q=1 rl′−1,q)+rl′,1

(0)| drl′,1 ≤
∫ 2t−

∑m
l′−1

q=1 rl′−1,q

t−
∑m

l′−1
q=1 rl′−1,q

|∆1ps(0)| ds (B.115)

If
∑ml−1

q=1 rl−1,q ≤ t/2, we use (A.13) to bound the left-hand side of (B.115) by∫ 2t

t/2

|∆1pr(0)| dr ≤ Ct
(
ψ−1(1/t)

)3 ≤ Cψ−1(1/t), (B.116)

by (B.108).
Suppose, on the other hand, that

∑ml−1

q=1 rl−1,q ≥ t/2. Then for some q we have
rl−1,q ≥ t/2m. We do two things. We bound the contribution of∣∣∣∣∣

((
∆1
xπl−1(q)

)a1(l−1,q) (
∆1
xπl−1(q−1)

)a2(l−1,q)

prl−1,q
(xπl−1(q) − xπl−1(q−1))

) ∣∣∣∣∣ (B.117)
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by its supremum over t/2m ≤ rl−1,q ≤ t.
To express we use the notation

u(x, t) = sup
t/2m≤r≤t

u(x, r), v(x, t) = sup
t/2m≤r≤t

v(x, r), (B.118)

and
w(x, t) = sup

t/2m≤r≤t
w(x, r), (B.119)

so that the bound of (B.117) may be

u(xπl−1(q) − xπl−1(q−1), t), v(xπl−1(q) − xπl−1(q−1), t) (B.120)

or
w(xπl−1(q) − xπl−1(q−1), t)

according to whether there are no, one or two difference operators.
The terms in (B.120) no longer depend on rl−1,q therefore we can integrate (B.114)

with respect to both rl,1 and rl−1,q and use (A.14) get∫ 2t

0

∫ 2t

0

|∆1pr+s(0)| dr ds ≤ C
(
t2
(
ψ−1(1/t)

)3
+ L(t) + 1

)
, (B.121)

where L(t) is a slowly varying function at infinity.
Consider how (B.117) contributes to the bounds in (B.107) and (B.110). If there are

no difference operators they would ultimately contribute either

sup
x
u(x, t) or

∫
u(x, t) dx (B.122)

Now because of the bound in (B.120) we get a contribution of

sup
x
u(x, t) or

∫
u(x, t) dx (B.123)

The following table summarizes results from Lemmas A.1 and C.6. It shows that each
term in (B.122) is smaller than the corresponding term in (B.123) by a factor of Ct−1.
Up to factors of log t the same diminution, or more, occurs when we compare the two
functions of v(x, t) with those of v(x, t) and the two functions of w(x, t) with those of
w(x, t).

f(x, t) supx f(x, t) ≤
∫
f(x, t) dx ≤

u(x, t) Ctψ−1(1/t) t

u(x, t)) Cψ−1(1/t) C

v(x, t) C log t Ctψ−1(1/t) log t

v(x, t) C
(
ψ−1(1/t)

)2 ≤ C/t Cψ−1(1/t) log t

w(x, t) C C(log t)2

w(x, t) C
(
ψ−1(1/t)

)3
C
(
ψ−1(1/t)

)2 ≤ C/t
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To read the table note that the second line states that supx u(x, t) ≤ Cψ−1(1/t) and∫
u(x, t) dx ≤ t, and similarly for the remaining lines.

Combined with (B.121) we see that we have reduced the bounds in (B.107) and
(B.110) by a factor of

C

(
t
(
ψ−1(1/t)

)3
+
L(t) + 1

t

)
≤ Cψ−1(1/t), (B.124)

where for the last inequality we use (B.108), as we do in (B.116).
We apply a similar procedure for each l in decreasing order, with one exception. If

rl−1,q = rl−1,1, i.e., q = 1 in this case and we are also in the (B.114) with l is replaced
by l − 1, we skip this term because this it has already been modified. We then proceed
to deal with remaining terms as we did when we assumed that there were no cycles of
length one.

Consequently, if there are S1 cycles of length 1 we have diminished the bounds in

(B.107) and (B.110) by a factor of at least C
(
ψ−1(1/t)

)S1
2 , if S1 is even and by a factor

of at least C
(
ψ−1(1/t)

)S1
2 + 1

2 , if S1 is odd.
In the case of (B.107) we are precisely in the case we considered when S1 = 0,

which gives (B.85). In the case of (B.110) the final factor is now
(
t(ψ−1(1/t))2

)S1
2 , which

is bounded by a constant by (B.108). Thus we are again in the case we considered when
S1 = 0, which also gives (B.85).

It follows from (B.84) and (B.85) that when m is even∑
a

∑
π0,...,πK

∫
Tt(x; π, a)

∏
j,k,i

dxj,k,i (B.125)

=

K∏
j,k=0

j<k

(2nj,k)!

2nj,knj,k!
(4cψ,1)

nj,k E


K∏

j,k=0

j<k

(αj,k,t)
nj,k

+O
(
t(2−1/β)n−ε

)
.

We now show that we get the same estimates when Tt(x; π, a) is replaced by T ′t (x; π, a);
(see (B.27) and (B.30)).

We point out, in the paragraph containing (B.22) that terms of the form ∆1∆−1p]· in
(B.27) are always of the form ∆1∆−1p·. Therefore, in showing that (B.26) and (B.29)
have the same asymptotic behavior as t → ∞ we need only consider how the proof of
(B.125) must be modified when the arguments of the density functions with one or no
difference operators applied is effected by adding ±1.

It is easy to see that the presence of these terms has no effect on the integrals that
are O

((
t2ψ−1(1/t)

)n
t−ε
)

as t → 0. This is because in evaluating these expressions we
either integrate over all of R1 or else use bounds that hold on all of R1. Since terms
with one difference operator only occur in these estimations, we no longer need to be
concerned with them.

Consider the terms with no difference operators applied to them, now denoted by
p]. So, for example, instead of F (σ̃, 0, . . . , 0) on the right-hand side of (B.80), we now
have ∫ (∫

R̃0(0)×···×R̃K(0)

K∏
l=0

p]
(1−
∑nl−1

q=1
rl−1,2q−1−sl−1)+rl,1

(B.126)

(x
σ̃l(1)

− x
σ̃l−1(nl−1)

)

nl∏
q=2

p]rl,2q−1
(x
σ̃l(q)

− x
σ̃l(q−1)

)

nl∏
q=1

drl,2q−1

)
dx.
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Suppose that p]r(yσ(i) − yσ(i−1)) = pr(yσ(i) − yσ(i−1) ± 1). We write this term as

p]r(yσ(i) − yσ(i−1)) = pr(yσ(i) − yσ(i−1)) + ∆±1pr(yσ(i) − yσ(i−1)). (B.127)

Substituting all such terms into (B.126) and expanding we get (B.125) and many other
terms with at least one pr(yσ(i) − yσ(i−1)) replaced by ∆±1pr(yσ(i) − yσ(i−1)).

Substitute (B.127) into (B.126) and write it as the sum of 2m terms. One term, which
contains no difference operator, is the term we analyzed when we replaced p] by p. All
the other terms contain at least one difference operator. It is easy to see that all these
other terms are O

((
t2ψ−1pt(x, y)1/t

)n
t−ε
)
, for some ε > 0.

By (B.73) the term with no difference operators is bounded by C((t2

ψ−1(1/t))n). This bound is obtained by extending the integrals to [0, t] in (B.72) and
integrating or bounding the resulting terms u( · , t). We are in a situation similar to the
one considered in the paragraph containing (B.122). Each difference operator in the
other terms replaces a u( · , t) term by a v( · , t) term. By Lemma A.1 each replacement
reduces C((t2

ψ−1(1/t))n) by a factor of at least (tψ−1(1/t))−1. Therefore, the replacement of p by p]

doesn’t change (B.125) when m is even.

We now obtain (B.2). In Subsection B.2 we do not require that m is even. Therefore,
(B.2) follows from (B.85) unless Gπ,a consists solely of cycles of order two and there are
no terms with a single difference operator. Therefore, (B.2) follows from (B.85) when
m is odd unless we are in the situation covered in Subsection B.1. This also holds when
when p· is replaced by p]· for the reasons given in the case when m is even.

However, if any of the mj,k are odd we can not be in the situation covered in Sub-
section B.1. Consider the multigraph Gπ described in the paragraph following (B.33),
with vertices {(j, k, i), 0 ≤ j < k ≤ K, 1 ≤ i ≤ mj,k}, and an edge between the vertices
πl(2q− 1) and πl(2q) for each 0 ≤ l ≤ K and 1 ≤ q ≤ nl. Each vertex is connected to two
edges. Suppose that {(j, k, i)} = πl(2q), with j = l and k = l′ 6= l. Then there is a unique
q′ such that πl′(2q′) or πl′(2q′ − 1) is also equal to {(j, k, i)}.

Suppose πl′(2q
′) = {(j, k, i)} and consider πl(2q − 1) and πl′(2q

′ − 1) Suppose that
πl(2q − 1) = {(j, k′, i′)} for some k′ and πl′(2q

′ − 1) = {(j′, k, i′′)} for some j′. In order
that Gπ consist of cycles or order two, we must have (j, k′, i′) = (j′, k, i′′), in particular,
j′ = j, k′ = k, (but, of course, i 6= i′). This shows that for Gπ to consist of cycles or order
two mj,k must be even for each j, k.

This completes the proof of Lemma B.1.

B.3 Proof of Lemma B.3

For any A ⊆ [0, 3t]n we set

FA =

∫ {∫
A

K∏
l=0

prl,1(x
σ̃l(1)

− x
σ̃l−1(nl−1)

) (B.128)

nl∏
q=2

prl,2q−1
(x
σ̃l(q)

− x
σ̃l(q−1)

)

K∏
l=0

nl∏
q=1

drl,2q−1

}
nl∏
q=1

dx
σ̃l(q)

.

Rather than bound the time integral by that over [0, 3t]n as we have in the past, we have
to be more careful.

It follows from (B.70), paying special attention to the time variable of p · in the
second line, that

F (σ, s0, . . . , sK) = FAs0,...,sK (B.129)
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where

As0,...,sK =

{
r ∈ Rn+

∣∣∣∣∣
l−1∑
λ=0

(t−
nλ∑
q=1

rλ,2q−1 − sλ) ≤
nl∑
q=1

rl,2q−1 (B.130)

≤
l−1∑
λ=0

(t−
nλ∑
q=1

rλ,2q−1 − sλ) + (t− sl); l = 0, 1, . . . ,K

}
.

In particular

A0,...,0 =

{
r ∈ [0, 3t]n

∣∣∣∣∣
l−1∑
λ=0

(t−
nλ∑
q=1

rλ,2q−1) ≤
nl∑
q=1

rl,2q−1 (B.131)

≤
l−1∑
λ=0

(t−
nλ∑
q=1

rλ,2q−1) + t); l = 0, 1, . . . ,K

}
.

Let φl(r) =
∑l
λ=0(t−

∑nλ
q=1 rλ,2q−1). We have

As0,...,sK∆A0,...,0 (B.132)

⊆
K⋃
l=1

{
r ∈ [0, 3t]n

∣∣∣∣∣φl−1(r)−
l−1∑
λ=0

sλ ≤
nl∑
q=1

rl,2q−1 ≤ φl−1(r)

}
K⋃
l=0

{
r ∈ [0, 3t]n

∣∣∣∣∣φl−1(r) + t−
l∑

λ=0

sλ ≤
nl∑
q=1

rl,2q−1 ≤ φl−1(r) + t

}
.

=

K⋃
l=1

Al ∪ Bl

where, setting φ̄l−1(r) = φl−1(r)−
∑nl−1
q=1 rl,2q−1 we can write

Al =

{
r ∈ [0, 3t]n

∣∣∣∣∣φ̄l−1(r)−
l−1∑
λ=0

sλ ≤ rl,2nl−1 ≤ φ̄l−1(r)

}
(B.133)

and

Bl =

{
r ∈ [0, 3t]n

∣∣∣∣∣φ̄l−1(r) + t−
l−1∑
λ=0

sλ ≤ rl,2nl−1 ≤ φ̄l−1(r) + t

}
. (B.134)

(The first union in (B.132) are the points in As0,...,sK that are not in A0,...,0 and the second
union are the points in A0,...,0 that are not in As0,...,sK .)

Note that each time rl,2nl−1 is contained in an interval of length 2(K + 1)n
√
t.

We bound each FAl and FBl as in (B.73) except that we only integrate with respect
to rl,2nl−1 over Al or Bl. Therefore, instead of getting a bound of u(x, t) or

∫
u(x, t) dx

from this term we get a smaller bound.

To see this, for fixed a, b ≥ 0, let

ua,b(x) =

∫ a+b

a

ps(x) ds. (B.135)

Clearly ∫
ua,b(x) dx =

∫ a+b

a

1 ds = b. (B.136)
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In addition, by (C.5),

sup
x
ua,b(x) = sup

x

∫ a+b

a

∫
eipxe−sψ(p) dp ds (B.137)

=

∫ a+b

a

∫
e−sψ(p) dp ds ≤

∫ b

0

∫
e−sψ(p) dp ds ≤ Cbψ−1(b).

Using (B.135)–(B.137) with b = C
√
t, and Lemma A.1 we see that the bound in (B.73)

is reduced by a factor of at least (tψ−1(1/t))−( 1
2−ε

′) for any ε′ > 0.

C Proofs of Lemmas A.1–A.3 and B.2

Since the Lévy processes, X, that we are concerned with satisfy (1.6), it follows from
the Riemann Lebesgue Lemma that they have transition probability density functions,
which we designate as ps( · ). Taking the inverse Fourier transform of the characteristic
function Xs, and using the symmetry of ψ, we see that

ps(x) =
1

2π

∫
eipx e−sψ(p) dp (C.1)

=
1

π

∫ ∞
0

cos(px) e−sψ(p) dp.

Our basic hypothesis is that ψ(λ) is regularly varying at 0 with index 1 < β ≤ 2.
Therefore ψ( · ) is asymptotic to an increasing function near zero. Considering the way
we use ψ( · ) in the estimates below, we can assume that ψ(λ) is strictly increasing for
0 ≤ λ ≤ λ0, for some λ0 > 0, and that ψ−1(λ) is well defined for 0 ≤ λ ≤ λ0. Actually,
we are really interested in ψ−1(1/s) as s → ∞. Therefore, there exists an s0 such that
ψ−1(1/s), as a function of s is regularly varying with index −1/β for s ≥ s0.

The next two lemmas give fundamental estimates that are used in the proofs of the
lemmas in Section A.

Lemma C.1 Let X be a symmetric Lévy process with Lévy exponent ψ(λ) that is regu-
larly varying at 0 with index 1 < β ≤ 2 and satisfies (1.6)–(1.8). Then for all γ ≥ 1 and
for all s sufficiently large and all x ∈ R1,

ps(x) ≤ C

(
ψ−1(1/s) ∧ 1

ψ−1(1/s)x2

)
; (C.2)

|∆γps(x)| ≤ Cγ2

((
ψ−1(1/s)

)2 ∧ 1 + log+ |x|
x2

)
; (C.3)

|∆γ∆−γps(x)| ≤ Cγ2

((
ψ−1(1/s)

)3 ∧ ψ−1(1/s)

x2

)
. (C.4)

Lemma C.2 Let X be a symmetric Lévy process with Lévy exponent ψ(λ) that is regu-
larly varying at 0 with index 1 < β ≤ 2 and satisfies (1.6)–(1.8). Then for all t sufficiently
large and all x ∈ R1

u(x, t) :=

∫ t

0

ps(x) ds ≤ C
(
tψ−1(1/t) ∧ t(1 + log+ |x|)

|x|

)
, (C.5)

vγ(x, t) :=

∫ t

0

|∆γ ps(x)| ds ≤ Cγ2

(
log t ∧ tψ

−1(1/t)

|x|
∧ t1 + log+ |x|

x2

)
(C.6)

and

wγ(x, t) :=

∫ t

0

|∆γ∆−γ ps(x)| ds ≤ Cγ2

(
1 ∧ log t

|x|
∧ tψ

−1(1/t)

|x|2

)
. (C.7)
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We use the following lemma repeatedly.

Lemma C.3 For all p ∈ R1 and s, q > 0,

e−sψ(p) ≤ C

sqψq(p)
. (C.8)

Proof This is elementary since for all q > 0

e−sψ(p) ≤
sups≥0 s

qψq(p)e−sψ(p)

sqψq(p)
. (C.9)

Proof of Lemma C.1 We first note that by (C.8) with q = 1, and (1.6)∫ ∞
0

e−sψ(p) dp (C.10)

≤

(∫ ψ−1(1/s)

0

e−sψ(p) dp+

∫ 1

ψ−1(1/s)

e−sψ(p) dp+

∫ ∞
1

e−sψ(p) dp

)

≤

(
ψ−1(1/s) +

1

s

∫ 1

ψ−1(1/s)

1

ψ(p)
dp+

1

s

∫ ∞
1

1

ψ(p)
dp

)

≤ C
(
ψ−1(1/s) +

1

s

)
≤ Cψ−1(1/s),

for all s sufficiently large. Therefore, it follows from (C.1), that for all s sufficiently large

ps(x) ≤ C
(
ψ−1(1/s)

)
. (C.11)

By integration by parts

ps(x) =
1

πx

∫ ∞
0

e−sψ(p) d(sin px) (C.12)

= − 1

πx

∫ ∞
0

sin px

(
d

dp
e−sψ(p)

)
dp

= − 1

πx2

∫ ∞
0

cos px

(
d2

dp2
e−sψ(p)

)
dp.

where the last line uses the fact that ψ′(0) = 0, which follows from (1.5) and the first
inequality in (1.7).

We have

d2

dp2
e−sψ(p) =

(
s2(ψ′(p))2 − sψ′′(p)

)
e−sψ(p) (C.13)

By (C.8) and (1.7) for p ≤ 1

s2(ψ′(p))2e−sψ(p) ≤ C s(ψ
′(p))2

ψ(p)
≤ C sψ(p)

p2
(C.14)

and

s|ψ′′(p)|e−sψ(p) ≤ C sψ(p)

p2
. (C.15)
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Therefore, for all s sufficiently large∣∣∣∣ ∫ ψ−1(1/s)

0

cos px

(
d2

dp2
e−sψ(p)

)
dp

∣∣∣∣ ≤ Cs

∫ ψ−1(1/s)

0

ψ(p)

p2
dp

≤ C

ψ−1(1/s)
. (C.16)

By (C.8), (C.13) and (1.7), for p ≤ 1∣∣∣∣ d2

dp2
e−sψ(p)

∣∣∣∣ ≤ C

{(
ψ′(p)

ψ(p)

)2

+
|ψ′′(p)|
ψ(p)

}
≤ C

p2
. (C.17)

Therefore, for all s sufficiently large∣∣∣∣ ∫ 1

ψ−1(1/s)

cos px

(
d2

dp2
e−sψ(p)

)
dp

∣∣∣∣ ≤ C

∣∣∣∣ ∫ 1

ψ−1(1/s)

1

p2
dp

≤ C

ψ−1(1/s)
. (C.18)

By (C.17) and (1.8)∣∣∣∣ ∫ ∞
1

cos px

(
d2

dp2
e−sψ(p)

)
dp

∣∣∣∣ ≤ C ∫ ∞
1

{(
ψ′(p)

ψ(p)

)2

+
|ψ′′(p)|
ψ(p)

}
dp ≤ C. (C.19)

Using (C.11), (C.12), (C.16), (C.18) and (C.19) we get (C.2).

We now obtain (C.4).

∆γ∆−γps(x) = 2ps(x)− ps(x+ γ)− ps(x− γ) (C.20)

=
4

π

∫ ∞
0

cos(px) sin2(pγ/2) e−sψ(p) dp.

Therefore, by (C.8)

|∆γ∆−γps(x)| (C.21)

≤ C
∫ ∞

0

sin2(pγ/2) e−sψ(p) dp

≤ Cγ2

(∫ ψ−1(1/s)

0

p2 dp +
1

s3

∫ 1

ψ−1(1/s)

p2

ψ3(p)
dp+

1

s3

∫ ∞
1

p2

ψ3(p)
dp

)
≤ Cγ2

(
ψ−1(1/s)

)3
.

We next show that

∆γ∆−γps(x) =
8

π

Kγ(s, x)

x2
(C.22)

where

Kγ(s, x) :=

∫ ∞
0

sin2(px/2)
(

sin2(pγ/2) e−sψ(p)
)′′

dp. (C.23)

To get this we integrate by parts in (C.20),∫ ∞
0

cos px sin2(pγ/2) e−sψ(p) dp (C.24)

=
1

x

∫ ∞
0

sin2(pγ/2) e−sψ(p) d(sin px)
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= − 1

x

∫ ∞
0

sin px
(

sin2(pγ/2) e−sψ(p)
)′
dp

= − 1

x

∫ ∞
0

(
sin2(pγ/2) e−sψ(p)

)′
d

(∫ p

0

sin rx dr

)
= − 1

x2

∫ ∞
0

(
sin2(pγ/2) e−sψ(p)

)′
d (1− cos px)

=
2

x2

∫ ∞
0

sin2(px/2)
(

sin2(pγ/2) e−sψ(p)
)′′

dp.

which gives (C.22).
Let g(p) = e−sψ(p) and note that(

2 sin2(pγ/2) e−sψ(p)
)′

= γg(p) sin(pγ) + 2g′(p) sin2(pγ/2) (C.25)

and(
2 sin2(p/2) e−sψ(p)

)′′
= γ2g(p) cos(pγ) + 2γg′(p) sin(pγ) + 2g′′(p) sin2(pγ/2). (C.26)

Substituting (C.26) in (C.23) we write Kγ(s, x) = I + II + III.
Note that

|I| = γ2

∣∣∣∣ ∫ ∞
0

cos(pγ) sin2(px/2)e−sψ(p) dp

∣∣∣∣ (C.27)

≤ γ2

∫ ∞
0

e−sψ(p) dp ≤ Cγ2ψ−1(1/s)

by (C.10).
By (C.26)

|II| = 2γ
∣∣∣ ∫ ∞

0

sin(pγ) sin2(px/2)g′(p) dp
∣∣∣ (C.28)

≤ Cγ2

∫ ψ−1(1/s)

0

ps|ψ′(p)| e−sψ(p) dp

+Cγ2

∫ 1

ψ−1(1/s)

ps|ψ′(p)| e−sψ(p) dp

+Cγ

∫ ∞
1

s|ψ′(p)| e−sψ(p) dp

By (1.7) and (C.8) the first of these last three integrals

≤ C
∫ ψ−1(1/s)

0

sψ(p) e−sψ(p) dp ≤ C
∫ ψ−1(1/s)

0

dp ≤ Cψ−1(1/s). (C.29)

By (1.7) and (C.8) the second of the last three integrals in (C.28)

≤ C

s

∫ 1

ψ−1(1/s)

s2ψ2(p)

ψ(p)
e−sψ(p) dp ≤ C

s

∫ 1

ψ−1(1/s)

dp

ψ(p)
≤ Cψ−1(1/s). (C.30)

By (1.8) and (C.8) the third of the last three integrals in (C.28)

1

s

∫ ∞
1

s2ψ2(p)
|ψ′(p)|
ψ2(p)

e−sψ(p) dp ≤ 1

s

∫ ∞
1

|ψ′(p)|
ψ2(p)

dp ≤ C

s
. (C.31)

Since 1/s < ψ−1(1/s) for all s sufficiently large, and γ ≥ 1, we see that

|II| ≤ Cγ2ψ−1(1/s) ∀x ∈ R1. (C.32)

EJP 17 (2012), paper 7.
Page 45/111

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/


Central limit theorems for the L2 norm of increments of local times

Similarly,

|III| = 2
∣∣∣ ∫ ∞

0

sin2(pγ) sin2(px/2)g′′(p) dp
∣∣∣ (C.33)

≤ Cγ2

∫ ψ−1(1/s)

0

p2
(
s|ψ′′(p)|+ s2|ψ′(p)|2

)
e−sψ(p) dp

+Cγ2

∫ 1

ψ−1(1/s)

p2
(
s|ψ′′(p)|+ s2|ψ′(p)|2

)
e−sψ(p) dp

+C

∫ ∞
1

(
s|ψ′′(p)|+ s2|ψ′(p)|2

)
e−sψ(p) dp

≤ Cγ2

∫ ψ−1(1/s)

0

(
sψ(p) + s2ψ2(p)

)
e−sψ(p) dp

+
Cγ2

s

∫ 1

ψ−1(1/s)

1

ψ(p)

(
s2ψ2(p) + s3ψ3(p)

)
e−sψ(p) dp

+
C

s

∫ ∞
1

(
s2ψ2(p)

|ψ′′(p)|
ψ2(p)

+ s3ψ3(p)
|ψ′(p)|2

ψ3(p)

)
e−sψ(p) dp

≤ Cγ2ψ−1(1/s).

Note that limλ→∞ ψ(λ) =∞, see e.g. [11, Lemma 4.2.2], so that (1.8) implies that∫ ∞
1

|ψ′(λ)|2

ψ3(λ)
dλ <∞,

∫ ∞
1

|ψ′′(λ)|
ψ2(λ)

dλ <∞. (C.34)

We use this to bound the next to last line in (C.33).
Combining (C.21), (C.22), (C.27), (C.32), and (C.33) we get (C.4).

We now obtain (C.3). Note that

∆γps(x) = ps(x+ γ)− ps(x) (C.35)

=
1

π

∫ ∞
0

(cos p(x+ γ)− cos px) e−sψ(p) dp

= − 2

π

∫ ∞
0

cos(px) sin2(pγ/2)e−sψ(p)

− 1

π

∫ ∞
0

sin(px) sin(pγ) e−sψ(p) dp

Thus

∆γps(x) = −1

2
∆γ∆−γps(x)− 1

π

∫ ∞
0

sin(px) sin(pγ) e−sψ(p) dp. (C.36)

The second order difference is bounded in (C.4). We deal with the second integral which
is bounded by∫ ∞

0

| sin(pγ)| e−sψ(p) dp (C.37)

≤ γ

(∫ ψ−1(1/s)

0

p dp+

∫ 1

ψ−1(1/s)

pe−sψ(p) dp+

∫ ∞
1

e−sψ(p) dp

)

≤ Cγ

((
ψ−1(1/s)

)2
+

1

s2

∫ 1

ψ−1(1/s)

p

ψ2(p)
dp+

1

s2

∫ ∞
1

1

ψ2(p)
dp

)
≤ Cγ

(
ψ−1(1/s)

)2
.
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This gives us the first bound in (C.3). To obtain the second bound we integrate by parts
twice to get ∫ ∞

0

sin(px) sin(pγ) e−sψ(p) dp (C.38)

= − 1

x

∫ ∞
0

sin(pγ) e−sψ(p) d(cos px)

=
1

x

∫ ∞
0

cos(px)
(

sin(pγ) e−sψ(p)
)′
dp

=
1

x2

∫ ∞
0

(
sin(pγ) e−sψ(p)

)′
d (sin px)

= − 1

x2

∫ ∞
0

sin(px)
(

sin(pγ) e−sψ(p)
)′′

dp.

:=
G

x2
.

Since (
sin(pγ) e−sψ(p)

)′′
=
(
−γ2 sin(pγ)− 2sγ cos(pγ)ψ′(p) (C.39)

− sin(pγ)(sψ′′(p)− s2(ψ′(p))2
)
e−sψ(p),

we can write

G = G1 +G2 +G3, (C.40)

where

|G1| = γ2
∣∣∣ ∫ ∞

0

sin(px) sin(pγ) e−sψ(p) dp
∣∣∣ (C.41)

≤ Cγ2
(
ψ−1(1/s)

)
,

for all s sufficiently large, by (C.10).
Using (C.8), (1.7) and (1.8), we see that

|G2| = 2γ
∣∣∣ ∫ ∞

0

sin px cos(pγ)
(
ψ′(p) se−sψ(p)

)
dp (C.42)

≤ Cγ

∫ 1

0

| sin px| |ψ′(p)|se−sψ(p) dp+ Cγ

∫ ∞
1

|ψ′(p)|se−sψ(p) dp

≤ Cγ

∫ 1

0

| sin px|
p

dp+
Cγ

s

∫ ∞
1

|ψ′(p)|
ψ2(p)

dp

≤ Cγ
(
1 + log+ x+ (1/s)

)
,

where we use ∫ 1

0

| sin px|
p

dp =

∫ |x|
0

| sin p|
p

dp ≤ Cγ
(
1 + log+ |x|

)
. (C.43)

Therefore, for s sufficiently large

|G2| ≤ Cγ
(
1 + log+ |x|

)
. (C.44)

Similarly,

|G3| =
∣∣∣ ∫ ∞

0

sin px sin pγ
(
sψ′′(p)− s2(ψ′(p))2

)
e−sψ(p) dp

∣∣∣
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≤ Cγ

∫ 1

0

| sin px| p
(
s|ψ′′(p)|+ s2(ψ′(p))2

)
e−sψ(p) dp (C.45)

+C

∫ ∞
1

(
s|ψ′′(p)|+ s2(ψ′(p))2

)
e−sψ(p) dp

≤ Cγ

∫ 1

0

| sin px|
(
sψ(p)|
p

+
s2ψ2(p)

p

)
e−sψ(p) dp

+C

∫ ∞
1

(
|ψ′′(p)|
ψ(p)

+
(ψ′(p))2

ψ2(p)

)
dp

≤ Cγ

(∫ 1

0

| sin px|
p

dp+ C

)
≤ Cγ

(
1 + log+ |x|

)
.

Combining (C.41)–(C.45) we get the second bound in (C.3).

We use the next two lemmas in the proof of Lemma C.2.

Lemma C.4 Let X be a symmetric Lévy process with Lévy exponent ψ(λ) that is reg-
ularly varying at zero with index 1 < β ≤ 2 and satisfies (1.6). Then for any r ≥ 0 and
t > 0, ∫ t

0

sre−sψ(p) ds ≤ Ck
(
t ∧ 1

ψ(p)

)r+1

; (C.46)

for all t ≥ 0, where Ck < ∞, is a constant depending on k. Furthermore, for any r ≥ 0

and all t sufficiently large,∫ ∞
0

ψr(p)

∫ t

0

sre−sψ(p) ds dp ≤ Ctψ−1(1/t). (C.47)

Proof The first part of the bound in the first inequality in (C.46) comes from taking
e−sψ(p) ≤ 1; the second from letting t =∞.

Since
ψr(p)sre−sψ(p) = 2rψr(p)

(s
2

)r
e−sψ(p)/2e−sψ(p)/2, (C.48)

it follows from (C.8) and (C.10) that∫ ∞
0

ψr(p)sre−sψ(p) dp ≤ C
∫ ∞

0

e−sψ(p)/2 dp ≤ Cψ−1(1/s) (C.49)

for all s sufficiently large. On the other hand for any fixed t0,∫ ∞
0

∫ t0

0

e−sψ(p)/2 ds dp = 2

∫ ∞
0

1− e−t0ψ(p)/2

ψ(p)
dp <∞, (C.50)

by (1.6). Putting these two together, and using the fact that ψ−1(1/t) is regularly varying
at infinity, gives (C.47).

Lemma C.5 Under the hypotheses of Theorem 1.1, for r = 0, 1, . . .∫ 1

0

| sin px|
p

ψr(p)

(
t ∧ 1

ψ(p)

)r+1

dp ≤ Ct(1 + log+ |x|); (C.51)∫ 1

0

ψr(p)

(
t ∧ 1

ψ(p)

)r+1

dp ≤ Ctψ−1(1/t); (C.52)∫ t

0

∫ ∞
0

| sin pγ| e−sψ(p) dp ds ≤ Cγ log t, (C.53)

for all t sufficiently large.
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Proof We first note that for r = 0, 1, . . .

ψr+1(p)

(
t ∧ 1

ψ(p)

)r+2

≤ ψr(p)
(
t ∧ 1

ψ(p)

)r+1

(C.54)

So we need only prove (C.51) and (C.52) for r = 0. In this case, (C.51) follows immedi-
ately from (C.43).

For (C.52) we have∫ 1

0

(
t ∧ 1

ψ(p)

)
dp

≤ t
∫ ψ−1(1/t)

0

dp+

∫ 1

ψ−1(1/t)

1

ψ(p)
dp ≤ Ctψ−1(1/t),

for all t sufficiently large.
By (C.50) and (C.37), there exists a t0 such that for all t ≥ t0,∫ t

0

∫ ∞
0

| sin pγ| e−sψ(p) dp ds (C.55)

≤
∫ t0

0

∫ ∞
0

e−sψ(p) dp ds+

∫ t

t0

∫ ∞
0

| sin pγ| e−sψ(p) dp ds

≤ C + Cγ

∫ t

t0

(
ψ−1(1/s)

)2
ds ≤ C + Cγ log t,

where for the last bound we use (B.108). (This bound can not be smaller since we may
have ψ(p) = p2.)

Proof of Lemma C.2 For the first bound in (C.5) we use (C.1) and (C.47) with r = 0

to get ∫ t

0

ps(x) ds ≤ 1

π

∫ ∞
0

∫ t

0

e−sψ(p) ds dp = O(tψ−1(1/t)), (C.56)

as t→∞. For the second bound in (C.5) we use (1.7), (C.46) and (C.51), to see that∫ t

0

ps(x) ds =
1

π

∫ ∞
0

cos px

∫ t

0

e−sψ(p) ds dp (C.57)

=

∣∣∣∣∣ 1

πx

∫ ∞
0

∫ t

0

e−sψ(p) ds d(sin px)

∣∣∣∣∣
≤ 1

π|x|

∫ ∞
0

| sin px|
∣∣∣∣ ddp

∫ t

0

e−sψ(p) ds

∣∣∣∣ dp
≤ C

|x|

∫ ∞
0

| sin px||ψ′(p)|
(
t ∧ 1

ψ(p)

)2

dp

≤ C

|x|

(∫ 1

0

| sin px|
p

ψ(p)

(
t ∧ 1

ψ(p)

)2

dp

+

∫ ∞
1

|ψ′(p)|
ψ2(p)

dp

)
≤ C

t(1 + log+ |x|)
|x|

.

Thus we get (C.5).
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We next obtain (C.7). Consider (C.20). For γ > 1∫ ∞
0

sin2(pγ/2)

ψ(p)
dp (C.58)

≤ Cγ2

∫ 1/γ

0

p2

ψ(p)
dp+

∫ 1

1/γ

1

ψ(p)
dp+

∫ ∞
1

1

ψ(p)
dp

≤ C
(

1

γψ(1/γ)
+ 1

)
,

and for γ = 1 the integral is a constant. It follows from this and (B.108) that

sup
x∈R1

∫ ∞
0

|∆γ∆−γps(x)| ds ≤ Cγ2. (C.59)

This gives the first bound in (C.7).
To obtain the third bound in (C.7), consider (C.22)–(C.26). By (C.47) with r = 0, we

have ∫ t

0

|I| ds = γ2

∫ t

0

∣∣∣ ∫ ∞
0

cos pγ sin2(px/2)e−sψ(p) dp
∣∣∣ ds (C.60)

≤ γ2

∫ ∞
0

(∫ t

0

e−sψ(p) ds

)
dp ≤ Cγ2tψ−1(1/t),

for all t sufficiently large. Using (1.7). (1.8) and (C.47) with r = 1 we get∫ t

0

|II| ds = 2γ

∫ t

0

∣∣∣ ∫ ∞
0

sin pγ sin2(px/2)g′(p) dp
∣∣∣ ds (C.61)

≤ 2γ

∫ 1

0

| sin(pγ)ψ′(p)|
(∫ t

0

se−sψ(p) ds

)
dp

+2γ

∫ ∞
1

| sin(pγ)ψ′(p)|
(∫ t

0

se−sψ(p) ds

)
dp

≤ Cγ2

∫ 1

0

ψ(p)

(∫ t

0

se−sψ(p) ds

)
dp

+Cγ

∫ ∞
1

|ψ′(p)|
ψ2(p)

dp

≤ Cγ2
(
tψ−1(1/t)

)
+ Cγ

∫ ∞
1

|ψ′(p)|
ψ2(p)

dp

≤ Cγ2
(
tψ−1(1/t)

)
+ Cγ.

Similarly,∫ t

0

|III| ds = 2

∫ t

0

∣∣∣ ∫ ∞
0

sin2(pγ/2) sin2(px/2)g′′(p) dp
∣∣∣ ds (C.62)

≤ Cγ2

∫ 1

0

p2

(∫ t

0

(
s|ψ′′(p)|+ s2|ψ′(p)|2

)
e−sψ(p) ds

)
dp

+C

∫ ∞
1

(∫ ∞
0

(
s|ψ′′(p)|+ s2|ψ′(p)|2

)
e−sψ(p) ds

)
dp

≤ Cγ2

∫ 1

0

(∫ t

0

(
sψ(p) + s2ψ2(p)

)
e−sψ(p) ds

)
dp

+C

∫ ∞
1

(
ψ′′(p)

ψ2(p)
+

(ψ′(p))2

ψ3(p)

)
dp

≤ Cγ2tψ−1(1/t) + C.
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Combining (C.60)-(C.62) with (C.22) we get the third bound in (C.7).
To get the second bound in (C.7) we use the third integral in (C.24) to see that

∆γ∆−γps(x) = − 4

π

L(s, x)

x
(C.63)

where

L(s, x) =

∫ ∞
0

sin px
(

sin2(pγ/2) e−sψ(p)
)′
dp. (C.64)

Using (C.25) and (1.7) we see that∫ t

0

|L| ds (C.65)

≤ Cγ
∫ t

0

∫ ∞
0

| sin pγ|g(p) dp ds+ C

∫ t

0

∫ ∞
0

sin2 (pγ/2)|g′(p)| dp ds.

By (C.53) the first term on the right-hand side is bounded by Cγ2 log t. For the second
term we note that ∫ t

0

∫ ∞
0

sin2 (pγ/2)|g′(p)| dp ds (C.66)

≤ Cγ2

∫ 1

0

p2|ψ′(p)|
∫ t

0

se−sψ(p) ds dp

+C

∫ ∞
1

|ψ′(p)|
∫ t

0

se−sψ(p) ds dp

= IV + V.

By (C.46)

IV ≤ Cγ2

∫ 1

0

pψ(p)

(
t2 ∧ 1

ψ2(p)

)
dp (C.67)

≤ Ct2γ2

∫ ψ−1(1/t)

0

pψ(p) dp+ Cγ2

∫ 1

ψ−1(1/t)

p

ψ(p)
dp

≤ Cγ2t(ψ−1(1/t))2 + Cγ2

∫ 1

ψ−1(1/t)

1

p
dp

≤ Cγ2 log t,

where we use (B.108) which implies that p/ψ(p) ≤ C/p for p ∈ [0, 1]. The integral V ≤ C
by (C.46) and (1.8). Using all the material from (C.63) to this point we get the second
bound in (C.7). This completes the proof of (C.7).

Using (C.36), (C.59), (C.7) and (C.53) we get the first bound in (C.6).
We now obtain the third bound in (C.6). Considering (C.36) and (C.7), it suffices to

show that ∫ t

0

∣∣∣ ∫ ∞
0

sin(px) sin(pγ) e−sψ(p) dp
∣∣∣ ds ≤ Ctγ2 1 + log+ |x|

x2
. (C.68)

Consider (C.38)–(C.40). We have∫ t

0

|G1| ds = γ2

∫ t

0

∣∣∣ ∫ ∞
0

sin px sin pγ e−sψ(p) dp
∣∣∣ ds (C.69)

≤ γ2

∫ t

0

∫ ∞
0

e−sψ(p) dp ≤ Cγ2tψ−1(1/t),
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by (C.47).
Using (C.51) and (1.8), we see that∫ t

0

|G2| ds = 2γ

∫ t

0

∣∣∣ ∫ ∞
0

sin px cos pγ
(
ψ′(p) se−sψ(p)

)
dp
∣∣∣ ds (C.70)

≤ 2γ

∫ 1

0

| sin px||ψ′(p)|
(∫ t

0

se−sψ(p) ds

)
dp+ 2γ

∫ ∞
1

|ψ′(p)|
ψ2(p)

dp

≤ Cγ

∫ 1

0

| sin px|
p

ψ(p)

(
t ∧ 1

ψ(p)

)2

dp+ Cγ

≤ Cγt
(
1 + log+ |x|

)
.

Similarly, ∫ t

0

|G3| ds (C.71)

=

∫ t

0

∣∣∣ ∫ ∞
0

sin px sin pγ
(
sψ′′(p)− s2(ψ′(p))2

)
e−sψ(p) dp

∣∣∣ ds
≤ Cγ

∫ 1

0

| sin px| p
(∫ t

0

(
s|ψ′′(p)|+ s2(ψ′(p))2

)
e−sψ(p) ds

)
dp

+C

∫ ∞
1

(∫ ∞
0

(
s|ψ′′(p)|+ s2(ψ′(p))2

)
e−sψ(p) ds

)
dp

≤ Cγ
∫ 1

0

| sin px|
p

ψ(p)

(
t ∧ 1

ψ(p)

)2

dp

+Cγ

∫ 1

0

| sin px|
p

ψ2(p)

(
t ∧ 1

ψ(p)

)3

dp

+C

∫ ∞
1

|ψ′′(p)|
ψ2(p)

dp+ C

∫ ∞
1

(ψ′(p))2

ψ3(p)
dp

≤ Cγ
(
1 + log+ |x|

)
t.

This completes the proof of (C.68) and gives us the third bound in (C.6)
The second bound in (C.6) follows from the third line of (C.38) and the observation

that ∣∣∣∣∣
∫ t

0

∫ ∞
0

cos px
(

sin(pγ) e−sψ(p))
)′
dp

∣∣∣∣∣ (C.72)

≤ γ
∫ ∞

0

∫ t

0

e−sψ(p) ds dp+

∫ ∞
0

∫ t

0

| sin pγ||ψ′(p)|se−sψ(p) ds dp

≤ Cγ(tψ−1(1/t)) + γ

∫ 1

0

ψ(p)

(
t ∧ 1

ψ(p)

)2

dp

+

∫ ∞
1

|ψ′(p)|
ψ2(p)

dp

≤ C(1 ∨ γ)(tψ−1(1/t)).

In this chain of inequalities we use (C.47), (1.7), (1.8) and (C.52).

Proof of Lemma A.1 The inequalities in (A.5)–(A.7) follow immediately from Lemma
C.2.

The inequality in (A.8) is trivial, since ps(x) is a probability density for all s > 0.
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To obtain (A.9) we use (C.6) with γ = 1 to get∫ ∞
0

v(x, t) dx (C.73)

≤ C

(
log t

∫ tψ−1(1/t)

0

dx+ tψ−1(1/t)

∫ 2c/ψ−1(1/t)

tψ−1(1/t)

1

x
dx

+Ct

∫ ∞
2c/ψ−1(1/t)

log x

x2
dx

)
≤ C(tψ−1(1/t) log t),

for all t sufficiently large. Note that when β < 2 it is clear that tψ−1(1/t) < 1/ψ−1(1/t)

for all t sufficiently large. In general we use (B.108) with c representing the constant.
For (A.11) we use (C.7) to see that∫ ∞

0

(∫ t

0

|∆1∆−1 ps(x)| ds
)2

dx (C.74)

≤ C
∫ log t

0

(∫ t

0

|∆1∆−1 ps(x)| ds
)2

dx

+2

∫ ∞
log t

(∫ t

0

|∆1∆−1 ps(x)| ds
)2

dx

≤ C log t+ C

∫ ∞
log t

(log t)2

x2
dx ≤ C log t.

A similar argument gives (A.12) since∫ ∞
u

(∫ t

0

|∆1∆−1 ps(x)| ds
)2

dx ≤ C
∫ ∞
u

(log t)2

x2
dx = C

(log t)2

u
. (C.75)

Finally, to obtain (A.10) we use (C.7) to get∫ ∞
0

∫ t

0

∣∣∣∆1∆−1 ps(x)
∣∣∣ ds dx (C.76)

=

∫ 1

0

∫ t

0

∣∣∣∆1∆−1 ps(x)
∣∣∣ ds dx+

∫ tψ−1(1/t)

1

∫ t

0

∣∣∣∆1∆−1 ps(x)
∣∣∣ ds dx

+

∫ ∞
tψ−1(1/t)

∫ t

0

∣∣∣∆1∆−1 ps(x)
∣∣∣ ds dx

≤ C
∫ 1

0

1 dx+ C log t

∫ tψ−1(1/t)

1

1

|x|
dx

+C

∫ ∞
tψ−1(1/t)

tψ−1(1/t)

|x|2
dx

≤ C + C(log t)2 + C.

We use the next lemma in the proof of Lemma A.2.

Lemma C.6 Under the hypotheses of Theorem 1.1, for all t sufficiently large and all
x ∈ R1

u(x, t) := sup
δt≤s≤t

ps(x) ≤ C

(
ψ−1(1/t) ∧ 1

ψ−1(1/t)x2

)
; (C.77)
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v(x, t) := sup
δt≤s≤t

|∆1ps(x)| ≤ C

((
ψ−1(1/t)

)2 ∧ 1 + log+ |x|
x2

)
; (C.78)

w(x, t) := sup
δt≤s≤t

|∆1∆−1ps(x)| ≤ C

((
ψ−1(1/t)

)3 ∧ ψ−1(1/t)

x2

)
. (C.79)

In addition ∫
u(x, t) dx ≤ C; (C.80)∫
v(x, t) dx ≤ Cψ−1(1/t) log t; (C.81)∫
w(x, t) dx ≤ C

(
ψ−1(1/t)

)2 ≤ C

t
. (C.82)

Proof By (C.2)

sup
δt≤s≤t

ps(x) ≤ C
(
ψ−1(1/δt) ∧ 1

ψ−1(1/t)x2

)
, (C.83)

and by the regular variation property ψ−1(1/δt) ≤ Cψ−1(1/t). (The constant depends
on δ but that doesn’t matter.) The inequalities in (C.78) and (C.79) follow similarly from
(C.3) and (C.4).

The inequalities in (C.80)–(C.82) follow easily from (C.77)–(C.79). For (C.80) we write∫
u(x, t) dx ≤ C

∫ a

0

ψ−1(1/t) dx+

∫ ∞
a

1

ψ−1(1/t)x2
dx, (C.84)

where a = 1/ψ−1(1/t). For (C.81) and (C.82) we proceed similarly with a = 1/ψ−1(1/t)

in both cases.

Proof of Lemma A.2 The inequality in (A.13) follows from (C.36) and (C.4).
To obtain (A.14) we write∫ 2t

0

∫ 2t

0

|∆1pr+s(0)| dr ds (C.85)

=

∫ 2t

0

u|∆1pu(0)| du+

∫ 4t

2t

(4t− u)|∆1pu(0)| du.

By (C.36) and (C.20)∫ 2t

0

u|∆1pu(0)| du ≤ 2

π

∫ 2t

0

u

∫ ∞
0

sin2(p/2) e−uψ(p) dp du (C.86)

=
2

π

∫ ∞
0

sin2(p/2)

∫ 2t

0

u e−uψ(p) du dp.

In addition ∫ 2t

0

u e−uψ(p) du ≤
(

1

ψ2(p)

(
1− e−2tψ(p)

)
∧ Ct

ψ(p)

)
, (C.87)

where, for the final inequality we use Lemma C.3. Consequently, for all t sufficiently
large, ∫ ∞

0

sin2(p/2)

∫ 2t

0

u e−uψ(p) du dp (C.88)

≤ Ct
∫ ψ−1(1/t)

0

p2

ψ(p)
dp+

1

4

∫ 1

ψ−1(1/t)

p2

ψ2(p)
+

∫ ∞
1

1

ψ2(p)
dp

≤ C
(
t2
(
ψ−1(1/t)

)3
+ 1
)

+
1

4

∫ 1

ψ−1(1/t)

p2

ψ2(p)
dp.
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Note that

∫ 1

ψ−1(1/t)

p2

ψ2(p)
dp ≤

 Ct2
(
ψ−1(1/t)

)3
if β > 3/2

L(t) if β = 3/2

C if β < 3/2,

where L(t) is a slowly varying function at infinity. Therefore∫ 2t

0

u|∆1pu(0)| du ≤ C
(
t2
(
ψ−1(1/t)

)3
+ L(t) + 1

)
. (C.89)

In addition ∫ 4t

2t

(4t− u)|∆1pu(0)| du ≤ Ct

∫ 4t

2t

|∆1pu(0)| du (C.90)

= Ct

∫ 2t

0

|∆1pv+2t(0)| dv

Note that by (C.36), (C.20) and (C.79)

|∆1pv+2t(0)| =
1

2
|∆1∆−1pv+2t(0)| (C.91)

≤ 1

2
|∆1∆−1p2t(0)| ≤ C

(
ψ−1(1/t)

)3
.

Here we also use the fact that ∆1∆−1ps(0) is decreasing in s, and the regular variation
of ψ. Consequently ∫ 4t

2t

(4t− u)|∆1pu(0)| du ≤ Ct2
(
ψ−1(1/t)

)3
. (C.92)

Thus we obtain (A.14).

Proof of Lemma A.3 The equality in (A.15) follows easily from (C.1).

The equality in (A.16) follows from (B.75) integrated with respect to r and r′.

For (A.17) we use Parseval’s Theorem, (see (B.75)) to get

∫ (∫ t

0

∆1∆−1 ps(x) ds

)2

dx =
16

π

∫ ∞
0

sin4(p/2)

ψ2(p)

(
1− e−tψ(p)

)2

dp. (C.93)

To complete the proof of (A.17) we note that by (C.8)∫ ∞
0

sin4(p/2)

ψ2(p)
e−tψ(p) dp ≤ C

t1/3

∫ ∞
0

sin4(p/2)

ψ7/3(p)
dp ≤ C

t1/3
. (C.94)

Proof of Lemma B.2 The first inequality is given in (C.6). The second inequality
follows from the definition of v∗ in (B.60). For (B.63) we note that in the proof of (A.9),
on page 53, we are actually integrating v∗(x, t).
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D Proof of Lemma 2.4

Set
h = ψ−1(1/t), so that ψ(h) = 1/t. (D.1)

Proof of Lemma 2.4 By the Kac Moment Formula, (see (3.9)),

E

((∫
(Lxt )2 dx

)n)
(D.2)

= 2n
∑
π

∫ (∫
{
∑2n

i=1
si≤t}

2n∏
i=1

psi(yπ(i) − yπ(i−1)) dsi

)
n∏
i=1

dyi

= 2n
∑
π

1

(2π)2n

∫ (∫
{
∑2n

i=1
si≤t}

2n∏
i=1

∫
eipi(yπ(i)−yπ(i−1))e−siψ(pi) dpi dsi

)
n∏
i=1

dyi

= 2n
(
t

2π

)2n∑
π

∫ (∫
{
∑2n

i=1
si≤1}

2n∏
i=1

∫
eipi(yπ(i)−yπ(i−1))e−sitψ(pi) dpi dsi

)
n∏
i=1

dyi.

Here the sum in the second line runs over all maps π of {1, . . . , 2n} into {1, . . . , n},
such that |π−1(j)| = 2 for each 1 ≤ j ≤ n, and we set π(0) = 0. Thus, by (D.1) and many
changes of variables

(2π)2n(t2ψ−1(1/t))−nE

((∫
(Lxt )2 dx

)n)
(D.3)

= (2π)2nt−2nh−n2nE

((∫
(Lxt )2 dx

)n)
= h−n2n

∑
π

∫ (∫
{
∑2n

i=1
si≤1}

2n∏
i=1

∫
eipi(yπ(i)−yπ(i−1))e−sitψ(pi) dpi dsi

)
n∏
i=1

dyi

= hn2n
∑
π

∫ (∫
{
∑2n

i=1
si≤1}

2n∏
i=1

∫
eipih(yπ(i)−yπ(i−1))e−sitψ(pih) dpi dsi

)
n∏
i=1

dyi

= 2n
∑
π

∫ (∫
{
∑2n

i=1
si≤1}

2n∏
i=1

∫
eipi(yπ(i)−yπ(i−1))e−siψ(pih)/ψ(h) dpi dsi

)
n∏
i=1

dyi.

Using the regular variation of ψ at zero the proof follows once we justify interchanging
the limit and the integrals.

For σ fixed let

fh(y) =

∫
{
∑2n

i=1
si≤1}

2n∏
i=1

∫
eipiyie−siψ(pih)/ψ(h) dpi dsi (D.4)

= 22n

∫
{
∑2n

i=1
si≤1}

2n∏
i=1

∫ ∞
0

cos piyi e
−siψ(pih)/ψ(h) dpi dsi

Considering (D.3) it suffices to show that for each fixed y = (y1, . . . , yn)

lim
h→0

fh(y) = 22n

∫
{
∑2n

i=1
si≤1}

2n∏
i=1

∫ ∞
0

cos piyi e
−sipβi dpi dsi. (D.5)
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and fh(y) is bounded and integrable in y, uniformly in h ≤ h0, for some h0 > 0, suffi-
ciently small. In fact we show that

sup
h≤h0

|fh(y)| ≤ C
2n∏
i=1

(
1 ∧ 1

y2
i

)
. (D.6)

We first obtain (D.5). For M large, write

1 =

2n∏
i=1

(
1{0≤pi≤M} + 1{pi≥M}

)
(D.7)

and

fh(y) = 22n

∫
{
∑2n

i=1
si≤1}

2n∏
i=1

∫ M

0

cos piyi e
−siψ(pih)/ψ(h) dpi dsi +Gh. (D.8)

Here Gh is a sum of many terms, in each of which pi ≥ M , for at least one 1 ≤ i ≤ 2n.
Suppose there are k terms with pi ≥M . We bound these terms by

22n

(∫ 1

0

∫ M

0

e−sψ(ph)/ψ(h) dp ds

)2n−k (∫ 1

0

∫ ∞
M

e−sψ(ph)/ψ(h) dp ds

)k
. (D.9)

By (1.5), for any ε > 0, (see also [3, Theorem 1.5.6]),∫ 1

0

∫ M

0

e−sψ(ph)/ψ(h) dp ds (D.10)

≤ 1 +

∫ 1

0

∫ M

1

e−sψ(ph)/ψ(h) dp ds

≤ 1 +

∫ 1

0

∫ M

1

e−sCp
β−ε

dp ds,

which is bounded by a constant independent of M . Using the regular variation of ψ at
zero, we have ∫ 1

0

∫ ∞
M

e−sψ(ph)/ψ(h) dp ds (D.11)

≤ ψ(h)

∫ ∞
M

1

ψ(hp)
dp =

ψ(h)

h

∫ ∞
hM

1

ψ(s)
ds

=
ψ(h)

h

∫ 1

hM

1

ψ(s)
ds+

ψ(h)

h

∫ ∞
1

1

ψ(s)
ds

≤ Cψ(h)M

ψ(hM)
+ C

ψ(h)

h
,

for all h sufficiently small. Therefore, as in (D.10),

lim sup
h→0

∫ 1

0

∫ ∞
M

e−sψ(ph)/ψ(h) dp ds ≤ C

Mβ−1
. (D.12)

Thus

lim sup
h→0

|Gh| ≤
C

Mβ−1
. (D.13)

Now consider the integral in (D.8). By the regular variation of ψ at zero and the
Dominated Convergence Theorem,

lim
h→0

∫
{
∑2n

i=1
si≤1}

2n∏
i=1

∫ M

0

cos piyi e
−siψ(pih)/ψ(h) dpi dsi (D.14)

=

∫
{
∑2n

i=1
si≤1}

2n∏
i=1

∫ M

0

eipiyi cos piyi e
−sipβi dpi dsi.
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Thus we get (D.5).
We show below that for any J ⊆ {1, . . . , 2n} we have

sup
h≤h0

|fh(y)| ≤ C
∏
i∈J

(
1

y2
i

)
. (D.15)

In particular, (D.15) also holds when J is the empty set, so that suph≤h0

|fh(y)| ≤ C. Using this it is easy to see that (D.6) holds.
It follows from integrating by parts twice that∫ ∞

0

cos(py) e−sψ(ph)/ψ(h) dp = − 1

y2

∫ ∞
0

cos(py)
(
e−sψ(ph)/ψ(h)

)′′
dp. (D.16)

where we use the fact that ψ′(0) = 0, which follows from (1.5) and the first inequality in
(1.7). Applying this for all i ∈ J we see that

fh(y) =
∏
i∈J

(
−1

y2
i

)∫
{
∑2n

i=1
si≤1}

∏
i∈J

∫ ∞
0

cos piyi

(
e−siψ(pih)/ψ(h)

)′′
dpi dsi

∏
i∈Jc

∫ ∞
0

cos piyi e
−siψ(pih)/ψ(h) dpi dsi. (D.17)

Therefore

|fh(y)| ≤
∏
i∈J

(
1

y2
i

)(∫ 1

0

∫ ∞
0

∣∣∣∣ (e−sψ(ph)/ψ(h)
)′′ ∣∣∣∣ dp ds)|J|(∫ 1

0

∫ ∞
0

e−sψ(ph)/ψ(h) dp ds

)|Jc|
. (D.18)

It is easily seen that∫ 1

0

∫ ∞
0

e−sψ(ph)/ψ(h) dp ds ≤ C sup
h

∫ (
1 ∧ ψ(h)

ψ(hp)

)
dp. (D.19)

Therefore, for h ≤ 1, ∫ (
1 ∧ ψ(h)

ψ(hp)

)
dp (D.20)

≤
∫ 1

0

1 dp+

∫ 1/h

1

ψ(h)

ψ(hp)
dp+

∫ ∞
1/h

ψ(h)

ψ(hp)
dp

= 1 +
ψ(h)

h

(∫ 1

h

1

ψ(p)
dp+

∫ ∞
1

1

ψ(p)
dp

)
≤ C.

Consequently, to obtain (D.15) we need only show that, for h ≤ 1,∫ 1

0

∫ ∞
0

∣∣∣∣ (e−sψ(ph)/ψ(h)
)′′ ∣∣∣∣ dp ds <∞. (D.21)

We have ∣∣∣∣ (e−sψ(ph)/ψ(h)
)′′ ∣∣∣∣ (D.22)

≤
∣∣∣∣h2(ψ′(hp))2

ψ2(h)

∣∣∣∣s2e−sψ(ph)/ψ(h) +

∣∣∣∣h2ψ′′(hp))

ψ(h)

∣∣∣∣se−sψ(ph)/ψ(h).
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Using (1.7) and (1.8) we see that, for h ≤ 1,∫ 1

0

∫ ∞
0

∣∣∣∣h2(ψ′(hp))2

ψ2(h)

∣∣∣∣s2e−sψ(ph)/ψ(h) dp ds (D.23)

≤ C
∫ ∞

0

∣∣∣∣h2(ψ′(hp))2

ψ2(h)

∣∣∣∣ (1 ∧ ψ(h)

ψ(hp)

)3

dp

≤ Ch2

ψ2(h)

∫ 1

0

(ψ′(hp))2 dp+ Ch2ψ(h)

∫ ∞
1

(ψ′(hp))2

ψ3(hp)
dp

≤ Ch

ψ2(h)

∫ h

0

(ψ′(s))2 ds+ Chψ(h)

∫ ∞
h

(ψ′(s))2

ψ3(s)
ds

≤ C

(
h

ψ2(h)

∫ h

0

ψ2(s)

s2
ds+ hψ(h)

∫ 1

h

1

s2ψ(s)
ds+ C

)
≤ C ′.

Similarly, ∫ 1

0

∫ ∞
0

∣∣∣∣h2ψ′′(hp))

ψ(h)

∣∣∣∣se−sψ(ph)/ψ(h) dp ds (D.24)

≤ C
∫ ∞

0

∣∣∣∣h2ψ′′(hp))

ψ(h)

∣∣∣∣ (1 ∧ ψ(h)

ψ(hp)

)2

dp

≤ Ch2

ψ(h)

∫ 1

0

ψ′′(hp) dp+ Ch2ψ(h)

∫ ∞
1

ψ′′(hp)

ψ2(hp)
dp

≤ Ch

ψ(h)

∫ h

0

ψ′′(s) ds+ Chψ(h)

∫ ∞
h

ψ′′(s)

ψ2(s)
ds

≤ C

(
h

ψ(h)

∫ h

0

ψ(s)

s2
ds+ hψ(h)

∫ 1

h

1

s2ψ(s)
ds+ C

)
≤ C ′.

Thus we obtain (D.21).

E Estimates for the mean and variance

Proof of Lemma 3.2 By the Kac Moment Formula

E

(∫
(Lx+1

t − Lxt )2 dx

)
(E.1)

= 2

∫ ∫
{
∑2

i=1
ri≤t}

∆1pr1(x)∆1pr2(0) dr1 dr2 dx

+2

∫ ∫
{
∑2

i=1
ri≤t}

pr1(x)∆1∆−1pr2(0) dr1 dr2 dx.

When we integrate with respect to x we get zero in the first integral and one in the
second. Consequently, by (C.1)

E

(∫
(Lx+1

t − Lxt )2 dx

)
= 2

∫
{
∑2

i=1
ri≤t}

∆1∆−1pr2(0) dr1 dr2 (E.2)

= 4

∫ t

0

(t− r) (pr(0)− pr(1)) dr

=
8

π

∫ ∞
0

sin2 p/2

∫ t

0

(t− r)e−rψ(p) dr dp.
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Note that ∫ t

0

(t− r)e−rψ(p) dr =
t

ψ(p)
− 1− e−tψ(p)

ψ2(p)
. (E.3)

By (1.12)

8t

π

∫ ∞
0

sin2(p/2)

ψ(p)
dp = 4cψ,0t. (E.4)

Therefore the absolute value of the error term in (3.16) is

8

π

∫ ∞
0

sin2(p/2)

ψ2(p)

(
1− e−tψ(p)

)
dp ≤ 8

π

∫ ∞
0

sin2(p/2)

ψ2(p)
(1 ∧ tψ(p)) dp. (E.5)

We break this last integral into three parts and see that it is bounded by

C

(
t

∫ ψ−1(1/t)

0

p2

ψ(p)
dp+

∫ 1

ψ−1(1/t)

p2

ψ2(p)
dp+

∫ ∞
1

1

ψ2(p)
dp

)
(E.6)

We have

t

∫ ψ−1(1/t)

0

p2

ψ(p)
dp ≤ Ct2

(
ψ−1(1/t)

)3
. (E.7)

In addition ∫ ∞
1

1

ψ2(p)
dp ≤ C. (E.8)

If β > 3/2 ∫ 1

ψ−1(1/t)

p2

ψ2(p)
dp ≤ Ct2

(
ψ−1(1/t)

)3
. (E.9)

If β = 3/2 ∫ 1

ψ−1(1/t)

p2

ψ2(p)
dp ≤ CL(t) (E.10)

for some function L that is slowly varying at infinity. If β < 3/2∫ 1

ψ−1(1/t)

p2

ψ2(p)
dp ≤ C. (E.11)

Using (E.5)–(E.11) we get (3.17).

Let

Z =

∫
(Lx+1

t − Lxt )2 dx. (E.12)

We get an upper bound for the variance of Z by finding an upper bound for EZ2 and us-
ing (3.16) to estimate (EZ)2. We proceed as in the beginning of the proof of Lemma B.1,
however there are enough differences that it is better to repeat some of the arguments.

By the Kac Moment Theorem

E

(
2∏
i=1

(
∆1
xiL

xi
t

) (
∆1
yiL

yi
t

))
(E.13)

=

2∏
i=1

(
∆1
xi∆

1
yi

)∑
σ

∫
{
∑4

i=1
ri≤t}

4∏
i=1

pri(σ(i)− σ(i− 1))

4∏
i=1

dri
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where the sum runs over all bijections σ : [1, 4] 7→ {xi, yi, 1 ≤ i ≤ 2} and we take
σ(0) = 0. We rewrite (E.13) so that each ∆1

· applies to a single p · factor and then set
yi = xi and then integrate with respect to x1, . . . , xm to get

E

((∫
(Lx+1

t − Lxt )2 dx

)2
)

(E.14)

= 4
∑
π,a

∫ ∫
{
∑4

i=1
ri≤t}

4∏
i=1

(
∆1
xπ(i)

)a1(i) (
∆1
xπ(i−1)

)a2(i)

p]ri(xπ(i) − xπ(i−1))

4∏
i=1

dri

2∏
i=1

dxi.

In (E.14) the sum runs over all maps π : [1, 4] 7→ [1, 2] with |π−1(i)| = 2 for each i and
over all a = (a1, a2) : [1, . . . , 4] 7→ {0, 1} × {0, 1} with the property that for each i there
are exactly two factors of the form ∆1

xi . The factor 4 comes from the fact that we can
interchange each yi and xi, i = 1, 2. As usual we take π(0) = 0.

As we did in Section B, we continue the analysis with p] replaced by p.

Note that in (E.14) it is possible to have ‘bound states’, that is values of i for which
π(i) = π(i − 1). We first consider the terms in (E.14) with two bound states. There are
two possible maps. They are (π(1), π(2), π(3), π(4)) = (1, 1, 2, 2) and (π(1), π(2), π(3), π(4)) =

(2, 2, 1, 1). The terms in (E.14) for the map (π(1), π(2), π(3), π(4)) = (1, 1, 2, 2) are of the
form

4∏
i=1

(
∆1
xπ(i)

)a1(i) (
∆1
xπ(i−1)

)a2(i)

pri(xπ(i) − xπ(i−1)), (E.15)

where the density terms have the form

pr1(x1)pr2(y1 − x1)pr3(x2 − y1)pr4(y2 − x2), (E.16)

and where yi − xi = 0, 1 = 1, 2.

The value of the integrals of the terms in (E.15) depend upon how the difference
operators are distributed. In many cases the integrals are equal to zero. For example
suppose we have

∆1
x1
pr1(x1)∆1

x1
pr2(0)∆1

x2
pr3(x2 − x1)∆1

x2
pr4(0), (E.17)

which we obtain by setting y1 = x1. Written out this term is

(pr1(x1 + 1)− pr1(x1)) ∆1
x1
pr2(0) (E.18)

(pr3(x2 − x1 + 1)− pr3(x2 − x1)) ∆1
x2
pr4(0)

By a change of variables one sees that the integral of this term with respect to x1 and
x2 is zero.

The only non-zero integrals in (E.15) comes from

pr1(x1)∆1∆−1pr2(0)pr3(x2 − x1)∆1∆−1pr4(0). (E.19)

The integral of this term with respect to x1 and x2 is

∆1∆−1pr2(0)∆1∆−1pr4(0). (E.20)
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We get the same contribution when (π(1), π(2), π(3), π(4)) = (2, 2, 1, 1). Consequently,
the contribution to (E.14) of maps with two bound states is

8

∫
{
∑4

i=1
ri≤t}

∆1∆−1pr2(0) ∆1∆−1pr4(0)

4∏
i=1

dri (E.21)

= 32

∫
{
∑4

i=1
ri≤t}

(pr2(0)− pr2(1)) (pr4(0)− pr4(1))

4∏
i=1

dri

= 16

∫
{u+v≤t}

(t− u− v)2 (pu(0)− pu(1)) ((pv(0)− pv(1)) du dv.

≤ 16t2
(∫ ∞

0

(pu(0)− pu(1)) du

)2

= (4cψ,0t)
2,

(see (A.15)).

We next consider the contribution from terms with exactly one bound state. These
come from maps of the form (π(1), π(2), π(3), π(4)) = (1, 2, 2, 1) or (π(1), π(2), π(3), π(4)) =

(2, 1, 1, 2). These terms give non-zero contributions of the form

Q2 :=

∫ ∫
{
∑4

i=1
ri≤t}

pr1(x)∆1
xpr2(y − x) ∆1

y∆−1
y pr3(0) ∆1

xpr4(x− y)

4∏
i=1

dri dx dy (E.22)

=

∫ ∫
{
∑4

i=1
ri≤t}

∆−1pr2(y) ∆1∆−1pr3(0) ∆−1pr4(y)

4∏
i=1

dri dy;

Q3 :=

∫ ∫
{
∑4

i=1
ri≤t}

pr1(x)∆1
x∆1

ypr2(y − x) pr3(0) ∆1
x∆h

ypr4(x− y)

4∏
i=1

dri dx dy (E.23)

=

∫ ∫
{
∑4

i=1
ri≤t}

∆1∆−1pr2(y) pr3(0) ∆1∆−1pr4(y)
4∏
i=1

dri dy;

and

Q4 :=

∫ ∫
{
∑4

i=1
ri≤t}

pr1(x)∆1
x∆1

ypr2(y − x) ∆1
ypr3(0) ∆h

xpr4(x− y)

4∏
i=1

dri dx dy (E.24)

=

∫ ∫
{
∑4

i=1
ri≤t}

∆1∆−1pr2(y) ∆1pr3(0) ∆−1pr4(y)

4∏
i=1

dri dy.

For further explanation consider Q2. This arrangement comes from the sequence
(x1, y2, x2, y1). The expression it is equal to comes by making the change of variables,
y − x→ y and then integrating with respect to x.

Integrating and using (A.6), (A.7) and (A.9) we see that

|Q2| ≤ t

(∫ t

0

|∆1∆−1ps(0)| ds
) ∫ (∫ t

0

|∆−1pr(y)| dr
)2

dy (E.25)
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≤ t w(0, t) sup
x
v(x, t)

∫
v(y, t) dy

≤ Ct2ψ−1(1/t)(log t)2.

To obtain a bound for Q3 we use (A.5) and (A.11) to see that it is bounded in absolute
value by

t

(∫ t

0

ps(0) ds

) ∫ (∫ t

0

|∆1∆−1pr(y)| dr
)2

dy

= tu(0, t)

∫
w2(y, t) dy

≤ Ct2ψ−1(1/t) log t. (E.26)

Integrating Q4 we see that it is bounded in absolute value by

t

∫ t

0

∣∣∣∣∆1pr(0)

∣∣∣∣ dr ∫ (∫ t

0

∣∣∆1∆−1pr(y)
∣∣ dr ∫ t

0

∣∣∆−1pr(y)
∣∣ dr) dy

≤ tv(0, t) sup
x
v(x, t)

∫
w(y, t) dy

≤ Ct(log t)3, (E.27)

by (A.6) and (A.10).

Finally, we consider the contribution from terms in (E.14) with no bound states.
These have to be from π of the form (π(1), π(2), π(3), π(4))

= (1, 2, 1, 2) or of the form (π(1), π(2), π(3), π(4)) = (2, 1, 2, 1). They give contributions of
the form

Q5 (E.28)

:=

∫ ∫
{
∑4

i=1
ri≤t}

pr1(x)∆1
xpr2(y − x) ∆1

y∆1
xpr3(x− y) ∆1

ypr4(y − x)

4∏
i=1

dri dx dy

=

∫ ∫
{
∑4

i=1
ri≤t}

∆−1pr2(y) ∆1∆−1pr3(y) ∆1pr4(y)

4∏
i=1

dri dy

and

Q6 (E.29)

:=

∫ ∫
{
∑4

i=1
ri≤t}

pr1(x)∆1
x∆1

ypr2(y − x) pr3(x− y) ∆h
x∆1

ypr4(x− y)

4∏
i=1

dri dx dy

=

∫ ∫
{
∑4

i=1
ri≤t}

∆1∆−1pr2(y) pr3(y) ∆1∆−1pr4(y)

4∏
i=1

dri dy.

Clearly

|Q5| ≤ t
∫ (∫ t

0

|∆−1pr(y)| dr
)

(E.30)
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(∫ t

0

|∆1pr(y)| dr
)(∫ t

0

|∆1∆−1pr(y)| dr
)
dy

≤ t sup
x
v2(x, t)

∫
w(y, t) dy.

≤ Ct(log t)3,

by (A.6) and (A.10).
The term Q6 is bounded the same way we bounded Q3 and has the same bound.

We can now obtain an upper bound for the variance. Note that by (3.16)

(EZ)
2

=

(
E

(∫
(Lx+1

t − Lxt )2 dx

))2

= (4cψ,0t)
2

+O (tg(t)) . (E.31)

Therefore, it follows from (E.14) and (E.21) that

Var Z ≤ EZ2 − (EZ)
2

=

6∑
j=2

|Qj |+ Ctg(t) (E.32)

as t→∞. Thus we see that

Var Z ≤ C
(
tg(t) + t2ψ−1(1/t) log t

)
. (E.33)

Note that for all t sufficiently large

tg(t) ≤ (tψ−1(1/t))3 ≤ Ct2ψ−1(1/t), (E.34)

where we use (B.108). Thus we get (3.18).

F Kac Moment Formula

We derive the version of the Kac Moment Formula that we have been using.
Let X = {Xt, t ∈ R+} denote a symmetric Lévy process with continuous local time

L = {Lxt ; (x, t) ∈ R1 × R+}. Since L is continuous we have the occupation density
formula, ∫ t

0

g(Xs) ds =

∫
g(x)Lxt dx, (F.1)

for all continuous functions g with compact support. (See, e.g. [11, Theorem 3.7.1].)
Let f(x) be a continuous function on R1 with compact support with

∫
f(x) dx = 1.

Let fε,y(x) := 1
ε f
(
x−y
ε

)
. I.e., fε,y(x) is an approximate δ-function at x. Set

Lxt,ε =

∫ t

0

fε,x (Xs) ds. (F.2)

It follows from (F.1) that
Lxt = lim

ε→0
Lxt,ε a. s. (F.3)

Let pt(x, y) denote the probability density of Xt.

Theorem F.1 (Kac Moment Formula) Let X = {Xt, t ∈ R+} denote a symmetric
Lévy process with continuous local time L = {Lxt ; (x, t) ∈ R1 × R+}. For any fixed
0 < t <∞, bounded continuous g, and any x1, . . . , xm, z ∈ R1,

Ez

(
m∏
i=1

Lxit g(Xt)

)
=
∑
π

∫
{
∑m

j=1
rj≤t}

m∏
j=1

prj (xπ(j−1), xπ(j)) (F.4)

(∫
pt−rm(xπ(m), y)g(y) dy

) m∏
j=1

drj ,
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where the sums run over all permutations π of {1, . . . ,m} and π(0) := 0 and x0 := z.

Proof Let

Ft(x1, . . . , xm) =

∫
{
∑m

j=1
rj≤t}

m∏
j=1

prj (xj−1, xj) (F.5)

(∫
pt−rm(xm, y)g(y) dy

) m∏
j=1

drj

Then

Ez

(
m∏
i=1

Lxit,ε g(Xt)

)
(F.6)

=
∑
π

∫
{0≤tπ(1)≤...≤tπ(m)≤t}

Ez

 m∏
j=1

fε,xj
(
Xtπ(j)

)
g(Xt)

 m∏
j=1

dtπ(j)

=
∑
π

∫
{0≤t1≤...≤tm≤t}

Ez

 m∏
j=1

fε,xπ(j)

(
Xtj

)
g(Xt)

 m∏
j=1

dtj

=
∑
π

∫ ∫
{
∑m

j=1
rj≤t}

m∏
j=1

fε,xπ(j)
(yj)prj (yj−1, yj) (F.7)

(∫
pt−rm(ym, y)g(y) dy

) m∏
j=1

drj dyj

=
∑
π

∫
Ft(y0, . . . , ym)

m∏
j=1

fε,xπ(j)
(yj) dyj

where y0 := z.
Since the integrand in (F.5) is dominated by (2π)−m/2

∏m
j=1 r

−1/2
j it follows from

the Dominated Convergence Theorem that Ft(x1, . . . , xm) is a continuous function of
(x1, . . . , xm) for all 0 ≤ t < ∞ and all m. It then follows immediately from (F.6) and the
fact that

∏m
j=1 fε,xπ(j)

(yj) has compact support that

lim
ε→0

E

(
m∏
i=1

Lxit,ε g(Xt)

)
=
∑
π

Ft(xπ(0), xπ(1), . . . , xπ(m)). (F.8)

A repetition of the above proof shows that E
({∏m

i=1 L
xi
t,ε

}2
)

is bounded uniformly in

ε > 0. This fact and (F.3) show that

lim
ε→0

E

(
m∏
i=1

Lxit,ε g(Xt)

)
= E

(
m∏
i=1

Lxit g(Xt)

)
. (F.9)

Obviously (F.8) and (F.9) imply (F.4).

G Estimates for the asymptotic behavior of small differences of
the transition probability densities of certain Lévy processes

Sections G–K contain the proofs of the lemmas needed to prove Theorem 1.2. The
most critical ingredient in the proof of Theorem 1.2 is Lemma H.1. To prove it we need
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estimates on the asymptotic behavior of small differences of the transition probability
densities for the Lévy processes under consideration.

The proofs of the following lemmas are given in Section J. For notation see the first
paragraph of Section A.

Lemma G.1 Let X be a symmetric Lévy process with Lévy exponent ψ(λ) that is reg-
ularly varying at infinity with index 1 < β ≤ 2 and satisfies (1.16) and (1.17). Let ps(x)

denote the transition probability density of X. Then

ps(x) ≤ Cψ
−1(1/s) ∨ 1

1 + x2
, ∀x ∈ R1, s ∈ (0, 1]; (G.1)

u(x) :=

∫ 1

0

ps(x) ds ≤ C

1 + x2
, ∀x ∈ R1; (G.2)∫ ∫ t

0

ps(x) ds dx = t, (G.3)

and for all h sufficiently small

v(x) :=

∫ 1

0

|∆h ps(x)| ds ≤ C

(
1

hψ(1/h)
∧ h

|x|
∧ h

x2

)
(G.4)

≤ C

hψ(1/h)

(
1

1 + x2

)
,

∫
v(x) dx = O (h log 1/h) , (G.5)

and ∫
vp(x) dx = O

(
h

hp−1ψp−1(1/h)

)
, p ≥ 2, (G.6)

as h→ 0. In addition,

w(x) :=

∫ 1

0

|∆h∆−h ps(x)| ds ≤ C
(

1

hψ(1/h)
∧ 1

ψ(1/h)|x|
∧ h2

|x|2

)
; (G.7)

∫
w(x) dx = O

(
log(1/h)

ψ(1/h)

)
; (G.8)∫

w2(x) dx = O

(
1

hψ2(1/h)

)
; (G.9)∫

|x|≥u
w2(x) dx ≤ O

(
1

uψ2(1/h)

)
, (G.10)

as h→ 0.

Lemma G.2 Under the same hypotheses as Lemma G.1,

hψ2(1/h)

cψ,h,1 − ∫ (∫ √h
0

∆h∆−h ps(x) ds

)2

dx

 = O(h1/2). (G.11)

Remark G.3 We allow ψ to be regularly varying at infinity with index 2, but note that
that because ψ is the Lévy exponent of a symmetric Lévy process

ψ(λ) = O(λ2) as λ→∞. (G.12)

(See, e.g., [11, Lemma 4.2.2] and then include Brownian motion.)
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Lemma G.4 Under the same hypotheses as Lemma G.1,

sup
δ≤r≤1

pr(0) ≤ C
(
ψ−1(1/δ) ∨ 1

)
; (G.13)

sup
δ≤r≤1

|∆hpr(0)| ≤ C

δ3
h2; (G.14)

and

sup
δ≤r≤1

|∆h∆−hpr(0)| ≤ C

δ3
h2. (G.15)

Lemma G.5 Let 0 < δ < 1, then, under the hypotheses of Theorem 1.2, for

uδ(x) := sup
δ≤r≤1

pr(x), vδ(x) := sup
δ≤r≤1

|∆hpr(x)|, (G.16)

and wδ(x) := sup
δ≤r≤1

|∆h∆−hpr(x)|,

we have

uδ(x) ≤ Cψ−1(1/δ)

(
1 ∧ 1

x2

)
, (G.17)

vδ(x) ≤ C

δ3
h

(
1 ∧ 1

x2

)
, (G.18)

and

wδ(x) ≤ C

δ3
h2

(
1 ∧ 1

x2

)
. (G.19)

In addition∫
uδ(x) dx ≤ Cψ−1(1/δ),

∫
(uδ(x))2 dx ≤ C

(
ψ−1(1/δ)

)2
, (G.20)∫

vδ(x) dx ≤ C

δ3
h,

∫
v2
δ(x) dx ≤ C

δ6
h2, (G.21)∫

wδ(x) dx ≤ C

δ3
h2,

∫
w2
δ(x) dx ≤ C

δ6
h4, (G.22)

as h→ 0.

H Moments of increments of local times.

Refer to (4.1) and (4.5). To simplify the notation we set

Jj,k,h := Jj,k,h,1, αj,k := αj,k,1. (H.1)

Lemma H.1 Let mj,k, 0 ≤ j < k ≤ K be positive integers with
∑K
j,k=0,j<k

mj,k = m. If all the integers mj,k are even, then for some ε > 0

E

 K∏
j,k=0

j<k

(Jj,k,h)
mj,k

 (H.2)

=

K∏
j,k=0

j<k

(2nj,k)!

2nj,k(nj,k!)
(4cψ,h,1)

nj,k E

 K∏
j,k=0

j<k

(αj,k)
nj,k

+O
(
h(2β−1)n+ε

)
,
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where nj,k = mj,k/2 and n = m/2. If any of the mj,k are odd, then

E

 K∏
j,k=0

j<k

(Jj,k,h)
mj,k

 = O
(
h(2β−1)m/2+ε

)
. (H.3)

In (H.2) and (H.3) the error terms may depend on m, but not on the individual terms
mj,k.

Proof We can write

E

 K∏
j,k=0

j<k

(Jj,k,h)
mj,k

 (H.4)

= E

∏
j,k=0

j<k

mj,k∏
i=1

(∫
(∆h

xj,k,i
L
xj,k,i
1 ◦ θj) (∆h

xj,k,i
L
xj,k,i
1 ◦ θk) dxj,k,i

)

=

∫ 
K∏

j,k=0

j<k

mj,k∏
i=1

∆h,j
xj,k,i

∆h,k
xj,k,i

E

 K∏
j,k=0

j<k

mj,k∏
i=1

(
(L

xj,k,i
1 ◦ θj) (L

xj,k,i
1 ◦ θk)

)
K∏

j,k=0

j<k

mj,k∏
i=1

dxj,k,i,

where the notation ∆h,j
xj,k,i

indicates that we apply the difference operator ∆h
xj,k,i

to

L
xj,k,i
1 ◦ θj . Note that there are 2m applications of the difference operator ∆h.

Consider

E

 K∏
j,k=0

j<k

mj,k∏
i=1

(
(L

xj,k,i
1 ◦ θj) (L

xj,k,i
1 ◦ θk)

) . (H.5)

We collect all the factors containing θl and write

E

 K∏
j,k=0

j<k

mj,k∏
i=1

(
(L

xj,k,i
1 ◦ θj) (L

xj,k,i
1 ◦ θk)

) (H.6)

= E

 K∏
l=0


l−1∏
j=0

mj,l∏
i=1

L
xj,l,i
1

( K∏
k=l+1

ml,k∏
i=1

L
xl,k,i
1

) ◦ θl


= E

(
K∏
l=0

Hl ◦ θl

)
,

where

Hl =

l−1∏
j=0

mj,l∏
i=1

L
xj,l,i
1

( K∏
k=l+1

ml,k∏
i=1

L
xl,k,i
1

)
. (H.7)
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By the Markov property

E

(
K∏
l=0

Hl ◦ θl

)
= E

(
H0E

X1

(
K∏
l=1

Hl ◦ θl−1

))
. (H.8)

Let

ml =

K∑
k=l+1

ml,k +

l−1∑
j=0

mj,l, l = 0, . . . ,K − 1, (H.9)

and note that ml is the number of local time factors in Hl.
Let

f(y) = Ey

(
K∏
l=1

Hl ◦ θl−1

)
. (H.10)

It follows from the Kac Moment Formula, Theorem F.1, that for any z ∈ R1

Ez

(
K∏
l=0

Hl ◦ θl

)
(H.11)

= Ez (H0 f(X1))

=
∑
π0

∫
{
∑m0

q=1
r0,q≤1}

pr0,1(xπ0(1) − z)
m0∏
q=2

pr0,q (xπ0(q) − xπ0(q−1))

(∫
p(1−

∑m0

q=1
r0,q)

(y − xπ0(m0))f(y) dy

) m0∏
q=1

dr0,q,

where the sum runs over all bijections π0 from [1,m0] to

Ī0 =

K⋃
k=1

{(0, k, i), 1 ≤ i ≤ m0,k}. (H.12)

Clearly, Ī0 is the set of subscripts of the terms x · appearing in the local time factors in
H0.

By the Markov property

f(y) = Ey

(
H1E

X2

(
K∏
l=2

Hl ◦ θl−2

))
(H.13)

:= Ey (H1g(X2)) .

Therefore, by (H.8)–(H.13), for any z′ ∈ R1

Ez
′

(
K∏
l=0

Hl ◦ θl

)
(H.14)

= Ez
′ (
H0E

X1 (H1 g(X2))
)

=
∑
π0

∫
{
∑m0

q=1
r0,q≤1}

pr0,1(xπ0(1) − z′)
m0∏
q=2

pr0,q (xπ0(q) − xπ0(q−1))

(∫
p(1−

∑m0

q=1
r0,q)

(y − xπ0(m0))E
y (H1 g(X2)) dy

) m0∏
q=1

dr0,q

=
∑
π0

∫
{
∑m0

q=1
r0,q≤1}

pr0,1(xπ0(1) − z′)
m0∏
q=2

pr0,q (xπ0(q) − xπ0(q−1))
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p(1−
∑m0

q=1
r0,q)

(y − xπ0(m0))∑
π1

∫
{
∑m1

q=1
r1,q≤1}

pr1,1(xπ1(1) − y)

m1∏
q=2

pr1,q (xπ1(q) − xπ1(q−1))

(∫
p(1−

∑m1

q=1
r1,q)

(y′ − xπ1(m1))g(y′) dy′
) m1∏
q=1

dr1,q dy

m0∏
q=1

dr0,q

where the second sum runs over all bijections π1 from [1,m1] to

Ī1 = {(0, 1, i), 1 ≤ i ≤ m0,1}
K⋃
k=2

{(1, k, i), 1 ≤ i ≤ m1,k} (H.15)

As above, Ī1 is the set of subscripts of the terms x · appearing in the local time
factors in H1.

We now use the Chapman-Kolmogorov equation to integrate with respect to y to get

Ez
′ (
H0E

X1 (H1 g(X1))
)

(H.16)

=
∑
π0,π1

∫
{
∑m0

q=1
r0,q≤1}

pr0,1(xπ0(1) − z′)
m0∏
q=2

pr0,q (xπ0(q) − xπ0(q−1))∫
{
∑m1

q=1
r1,q≤1}

p(1−
∑m0

q=1
r0,q)+r1,1

(xπ1(1) − xπ0(m0))

m1∏
q=2

pr1,q (xπ1(q) − xπ1(q−1))

(∫
p(1−

∑m1

q=1
r1,q)

(y′ − xπ1(m1))g(y′) dy′
) m1∏
q=1

dr1,q

m0∏
q=1

dr0,q.

Iterating this procedure, and recalling (H.6) we see that

E

 K∏
j,k=0

j<k

mj,k∏
i=1

(
(L

xj,k,i
1 ◦ θj) (L

xj,k,i
1 ◦ θk)

) (H.17)

=
∑

π0,...,πK

K∏
l=0

∫
{
∑ml

q=1
rl,q≤1}

p(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1))

ml∏
q=2

prl,q (xπl(q) − xπl(q−1))

ml∏
q=1

drl,q,

where π−1(m−1) := 0 and 1−
∑m−1

q=1 r−1,q := 0. In (H.17) the sum runs over all π0, . . . , πK
such that each πl is a bijection from [1,ml] to

Īl =

l−1⋃
j=0

{(j, l, i), 1 ≤ i ≤ mj,l}
K⋃

k=l+1

{(l, k, i), 1 ≤ i ≤ ml,k}. (H.18)

As in the observations about Ī0 and Ī1, we see that Īl is the set of subscripts of the terms
x · terms appearing in the local time factors in Hl. Since there are 2m local time factors
we have that

∑K
l=0ml = 2m.

We now use (H.17) in (H.4) and continue to develop an expression for the left-hand
side of (H.4). Let B to denote the set of K + 1 tuples π = (π0, . . . , πK) of bijections
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described in (H.18). Clearly

|B| =
K∏
l=0

ml! ≤ (2m)!. (H.19)

Also, similarly to the way we obtain the first equality in (H.6), we see that

K∏
j,k=0

j<k

mj,k∏
i=1

∆h,j
xj,k,i

∆h,k
xj,k,i

=

K∏
l=0

ml∏
q=1

∆h,l
xπl(q)

. (H.20)

Consequently

E

 K∏
j,k=0

j<k

(Jj,k,h)
mj,k

 =
∑

π0,...,πK

∫
T̃h(x; π)

∏
j,k,i

dxj,k,i (H.21)

where we take the product over {0 ≤ j < k ≤ K, 1 ≤ i ≤ mj,k}, π ∈ B and

T̃h(x; π) (H.22)

=
K∏
l=0

ml∏
q=1

∆h
xπl(q)

∫
{
∑ml

q=1
rl,q≤1}

p(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1))

ml∏
q=2

prl,q (xπl(q) − xπl(q−1))

ml∏
q=1

drl,q.

We continue to rewrite the right-hand side of (H.21).

In (H.22), each difference operators, say ∆h
u is applied to the product of two terms,

say p · (u− a)p · (u− b), using the product rule for difference operators we see that

∆h
u{p · (u− a)p · (u− b)} (H.23)

= ∆h
u p · (u− a)p · (u+ h− b) + p · (u− a)∆h

u p · (u− b)

Consider an example of how the term ∆h
a∆h

up · (u − a) may appear. It could be by the
application

∆h
a

(
∆h
u p · (u− a)p · (v − a)

)
, (H.24)

in which we take account of the two terms to which ∆h
a is applied. Using the product

rule in (H.23) we see that (H.24)

=
(
∆h
a∆h

u p · (u− a)
)
p · (v − (a+ h)) + ∆h

u p · (u− a)∆h
ap · (v − a). (H.25)

Consider one more example

∆h
a

(
∆h
u p · (u− a)∆h

v p · (v − a)
)

(H.26)

=
(
∆h
a∆h

u p · (u− a)
)

∆h
v p · (v − (a+ h))

+∆h
u p · (u− a)∆h

a∆h
vp · (v − a).

Note that in both examples the arguments of probability densities with two difference
operators applied to it does not contain an h. This is true in general because the differ-
ence formula, (H.23), does not add an h to the argument of a term to which a difference
operator is applied. Otherwise we may have a ±h added to the arguments of probability
densities to which one difference operator is applied, as in (H.26), or to the arguments
of probability densities to which no difference operator is applied, as in (H.25).
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Based on the argument of the preceding paragraph we write (H.22) in the form

E

 K∏
j,k=0

j<k

(Jj,k,h)
mj,k

 =
∑
a

∑
π0,...,πK

∫
T ′h(x; π, a)

∏
j,k,i

dxj,k,i, (H.27)

where

T ′h(x; π, a) =

K∏
l=0

∫
Rl

((
∆h
xπl(1)

)a1(l,1) (
∆h
xπl−1(ml−1)

)a2(l,1)

(H.28)

p]
(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1))

)
ml∏
q=2

((
∆h
xπl(q)

)a1(l,q) (
∆h
xπl(q−1)

)a2(l,q)

p]rl,q (xπl(q) − xπl(q−1))

) ml∏
q=1

drl,q,

and where Rl = {
∑ml
q=1 rl,q ≤ 1}. In (H.27) the first sum is taken over all

a = (a1, a2) : {(l, q), 0 ≤ l ≤ K, 1 ≤ q ≤ ml} 7→ {0, 1} × {0, 1} (H.29)

with the restriction that for each triple j, k, i, there are exactly two factors of the form
∆h
xj,k,i

, each of which is applied to one of the terms p]r·(·) that contains xj,k,i in its
argument. This condition can be stated more formally by saying that for each l and
q = 1, . . . ,ml − 1, if πl(q) = (j, k, i), then {a1(l, q), a2(l, q + 1)} = {0, 1} and if q = ml then
{a1(l,ml), a2(l+1, 1)} = {0, 1}. (Note that when we write {a1(l, q), a2(l, q+1)} = {0, 1} we
mean as two sets, so, according to what a is, we may have a1(l, q) = 1 and a2(l, q+1) = 0

or a1(l, q) = 0 and a2(l, q+1) = 1 and similarly for {a1(l,ml), a2(l+1, 1)}.) Also, in (H.28)
we define (∆h

xi)
0 = 1 and (∆h

0 ) = 1.
In (H.28), p]r·(z) can take any of the three values pr·(z), pr·(z + h), or pr·(z − h). (We

must consider all three possibilities.) Finally, it is important to emphasize that in (H.28)
each of the difference operators is applied to only one of the terms p]r·(·).

To avoid confusion caused by the ambiguity of p]· , we first analyze∑
a

∑
π0,...,πK

∫
Th(x; π, a)

∏
j,k,i

dxj,k,i, (H.30)

where

Th(x; π, a) =

K∏
l=0

∫
Rl

((
∆h
xπl(1)

)a1(l,1) (
∆h
xπl−1(ml−1)

)a2(l,1)

(H.31)

p(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1))

)
ml∏
q=2

((
∆h
xπl(q)

)a1(l,q) (
∆h
xπl(q−1)

)a2(l,q)

prl,q (xπl(q) − xπl(q−1))

) ml∏
q=1

drl,q.

The difference between Th(x; π, a) and T ′h(x; π, a) is that in the former we replace p] by
p. (I.e. we set h = 0 in the arguments of the p] terms in (H.28).) At the conclusion of
this proof we show that both (H.30) than (H.27) have the same asymptotic limit as h
goes to zero.

We first obtain (H.2). Let m = 2n, since mj,k = 2nj,k, ml = 2nl for some integer nl.
(Recall (H.9)). To begin we consider the case in which a = e, where

e(l, 2q) = (1, 1) and e(l, 2q − 1) = (0, 0) ∀q. (H.32)
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When a = e we have

Th(x; π, e) =

K∏
l=0

∫
Rl
p(1−

∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1))

nl∏
q=2

prl,2q−1
(xπl(2q−1) − xπl(2q−2)) (H.33)

nl∏
q=1

∆h∆−h prl,2q (xπl(2q) − xπl(2q−1))

ml∏
q=1

drl,q.

Here we use the following notation: ∆hp(u − v) = p(u − v + h) − p(u − v), i.e., when
∆h has no subscript, the difference operator is applied to the whole argument of the
function. In this notation,

∆h
u∆h

vp(u− v) = ∆h∆−hp(u− v). (H.34)

H.1 a = e, with all cycles of order two

Consider the multigraph Gπ with vertices {(j, k, i), 0 ≤ j < k ≤ K, 1 ≤ i ≤ mj,k}.
Assign an edge between the vertices πl(2q−1) and πl(2q) for each 0 ≤ l ≤ K and 1 ≤ q ≤
nl. Each vertex is connected to two edges. To see this suppose that πl(2q) = {(j, k, i)},
with j = l and k = l′ 6= l, then there is a unique q′ such that πl′(2q′) or πl′(2q′ − 1) is
equal to {(j, k, i)}. Therefore all the vertices lie in some cycle. Assume that there are S
cycles. We denote them by Cs, s = 1, . . . , S. Clearly, it is possible to have cycles of order
two, in which case two vertices are connected by two edges.

It is important to note that the graph Gπ does not assign edges between πl(2q) and
πl(2q + 1), although these vertices may be connected by the edge assigned between
πl′(2q

′ − 1) and πl′(2q′) for some l′ and q′.
We estimate (H.31) by breaking the calculation into two cases. In this section we

consider the case when a = e and all the cycles of Gπ are of order two. In Section H.2
we consider the cases when a = e and not all the cycles of Gπ are of order two, and
when a 6= e.

Let P = {(γ2v−1, γ2v) , 1 ≤ v ≤ n} be a pairing of the m vertices

{(j, k, i), 0 ≤ j < k ≤ K, 1 ≤ i ≤ mj,k}

of Gπ, that satisfies the following special property: whenever (j, k, i) and (j′, k′, i′) are
paired together, j = j′ and k = k′. Equivalently,

P =

K⋃
j,k=0

j<k

Pj,k (H.35)

where each Pj,k is a pairing of the mj,k vertices

{(j, k, i), 1 ≤ i ≤ mj,k}.

We refer to such a pairing P as a special pairing and denote the set of special pairings
by S.

Given a special pairing P ∈ S, let π be such that for each 0 ≤ l ≤ K and 1 ≤ q ≤ nl,

{πl(2q − 1), πl(2q)} = {γ2v−1, γ2v} (H.36)
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for some, necessarily unique, 1 ≤ v ≤ nl. In this case we say that π is compatible with
the pairing P and write this as π ∼ P. (Recall that when we write {πl(2q − 1), πl(2q)} =

{γ2v−1, γ2v}, we mean as two sets, so, according to what πl is, we may have πl(2q− 1) =

γ2v−1 and πl(2q) = γ2v or πl(2q − 1) = γ2v and πl(2q) = γ2v−1.) Clearly

|S| ≤ (2n)!

2nn!
(H.37)

the number of pairings of m = 2n objects.
Let π ∈ B be such that Gπ consists of cycles of order two. It is easy to see that π ∼ P

for some P ∈ S. To see this note that if {(j, k, i), (j′, k′, i′)} form a cycle of order two,
there must exist l and l′ with l 6= l′ and q and q′ such that both {(j, k, i), (j′, k′, i′)} =

{πl(2q − 1), πl(2q)} and {(j, k, i), (j′, k′, i′)} = {πl′(2q′ − 1), πl′(2q
′)}. This implies that

j = j′, k = k′ and {j, k} = {l, l′}. Furthermore, by (H.36) we have

{πl(2q − 1), πl(2q)} = {πl′(2q′ − 1), πl′(2q
′)} = {γ2v−1, γ2v} (H.38)

When π ∼ P and all cycles are of order two we can write

K∏
l=0

nl∏
q=1

∆h∆−h prl,2q (xπl(2q) − xπl(2q−1)) (H.39)

=

n∏
v=1

∆h∆−h pr2ν (xγ2v − xγ2v−1)∆h∆−h pr′2ν (xγ2v − xγ2v−1),

where r2ν and r′2ν are the rearranged indices rl,2q and rl′,2q′ . We also use the fact that∑K
l=0 nl = 2n.
For use in (H.45) below we note that∫ 1

0

∫ 1

0

|∆h∆−h pr2ν (xγ2v − xγ2v−1)| |∆h∆−h pr′2ν (xγ2v − xγ2v−1)| dr2ν dr
′
2ν

=

(∫ 1

0

|∆h∆−h pr(xγ2v − xγ2v−1)| dr
)2

= w2(xγ2v − xγ2v−1), (H.40)

(see (G.7).)

We want to estimate the integrals in (H.30). However, it is difficult to integrate
Th(x; π, e) directly, because the variables,

{xπl(1) − xπl−1(ml−1), xπl(2q−1) − xπl(2q−2), xπl(2q) − xπl(2q−1);

l ∈ [0,K], q ∈ [1, nl]},

are not independent. We begin the estimation by showing that over much of the domain
of integration, the integral is negligible, asymptotically, as h→ 0. To begin, we write

1 =

n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤
√
h} + 1{|xγ2v−xγ2v−1

|≥
√
h}

)
(H.41)

and expand it as a sum of 2n terms and use it to write∫
Th(x; π, e)

∏
j,k,i

dxj,k,i (H.42)

=

∫ n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤
√
h}

)
Th(x; π, e)

∏
j,k,i

dxj,k,i + E1,h.
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We now show that

E1,h = O

(
h1/2

(
1

hψ2(1/h)

)n)
. (H.43)

Note that every term in E1,h can be written in the form

Bh(π, e,D) :=

∫ n∏
v=1

1DvTh(x; π, e)
∏
j,k,i

dxj,k,i (H.44)

where each Dv is either {|xγ2v − xγ2v−1
| ≤
√
h} or {|xγ2v − xγ2v−1

| ≥
√
h}, and at least

one of the Dv is of the second type.
Consider (H.44) and the representation of Th(x; π, e) in (H.33). We take absolute

values in the integrand in (H.33) and take all the integrals with r· between 0 and 1 and
use (H.40) followed by (G.2) to get

|Bh(π, e,D)| ≤
∫ n∏

v=1

1Dvw
2(xγ2v − xγ2v−1

)

K∏
l=0

u(xπl(1) − xπl−1(ml−1))

nl∏
q=2

u(xπl(2q−1) − xπl(2q−2))
∏
j,k,i

dxj,k,i. (H.45)

We now take

{xγ2v − xγ2v−1 , v = 1, . . . , n} (H.46)

and an additional n variables from the 2n arguments of the u terms,

∪Kl=0{xπl(1) − xπl−1(ml−1), xπl(2q−1) − xπl(2q−2), q = 2, . . . , nl} (H.47)

so that the chosen 2n variables generate the space spanned by the 2n variables {xj,k,i}.
There are n variables in (H.47) that are not used. We bound the functions u of these
variables by their sup norm, which by (G.2) is finite. Then we make a change of variables
and get that

|Bh(π, e,D)| ≤
∫ n∏

v=1

1Dvw
2(yv)

2n∏
v=n+1

u(yv)

2n∏
v=1

dyv (H.48)

≤ C

∫ n∏
v=1

1Dvw
2(yv)

n∏
v=1

dyv,

= O

(
h1/2

(
1

hψ2(1/h)

)n)
.

Here we use (G.2) to see that the integrals of the u terms is finite. Then we use (G.9)
and (G.10) to obtain (H.43). (Note that it is because at least one of the Dv is of the
second type that we can use (G.10).)

We now study ∫ n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤
√
h}

)
Th(x; π, e)

∏
j,k,i

dxj,k,i. (H.49)

Recall that for each 0 ≤ l ≤ K and 1 ≤ q ≤ nl, {πl(2q−1), πl(2q)} = {γ2v−1, γ2v} for some
1 ≤ v ≤ n. We identify these relationships by setting v = σl(q) when {πl(2q−1), πl(2q)} =

{γ2v−1, γ2v}, and sometimes write this last term as {γ2σl(q)−1, γ2σl(q)}.
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For q ≥ 2 we write

prl,2q−1
(xπl(2q−1) − xπl(2q−2)) (H.50)

= prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
) + ∆hl,qprl,2q−1

(xγ2σl(q)−1
− xγ2σl(q−1)−1

),

where hl,q = (xπl(2q−1) − xγ2σl(q)−1
) + (xγ2σl(q−1)−1

− xπl(2q−2)). When q = 1 we can make
a similar decomposition

p(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xπl(1) − xπl−1(ml−1)) (H.51)

= p(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

+∆hl,1p(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

),

where hl,1 = (xπl(1) − xγ2σl(1)−1
) + (xγ2σl−1(nl−1)−1

) − xπl−1(ml−1)). Note that because of

the presence of the term
∏n
v=1

(
1{|xγ2v−xγ2v−1

|≤
√
h}

)
in the integral in (H.49) we need

only be concerned with values of |hl,q| ≤ 2
√
h, for 0 ≤ l ≤ K and 1 ≤ q ≤ nl.

For q = 1, . . . , nl, l = 0 . . . ,K, we substitute (H.50) and (H.51) into the term Th(x; π, e)

in (H.49), (see also (H.33)), and expand the products so that we can write (H.49) as a

sum of 2
∑K

l=0
nl terms, which we write as∫ n∏

v=1

(
1{|xγ2v−xγ2v−1

|≤
√
h}

)
Th(x; π, e)

∏
j,k,i

dxj,k,i (H.52)

=

∫ n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤
√
h}

)
Th,1(x; π, e)

∏
j,k,i

dxj,k,i + E2,h,

where

Th,1(x; π, e) =

K∏
l=0

∫
Rl
p(1−

∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
) (H.53)

nl∏
q=1

∆h∆−h prl,2q (xπl(2q) − xπl(2q−1))

ml∏
q=1

drl,q.

Using (H.39) we can rewrite this as

Th,1(x; π, e) (H.54)

=

∫
R0×···×RK

(
K∏
l=0

p(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
)

)
(

n∏
v=1

∆h∆−h pr2ν (xγ2v − xγ2v−1
)∆h∆−h pr′2ν (xγ2v − xγ2v−1

)

)
K∏
l=0

ml∏
q=1

drl,q,
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where r2ν and r′2ν are the rearranged indices rl,2q and rl′,2q′ . Since the variables
xγ2v , v = 1, . . . , n, occur only in the last line of (H.54), we make the change of vari-
ables xγ2v − xγ2v−1

→ xγ2v and xγ2v−1
→ xγ2v−1

and get that∫
Th,1(x; π, e)

∏
j,k,i

dxj,k,i (H.55)

=

∫ ∫
R0×···×RK

(
K∏
l=0

p(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
)

)
(

n∏
v=1

∆h∆−h pr2ν (xγ2v )∆h∆−h pr′2ν (xγ2v )

)
K∏
l=0

ml∏
q=1

drl,q
∏
j,k,i

dxj,k,i.

Since the variables xγ2v , v = 1, . . . , n occur only in the last line of (H.55) and the vari-
ables xγ2v−1

, v = 1, . . . , n occur only in the second and third lines of (H.55), we can write
(H.55) as∫

Th,1(x; π, e)
∏
j,k,i

dxj,k,i (H.56)

=

∫
R0×···×RK

∫ ( K∏
l=0

p(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
)

)
n∏
v=1

dxγ2v−1(
n∏
v=1

∫
∆h∆−h pr2ν (xγ2v )∆h∆−h pr′2ν (xγ2v ) dxγ2v

)
K∏
l=0

ml∏
q=1

drl,q.

Note that we also use Fubini’s Theorem which is justified since the absolute value of
the integrand is integrable, (as we point out in the argument preceding (H.45)). (In the
rest of this section use Fubini’s Theorem frequently for integrals like (H.56) without
repeating the explanation about why it is justified.)

Analogous to (H.42) we note that∫
Th,1(x; π, e)

∏
j,k,i

dxj,k,i (H.57)

=

∫ n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤
√
h}

)
Th,1(x; π, e)

∏
j,k,i

dxj,k,i + Ẽ1,h,

where Ẽ1,h = O
(
h1/2

(
1

hψ2(1/h)

)n)
. The proof of (H.57) is the same as the proof of

(H.43).

We now show that

E2,h = O

((
1

hψ(1/h)

)1/2(
1

hψ2(1/h)

)n)
. (H.58)

To see this note that the terms in E2,h are of the form∫ n∏
v=1

(
1{|xγ2v−xγ2v−1

|≤
√
h}

)
(H.59)
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K∏
l=0

∫
Rl
p̃(1−

∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

p̃rl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
)

nl∏
q=1

∆h∆−h prl,2q (xπl(2q) − xπl(2q−1))

ml∏
q=1

drl,q
∏
j,k,i

dxj,k,i,

where p̃rl,2q−1
is either prl,2q−1

or ∆hl,qprl,2q−1
. Furthermore, at least one of the terms

p̃rl,2q−1
is of the form a ∆hl,qprl,2q−1

.
As in the transition from (H.44) to (H.45) we bound the absolute value of (H.59) by∫ n∏

v=1

(
1{|xγ2v−xγ2v−1

|≤
√
h}

)
w2(xγ2v − xγ2v−1

) (H.60)

K∏
l=0

ũ(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

ũ(xγ2σl(q)−1
− xγ2σl(q−1)−1

)
∏
j,k,i

dxj,k,i,

where each ũ is either of the form u or v, in Lemma G.1, and where, obviously, the h

in (G.4) is hl,q. Furthermore, we have J terms of the type v, for some J ≥ 1. It follows
from (G.4), the regular variation of ψ and the fact that |hl,q| ≤ 2

√
h, that

v( · ) ≤ C
(

1

hψ(1/h)

)1/2
1

1 + x2
(H.61)

Using this and (G.2) we can bound the integral in (H.60) by

C

(
1

hψ(1/h)

)J/2 ∫ n∏
v=1

w2(xγ2v − xγ2v−1
) (H.62)

K∏
l=0

ū(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

ū(xγ2σl(q)−1
− xγ2σl(q−1)−1

)
∏
j,k,i

dxj,k,i

where all the terms ū(y) = (1 + y2)−1.
Since the variables xγ2ν , ν = 1, . . . , n, occur only in the w terms in (H.62) and the

variables xγ2v−1 , v = 1, . . . , n occur only in the u terms in (H.62) , (refer to the change
of variables arguments in (H.55) and (H.56)), we can write (H.62) as

C

(
1

hψ(1/h)

)J/2 ∫ ( K∏
l=0

u(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

) (H.63)

nl∏
q=2

u(xγ2σl(q)−1
− xγ2σl(q−1)−1

)

)
n∏
v=1

dxγ2v−1

n∏
v=1

w2(xγ2v )

n∏
v=1

dxγ2v .

As we have been doing we extract a linearly independent set of variables from the
arguments of the u terms. The other u terms we bound by one. Then we make a change
of variables and integrate the remaining u terms and the w2 terms using (G.2) and (G.9).
Since J ≥ 1, we get (H.58).

Since ψ is regularly varying with index β > 1 we see that there exists an ε > 0 such
that

E1,h + E2,h + Ẽ2,h = O
(
h(2β−1)n+ε

)
. (H.64)
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Therefore, it follows from (H.42), (H.52) and (H.57) that∫
Th(x; π, e)

∏
j,k,i

dxj,k,i (H.65)

=

∫
Th,1(x; π, e)

∏
j,k,i

dxj,k,i +O
(
h(2β−1)n+ε

)
.

Let R̃l(s) = {
∑nl
q=1 rl,2q−1 ≤ 1− s} and σ̃l(q) := γ2σl(q)−1. We define

F (σ̃, s0, . . . , sK) (H.66)

=

∫ (∫
R̃0(s0)×···×R̃K(sK)

K∏
l=0

p(1−
∑nl−1

q=1
rl−1,2q−1−sl−1)+rl,1

(x
σ̃l(1)

− x
σ̃l−1(nl−1)

)

nl∏
q=2

prl,2q−1
(x
σ̃l(q)

− x
σ̃l(q−1)

)

nl∏
q=1

drl,2q−1

)
dx,

where (1 −
∑n−1

q=1 r−1,2q−1 − s−1) := 0 and σ̃−1(n−1) := 0. Here the generic term dx

indicates integration with respect to all the variables x· that appear in the integrand.
Since σ̃l(q) = γ2σl(q)−1 we can also write (H.66) as

F (σ̃, s0, . . . , sK) (H.67)

=

∫ (∫
R̃0(s0)×···×R̃K(sK)

K∏
l=0

p(1−
∑nl−1

q=1
rl−1,2q−1−sl−1)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

)

nl∏
q=2

prl,2q−1
(xγ2σl(q)−1

− xγ2σl(q−1)−1
)

nl∏
q=1

drl,2q−1

)
dx,

xγ2σ−1(n−1)−1
:= 0.

Consider the mappings σ̃l that are used in (H.66). Recall that σl(q) is defined by the
relationship {πl(2q − 1), πl(2q)} = {γ2σl(q)−1, γ2σl(q)}. Therefore, since σ̃l(q) = γ2σl(q)−1

we can have that either σ̃l(q) = πl(2q − 1) or σ̃l(q) = πl(2q). However, since the terms
σ̃l(q) are subscripts of the terms x, all of which are integrated, it is more convenient to
define σ̃l differently.

Recall that P, (see (H.35)), is a union of pairings Pj,k of the mj,k vertices

{(j, k, i), 1 ≤ i ≤ mj,k}.

Each Pj,k consists of nj,k pairs, that can ordered arbitrarily. If {γ2σl(q)−1,

γ2σl(q)} is the i-th pair in Pj,k, we set σ̃l(q) = (j, k, i). (Necessarily, l will be either j or
k, as we point out in the paragraph containing (H.38)). Thus, each σ̃l is a bijection from
[1, nl] to

K⋃
k=l+1

{(l, k, i), 1 ≤ i ≤ nl,k}
l−1⋃
j=0

{(j, l, i), 1 ≤ i ≤ nj,l}. (H.68)

Let B̃ denote the set of K + 1 tuples, σ̃ = (σ̃0, . . . , σ̃K) of such bijections. Note that with
this definition of σ̃l(q) (H.66) remains unchanged since we have simply renamed the
variables of integration.
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By interchanging the elements in any of the 2n pairs {πl(2q − 1), πl(2q)} we obtain
a new π′ ∼ P. In fact we obtain 22n different permutations π, in this way, all of which
are compatible with P, and all of which give the same σ̃ in (H.66). Furthermore, by
permuting the pairs {πl(2q − 1), πl(2q)}, 1 ≤ q ≤ nl, for each l, we get all the possible
permutation π̃ ∼ P, and these give all possible mappings σ̃ ∈ B̃. Note that |B̃| =∏K
l=0 nl! ≤ (2n)!.

Consider (H.67). Since xγ2σ−1(n−1)−1
= 0, xγ2σ0−1 appears alone as the argument of

one of the density functions. Therefore we can extract a linearly independent set from
the arguments of the densities that spans the space spanned by all the arguments of
the densities. We use (G.1) to bound the density functions with arguments that are
not in the spanning set by Cψ−1(1/s). We then integrate them with respect to the time
variables. Since the time variables are bounded, all this contributes only some constant.
With what is left we can make a change of variables and use (G.1) again to see that

F (σ̃, s0, . . . , sK) ≤ C, (H.69)

for some constant depending only on m.

Let R̂l = {
∑nl
q=1 rl,2q ≤ 1}. We break up the integration over Rl into integration over

R̃l(s) and R̂l in (H.56) and (H.67). If one carefully examines the time indices in (H.31)
and (H.66) and uses Fubini’s Theorem, one sees that∫

Th(x; π, e)
∏
j,k,i

dxj,k,i (H.70)

=

∫
R̂0×···×R̂K

F (σ̃,

n0∑
q=1

r0,2q , . . . ,

nK∑
q=1

rK,2q)

n∏
i=1

(∫ (
∆h∆−h pri(x)

) (
∆h∆−h pr′

i
(x)
)
dx

) n∏
i=1

dri dr
′
i.

The variables {ri, r′i | i = 1, . . . , n} are simply a relabeling of the variables {rl,2q | 0 ≤ l ≤
K, 1 ≤ q ≤ nl}. (The exact form of this relabeling does not matter in what follows.)
Here, as always, we set pr(x) = 0, if r ≤ 0.

By Parseval’s Theorem,∫ (
∆h∆−h pr(x)

) (
∆h∆−h pr′(x)

)
dx (H.71)

=
1

2π

∫
|2− eiph − e−iph|2e−rψ(p)e−r

′ψ(p) dp ≥ 0.

Using this, (H.69) and Fubini’s Theorem, we see that∫(
R̂0×···×R̂K

)
∩([0,

√
h]2n)c

F (σ̃,

n0∑
q=1

r0,2q , . . . ,

nK∑
q=1

rK,2q) (H.72)

n∏
i=1

(∫ (
∆h∆−h pri(x)

) (
∆h∆−h pr′

i
(x)
)
dx

) n∏
i=1

dri dr
′
i

≤ C
∫

([0,
√
h]2n)c

n∏
i=1

(∫ (
∆h∆−h pri(x)

) (
∆h∆−h pr′

i
(x)
)
dx

) n∏
i=1

dri dr
′
i

≤ C

(∫ (∫
(∆h∆−h pr(x)) dr

)2

dx

)n−1
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∫ {∫ ∞
0

∫ ∞
√
h

(
∆h∆−h pri(x)

) (
∆h∆−h pr′

i
(x)
)
dri dr

′
i

}
dx

= Ccn−1
ψ,h,1

∫ {∫ ∞
0

∫ ∞
√
h

(
∆h∆−h pri(x)

) (
∆h∆−h pr′

i
(x)
)
dri dr

′
i

}
dx,

by (4.12). The integral in the final line of (H.72)

≤ cψ,h,1 −
∫ (∫ √h

0

∆h∆−h ps(x) ds

)2

dx. (H.73)

Therefore, it follows from Lemma G.2 that the first integral in (H.72) is O(h(2β−1)n+ε),

for some ε > 0.

Since
(
R̂0 × · · · × R̂K

)
⊇ [0,

√
h]2n for 2n

√
h ≤ 1, it follows from (H.70) and the

preceding sentence, that∫
Th(x; π, e)

∏
j,k,i

dxj,k,i (H.74)

=

∫
[0,
√
h]2n

F (σ̃,

n0∑
q=1

r0,2q , . . . ,

nK∑
q=1

rK,2q)
n∏
i=1

(∫ (
∆h∆−h pri(x)

)
(

∆h∆−h pr′
i
(x)
)
dx

) K∏
l=0

nl∏
q=1

drl,2q +O(h(2β−1)n+ε).

We use the next lemma which is proved in Subsection H.3.

Lemma H.2 For any fixed m and s0, . . . , sK ≤ m
√
h, there exists an ε > 0 such that for

all h > 0, sufficiently small,

|F (σ̃, s0, . . . , sK)− F (σ̃, 0, . . . , 0)| ≤ Chε. (H.75)

Proof of Lemma H.1 continued It follows from (H.74) and Lemmas H.2 and G.2, that∫
Th(x; π, e)

∏
j,k,i

dxj,k,i (H.76)

= F (σ̃, 0, . . . , 0)

∫
[0,
√
h]2n

n∏
i=1

(∫ (
∆h∆−h pri(x)

)
(

∆h∆−h pr′
i
(x)
)
dx

) K∏
l=0

nl∏
q=1

drl,2q +O(h(2β−1)n+ε)

= (cψ,h,1)
n
F (σ̃, 0, . . . , 0) +O(h(2β−1)n+ε). (H.77)

We now use the notation introduced in the paragraph containing (H.68), and the fact
that there are 22n permutations that are compatible with P, to see that∑

π∼P

∫
Th(x; π, e)

∏
j,k,i

dxj,k,i (H.78)

= (4cψ,h,1)
n
∑
σ̃∈B̃

F (σ̃, 0, . . . , 0) +O(h(2β−1)n+ε).

Since |B̃| ≤ (2n)!, we see that the error term only depends on m, (recall that m = 2n).
Consider (H.78) and the definition of F (σ̃, 0, . . . , 0) in (H.66) and use (H.17), with mj,k
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replaced by nj,k, to see that∑
π∼P

∫
Th(x; π, e)

∏
j,k,i

dxj,k,i (H.79)

= (4cψ,h,1)
n
E

 K∏
j,k=0

j<k

(αj,k)
nj,k

+O(h(2β−1)n+ε).

Recall the definition of S, to set of special pairings, given in the first paragraph of
this subsection. Since there are (2nj,k)!

2nj,knj,k!
pairings of the 2nj,k elements {1, . . . ,mj,k},

(recall that mj,k = 2nj,k), we see that when we sum over all the special pairings we get∑
P∈S

∑
π∼P

∫
Th(x; π, e)

∏
j,k,i

dxj,k,i (H.80)

=

K∏
j,k=0

j<k

(2nj,k)!

2nj,knj,k!
(4cψ,h,1)

nj,k E


K∏

j,k=0

j<k

(αj,k)
nj,k

+O
(
h(2β−1)n+ε

)
.

It follows from (H.37) that the error term, still, only depends on m.

The right-hand side of (H.80) is precisely the desired expression in (H.2). Therefore,
to complete the proof of Lemma H.1, we show that for all the other possible values of
a, the integral in (H.27) can be absorbed in the error term.

H.2 a = e but not all cycles are of order two or a 6= e

Lemma H.3 Suppose that a = e but not all cycles are of order two or a 6= e. Then∫
Th(x; π, a)

∏
j,k,i

dxj,k,i = O

(
hε

hψ2(1/h)

)n
, (H.81)

for some ε > 0.

In the rest of this section we ignore all factors of log 1/h.

Proof Consider the basic formula (H.31). Since we only need an upper bound, we
take absolute values in the integrand and extend the time integral to [0, 1], as we have
done several times above. We take the time integral and get an upper bound for (H.31)
involving the terms u, v and w. Since a 6= e, the number of w terms is less than 2n.

We obtain (H.81) by dividing the u, v and w terms in Th(x; π, a) into sets. Clearly,
if a set contains k terms of the form w and k′ terms of the form v, there are 2k + k′

difference operators ∆h
· associated with this set. There are no difference operators

associated with sets of u terms.
Consider a set of two w terms that lies in a cycle of order two. There are four

difference operators ∆h
· associated with this set. We show this set contributes a bound

to (H.81) that is

O

(
1

hψ2(1/h)

)
. (H.82)

(By contributes a bound we mean that this is what we get after we make an appropriate
change of variables and integrate out the w terms in this set.) Thus we may say that
each difference operator in a cycle of order two contributes a bound of

O

((
1

hψ2(1/h))

)1/4
)
. (H.83)
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We show that any set that has k > 0 associated difference operators except for a set
of two w terms that forms a cycle of order two contributes a bound that is

O

((
1

hψ2(1/h))

)k/4)
hε, (H.84)

for some ε > 0.
There are 4n difference operators ∆h

· , in Th(x; π, a). Consequently unless the graph
associated with Th(x; π, a) consists solely of cycles of order two, we obtain (H.81).

As we construct the sets of u, v and w terms, we also choose a collection I ∪ I ′ of
m terms with arguments that are linearly independent. To bound the contribution of
each set we bound all the terms not in I ∪ I ′ by their supremum, and, after changing
variables, integrate the terms in I ∪ I ′. Using (G.4), (G.5), (G.7) and (G.8) we verify the
bounds given in the preceding paragraph. (Actually, there is an exceptions to this rule
which we also deal with.)

This is how we divide the u, v and w terms into sets. For each π and a we define
a multigraph Gπ,a with vertices {(j, k, i), 0 ≤ j < k ≤ K, 1 ≤ i ≤ mj,k}, and an edge
between the vertices πl(q − 1) and πl(q) whenever a(l, q) = (1, 1). This graph divides
the w terms into cycles and chains. Assume that there are S cycles. We denote them
by Cs = {φs,1, . . . , φs,l(s)}, written in cyclic order, where the cycle length l(s) = |Cs| ≥ 1

and 1 ≤ s ≤ S. For each 1 ≤ s ≤ S we take the set of l(s) terms

Gcycle
s = {w(xφs,2 − xφs,1), · · · , w(xφs,l(s) − xφs,l(s)−1

), w(xφs,1 − xφs,l(s))}. (H.85)

Let
yφs,i = xφs,i − xφs,i−1

, i = 2, . . . , l(s). (H.86)

It is easy to see that {yφs,i |i = 2, . . . , l(s)}, are linearly independent. We put the corre-
sponding w terms, w(xφs,2 − xφs,1), · · · , w(xφs,l(s) − xφs,l(s)−1

) into I. (On the other hand,
since

l(s)∑
i=2

yφs,i = −(xφs,1 − xφs,l(s)), (H.87)

we see that we can only extract l(s) − 1 linearly independent variables from the l(s)

arguments of w for a given s.) A cycle of length 1 consists of a single point φs,1 = φl(s),1
in the graph, so in this case

Gcycle
s = {w(0)}. (H.88)

We explain below how this can occur. Obviously, w(0) is not put into I.
Next, suppose there are S′ chains. We denote them by C ′s = {φ′s,1, . . . ,

φ′s,l′(s)}, written in order, where l′(s) = |C ′s| ≥ 2 and 1 ≤ s ≤ S′. Note that there are
l′(s) − 1, w terms corresponding to C ′s. Then for each 1 ≤ s ≤ S′ we form the set of
l′(s) + 1 terms

Gchain
s = {v(xφ′s,1 − xa(s)), w(xφ′s,2 − xφ′s,1), · · · , (H.89)

· · · , w(xφ′
s,l(s)

− xφ′
s,l(s)−1

), v(xb(s) − xφ′
s,l(s)

)}

where v(xφ′s,1−xa(s)) is the unique v term associated with ∆
xφ′
s,1

h , and similarly, v(xb(s)−

xφ′
s,l(s)

) is the unique v term associated with ∆
xφ′
s,l(s)

h . (This deserves further clarifica-

tion. There may be other v terms containing the variable xφ′s,1 . But there is only one v
term of the form ∫ 1

0

∣∣∣∆xφ′
s,1

h ps(xφ′s,1 − u)
∣∣∣ ds (H.90)
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where u is some other x · variable which we denote by xa(s). This is because one op-

erator ∆
xφ′
s,1

h is associated with w(xφ′s,2 − xφ′s,1) and there are precisely two operators

∆
xφ′
s,1

h in (H.81)).
It is easy to see that variables yφ′

s,i
= xφ′

s,i
− xφ′

s,i−1
, i = 2, . . . , l(s), are linearly

independent. We put the w terms, w(xφ′s,2 − xφ′s,1), · · · , w(xφ′
s,l(s)

− xφ′
s,l(s)−1

) into I. We

leave the v terms in Gchain
s out of I.

At this stage we emphasize that the terms we have put in I from all cycles and chains
have linearly independent arguments. If fact, the set of x’s appearing in the different
chains and the cycles are disjoint. This is obvious for the cycles and the interior of the
chains since there are exactly two difference operators ∆x

h for each x. It also must be
true for the endpoints of the chains, since if this is not the case they could be made into
larger chains or cycles.

For the same reason, if a v term involving ∆h
x′ is not in any of the sets of chains, then

x′ will not appear in the arguments of the terms that are put in I from all the cycles and
chains.

Suppose, after considering the w terms and the v terms associated with the chains
of w terms, that there are p pairs of v terms left, each pair corresponding to difference
operators ∆h

zj , j = 1, . . . , p. (p may be 0). Let

Z := {z1, . . . , zp} (H.91)

A typical v term is of the form

v(j)(zj − uj′) := v(zj − uj′) =

∫ 1

0

|∆h
zjpt(zj − uj′)| dt. (H.92)

where uj′ is some x · term. We use the superscript (j) is to keep track of the fact that
this v term is associated with the difference operator ∆h

zj . We distinguish between the
variables zj and uj′ by referring to zj as a marked variable. Note that if uj′ is also in Z,
say uj′ = zk, then uj′ is also a marked variable but in a different v term. (In this case,
in v(k)(zk − uk′), where uk′ is some other x · variable.)

Thus Z is the collection of marked variables. Consider the corresponding terms

v(j)(zj − uj) and v(j)(zj − vj), j = 1, . . . , p (H.93)

where uj and vj represent whatever terms x · and x′· are coupled with the two variables
zj .

There may be some j for which uj and vj in (H.93) are both in Z. Choose such a j.
Suppose uj = vj = zk. We set

GZ, 1j = {v(j)(zj − zk), v(j)(zj − zk), (H.94)

v(k)(zk − uk), v(k)(zk − vk)}

and put v(j)(zj − zk) into I. Here uk and vk are whatever two variables appear with the
two marked variables zk.

On the other hand, suppose uj and vj are both in Z but uj = zk and vj = zl with
k 6= l. We set

GZ, 2j = {v(j)(zj − zk), v(j)(zj − zl), (H.95)

v(k)(zk − uk), v(k)(zk − vk), v(l)(zl − ul), v(l)(zl − vl)}

and put both v(j)(zj − zk) and v(j)(zj − zl) into I.
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We then turn to the elements in Z which have not yet appeared in the arguments of
the terms that have been put into I. If there is another j′ for which uj′ and vj′ are both
in Z, choose such a j′ and proceed as above. If there are no longer any such elements
in Z, choose some remaining element, say, zi. Set

GZ, 3i = {v(i)(zi − ui), v(i)(zi − vi)} (H.96)

and if ui 6∈ Z, place v(i)(zi−ui) into I. If ui ∈ Z, so that vi 6∈ Z, place v(i)(zi− vi) into I.

We then continue until we have exhausted Z. We form a final set Gu which contains
all the u terms, so that all u, v and w terms have been divided into sets.

It is possible that there are no cycles of length one. We show how we get (H.81) in
this case.

We have constructed I so that all its members have linearly independent arguments.
However, I may contain less than m terms. We simply add to I a set I ′ of enough of
the remaining u and v terms so that I ∪I ′ has m terms, whose arguments span R2n, the
space spanned by the original x · terms. (It follows from (H.87) that no further w terms
can be added to I ′). We bound the v terms in I ′ as follows:

|v(x′ − x′′)| ≤ C

hψ(1/h)(1 + (x′ − x′′)2)
. (H.97)

We then make a change of variables setting the arguments of the terms in I ∪ I ′ equal
to y1, . . . , ym and bound the v terms not in I ∪ I ′ by C(hψ(1/h))−1 and the u terms not
in I ∪ I ′ by C. Finally we integrate. We have m one dimensional integrals which we
bound by (G.5) for the v terms in I, by C(hψ(1/h))−1 for the v terms in I ′, and by (G.8)
for w terms in I. The integrals of the u terms in I we bound by a constant; (see (G.2)).

Clearly Gu gives a bounded contribution. We now show that (H.84) holds for all other
sets of v and w terms, with the exception of sets of w terms in cycles of length 2.

Consider first Gcycle
s for a cycle of lengths l(s). We integrate the l(s) − 1, w terms

which were put in I and bound the remaining w term by C(hψ(1/h))−1 to obtain the
bound

C

(
1

ψ(1/h)

)l(s)−1
1

hψ(1/h)
= C

(
1

ψ(1/h)

)l(s)−2
1

hψ2(1/h)
. (H.98)

Since

1

ψ(1/h)
= h1/2

(
1

hψ2(1/h)

)1/2

(H.99)

(H.98) is bounded by

C
{
h(l(s)−2)/2

}( 1

hψ2(1/h)

)l(s)/2
. (H.100)

Since a cycle of length l(s) involves 2l(s) difference operators ∆h, and l(s)/2 = 2l(s)/4,
we are in the situation of (H.84), unless all cycles are of order two. (This shows, inci-
dentally, that when a = e, (H.81) holds unless all cycles are of order two.)

Consider next Gchain
s . Recall that there are l′(s) − 1, w terms in a chain, where

l′(s) ≥ 2. We have put all l′(s)− 1 terms w in I, and we can bound their integrals by

C

(
1

ψ(1/h)

)l′(s)−1

. (H.101)

In addition there are two v terms in Gchain
s . The ones not in I ′ can be bounded by

C(hψ(1/h))−1 and the ones in I ′ are bounded by (H.97), which after integration also
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contributes C(hψ(1/h))−1. Thus we obtain the following bound for for Gchain
s :

C

(
1

ψ(1/h)

)l′(s)−1(
1

hψ(1/h)

)2

(H.102)

= C

(
1

ψ(1/h)

)l′(s)−3(
1

hψ2(1/h)

)2

≤ Ch(l′(s)−3)/2

(
1

hψ2(1/h)

)1/2(
1

hψ2(1/h)

)l′(s)/2
.

Note that each chain of length l′(s) together with the two v terms associated with the
end points involves 2l′(s) difference operators ∆h. Clearly if l′(s) ≥ 3 we are in the
situation of (H.84). This holds even for chains of length l′(s) = 2 since

h(2−3)/2

(
1

hψ2(1/h)

)1/2

=
1

hψ(1/h)
. (H.103)

Note that the v terms that were not initially in I contribute a bound of C(hψ(1/h))−1,
whether or not they are placed in I ′. We continue to use this fact below without com-
menting on it further.

We next consider GZ, 1j . We integrate the one v term in I and any that are in I ′ and
bound the remaining ones. This gives a bound of

1

h2ψ3(1/h)
=

1

hψ(1/h)

(
1

hψ2(1/h)

)
. (H.104)

Since GZ, 1j involves four ∆h
· operators we are in the situation of (H.84).

For GZ, 2j we integrate two v terms in I and any that are in I ′ and bound the remain-
ing ones. This gives a bound of(

1

hψ2(1/h)

)2

=

(
1

hψ2(1/h)

)1/2(
1

hψ2(1/h)

)3/2

; (H.105)

Since GZ, 2j involves six ∆h
· operators we are in the situation of (H.84).

Finally, for GZ, 3j we integrate the one v term in I and the other if it is in I ′. Otherwise
we bound it. This gives a bound of

1

ψ(1/h)
= h1/2

(
1

hψ2(1/h)

)1/2

; (H.106)

Since GZ, 3j involves two ∆h
· operators we are in the situation of (H.84).

This shows that if a and the partition π does not generate exclusively w terms in
cycles of order two and are such that there are no cycles of length one, then (H.81)
holds.

We now remove the restriction that a and π does not give rise to cycles of length
one. The only way this anomaly can occur is in terms of the type

∆h∆−hp(1−
∑ml−1

q=1
rl−1,q)+rl,1

(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

) (H.107)

when γ2σl(1)−1 = γ2σl−1(nl−1)−1. Note that in this case∫ t

0

∆h∆−hps(xγ2σl(1)−1
− xγ2σl−1(nl−1)−1

) ds = w(0). (H.108)
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This is what we call a cycle of length one. In this case we have

∆h∆−hp(1−
∑ml−1

q=1
rl−1,q)+rl,1

(0) = −2∆hp(1−
∑ml−1

q=1
rl−1,q)+rl,1

(0). (H.109)

We now show how to deal with (H.109). We return to the basic formulas (H.30)
and (H.31). We obtain an upper bound for (H.31) by taking the absolute value of the
integrand. However, we do not, initially extend the region of integration with respect
to time. Instead we proceed as follows: Let l′ be the largest value of l for which (H.109)
occurs. We extend the integral with respect to rl,q for all l > l′, and also for l = l′ and
q > 1, and bound these integrals with terms of the form u, v and w. We then consider
the integral of the term in (H.109) with respect to rl′,1.

Clearly∫ 1

0

|∆hp
(1−
∑m

l′−1
q=1 rl′−1,q)+rl′,1

(0)| drl′,1 ≤
∫ 2−

∑m
l′−1

q=1 rl′−1,q

1−
∑m

l′−1
q=1 rl′−1,q

|∆hps(0)| ds (H.110)

If
∑ml′−1

q=1 rl′−1,q ≤ 1/2 this last integral

≤
∫ 2

1/2

|∆hps(0)| ds ≤ Ch2 (H.111)

by (G.14). Since we have only used two ∆h
· operators we are in the situation of (H.84).

If
∑ml′−1

q=1 rl′−1,q ≥ 1/2 then for some q′ we have rl′−1,q′ ≥ 1/2m. Note that the
variable rl′−1,q′ appears in (H.107) and in only one other term. If q′ > 1, then using
the fact that rl′−1,q′ ≥ 1/2m, we use one of the bounds in Lemma G.5, to bound a term
which in the non-exceptional case would be u, v or w, or their integrals with respect to
x, by u1/2m, v1/2m or w1/2m, or their integrals with respect to x. One sees from Lemma
G.1 that we don’t loose anything in comparison with the non-exceptional case. The case
rl′−1,1 ≥ 1/2m and γ2σl′−1(1)−1 6= γ2σl′−2(nl′−2)−1 is handled the same way.

On the other hand if rl′−1,1 ≥ 1/2m and γ2σl′−1(1)−1 = γ2σl′−2(nl′−2)−1, we use Lemma

G.4 to get the same bound of Ch2.
After completing the procedure described in the previous two paragraphs we inte-

grate in (H.31) with respect to rl′−1,q′ and rl′,1, since these variables now appear only
in the term in (H.107). What we are left with is bounded by∫ 1−

∑
q 6=q′

rl′−1,q

1/2m

∫ 1

0

|∆hp
(1−
∑m

l′−1
q=1 rl′−1,q)+rl′,1

(0)| drl′,1 drl′−1,q′ (H.112)

Let α = 1−
∑
q 6=q′ rl′−1,q. We make the change of variables r = rl′,1 and s = −rl′−1,q′ +α

to get that (H.112)

≤
∫ 1

0

∫ 1

0

|∆hpr+s(0)| dr dsw (H.113)

≤
∫ 2

0

r|∆hpr(0)| dr ≤ C
∫ 2

0

r

(∫
sin2(ph)e−rψ(p) dp

)
dr

≤ Chβ
∫ 2

0

r

(∫
pβe−rψ(p) dp

)
dr

≤ Chβ
∫

pβ

1 + ψ2(p)
dp = O(hβ).

Since

hβ = hβ+1/2ψ(1/h)

(
1

hψ2(1/h)

)1/2

(H.114)
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we are once again in the situation of (H.84).
We then apply a similar procedure for each l in decreasing order, skipping those for

which (H.109) occurs, if they were already bounded by the procedure described in the
paragraph preceding the one containing (H.112). Thus we see that cycles of length one
are in the situation of (H.84). We proceed to deal with remaining terms as we did when
we assumed that there were no cycles of length one and see that (H.81) holds. This
completes the proof of Lemma H.3.

It follows from (H.80) and Lemma H.3 that when m is even∑
a

∑
π0,...,πK

∫
Th(x; π, a)

∏
j,k,i

dxj,k,i (H.115)

=

K∏
j,k=0

j<k

(2nj,k)!

2nj,knj,k!
(4cψ,h,1)

nj,k E


K∏

j,k=0

j<k

(αj,k)
nj,k

+O
(
h(2β−1)n+ε

)
.

We now show that we get the same estimates when Th(x; π, a) is replaced by T ′h(x; π, a);
(see (H.28) and (H.30)).

We point out, in the paragraph containing (H.26) that terms of the form ∆h∆−hp]· in
(H.28) are always of the form ∆h∆−hp·. Therefore, in showing that (H.28) and (H.30)
have the same asymptotic behavior as h → 0 we need only consider how the proof of
(H.115) must be modified when the arguments of the density functions with one or no
difference operators applied is effected by adding ±h.

It is easy to see that the presence of these terms has no effect on the integrals that
are O

(
h(2β−1)n+ε

)
as h → 0. This is because in evaluating these expressions we either

integrate over all of R1 or else use bounds that hold on all of R1. Since terms with one
difference operator only occur in these estimations, we no longer need to be concerned
with them.

Consider the terms with no difference operators applied to them, now denoted by
p]. So, for example, instead of F (σ̃, 0, . . . , 0) on the right-hand side of (H.76), we now
have ∫ (∫

R̃0(0)×···×R̃K(0)

K∏
l=0

p]
(1−
∑nl−1

q=1
rl−1,2q−1−sl−1)+rl,1

(H.116)

(x
σ̃l(1)

− x
σ̃l−1(nl−1)

)

nl∏
q=2

p]rl,2q−1
(x
σ̃l(q)

− x
σ̃l(q−1)

)

nl∏
q=1

drl,2q−1

)
dx.

Suppose that p]r(yσ(i) − yσ(i−1)) = pr(yσ(i) − yσ(i−1) ± h). We write this term as

p]r(yσ(i) − yσ(i−1)) = pr(yσ(i) − yσ(i−1)) + ∆±hpr(yσ(i) − yσ(i−1)). (H.117)

Substituting all such terms into (H.116) and expanding we get (H.115) and many other
terms with at least one pr(yσ(i)− yσ(i−1)) replaced by ∆±hpr(yσ(i)− yσ(i−1)). In this case
simply take these terms, extend their integrals to [0, 1] and bound them as in (G.4). Then
follow the procedure in the paragraph containing (H.69) to deal with the remaining
terms and the functions 1/(1 + (yσ(i) − yσ(i−1))

2). In this the integral in (H.116) is
bounded by C(1/(hψ(1/h)))j , where j is the number of terms that have the difference
operator applied. Thus we see that replacing Th(x; π, a) by T ′h(x; π, a) does not change
(H.115) when m is even.

When m is odd we can not construct a graph with all cycles of order 2. Therefore,
we are not in the situation covered by Section H.1. Moreover, in Section H.2 we never
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use the fact that m is even. We actually obtain (H.81) with n replaced by m/2, which is
what we assert in (H.3). This also holds when when p· is replaced by p]· for the reasons
given in the preceding two paragraphs.

H.3 Proof of Lemma H.2

For any A ⊆ [0, 3]n we set

FA =

∫ {∫
A

K∏
l=0

prl,1(x
σ̃l(1)

− x
σ̃l−1(nl−1)

) (H.118)

nl∏
q=2

prl,2q−1
(x
σ̃l(q)

− x
σ̃l(q−1)

)

K∏
l=0

nl∏
q=1

drl,2q−1

}
nl∏
q=1

dx
σ̃l(q)

.

Then by Hölder’s inequality, for any 1/a+ 1/b = 1{∫
A

K∏
l=0

prl,1(x
σ̃l(1)

− x
σ̃l−1(nl−1)

)

nl∏
q=2

prl,2q−1
(x
σ̃l(q)

− x
σ̃l(q−1)

)

K∏
l=0

nl∏
q=1

drl,2q−1

}
(H.119)

≤ |A|1/a
{∫

[0,3]n

K∏
l=0

pbrl,1(x
σ̃l(1)

− x
σ̃l−1(nl−1)

)

nl∏
q=2

pbrl,2q−1
(x
σ̃l(q)

− x
σ̃l(q−1)

)

K∏
l=0

nl∏
q=1

drl,2q−1

}1/b

,

where |A| denotes the volume of A in Rn+.
Since β > 1 we can choose a 1 < b < β such that∫ 3

0

(
ψ−1(1/s)

)b
ds ≤ C. (H.120)

Therefore it follows from (G.1) that∫ 3

0

pbr(x) dr ≤ C 1

1 + x2
. (H.121)

Thus there exists a finite constant C, depending only on n and b, that is independent of
A, such that

FA ≤ C|A|1/a. (H.122)

It follows from (H.66), paying special attention to the time variable of p · in the
second line, that

F (σ, s0, . . . , sK) = FAs0,...,sK (H.123)

where

As0,...,sK =

{
r ∈ Rn+

∣∣∣∣∣
l−1∑
λ=0

(1−
nλ∑
q=1

rλ,2q−1 − sλ) ≤
nl∑
q=1

rl,2q−1 (H.124)

≤
l−1∑
λ=0

(1−
nλ∑
q=1

rλ,2q−1 − sλ) + (1− sl); l = 0, 1, . . . ,K

}
.
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In particular

A0,...,0 =

{
r ∈ [0, 3]n

∣∣∣∣∣
l−1∑
λ=0

(1−
nλ∑
q=1

rλ,2q−1) ≤
nl∑
q=1

rl,2q−1 (H.125)

≤
l−1∑
λ=0

(1−
nλ∑
q=1

rλ,2q−1) + 1); l = 0, 1, . . . ,K

}
.

Let φl(r) =
∑l
λ=0(1−

∑nλ
q=1 rλ,2q−1). We have

As0,...,sK∆A0,...,0 (H.126)

⊆
K⋃
l=1

{
r ∈ [0, 3]n

∣∣∣∣∣φl−1(r)−
l−1∑
λ=0

sλ ≤
nl∑
q=1

rl,2q−1 ≤ φl−1(r)

}
K⋃
l=0

{
r ∈ [0, 3]n

∣∣∣∣∣φl−1(r) + 1−
l∑

λ=0

sλ ≤
nl∑
q=1

rl,2q−1 ≤ φl−1(r) + 1

}
.

(Note that the first union are the points in As0,...,sK that are not in A0,...,0 and the second
union are the points in A0,...,0 that are not in As0,...,sK .)

Since for fixed a ≥ b ≥ 0∣∣∣∣∣
{
r ∈ [0, 3]nl

∣∣∣∣∣a− b ≤
nl∑
q=1

rl,2q−1 ≤ a

}∣∣∣∣∣ ≤ Cbnl (H.127)

we have that

|As0,...,sK∆A0,...,0| ≤ CK

(
K∑
λ=0

sλ

)2n

(H.128)

≤ CKm+1( max
0≤λ≤K

sλ)m,

when max0≤λ≤K sλ is sufficiently small. Let K ′ be the cardinality of {l |nl > 0}. It is
easy to see that we have actually proved (H.128) with K replaced by K ′. Since K ′ ≤ m,
the last line in (H.128) can be written in terms of {sλ} and m. Lemma H.2 follows from
(H.122) and (H.128).

I Proof of Lemmas 4.1–4.3

Proof of Lemma 4.1 Using the multinomial theorem we have

E
((
J̃l,h

)m)
=
∑
m̃∈M

 m!∏l−1
j,k=0

j<k

(mj,k!)

E

 l−1∏
j,k=0

j<k

(Jj,k,l,h)
mj,k

 , (I.1)

where

M =

m̃ = {mj,k, 0 ≤ j < k ≤ l − 1}

∣∣∣∣∣
l−1∑
j,k=0

j<k

mj,k = m

 . (I.2)

We now use Lemma H.1 to compute the expectation on the right-hand side of (I.1).
Even though Lemma H.1 is proved for time intervals of length 1, (see H.1), it is straight
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forward to check that it holds for any fixed time interval, if the term αj,k, in (H.1), is
altered to reflect the new length. Therefore, for some ε > 0

E
((
J̃l,h

)m)
(I.3)

=
∑
m̃∈M

 m!∏l−1
j,k=0

j<k

(mj,k!)

 l−1∏
j,k=0

j<k

(2nj,k)!

2nj,k(nj,k!)
(4cψ,h,1)

nj,k E


l−1∏
j,k=0

j<k

(αj,k,l)
nj,k


+O

(
lmh(2β−1)n+ε

)
.

when mj,k = 2nj,k for all j and k, and is O
(
lmh(2β−1)n+ε

)
if any of the mj,k are odd.

Here we use the fact that ∑
m̃∈M

 m!∏l−1
j,k=0

j<k

(mj,k!)

 = lm (I.4)

to compute the error term. (Lemma H.1 is for a fixed partition of m. Here we include
the factor lm, to account for the number of possible partitions. Note that l is a function
of h.)

When mj,k = 2nj,k for all j and k, m!∏l−1
j,k=0

j<k

(mj,k!)

 l−1∏
j,k=0

j<k

(2nj,k)!

2nj,k(nj,k!)
=

(2n)!

2nn!

n!∏l−1
j,k=0

j<k

(nj,k!)
. (I.5)

Using this in (I.3) we get

E
((
J̃l,h

)m)
(I.6)

=
(2n)!

2nn!
(4cψ,h,1)

n
∑
N

 n!∏l−1
j,k=0

j<k

nj,k!

E


l−1∏
j,k=0

j<k

(αj,k,l)
nj,k


+O

(
lmh(2β−1)n+ε

)
,

where N is defined similarly as M. Using the multinomial theorem as in (I.1) we see
that the sum in (I.6) is equal to E {(α̃l)n}, which completes the proof of (4.11).

Proof of Lemma 4.2 By the Kac Moment Formula

E {(αt)n} = E

((∫
(Lxt )2 dx

)n)
(I.7)

= 2n
∑
π

∫ ∫
{
∑2n

i=1
ri≤t}

2n∏
i=1

pri(xπ(i) − xπ(i−1))

2n∏
i=1

dri

n∏
i=1

dxi,

where the sum runs over all maps π : [1, 2n] 7→ [1, n] with |π−1(i)| = 2 for each i.
The factor 2n comes from the fact that we can interchange each xπ(i) and xπ(i−1), i =

1, . . . , 2n.
It is not difficult to see that we can find a subset J = {i1, . . . , in} ⊆ [1, 2n], such

that each of x1, . . . , xn can be written as a linear combination of yj := xπ(ij) − xπ(ij−1),
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j = 1, . . . , n. For i ∈ Jc we use the bound pri(xπ(i) − xπ(i−1)) ≤ pri(0), then change
variables and integrate out the yj , to see that∫ ( 2n∏

i=1

∫ t

0

pri(xπ(i) − xπ(i−1)) dri

)
n∏
i=1

dxi (I.8)

≤ C
(∫ t

0

pr(0) dr

)n ∫ (∏
i∈J

∫ t

0

pri(xπ(i) − xπ(i−1)) dri

)
n∏
i=1

dxi

≤ C
(∫ t

0

pr(0) dr

)n(∏
i∈J

∫ ∫ t

0

pri(yi) dri dyi

)

= Ctn
(∫ t

0

pr(0) dr

)n
≤ C

(
t2ψ−1(1/t)

)n
,

for all t sufficiently small, where we use (G.3) and (J.7) for the last line.
It follows from (I.8) that

‖α1/l‖n ≤ C
ψ−1(l)

l2
(I.9)

for all l sufficiently large. Consequently, for l sufficiently large,∣∣∣‖2α̃l‖n − ‖α1‖n
∣∣∣ ≤ ‖2α̃l − α1‖n = ‖

l−1∑
j=0

αj,j,1/l‖n (I.10)

≤ l‖ α0,0,1/l‖n = l‖ α1/l‖n

≤ C
ψ−1(l)

l
.

This gives (4.13).

The next three lemmas give estimates for the mean and variance of
∫

(Lx+h
1 −Lx1)2 dx.

They are proved in Section K.

Let

cψ,h,0 :=

∫ ∞
0

(ps(0)− ps(h)) ds. (I.11)

Lemma I.1 Under the hypotheses of Theorem 1.2,

lim
h→0

hψ(1/h)cψ,h,0 = cβ,0. (I.12)

Lemma I.2 Under the hypotheses of Theorem 1.2; for small h and t(h) = 1/(log 1/h),

E

(∫
(Lx+h

t − Lxt )2 dx

)
= 4cψ,h,0t+O (g(h, t)) (I.13)

as h→ 0, where

g(h, t) =


h2t2

(
ψ−1(1/t)

)3
3/2 < β ≤ 2

h2L(1/h) β = 3/2

(hψ2(1/h))−1 1 < β < 3/2

(I.14)

and L( · ) is some function that is slowly varying at infinity. Also

Var

(∫
(Lx+h

t − Lxt )2 dx

)
(I.15)

≤ C
(
tg(h, t)

hψ(1/h)
+
t2ψ−1(1/t)

hψ2(1/h)
+

Ct

h3/2ψ5/2(1/h)
+
Ct log 1/h

h2ψ3(1/h)

)
.
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The proof of this lemma shows that we can take any function t := t(h) such that
ψ−1(1/t) << 1/h and limh→0 t(h) = 0.

Lemma I.3 Under the hypotheses of Theorem 1.2,

E

(∫
(Lx+h

1 − Lx1)2 dx

)
= 4cψ,h,0 +O (g(h)) (I.16)

as h→ 0, where

g(h) =


h2 3/2 < β ≤ 2

h2L(1/h) β = 3/2

(hψ2(1/h))−1 1 < β < 3/2

(I.17)

and L( · ) is slowly varying at infinity.

Proof of Lemma 4.3 We use (4.4) with l = [log 1/h]. Since Jj,j,l,h, 0 ≤ j ≤ l − 1, are
independent and identically distributed, E(Jj,j,l,h) = E(J0,0,l,h), for all j = 0, . . . , l − 1

and

Var

√hψ2(1/h)

l−1∑
j=0

(Jj,j,l,h − E(Jj,j,l,h))

 = lhψ2(1/h)Var (J0,0,l,h) (I.18)

Consequently, to obtain (4.14) it suffices to show that

lim
h→0

√
hψ2(1/h)

(
lE(J0,0,l,h)− E

∫
(Lx+h

1 − Lx1)2 dx

)
= 0 (I.19)

and

lim
h→0

lhψ2(1/h)Var (J0,0,l,h) = 0. (I.20)

Using (I.13) and (I.16) on the expectations in (I.19), and recalling that l = 1/t, we
see that

lE(J0,0,l,h)− E
∫

(Lx+h
1 − Lx1)2 dx = O(g(h, t)/t) +O(g(h)) (I.21)

It is easy to verify that (I.19) holds.

Showing that (I.20) holds is a little more subtle so we provide some details. We first
consider the last three terms in (I.15) and multiply them by lhψ2(1/h) = hψ2(1/h)/t as
in (I.18). The first of these is

hψ2(1/h)

t

t2ψ−1(1/t)

hψ2(1/h)
= tψ−1(1/t). (I.22)

This last function is regularly varying as t → 0 with index 1 − 1/β which is positive by
hypothesis.

The next term is

hψ2(1/h)

t

t

h3/2ψ5/2(1/h)
=

1

h1/2ψ1/2(1/h)
. (I.23)

Here (h1/2ψ1/2)−1 is regularly varying as h→ 0 with index (β − 1)/2 which is positive.
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The third of the last three terms is

hψ2(1/h)

t

t log 1/h

h2ψ3(1/h)
=

log 1/h

hψ(1/h)
. (I.24)

Here (log 1/h)(hψ(1/h))−1 is regularly varying as h → 0 with index (β − 1) which is
positive. Thus (I.20) holds for these three terms.

We now consider
hψ2(1/h)

t

tg(h, t)

hψ(1/h)
= g(h, t)ψ(1/h). (I.25)

We use (I.14) to see that when β > 3/2 this is equal to

t2(ψ−1(1/t))3h2ψ(1/h). (I.26)

Here we note that t2(ψ−1(1/t))3 is regularly varying at zero with index 2− (3/β) which
is positive since β > 3/2. In addition by (G.12), limh→0 h

2ψ(1/h) <∞.
When β = 3/2, (I.25) is equal to

h2L(1/h)ψ(1/h). (I.27)

This function is regularly varying at zero with index 2− (3/2).
When β < 3/2, (I.25) is equal to (hψ(1/h))−1, which is regularly varying at zero with

index β − 1. Thus we have verified (I.20). This completes the proof.

J Proofs of Lemmas G.1–G.5 and Lemma 4.4

Since the Lévy processes, X, that we are concerned with satisfy∫
1

1 + ψ(p)
dp <∞ (J.1)

it follows from the Riemann Lebesgue Lemma that they have transition probability den-
sity functions, which we designate as ps( · ). Taking the inverse Fourier transform of the
characteristic function Xs, and using the symmetry of ψ, we see that

ps(x) =
1

2π

∫
eipx e−sψ(p) dp (J.2)

=
1

π

∫ ∞
0

cos px e−sψ(p) dp.

We begin with a technical lemma.

Lemma J.1 Let X be a symmetric Lévy process with Lévy exponent ψ(λ) that is regu-
larly varying at infinity with index 1 < β ≤ 2 and satisfies (1.16). Then for any r ≥ 0 and
t > 0 ∫ t

0

sre−sψ(p) ds ≤ C
(
t ∧ 1

ψ(p)

)r+1

≤ 2Ctr+1

1 + (tψ(p))r+1
; (J.3)∫ ∞

0

ψr(p)

(∫ 1

0

sre−sψ(p) ds

)
dp ≤ C; (J.4)∫

| sin(hp)|ψr(p)
(∫ 1

0

sre−sψ(p) ds

)
dp ≤ C

hψ(1/h)
, (J.5)

and ∫ 1

0

(ps(0)− ps(h)) ds ≤ C 1

hψ(1/h)
(J.6)
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Central limit theorems for the L2 norm of increments of local times

as h→ 0.
In addition for all t ≤ 1 and all y ∈ R1∫ t

0

ps(y) ds ≤ Ctψ−1(1/t). (J.7)

Proof The first part of the bound in the first inequality in (J.3) comes from taking
e−sψ(p) ≤ 1; the second from letting t =∞. The second inequality in (J.3) is trivial.

Note that for any y > 0

yr
∫ 1

0

sre−sy ds =
1

y

∫ y

0

sre−s ds. (J.8)

Consequently

yr
∫ 1

0

sre−sy ds ≤
(

sup
x≥0

xre−x
)
∧
(

1

y

∫ ∞
0

sre−s ds

)
(J.9)

≤ C

(
1 ∧ 1

y

)
≤ 2C

1

1 + y
.

Using this it is easy to see that∫
ψr(p)

∫ 1

0

sre−sψ(p) ds dp ≤ C

∫ (
1 ∧ 1

ψ(p)

)
dp (J.10)

≤ C

∫ 1

0

1 dp+ C

∫ ∞
1

1

ψ(p)
dp

which gives (J.4).
Similarly we obtain (J.5),∫ ∞

0

| sin(hp)|ψr(p)
∫ 1

0

sre−sψ(p) ds dp (J.11)

≤ C
∫ ∞

0

| sin(hp)|
(

1 ∧ 1

ψ(p)

)
dp

≤ C
∫ ∞

0

hp ∧ 1

1 + ψ(p)
dp

≤ C

(
h

∫ 1/h

0

p

1 + ψ(p)
dp+

∫ ∞
1/h

1

1 + ψ(p)
dp

)
≤ C

hψ(1/h)
.

(In (J.11) we use the regular variation of ψ at infinity. We continue to do so throughout
the rest of this paper without further comment.)

For (J.6) we first note that by (J.2)

ps(0)− ps(h) =
1

π

∫ ∞
0

(1− cos ph) e−sψ(p) dp (J.12)

=
2

π

∫ ∞
0

sin2 ph/2 e−sψ(p) dp.

Therefore by Fubini’s Theorem and (J.3),∫ 1

0

(ps(0)− ps(h)) ds (J.13)

=
2

π

∫ ∞
0

sin2 ph/2

∫ 1

0

e−sψ(p) ds dp
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≤ C
∫ ∞

0

(
1 ∧ p

2h2

2

)(
1 ∧ 1

ψ(p)

)
dp

≤ Ch2

∫ 1/h

0

p2

ψ(p)
dp+ C

∫ ∞
1/h

1

ψ(p)
dp ≤ C 1

hψ(1/h)
.

For (J.7) we use (J.3) to see that∫ t

0

ps(y) ds ≤ 1

2π

∫ t

0

∫
e−sψ(p) dp ds

≤ C

∫ ∞
0

(
t ∧ 1

ψ(p)

)
dp (J.14)

≤ C

(
tψ−1(1/t) +

∫ ∞
ψ−1(1/t)

1

ψ(p)
dp

)
≤ Ctψ−1(1/t).

Proof of Lemma G.1 We first note that

ps(x) ≤ C
(
ψ−1(1/s) ∨ 1

)
. (J.15)

Refer to (J.2). It is obvious that for s ≥ 1, ps(x) ≤ C, for all x. In addition,

ps(x) ≤ 1

π
ψ−1(1/s) +

1

π

∫ ∞
ψ−1(1/s)

e−sψ(p) dp. (J.16)

Also, for all s sufficiently small, the last integral is equal to∫ ∞
1

e−u dψ−1(u/s) <

∫ ∞
1

ψ−1(u/s) e−u du (J.17)

by integration by parts, where we drop a negative term. The final integral in (J.17)

≤ ψ−1(1/s)

∫ ∞
1

ψ−1(u/s)

ψ−1(1/s)
e−u du (J.18)

≤ ψ−1(1/s)K

∫ ∞
1

u1/β+δ e−u du ≤ Cψ−1(1/s),

for all δ > 0; where the constant K depends on δ. (See e.g. [3, Theorem 1.5.6].) Thus
we get (J.15).

By integration by parts

ps(x) =
1

πx

∫ ∞
0

e−sψ(p) d(sin px) (J.19)

= − 1

πx

∫ ∞
0

sin px

(
d

dp
e−sψ(p)

)
dp

= − 1

πx2

∫ ∞
0

cos px

(
d2

dp2
e−sψ(p)

)
dp.

Furthermore

d2

dp2
e−sψ(p) =

(
s2(ψ′(p))2 − sψ′′(p)

)
e−sψ(p). (J.20)
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Therefore, by (1.17)∣∣∣∣ ∫ 1

0

cos px

(
d2

dp2
e−sψ(p)

)
dp

∣∣∣∣ ≤ C (∫ 1

0

(
(ψ′(p))2 + |ψ′′(p)|

))
dp ≤ C. (J.21)

(We use (1.17) repeatedly in the rest of the paper without comment.) In addition, by
(1.16), for all s sufficiently small∣∣∣∣∫ ∞

1

cos px

(
d2

dp2
e−sψ(p)

)
dp

∣∣∣∣ (J.22)

≤ C
∫ ∞

1

1

p2

(
ψ2(p)s2e−sψ(p) + sψ(p)e−sψ(p)

)
dp

≤ C
∫ ∞

1

1

p2
dp ≤ C,

since supx≥0 x
re−x ≤ C. Using (J.15) and (J.19)–(J.22) we get (G.1).

The inequality in (G.2) follows immediately from (G.1).

The equality in (G.3) is trivial since
∫
ps(x) dx = 1.

Note that

∆hps(x) = ps(x+ h)− ps(x) (J.23)

=
1

π

∫ ∞
0

(cos p(x+ h)− cos px) e−sψ(p) dp

= − 2

π

∫ ∞
0

cos(px) sin2(hp/2)e−sψ(p)

− 1

π

∫ ∞
0

sin(px) sin(hp) e−sψ(p) dp

and

∆h∆−hps(x) = 2ps(x)− ps(x+ h)− ps(x− h) (J.24)

=
4

π

∫ ∞
0

cos(px) sin2(hp/2) e−sψ(p) dp.

Thus

∆hps(x) = −1

2
∆h∆−hps(x)− 1

π

∫ ∞
0

sin(px) sin(hp) e−sψ(p) dp. (J.25)

We now note that

sup
x

∫ 1

0

|∆hps(x)| ds ≤ C

hψ(1/h)
(J.26)

and

sup
x

∫ 1

0

|∆h∆−hps(x)| ds ≤ C

hψ(1/h)
. (J.27)

To obtain (J.27) we use (J.24) to see that

sup
x

∫ 1

0

|∆h∆−hps(x)| ds ≤ 4

π

∫ 1

0

∫ ∞
0

sin2(hp/2) e−sψ(p) dp ds. (J.28)

Using the calculation in (J.13) we get (J.27).
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To obtain (J.26) we note that by (J.3), similarly to (J.13)

sup
x

∫ 1

0

∣∣∣∣ ∫ ∞
0

sin(px) sin(hp) e−sψ(p) dp

∣∣∣∣ ds (J.29)

≤ C
∫ ∞

0

(
1 ∧ ph

2

)(
1 ∧ 1

ψ(p)

)
dp

≤ C

(
h

∫ 1/h

0

p

1 + ψ(p)
dp+

∫ ∞
1/h

1

ψ(p)
dp

)
≤ C 1

hψ(1/h)
.

Thus (J.26) follows from (J.25), (J.27) and (J.29).

We now show that

∆h∆−hps(x) =
8

π

K

x2
(J.30)

where

K = K(s, x, h) :=

∫ ∞
0

sin2(px/2)
(

sin2(hp/2) e−sψ(p)
)′′

dp. (J.31)

To get this we integrate by parts in (J.24),∫ ∞
0

cos px sin2(hp/2) e−sψ(p) dp (J.32)

=
1

x

∫ ∞
0

sin2(hp/2) e−sψ(p) d(sin px)

= − 1

x

∫ ∞
0

sin px
(

sin2(hp/2) e−sψ(p)
)′
dp

= − 1

x

∫ ∞
0

(
sin2(hp/2) e−sψ(p)

)′
d

(∫ p

0

sin rx dr

)
= − 1

x2

∫ ∞
0

(
sin2(hp/2) e−sψ(p)

)′
d (1− cos px)

=
2

x2

∫ ∞
0

sin2(px/2)
(

sin2(hp/2) e−sψ(p)
)′′

dp.

Let g(p) = e−sψ(p) and note that(
2 sin2(hp/2) e−sψ(p)

)′
= g(p)h sinhp+ 2g′(p) sin2(hp/2) (J.33)

and (
2 sin2(hp/2) e−sψ(p)

)′′
(J.34)

= g(p)h2 coshp+ 2g′(p)h sinhp+ 2g′′(p) sin2(hp/2).

Substituting (J.34) in (J.32) we write K = I + II + III. Using (J.3) we see that∫ 1

0

|I| ds = h2

∫ 1

0

∣∣∣ ∫ ∞
0

coshp sin2(px/2)e−sψ(p) dp
∣∣∣ ds (J.35)

≤ h2

∫ ∞
0

(∫ 1

0

e−sψ(p) ds

)
dp

≤ Ch2

∫ 1

0

1

1 + ψ(p)
dp = O

(
h2
)
.
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Then using (1.16), (1.17) and (J.4) with r = 1 we get∫ 1

0

|II| ds = 2h

∫ 1

0

∣∣∣ ∫ ∞
0

sinhp sin2(px/2)g′(p) dp
∣∣∣ ds (J.36)

≤ 2h

∫ ∞
0

| sin(hp)ψ′(p)|
(∫ 1

0

se−sψ(p) ds

)
dp

≤ Ch2

∫ ∞
0

|pψ′(p)|
(∫ 1

0

se−sψ(p) ds

)
dp

≤ Ch2

(
C1 +

∫ ∞
1

ψ(p)

(∫ 1

0

se−sψ(p) ds

)
dp

)
= O

(
h2
)
.

Similarly, and also using (J.4) with r = 1 we get

∫ 1

0

|III| ds = 2

∫ 1

0

∣∣∣ ∫ ∞
0

sin2(hp/2) sin2(px/2)g′′(p) dp
∣∣∣ ds

≤ Ch2

∫ ∞
0

p2

(∫ 1

0

(
s|ψ′′(p)|+ s2|ψ′(p)|2

)
e−sψ(p) ds

)
dp

≤ Ch2

{∫ 1

0

p2
(
|ψ′′(p)|+ |ψ′(p)|2

)
dp

+

∫ ∞
1

(∫ 1

0

(
sψ(p) + s2ψ2(p)

)
e−sψ(p) ds

)
dp

}
= O

(
h2
)
. (J.37)

Combining (J.35)–(J.37) with (J.30) we get the third bound in (G.7). The first bound in
(G.7) follows from (J.27).

To get the second bound in (G.7) we use (J.24) and the third integral in (J.32) to see
that

∆h∆−hps(x) = − 4

π

L

x
(J.38)

where

L = L(s, x, h) :=

∫ ∞
0

sin px
(

sin2(hp/2) e−sψ(p)
)′
dp. (J.39)

Using (J.33), (1.16), (1.17) and (J.5) with r = 0 and 1, we see that∫ 1

0

|L| ds (J.40)

≤ C
∫ 1

0

(
h

∫ ∞
0

| sinhp|g(p) dp+

∫ ∞
0

sin2 (hp/2)|g′(p)| dp
)
ds

≤ Ch
∫ ∞

0

| sinhp|
∫ 1

0

e−sψ(p) ds dp

+Ch

(
C1 +

∫ ∞
1

| sin (hp/2)||pψ′(p)|
∫ 1

0

se−sψ(p) ds dp

)
≤ O

(
1

ψ(1/h)

)
+ Ch

∫ ∞
0

| sin (hp/2)|ψ(p)

∫ 1

0

se−sψ(p) ds dp

≤ O
(

1

ψ(1/h)

)
.

Thus we get the second bound on the right–hand side of (G.7). This completes the proof
of (G.7).
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To prove (G.4) we first note that by (J.25) it is less than w(x)/2 plus

C

∫ 1

0

∣∣∣ ∫ ∞
0

sin(px) sin(hp) e−sψ(p) dp
∣∣∣ ds (J.41)

Integrating by parts twice we obtain∫ ∞
0

sin(px) sin(hp) e−sψ(p) dp (J.42)

= − 1

x

∫ ∞
0

sin(hp) e−sψ(p) d(cos px)

=
1

x

∫ ∞
0

cos px
(

sin(hp) e−sψ(p))
)′
dp

=
1

x2

∫ ∞
0

(
sin(hp) e−sψ(p)

)′
d (sin px)

= − 1

x2

∫ ∞
0

sin px
(

sin(hp) e−sψ(p)
)′′

dp.

Note that (
sin(hp) e−sψ(p)

)′
= (h coshp− sinhp(sψ′(p)) e−sψ(p) (J.43)

Thus the left hand side of (J.42) is bounded by
J̄

x
where

J̄ = J̄(s, x, h) :=

∫ 1

0

∣∣∣ ∫ ∞
0

cos px
(

sin(hp) e−sψ(p)
)′
dp
∣∣∣ ds. (J.44)

We write
J̄ ≤ J̄1 + J̄2 (J.45)

where

|J̄1| ≤ h

∫ 1

0

∫ ∞
0

| cos px cos(hp)| e−sψ(p) dp ds (J.46)

≤ Ch

∫ ∞
0

1

1 + ψ(p)
dp ≤ C ′h

and using (1.16), (1.17) and (J.4)

|J̄2| ≤
∫ 1

0

∫ ∞
0

| cos px sin(hp)||ψ′(p)| se−sψ(p) dp ds (J.47)

≤ h

∫ 1

0

∫ ∞
0

p|ψ′(p)| se−sψ(p) dp ds

≤ h

∫ 1

0

|ψ′(p)|
∫ 1

0

se−sψ(p) ds dp

+Ch

∫ 1

0

∫ ∞
1

ψ(p) se−sψ(p) dp ds ≤ C ′h.

Therefore
J̄

|x|
≤ C h

|x|
. (J.48)

In addition (J.41) is
G

x2
where

G = G(x, h) :=

∫ 1

0

∣∣∣ ∫ ∞
0

sin px
(

sin(hp) e−sψ(p)
)′′

dp
∣∣∣ ds. (J.49)
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Since (
sin(hp) e−sψ(p)

)′′
(J.50)

=
(
−h2 sinhp+ 2hs coshpψ′(p)− sinhp(sψ′′(p)− s2(ψ′(p))2

)
e−sψ(p),

we can write

G ≤ G1 +G2 +G3. (J.51)

Using (J.50) and (J.4) we get

|G1| = h2

∫ 1

0

∣∣∣ ∫ ∞
0

sin px
(

sin(hp) e−sψ(p)
)
dp
∣∣∣ ds (J.52)

≤ Ch2

∫ ∞
0

∫ 1

0

e−sψ(p) ds dp ≤ Ch2.

Using (1.16) , (1.17) and (J.4) we see that

|G2| = 2h

∫ 1

0

∣∣∣ ∫ ∞
0

sin px coshp
(
ψ′(p) se−sψ(p)

)
dp
∣∣∣ ds (J.53)

≤ 2h

∫ 1

0

∫ ∞
0

|ψ′(p)| se−sψ(p) dp ds

≤ 2h

(
C1 +

∫ ∞
1

p|ψ′(p)|
(∫ 1

0

se−sψ(p) ds

)
dp

)
≤ Ch

(
C1 +

∫ ∞
1

ψ(p)

(∫ 1

0

se−sψ(p) ds

)
dp

)
≤ Ch.

Similarly

|G3| (J.54)

=

∫ 1

0

∣∣∣ ∫ ∞
0

sin px sinhp
(
sψ′′(p)− s2(ψ′(p))2

)
e−sψ(p) dp

∣∣∣ ds
≤ h

∫ ∞
0

p

(∫ 1

0

(
s|ψ′′(p)|+ s2(ψ′(p))2

)
e−sψ(p) ds

)
dp

≤ Ch
{
C1 +

∫ ∞
1

p2

(∫ 1

0

(
s|ψ′′(p)|+ s2(ψ′(p))2

)
e−sψ(p) ds

)
dp

}
≤ Ch

{
C1 +

∫ ∞
1

(∫ 1

0

(
sψ(p) + s2(ψ(p))2

)
e−sψ(p) ds

)
dp

}
≤ Ch.

Thus we see that for all |x| > 0

G ≤ Ch, (J.55)

for some C < ∞ independent of |x|. Combining (J.26), (J.48) and (J.55) and taking into
account the value of w(x), we get (G.4).

For (G.5) we use (G.4) to see that∫ (∫ 1

0

|∆h ps(x)| ds
)
dx (J.56)

≤ C
(∫ a

0

1

hψ(1/h)
dx+ h

∫ 1

a

1

x
dx+ h

∫ ∞
1

1

x2
dx

)
,
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Set a = a(h) = h2ψ(1/h). For Lévy processes excluding Brownian Motion, limh→0 h
2ψ(1/h) =

0; (see [11, Lemma 4.2.2]), and we can estimate (J.56) to obtain (G.5). For Brownian
Motion take a = 1 in (J.56) to obtain (G.5).

Similarly, to obtain (G.6) we use (G.4) to get∫ (∫ 1

0

|∆h ps(x)| ds
)p

dx ≤ C

(∫ a

0

1

hpψp(1/h)
dx+ hp

∫ ∞
a

1

xp
dx

)
≤ C

(
a

hpψp(1/h)
+

hp

ap−1

)
. (J.57)

For (G.9) we use (G.7) to see that∫ (∫ 1

0

|∆h∆−h ps(x)| ds
)2

dx (J.58)

=

∫ h

0

(∫ 1

0

|∆h∆−h ps(x)| ds
)2

dx

+

∫ ∞
h

(∫ 1

0

|∆h∆−h ps(x)| ds
)2

dx

≤ C

hψ2(1/h)
+

C

ψ2(1/h)

∫ ∞
h

1

x2
dx = O

(
1

hψ2(1/h)

)
.

The inequality in (G.10) follows similarly,∫ ∞
u

(∫ 1

0

|∆h∆−h ps(x)| ds
)2

dx ≤ C

ψ2(1/h)

∫ ∞
u

1

x2
dx =

C

uψ2(1/h)
. (J.59)

To obtain (G.8) we use (G.7) to see that∫ ∫ 1

0

∣∣∣∆h∆−h ps(x)
∣∣∣ ds dx (J.60)

=

∫ h

0

∫ 1

0

∣∣∣∆h∆−h ps(x)
∣∣∣ ds dx+

∫ 1

h

∫ 1

0

∣∣∣∆h∆−h ps(x)
∣∣∣ ds dx

+

∫ ∞
1

∫ 1

0

∣∣∣∆h∆−h ps(x)
∣∣∣ ds dx

≤ C

hψ(1/h)

∫ h

0

1 dx+
C

ψ(1/h)

∫ 1

h

1

|x|
dx+ Ch2

∫ ∞
1

1

|x|2
dx

≤ C

ψ(1/h)
+
C log 1/h

ψ(1/h)
+ Ch2

Proof of Lemma 4.4 Using 2− eiph − e−iph = 4 sin2(hp/2) we see that∫ ∞
0

∆h∆−hpt(x) dt =
1

2π

∫ ∞
0

∫
e−ipx(2− eiph − e−iph)e−tψ(p) dp dt

=
4

2π

∫
e−ipx sin2(hp/2)

∫ ∞
0

e−tψ(p) dt dp (J.61)

=
4

2π

∫
e−ipx

sin2(hp/2)

ψ(p)
dp.

It follows from Parseval’s Theorem that

cψ,h,1 =

∫ (∫ ∞
0

∆h∆−hpt(x) dt

)2

dx =
8

π

∫
sin4(hp/2)

ψ2(p)
dp. (J.62)
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Using this we write

hψ2(1/h)cψ,h,1 =
16

π

∫ ∞
0

(
sin2(p/2)

ψ(p/h)/ψ(1/h)

)2

dp (J.63)

For a fixed 0 < a < 1,∫ a

0

(
sin2 p/2

ψ(p/h)/ψ(1/h)

)2

dp = hψ2(1/h)

∫ a/h

0

(
sin2(ph/2)

ψ(p)

)2

dp

≤ h5ψ2(1/h)

4

∫ a/h

0

p4

ψ2(p)
dp. (J.64)

For any ε > 0 we can find an h0 > 0, such that for all 0 < h ≤ h0, the last line above

≤ (1 + ε)h5ψ2(1/h)

4(5− 2β)

(a/h)5

ψ2(a/h)
≤ a5−2β

2(5− 2β)
. (J.65)

Note that for any ε′ > 0 and p ≥ a > 0, we can find an h′0 > 0, such that for all
0 < h ≤ h′0 ≤ h0,

ψ2(1/h)

ψ2(p/h)
≤ C max

(
1

p2β−ε ,
1

p2β+ε

)
. (J.66)

(See [3, Theorem 1.5.6].) Therefore, it follows from the Dominated Convergence Theo-
rem that

lim
h→0

∫ ∞
a

(
sin2 p/2

ψ(p/h)/ψ(1/h)

)2

dp =

∫ ∞
a

sin4 p/2

p2β
dp. (J.67)

Since (J.64), (J.65) and (J.67) hold for all a > 0 sufficiently small, we get (4.15).

Proof of Lemma G.2 We now consider (G.11). Just as we obtained (J.61) and (J.62) we
see that ∫

[0,
√
h]2

∫ (
∆h∆−h pr(x)

) (
∆h∆−h pr′(x)

)
dx dr dr′

=
8

π

∫
sin4(ph/2)

ψ2(p)

(
1− e−

√
hψ(p)

)2

dp. (J.68)

We show below that

hψ2(1/h)

∫
sin4(ph/2)

ψ2(p)
e−
√
hψ(p) dp = O(h1/2), (J.69)

which proves (G.11).
To obtain (J.69) we note that

hψ2(1/h)

∫
sin4(ph/2)

ψ2(p)
e−
√
hψ(p) dp (J.70)

= hψ2(1/h)

∫
0≤|p|≤1

sin4(ph/2)

ψ2(p)
e−
√
hψ(p) dp

+hψ2(1/h)

∫
1≤|p|≤1/h

sin4(ph/2)

ψ2(p)
e−
√
hψ(p) dp

+hψ2(1/h)

∫
|p|≥1/h

sin4(ph/2)

ψ2(p)
e−
√
hψ(p) dp

≤ Ch5ψ2(1/h)

∫
0≤|p|≤1

p4

ψ2(p)
dp
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+Ch5ψ2(1/h)

∫
1≤|p|≤1/h

p4

ψ2(p)

1√
hψ(p)

dp

+Chψ2(1/h)e−
√
hψ(1/h)

∫
|p|≥1/h

1

ψ2(p)
dp,

where, in the next to last line of (J.70), we use the fact that for s ≥ 0, e−s ≤ (sups≥0 se
−s)/s.

It is obvious that the first and last integral in the last inequality in (J.70) is O(
√
h). As

for the second integral, if 1 < β < 5/3

h5ψ2(1/h)

∫
1≤|p|≤1/h

p4

ψ2(p)

1√
hψ(p)

dp ≤ C 1

h1/2ψ(1/h)
= O

(√
h
)

; (J.71)

if 5/3 < β ≤ 2

h5ψ2(1/h)

∫
1≤|p|≤1/h

p4

ψ2(p)

1√
hψ(p)

dp ≤ Ch
5ψ2(1/h)

h1/2
= O

(√
h
)
, (J.72)

where we use Remark G.3 when β = 2. When β = 5/3

h5ψ2(1/h)

∫
1≤|p|≤1/h

p4

ψ2(p)

1√
hψ(p)

dp ≤ C L(1/h)

h1/2ψ(1/h)
≤ O(h) (J.73)

for some function L( · ) that is slowly varying at infinity. This gives us (J.69).

Lemma J.2 For r ≥ 0

sup
δ≤s≤1

sre−sψ(p) ≤ C
(

1 ∧ 1

ψr(p)

)
≤ 2C

1 + ψr(p)
, (J.74)

and for k > 0

sup
δ≤s≤1

sre−sψ(p) ≤ sup
δ≤s≤1

sr+k

δk
e−sψ(p) ≤ 1

δk
2C

1 + ψr+k(p)
. (J.75)

Proof The first inequality in (J.74) follows from the facts that yre−y ≤ C and, of course,
supδ≤s≤1 s

re−sψ(p) ≤ 1. The second inequality in (J.74) is elementary. The inequality in
(J.75) follows from (J.74).

Proof of Lemma G.4 The inequality in (G.13) follows immediately from (G.1).
By (J.75) with r = 0 and k = 3

sup
δ≤s≤1

|∆hps(0)| = sup
δ≤s≤1

1

π

∫ ∞
0

sin2(ph/2) e−sψ(p) dp (J.76)

≤ sup
δ≤s≤1

h2

2π

∫ ∞
0

p2 e−sψ(p) dp

≤ C
h2

δ3

∫ ∞
0

p2

1 + ψ3(p)
dp ≤ C

δ3
h2,

Note that ∆hpr(0) = pr(h) − pr(0) < 0 and ∆h∆−hpr(0) = 2(pr(0) − pr(h)). Thus (G.15)
follows immediately from (G.14).

Proof of Lemma G.5 The inequality in (G.17) follows immediately from (G.1).
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To obtain (G.19) consider the material in the proof of Lemma G.1 from (J.30) to the
statement that K = I+ II+ III. Now, instead of integrating I, II and III we take their
supremum as δ ≤ s ≤ 1. We have

sup
δ≤s≤1

|I| ≤ h2 sup
δ≤s≤1

∣∣∣ ∫ ∞
0

coshp sin2(px/2)e−sψ(p) dp
∣∣∣ (J.77)

≤ h2 sup
δ≤s≤1

∫ ∞
0

e−sψ(p) dp

≤ h2C

δ

∫ ∞
0

1

1 + ψ(p)
dp ≤ C

δ
h2,

where we use (J.75) with r = 0 and k = 1.

sup
δ≤s≤1

|II| = 2 sup
δ≤s≤1

h
∣∣∣ ∫ ∞

0

sinhp sin2(px/2)g′(p) dp
∣∣∣ (J.78)

≤ 2h sup
δ≤s≤1

∫ ∞
0

| sin(hp)ψ′(p)| e−sψ(p) dp

≤ Ch2 sup
δ≤s≤1

∫ ∞
0

|pψ′(p)| se−sψ(p) dp

≤ Ch2 sup
δ≤s≤1

(
C1 +

∫ ∞
1

ψ(p) se−sψ(p) dp

)
≤ C

δ
h2

(
C ′1 +

∫ ∞
1

ψ(p)

1 + ψ2(p)
dp

)
,

where we use (J.75) with r = 1 and k = 1. Similarly, but with r, k = 0, 1 and r, k = 2, 1

sup
δ≤s≤1

|III| ≤ sup
δ≤s≤1

∣∣∣ ∫ ∞
0

sin2(hp/2) sin2(px/2)g′′(p) dp
∣∣∣

≤ Ch2 sup
δ≤s≤1

∫ ∞
0

p2
(
|sψ′′(p)|+ s2|ψ′(p)|2

)
e−sψ(p) dp

≤ Ch2

{∫ 1

0

p2
(
|ψ′′(p)|+ |ψ′(p)|2

)
dp (J.79)

+ sup
δ≤s≤1

∫ ∞
1

(
sψ(p) + s2ψ2(p)

)
e−sψ(p) dp

}
≤ Ch2

{
C1 + sup

δ≤s≤1

∫ ∞
1

(
sψ(p) + s2ψ2(p)

)
e−sψ(p) dp

}
≤ C

δ
h2

{
C1 +

∫ ∞
1

ψ(p)

1 + ψ2(p)
dp+

∫ ∞
1

ψ2(p)

1 + ψ3(p)
dp

}
Combining (J.77)–(J.79) with (J.30) we get the second bound in (G.19).

The first bound on the right–hand side of (G.19) follows from (G.15) since,∣∣∣∣ sup
δ≤r≤1

∆h∆−hpr(x)

∣∣∣∣ ≤ sup
δ≤r≤1

∆h∆−hpr(0), (J.80)

(see (J.24).)
To get the second bound on the right–hand side of (G.18) consider the material in

the paragraph containing (J.41). For our purposes here we need to obtain

sup
δ≤s≤1

∣∣∣ ∫ ∞
0

sin(px) sin(hp) e−rψ(p) dp
∣∣∣ (J.81)
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Integrating by parts twice as in (J.42) we see that (J.81) is bounded by

sup
δ≤s≤1

∣∣∣∣ 1

x2

∫ ∞
0

sin px
(

sin(hp) e−sψ(p)
)′′

dp

∣∣∣∣ . (J.82)

Thus we have to take supδ≤s≤1 of the terms in (J.52)–(J.54), but without the integral on
s. It is easy to see that we get the same bounds as in (J.52)–(J.54) but with the factor
1/δ as in (J.77)–(J.79),

By (J.23), (G.18) is bounded by (G.15) plus

Ch

∫
p e−δψ(p) dp (J.83)

≤ Ch

(∫ ψ−1(1/δ)

0

p dp+
1

δ2

∫ ∞
ψ−1(1/δ)

p

ψ2(p)
dp

)

≤ Ch(ψ−1(1/δ))2 ≤ C h

δ2
.

(For the second integral in the middle line of (J.83) see the comment following (J.70).)
This gives the first bound on the right–hand side of (G.18).

The inequalities in (G.20)–(G.22) follow easily from (G.17)–(G.19).

K Proofs of Lemmas I.1–I.3

Proof of Lemma I.1 By (J.2)

hψ(1/h)cψ,h,0 =
hψ(1/h)

π

∫ ∞
0

1− cos(ph)

ψ(p)
dp (K.1)

=
2hψ(1/h)

π

∫ ∞
0

sin2(ph/2)

ψ(p)
dp

=
2

π

∫ ∞
0

sin2(p/2)

ψ(p/h)/ψ(1/h)
dp.

Compare this to (J.63). Following the proof of (4.15), from (J.64) to (J.67), with obvious
modifications, we get (I.12).

Proof of Lemma I.2 By the Kac Moment Formula,

E

(∫
(Lx+h

t − Lxt )2 dx

)
(K.2)

= 2

∫ ∫
{
∑2

i=1
ri≤t}

∆hpr1(x)∆hpr2(0) dr1 dr2 dx

+2

∫ ∫
{
∑2

i=1
ri≤t}

pr1(x)∆h∆−hpr2(0) dr1 dr2 dx

= 2

∫
{
∑2

i=1
ri≤1}

∆h∆−hpr2(0) dr1 dr2

= 4

∫ t

0

(t− r) (pr(0)− pr(h)) dr

=
8

π

∫ ∞
0

sin2(hp/2)

∫ t

0

(t− r)e−rψ(p) dr dp.

Here we use the facts that when we integrate the second and third integrals with re-
spect to x we get zero in the second integral and one in the third.
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Note that ∫ t

0

(t− r)e−rψ(p) dr =
t

ψ(p)
− 1− e−tψ(p)

ψ2(p)
. (K.3)

By (K.1)
8t

π

∫ ∞
0

sin2(ph/2)

ψ(p)
dp = 4cψ,h,0t. (K.4)

This gives the dominant term in (I.13). The absolute value of the remainder is

8

π

∫ ∞
0

sin2(ph/2)

ψ2(p)

(
1− e−tψ(p)

)
dp ≤ 8

π

∫ ∞
0

sin2(ph/2)

ψ2(p)
(1 ∧ tψ(p)) dp. (K.5)

We break this last integral into three parts and see that it is bounded by

C

(
h2t

∫ ψ−1(1/t)

0

p2

ψ(p)
dp+ h2

∫ 1/h

ψ−1(1/t)

p2

ψ2(p)
dp+

∫ ∞
1/h

1

ψ2(p)
dp

)
(K.6)

We have

h2t

∫ ψ−1(1/t)

0

p2

ψ(p)
dp ≤ Ch2t2

(
ψ−1(1/t)

)3
, (K.7)

(Since limp→0 ψ(p)/p2 > 0 this integral is finite; (see [11, Lemma 4.2.2]).
In addition ∫ ∞

1/h

1

ψ2(p)
dp ≤ C 1

hψ2(1/h)
(K.8)

If β > 3/2

h2

∫ 1/h

ψ−1(1/t)

p2

ψ2(p)
dp ≤ Ch2t2

(
ψ−1(1/t)

)3
. (K.9)

If β = 3/2

h2

∫ 1/h

ψ−1(1/t)

p2

ψ2(p)
dp ≤ Ch2L(1/h) (K.10)

for some function L( · ) that is slowly varying at infinity. If β < 3/2

h2

∫ 1/h

ψ−1(1/t)

p2

ψ2(p)
dp ≤ C 1

hψ2(1/h)
. (K.11)

Using (K.5)–(K.11) we get (I.14).

Let

Z =

∫
(Lx+1

t − Lxt )2 dx. (K.12)

We get an upper bound for the variance of Z by finding an upper bound for EZ2 and us-
ing (I.13) to estimate (EZ)2. We proceed as in the beginning of the proof of Lemma H.1,
however there are enough differences that it is better to repeat some of the arguments.

By the Kac Moment Formula

E

(
2∏
i=1

(
∆h
xiL

xi
t

) (
∆h
yiL

yi
t

))
(K.13)

=

2∏
i=1

(
∆h
xi∆

h
yi

)∑
σ

∫
{
∑4

i=1
ri≤t}

4∏
i=1

pri(σ(i)− σ(i− 1))

4∏
i=1

dri
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where the sum runs over all bijections σ : [1, 4] 7→ {xi, yi, 1 ≤ i ≤ 2} and we take
σ(0) = 0. We rewrite (K.13) so that each ∆h

· applies to a single p · factor and then set
yi = xi and then integrate with respect to x1, . . . , xm to get

E

((∫
(Lx+h

t − Lxt )2 dx

)2
)

(K.14)

= 4
∑
π,a

∫ ∫
{
∑4

i=1
ri≤t}

4∏
i=1

(
∆h
xπ(i)

)a1(i) (
∆h
xπ(i−1)

)a2(i)

p]ri(xπ(i) − xπ(i−1))

4∏
i=1

dri

2∏
i=1

dxi,

as in (H.28). As we did following (H.28) we continue the analysis with p] replaced by p.
In (K.14) the sum runs over all maps π : [1, 4] 7→ [1, 2] with |π−1(i)| = 2 for each i and

over all a = (a1, a2) : [1, . . . , 4] 7→ {0, 1} × {0, 1} with the property that for each i there
are exactly two factors of the form ∆h

xi . The factor 4 comes from the fact that we can
interchange each yi and xi, i = 1, 2. As usual we take π(0) = 0

Note that in (K.14) it is possible to have ‘bound states’, that is values of i for which
π(i) = π(i − 1). We first consider the terms in (K.14) with two bound states. There are
two possible maps. They are (π(1), π(2), π(3), π(4)) = (1, 1, 2, 2) and (π(1), π(2), π(3), π(4)) =

(2, 2, 1,

1). The terms in (K.14) for the map (π(1), π(2), π(3), π(4)) = (1, 1, 2,

2) are of the form

4∏
i=1

(
∆h
xπ(i)

)a1(i) (
∆h
xπ(i−1)

)a2(i)

pri(xπ(i) − xπ(i−1)), (K.15)

where the density terms have the form

pr1(x1)pr2(y1 − x1)pr3(x2 − y1)pr4(y2 − x2), (K.16)

and where yi − xi = 0. The value of the integrals of the terms in (K.15) depend upon
how the difference operators are distributed. In many cases the integrals are equal to
zero. For example suppose we have

∆h
x1
pr1(x1)∆h

x1
pr2(0)∆h

x2
pr3(x2 − x1)∆h

x2
pr4(0), (K.17)

which we obtain by setting y1 = x1. (Note that ∆h
x1
pr2(0) should be interpreted as

∆h
x1
pr2(x1 − y1) or ∆h

x1
pr2(y1 − x1)). Written out this term is

(pr1(x1 + h)− pr1(x1)) ∆h
x1
pr2(0) (K.18)

(pr3(x2 − x1 + h)− pr3(x2 − x1)) ∆h
x2
pr4(0)

By a change of variables one sees that the integral of this term with respect to x1 and
x2 is zero.

The only non-zero integrals in (K.15) comes from

pr1(x1)∆h∆−hpr2(0)pr3(x2 − x1)∆h∆−hpr4(0). (K.19)

(Similar to the above ∆h∆−hpr2(0) is ∆h
x1

∆−hy1 pr2(x1 − y1) where y1 = x1.) The integral
of this term with respect to x1 and x2 is

∆h∆−hpr2(0)∆h∆−hpr4(0). (K.20)
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We get the same contribution when (π(1), π(2), π(3), π(4)) = (2, 2, 1, 1). Consequently,
the contribution to (K.14) of maps with two bound states is

8

∫
{
∑4

i=1
ri≤t}

∆h
x∆−hx pr2(0) ∆h

x∆−hx pr4(0)

4∏
i=1

dri (K.21)

= 32

∫
{
∑4

i=1
ri≤t}

(pr2(0)− pr2(h)) (pr4(0)− pr4(h))

4∏
i=1

dri

= 16

∫
{u+v≤t}

(t− u− v)2 (pu(0)− pu(h)) ((pv(0)− pv(h)) du dv.

≤ 16t2
(∫ ∞

0

(pu(0)− pu(h)) du

)2

= (4cψ,h,0t)
2,

see (I.11).

We next consider the contribution from terms with exactly one bound state. These
come from maps of the form (π(1), π(2), π(3), π(4)) = (1, 2, 2, 1) or (π(1), π(2), π(3), π(4)) =

(2, 1, 1, 2). These terms give non-zero contributions of the form

Q2 :=

∫ ∫
{
∑4

i=1
ri≤t}

pr1(x)∆h
xpr2(y − x) ∆h

y∆−hy pr3(0) ∆h
xpr4(x− y)

4∏
i=1

dri dx dy (K.22)

=

∫ ∫
{
∑4

i=1
ri≤t}

∆−hpr2(y) ∆h∆−hpr3(0) ∆−hy pr4(y)

4∏
i=1

dri dy;

Q3 :=

∫ ∫
{
∑4

i=1
ri≤t}

pr1(x)∆h
x∆h

ypr2(y − x) pr3(0) ∆h
x∆h

ypr4(x− y)

4∏
i=1

dri dx dy (K.23)

=

∫ ∫
{
∑4

i=1
ri≤t}

∆h∆−hpr2(y) pr3(0) ∆h∆−hpr4(y)

4∏
i=1

dri dy;

and

Q4 :=

∫ ∫
{
∑4

i=1
ri≤t}

pr1(x)∆h
x∆h

ypr2(y − x) ∆h
ypr3(0) ∆h

xpr4(x− y)

4∏
i=1

dri dx dy (K.24)

=

∫ ∫
{
∑4

i=1
ri≤t}

∆h∆−hpr2(y) ∆hpr3(0) ∆−hpr4(y)

4∏
i=1

dri dy.

For further explanation consider Q2. This arrangement comes from the sequence
(x1, y2, x2, y1). The expression it is equal to comes by making the change of variables,
y − x→ y and then integrating with respect to x.

Integrating and using (G.7) we see that

Q2 ≤ t

(∫ 1

0

|∆h∆−hps(0)| ds
) ∫ (∫ t

0

∆−hpr(y) dr

)2

dy (K.25)

≤ Ct

hψ(1/h)

∫ (∫ t

0

∆−hpr(y) dr

)2

dy.
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Here we use the fact that
∫

∆−hpr2(y)∆−hpr4(y) dy ≥ 0 to extend the region of integra-
tion with respect to r2 and r4. By Parseval’s Theorem and (J.3)∫ (∫ t

0

∆−hpr(y) dr

)2

dy (K.26)

=
1

2π

∫
|1− eiph|2

(∫ t

0

e−rψ(p) dr

)2

dp

≤ 8

π

∫
sin2(hp/2)

(
t ∧ 1

ψ(p)

)2

dp.

Similar to the transition between (K.5) and (K.6) the last integral is bounded by

C

(
h2t2

∫ ψ−1(1/t)

0

p2 dp+ h2

∫ 1/h

ψ−1(1/t)

p2

ψ2(p)
dp+

∫ ∞
1/h

1

ψ2(p)
dp

)
. (K.27)

Note that

h2t2
∫ ψ−1(1/t)

0

p2 dp ≤ Ch2t2
(
ψ−1(1/t)

)3
. (K.28)

This bound is the right hand side of (K.7). Bounds for the other integrals are given in
(K.8)–(K.11). Since the bounds in (K.7)–(K.11) give (I.14), we see that

Q2 ≤
Ctg(h, t)

hψ(1/h)
. (K.29)

To obtain a bound for Q3 we use (G.9) and (J.7) to see that it is bounded in absolute
value by

t

(∫ t

0

ps(0) ds

) ∫ (∫ 1

0

|∆h∆−hpr(y)| dr
)2

dy ≤ C t
2ψ−1(1/t)

hψ2(1/h)
. (K.30)

Integrating Q4 and using the Cauchy-Schwarz Inequality we see that it is bounded in
absolute value by

t

∣∣∣∣ ∫ 1

0

∆hpr(0) dr

∣∣∣∣
(∫ ∣∣∣∣∫ 1

0

∆h∆−hpr(y) dr

∣∣∣∣2 dy ∫ ∣∣∣∣∫ 1

0

∆−hpr(y) dr

∣∣∣∣2 dy
)1/2

. (K.31)

By (G.4), (G.9) and (G.6) we get

Q4 ≤
Ct

h3/2ψ5/2(1/h)
. (K.32)

Finally, we consider the contribution from terms in (K.14) with no bound states.
These have to be from π of the form (π(1), π(2), π(3), π(4)) = (1, 2, 1, 2) or of the form
(π(1), π(2), π(3), π(4)) = (2, 1, 2, 1). They give contributions of the form

Q5 :=

∫ ∫
{
∑4

i=1
ri≤t}

pr1(x)∆h
xpr2(y − x) ∆h

y∆h
xpr3(x− y) ∆h

ypr4(y − x)

4∏
i=1

dri dx dy (K.33)

=

∫ ∫
{
∑4

i=1
ri≤t}

∆−hpr2(y) ∆h∆−hpr3(y) ∆hpr4(y)

4∏
i=1

dri dy

EJP 17 (2012), paper 7.
Page 110/111

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/


Central limit theorems for the L2 norm of increments of local times

and

Q6 :=

∫ ∫
{
∑4

i=1
ri≤t}

pr1(x)∆h
x∆h

ypr2(y − x) pr3(x− y) ∆h
x∆h

ypr4(x− y)

4∏
i=1

dri dx dy (K.34)

=

∫ ∫
{
∑4

i=1
ri≤t}

∆h∆−hpr2(y) pr3(y) ∆h∆−hpr4(y)

4∏
i=1

dri dy.

Clearly

Q5 ≤ t
∫ (∫ 1

0

|∆−hpr(y)| dr
)

(K.35)(∫ 1

0

|∆hpr(y)| dr
)(∫ 1

0

|∆h∆−hpr(y)| dr
)
dy.

Using (G.4), and (G.8) we see that

Q5 ≤
Ct log 1/h

h2ψ3(1/h)
. (K.36)

The term Q6 is bounded the same way we bounded Q3 and has the same bound.

It follows from (I.13), Lemma I.1 and (K.21) that

Var Z ≤ C

 6∑
j=2

|Qj |+
(
tg(h, t)

hψ(1/h)

) (K.37)

as h→ 0, since g(h, t) < t/(hψ(1/h). (We need a large constant because expressions for
Qj , j = 2, . . . , 6 occur may ways, according to combinatorics of the distribution of the
difference operators.)

We leave it to the reader to verify that replacing p by p] only adds error terms that
do not change (I.16) and (I.17).

Proof of Lemma I.3 Use (K.2)–(K.6) with ψ−1(1/t) replaced by 1. In place of (K.7) we
have

h2

∫ 1

0

p2

ψ(p)
dp ≤ Ch2. (K.38)

(Since limp→0 ψ(p)/p2 > 0 this integral is finite; (see [11, Lemma 4.2.2]).
In place of (K.9) we have, if β > 3/2

h2

∫ 1/h

1

p2

ψ2(p)
dp ≤ Ch2. (K.39)

The statements in (K.10) and (K.11) remain the same when ψ−1(1/t) replaced by 1. With
these changes the proof of (I.14) gives (I.16).
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