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Central limit theorems for the > norm
of increments of local times of Lévy processes*

Michael Marcus' Jay Rosen?

Abstract

Let X = {X:,t € R+} be a symmetric Lévy process with local time {L7; (z,t) €
R' x RL}. When the Lévy exponent 1 ()\) is regularly varying at zero with index
1 < B <2, and satisfies some additional regularity conditions,

S - L de = B ([T (L - L) do)
lim

troo t\/Y1(1/t)
. o , 1/2
= (8cy1)'/? (/ (L5.1) dm) 7,

[e<)

where Lg 1 = {L},; z € R'} denotes the local time, at time 1, of a symmetric stable
process with index 3, n is a normal random variable with mean zero and variance one
that is independent of Lg 1, and cy,1 is a known constant that depends on .

When the Lévy exponent ¢ () is regularly varying at infinity with index 1 < 8 < 2
and satisfies some additional regularity conditions

lim \/A(17) { / St L de— B ( / Tt - Ly dx) }

o 1/2
L T
= (80[3,1)1/2 n </ (L1)2 dZE> s

where 7 is a normal random variable with mean zero and variance one that is inde-
pendent of {L{,x € R'}, and cg,1 is a known constant.
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Central limit theorems for the L? norm of increments of local times

1 Introduction

The earliest result we know about the asymptotic behavior in time, of increments of
local times in the spatial variable, is due to Dobrushin, [6]. Let {S,,; n =0,1,2,...} be a
simple random walk on Z! and let (% = Z;’:l 1{s;=«) denote its local time. Dobrushin
shows that

-0

Jim = = @12V, (1.1)

where Z and 7 are independent normal random variables with mean zero and variance
one. Two aspects of this result are relevant to this paper. One is that it is a result about
fluctuations, since ¢° grows like n'/?, (see for example [16, (10.1), (9.13)]). The other
is that the right-hand side of (1.1) is not a standard normal random variable, but is the
product of a standard normal random variable and an independent random variable.
Extensions of (1.1) to the local time of Brownian motion and other processes can be
found in Révész, [16, (11.10), (12.17), (12.19)], Marcus and Rosen, [13, 14], Rosen, [17]
and Yor, [19].

One of the motivations for considering increments of local times is interest in the
Hamiltonian for the critical attractive random polymer in one dimension, [8, 9],

H,= Y (64 —e2)?, (1.2)

z€Z!

where /% is as defined above. Clearly, this is the square of the /2 norm of the increments
of the local time at time n.
We began our study of expressions like (1.2) in [4], with X. Chen and W. Li, by con-
sidering the continuous version of this problem for the local times of Brownian motion.
Let {L{; (z,t) € R' x R } denote the local times of Brownian motion. In [4] we show

that +1 2 1/2
C(LFY [V — 4t o0
oy S L) £ (64/3)"/? (/ (L})? dw) " (1.3)

t—o00 t3/4

where 7 is a normal random variable with mean zero and variance one that is indepen-
dent of {L¥,z € R'}.

The proof of this result in [4] makes extensive use of the scaling property of Brow-
nian motion. A different proof in [18] uses stochastic integrals and a theorem of Pa-
panicolaou, Stroock, and Varadhan, [15, Chapter XIII]. Neither of these approaches can
be used to extend (1.3) to general Lévy processes. In this paper we use the method of
moments.

Let X = {X;,t € R} } be a symmetric Lévy process with characteristic function

E (eiAXg) — ¥V (1.4)

and local time which we continue to denote by {L?; (z,t) € R' x R} }. The behavior of
a suitably scaled version of [~ (LFT — L#)? dz as t goes to infinity depends primarily on
the behavior of /()\) as A goes to 0. This is not surprising, since large time properties
of X, such as transience and recurrence, depend on the behavior of ¢)(A) as A goes to
0; (see [1, Chapter 1, Theorem 17], which shows, in particular, that the processes we
consider are recurrent).

We assume that () satisfies the following conditions:

1. ¥ (A) is regularly varying at 0 with index 1 < 8 < 2; (1.5)
2 /OO L dX\ < (1.6)
. —_— 0; .
oo L+ (N)
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3. ¢ is twice differentiable almost everywhere, and there exist constants D, Dy < oo
such that forO0 < A <1

A (VI < Dip(A) and - A% (A)] < Day(N) (1.7)
and o) W(/\)| S] |¢/()\)‘2 o) ‘w//()\”
/1 NETO) dX\ < o0, /1 20 d\ < 00, /1 ey d)\ < oo. (1.8)

(Condition 1. is substantive. Condition 2. is the necessary and sufficient condition for
a symmetric Lévy process to have a local time. The criteria in Condition 3. are rather
weak.)

We prove the following theorem:

Theorem 1.1 Let {L7; (z,t) € R' x R.} be the local time of a symmetric Lévy process
X, with Lévy exponent (), that is regularly varying at zero with index 1 < 8 < 2 and
satisfies (1.6)-(1.8). Then

L L de B ([ - L) do)
1m
e N
1/2

£sean ([ @) ) 0

where Lg 1 = {Lg,1 ; ¥ € R} is the local time, at time 1, of a symmetric stable process
of index 3, n and Lg are independent, and

(1.9)

16 [ sin® p/2
Cp1 = — dp. (1.10)
v ™ Jo  ¥3(p)
(Since 1) is regularly varying at zero, it is asymptotic to a monotonic function at zero.
We define ¢~ ! as the inverse of this function.)
It follows from Lemma 3.2, in this paper, that

E (/ (Le+L — [oy? dm) - 4cw,0t+o(t ¢—1(1/t)), (1.11)
where 2( 1)
2 [°°sin“(p/2

=2 =S 1.12

o 7T/o o) P (112

Therefore, we can replace the mean in (1.9) by 4cy ot.
In Remark 2.5, we evaluate the constants and make the necessary changes to verify
that when X is Brownian motion, (1.9) along with (1.11), is the same as (1.3).

Also note that by Lemma 2.4 [~ (L§)? dz grows like t*¢)=!(1/t), therefore (1.9) is
also a fluctuation result.

One can use the scaling relationship for the local times of g stable processes,
{L% /50 ; (x,1) € R x Ry} £ (6~-DLY; (2,8) € R' x RLY, (1.13)

in Theorem 1.1 to get a central limit theorem for the L? modulus of continuity of local
times of symmetric stable processes:

et — L% )2 dx — dcy ohP 1

. B,1
}lll_% (CEENE (1.14)
c ° 2 1/2
= (8cy1)'/? (/ (L51) dff) 7,
—0o0
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where ¢()\) = |A|%.
We were intrigued to obtain this result under much more general hypotheses, similar
to those in Theorem 1.1. We assume that

1. ¥(A) is regularly varying at infinity with index 1 < 8 < 2; (1.15)

2.7 is twice differentiable almost surely and there exist constants Dy,Ds < o0
such that forall A > 1

A’ (V)] < Digp(A) and A2 (N)| < Dagh(N) (1.16)
and
1 1
/ (W' (N)2 dA < oo, / " (V)] dA < oc. (1.17)
0 0
L)

We obtain the following theorem:

Theorem 1.2 Let {L}; (z,t) € R* x R} be the local time of the symmetric Lévy pro-
cess X with Lévy exponent t»()\) that satisfies (1.15)-(1.18). Then

i VAR { [t e g ([ @t - opta) |

£ (86 1/2 > z\2 Yz
- 571) (Ll) dx U (1.19)

— 00

o0

where
16 [ sin®p/2
g1 = —
’ ™ Jo p?

dp. (1.20)

For symmetric stable processes we can give the mean explicitly and get (1.14).

The conditions in (1.16)—(1.18) are very general. Only the regularly varying condi-
tion, (1.15), is restrictive. However, it is not surprising that Theorem 1.2 depends on
the behavior of ¢/(\) as A goes to infinity, since the behavior of ¥)(\) as A goes to infinity
controls the small jumps of X.

A key ingredient in much of our work on sample path properties of local times is
the Eisenbaum Isomorphism Theorem which allows us transfer results on Gaussian
processes to the local times of related symmetric Markov processes. Unfortunately this
approach, which works so well for many almost sure results, is ineffective for weak
limits. Instead we obtain both Theorems 1.1 and 1.2 using the method of moments.
At first thought one might think that the proofs would be similar, but they are not. It
turns out that estimating the size of very small increments and the behavior of a fixed
increment as time goes to infinity requires very different sets of inequalities.

The proofs are quite detailed and very long. In all they require 111 pages. In
discussions with the referees and the editor we decided to write a brief paper, this one,
that states the main theorems and gives an overview of their proofs, and to relegate the
meat of the proofs to an Appendix, which a highly motivated reader may wish to tackle.

In Section 2 we show how the proof of Theorem 1.1 follows from four basic lemmas.
In Section 3 we discuss the main ingredients needed to prove them. Similarly, in Section
4 we show how the proof of Theorem 1.2 follows from a different set of lemmas. The
details of the proofs are contained in the Appendix to this paper. The sections of the
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Appendix are labeled by letters A-K. A reference in this paper to equation (D.4), for
example, means an equation in the Appendix, Section D. Similarly, for references to
lemmas, theorems, etc.

We would like to point out that the main ideas in the proof Theorem 1.1 can also
be used to obtain a central limit theorem for the Hamiltonian of the critical attractive
random polymer in one dimension, which is usually written as

Ho=2 3 Usi=s;) = Y l{is,—s,1=1 (1.21)

1,5=1 3,7=1
It is easy to see that this is the same as (1.2). We can show that

00 1/2
nlggo% = (12)"/? (/m (L})? dx) . (1.22)
where {L?,z € R'} is the local time of Brownian motion at time 1.

More generally, we can find a version of Theorem 1.1 for the local times of a large
class of symmetric random walks. Let S,, be a 1-dimensional symmetric random walk.
Assume that S, is in the domain of attraction of a symmetric stable process {X (¢),t €
R} ofindex 1 < 8 < 2, or equivalenty, that

Sn

lim 0 - X(1), (1.23)

where b(z) is a regularly varying function at infinity with index 1/4. Let
P(N) = E (e"51) (1.24)
Therefore, for some § > 0
¢() = eV, Al <6, (1.25)

where ¥(\) is regularly varying at zero with index . (See, e.g., [10, Proposition 2.3].)
Assume for simplicity that S, is strongly aperiodic. It follows from this that for some
>0
lp(N)] < e, [A| > 6. (1.26)

Assume also that ¢()) is twice continuously differentiable for A # 0, ¢'(0) = 0, and
for some § > 0 there exist constants Dy, Dy < oo such thatfor0 < A <4

A (N < D), N7 (V)] < Dagp(N). (1.27)
Let
LE = il{&:x}. (1.28)
=
and 16 [T sin®p/2
Co1 = ?/0 T o))" dp. (1.29)

Theorem 1.3 Let {L%; (z,n) € Z' x Z1} be the local times of a symmetric random
walk S,, that satisfies (1.25)—-(1.27). Then

ez (Lt — L7)? — B (Fep (L34 — L7)?)

lim (1.30)
n— o0 n/, /b(n)
. 0o ) 1/2
£ seon ([ (132" as)
where Lj = and ) are independent.
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We do not give a proof this theorem. It follows along the lines of the proof of Theorem
1.1.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 is long and difficult. In order to make it easier to follow we
first present the main steps of the proof heuristically. We then restate them, precisely,
in a series of lemmas and show how Theorem 1.1 follows from these lemmas. In Section
3 we ‘prove’ these lemmas using several other fundamental results that are proved in
the Appendix, Sections A-E.

As usual, let 0; denote time translation of the path w, so that 6;w(r) = w(t + r). Let

It = /(Lf“ — L) ol (LiTh — LF) 0 Oy da (2.1)

and
ikt :=/L500ﬁ LY o0y du. (2.2)

(An integral sign without limits is to be read as [ _.)
For any integer [ set

-1

L= L (2.3)
3,k=0
i<k

Using the additivity property of local times we can write

-1

Ly = ZLf/z o 8j4/1, (2.4)
§j=0
so that
-1 _ -1
/(Ltgﬂrl —L})? do = Z gy =201 + le}j,t/l- (2.5)
3,k=0 =0
Consequently
/(Lf“ —L%%dr — E (/(Lf“ — L7)? dx) (2.6)

-1
=20+ Lijn—E (/(Lf“ — L7)? dx)
j=0

Similarly we set

-1
= Z Q5 kot (2.7)
J, k=0
i<k
and write
-1 -1
a = /(Lf)2 dv =Y e =200+ Y 0 (2.8)
j,k=0 =0

The main steps in the proof of Theorem 1.1 are to show that:

1. The ‘off-diagonal’ terms E,t and /qy; are comparable asymptoticly as ¢ — oo.

2. The diagonal term Zé;t a; j,¢/1 is negligible, as ¢ — oo, compared to the terms in
1.

EJP 17 (2012), paper 7. ejp.ejpecp.org
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3. The diagonal term Zé‘_:%) I; ; /1 is such that

-1
S Lijy—E < / Lyt —Ly)? d:v) (2.9)
j=0

is negligible, as t — oo, compared to the terms in 1.

We now explain the precise meaning of these statements, and show how they imply
Theorem 1.1.

The precise meaning of step 1. is given by the following lemma. (Lemmas 2.1-2.3
are proved in Section 3.)

Lemma 2.1 Under the hypotheses of Theorem 1.1, for each m, with | = [(t) = [logt]9,
for any q > 0,

(2n): deg )" E{(@ )"} + o((t20~ 11 /t)"™) if m=2n
E((E,t)m) _ 2%!( w1) E{(au)"} + o(( (L/1)") i 2.10)
O((t2~1(1/t))™/2t=<) otherwise.

This lemma is the crux of the proof of Theorem 1.1. We note that even though the sum-
mands [; ./ of I;; are not independent, the fact that j # k provides enough structure
for a proof.

The precise meaning of step 2. is given by the next lemma.

Lemma 2.2 Under the hypotheses of Theorem 1.1, for each n, with | = I(t) = [logt]9,

for any q > 0,
p [EQ810)" = E(ay)"|

tooo (t71(1/1)"

Lastly, the precise meaning of step 3. is given by the next lemma.

=0. (2.11)

Lemma 2.3 Under the hypotheses of Theorem 1.1, with | = [(t) = [logt|?, for ¢ suffi-
ciently large,
-1 . -
iy 2290 (Ljjep — E(f (LT = L})? dx))
t—o0 t ¢_1(1/t)

We also need to know the limiting behavior of the moments of «;. It is given by the
next lemma which is proved in the Appendix, Section D.

=0 in L2 (2.12)

Lemma 2.4 Under the hypotheses of Theorem 1.1, for each n,

lim E { (W)} = E{(ap1)"}. (2.13)

t—o0

Proof of Theorem 1.1 In (2.10) replace ’Ivl,t by 2’12’,5 and (4ey1)" E{(au4)"} by (8cy1)" E{(20u,)"}.
Set
E {(2&”)"} = E(Oét)n + F {(2&“)"} - E(O[t)n. (214)

Then use Lemmas 2.2 and 2.4 to see that for each integer m

([ 2e))
e \\ /110

2n)! ’ .
B0, () B (0"} itm=2n
- . (2.15)
0 otherwise.
EJP 17 (2012), paper 7. ejp.ejpecp.org
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Note that the right-hand side of (2.15) is the 2n~th moment of (8(:1/,71)1/ 2
/3,1 m when ag; and n are independent. Furthermore, it follows from [5, (6.12)] that

E(ap1)" < C™((2n))Y/ 35, (2.16)
Consequently, since /(2n)! < 2"n!
) ((861/}71)1/2 Vog 1 17) < C’m(m!)(BJrl)/(ZB). 2.17)
This implies that (8%,1)1/2 /311 is determined by its moments; (see [7, p. 227-228]).
Therefore, by the method of moments, [2, Theorem 30.2]), it follows from (2.15) that
. 211,
hm —_—
t=oo ty /P =L(1/t)
Theorem 1.1 then follows from (2.6), (2.18) and Lemma 2.3.

£ (8cy1)"? aga n. (2.18)

Remark 2.5 For Brownian motion v(p) = p?/2. We have

4 [ sin®(p/2

Cp2/270 - ;,/O’ %dp: 1’ (2'19)
64 [ sin*(p/2 8

Cprjan = ?/0 Z;”dp: 3 (2.20)

Also L5, = (1/2) z £ (1/\/§)Lgf/\/5 where {L?} denotes the local time of Brownian

motion, so that
1/2 1 00 ) 1/2
( (L%,) dx) = (/Oo (L¥) dm) . (2.21)
Since \/v—1(1/t) = 21/*/t'/4, we see that (1.9) and (1.11) imply (1.3).

3 Partial proofs of Lemmas 2.1-2.3

The following key lemma is proved in the Appendix, Section B, in which it is restated
as Lemma B.1. The terms /; ;. ; and o; 1 are defined in (2.1) and (2.2).

Lemma 3.1 Letm;, 0 < j < k < K be positive integers with ka:o
m; r = m. If all the integers m; ;. are even, then for some ¢ > 0

J<k

K

E| ] Tix)™" 3.1)
J'th<:k0
T (2n5)! o
_ gk ) (401[} l)nj,k B (ajn t)nj,k +0 (t(Q—l/ﬁ)m/2—€) ,
j.ll;=[0 2nj1k(nj’k!) 7 JJCH=O "
i<k i<k

where n; , = m; /2.
If any of the m;;, are odd, then

K

B IT Wiwa)™* | =0 (s2-1/0% ) (3.2)
j.k=0
i<k

In (3.1) and (3.2) the error terms may depend on m, but not on the individual terms
mj,k.

EJP 17 (2012), paper 7. ejp.ejpecp.org
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Proof of Lemma 2.1 Using the multinomial theorem on the sum in (2.3) we have

-1

~ m m' mj k
E(<I“) ): Yol o | B I W)™ | 3.3)
~ Hj,kzo (mj7k!) j k=0
meM j<k <k

where

-1

M=cm={m;;,0<j<k<l-1} ij7k:m
4, k=0
i<k
We now use Lemma 3.1, with ¢ replaced by ¢/l to compute the expectation on the

right-hand side of (3.3). We get that when all the m;; are even, there exists an ¢ > 0
such that

£ (()")

-1
m! (2n;)!
1—1 n 1 | I ],k t/l
~Z Tk (mys)) I,I 2m3k (n k)
mem ij<1¢0 J ij{ko ]jk<k0

+OI™ (211 /)"t 7).

(Recall that when all the m, ;, are even, m, ; = 2n;; for all j and k and n = m/2.) Here
we use the fact that

m! m
2N\ T |~ 9
~ j, k=0 k-
meM i<k J

to compute the error term. It also follows from Lemma 3.1 that

E ((ﬁt)m) — O™ (2 (1)) %) (3.6)

if any of the m;; are odd. (Lemma 3.1 is for a fixed partition of m. In (3.4) and (3.6)
we include the factor [, to account for the number of possible partitions. ) Recall that
I = [log t]? for some g > 0.

When m; , = 2n;;, for all j and k,

-1
o i 2n;)!  (2n)! n! (3.7)
Hizlzo(mj,k') 3, k=0 AR (nj,k!) 2nn! HJ k= O(nj k: )
o i<k Ik

Using this in (3.4) we get

£ ((5)")
-1

(2n)! n n! "k

= ep )" > | == | E§ I] (k)™
oanpl N HJ,_k:o nj,k! 3, k=0
i<k i<k

+O(I™ (P (1/)" ).,

where N is defined similarly to M. Using the multinomial theorem as in (3.3) we see
that the sum in (3.8) is equal to F {(a; )"}, which completes the proof of (2.10). 0
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Proof of Lemma 2.2 By the Kac Moment Formula; (see Theorem F.1),

o((fust))

2n n
2”2// 2n Hpm 11771'(1 CErr(i—l)) H dr; H dx;,
2 i=1 i1

- 71<t} i=1

E{(ar)"}

where the sum runs over all maps 7 : [1,2n] — [1,n] with |[r71(i)] = 2 for each i. The
factor 2" comes from the fact that |7~ (i)| = 2 for each i.

It is not difficult to see that we can find a subset J = {iy,...,i,} C [1,2n], such
that each of z,...,x, can be written as a linear combination of y; := @x(;;) — Tr(i; 1),
j =1,...,n. Fori € J° we use the bound p, () — 2ru-1)) < pr,(0), then change
variables and integrate out the y;, to see that

2n t
/<H/ p"”z(xﬂ(l)_‘rﬂ(l 1) drz) dez (3.10)
i=170
t
SO(A > /(H/pn Tr(i) — Lr(i—1) dr1>HdIz

i€J

= Cu"(0,1) <H// Pr, (Yi drldy,>
ieJ

= Cu"(0,1) (/u(x,t) dx) <C(By71/e)"
where we use (A.5) and (A.8) for the last line. This shows that
| aelln < CEYTH(1/), (3.11)

for all ¢ sufficiently large, where C depends only on n, and where || - ||, := (E(-)™)'/™.
It follows from (3.11) that for [ sufficiently large,

-1

126 ¢lln — leelln| < (12800 = clln = 1> ajjesilln (3.12)
7=0
< A ago,eyilln = Ul cpilln
PR U0}

- l
We next show that when [ = [(t) = [logt]? for any ¢ > 0,

; i L B 213
S eY (1) ©-

This follows from (3.12) since

N VL
i i = (3.14)

To obtain (3.14) we use [3, Theorem 1.5.6, (iii)] to see that for all § > 0, there exists a
tg, such that for all ¢t > t,
YUY ey (3.15)
11/t
Obviously, we pick § such that (1/5) +d<1.
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The statement in (2.11) follows from (3.13). O

For the proof of Lemma 2.3 we need the following lemma which is proved in the
Appendix, Section E.

Lemma 3.2 Under the hypotheses of Theorem 1.1

E (/(Lf“ — L7)? dm) = dey ot + O (g(1)) (3.16)

ast — oo, where

2 (p 1 (1/)° 3/2<pB<2
g(t) =14 L) B=3/2 (3.17)

C 1<B<3/2
and L( ) is slowly varying at infinity. Also

Var (/(Lf;’+1 —L)? dm) < Ct*yp~(1/t) logt. (3.18)

Proof of Lemma 2.3 We prove this lemma by showing that

SV E ) — B (f(L7T = L§)? dx)

: j= -
2 Ko T(1/0)1 72 - 319
and . ( )
. Z]_:O Ijuj»t/l B E(Ij)j7t/l> _
BT 320
in L2, where [ = I(t) = [logt]?, for some q sufficiently large.
Set
o(t) = >~ (1/1). (3.21)
It follows from (3.15) that
/) _ 'Y _ o a/s)s1
_ <1 : 3.22
o) W/ S 322
for all § > 0. Recall [ = [logt]?. We choose a ¢ and ¢ < oo such that
1)¢(t/1(t)) < 1 )
———= =0 3.23
o(t) log?t)’ ( )
ast — oo.
We see from (3.16) that
-1 T T
- Yo B ) — B (J(LET — Lf)? dx) (3.24)
i—o0 t(yp=1(1/1))1/2
_ DO (g(t/1(1)) + O (9(1)
TR e

The last equality follows from the fact that #(1)~*(1/t))'/? is regularly varying as t — oo
with index 1 — 1/(26) > 1/2, since 8 > 1, whereas ¢(t) is regularly varying as t — oo
with index (2 — 3/8)" < 1/2 since, 8 < 2, and () is slowly varying.
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Since I; ; ;1 are independent and identically distributed, we obtain (3.20) by showing
that

. 15,501 _
Using (3.18) and (3.21) we see that
I i _ A (W)e(t/U)) )
I(t)Var <t(w—1(1/t))1/2> =0 <¢(t) logt | . (3.26)
as t — oo. Thus (3.25) follows from (3.23). O

4 Proof of Theorem 1.2

We follow the same procedure in the proof of Theorem 1.2 that we used in the proof
of Theorem 1.1. We first present the main steps of the proof heuristically and then
restate them, precisely, in a series of lemmas and show how Theorem 1.2 follows from
the lemmas. The lemmas are proved in the Appendix, Sections G through K.

Let

Tjklh 1= /(Lﬁlh —Li;) o0 (L:f;rzh = Liy) otk dx (4.1)
and
_ -1
Jip = Z Jj k1 h- 4.2)
G, k=0
j<k

Using the additivity property of local time we can write

-1
=Y Eue .3
j=0
so that
-1 _ -1
/(L{f% — L) (L5 =LY de = > Jikan =200+ Y Jijan- (4.4)
4,k=0 j=0
Consequently
/(Lﬂ#h — L% dx — E/(Lgl“’h — L% dx (4.5)

-1
= 2] + Z (Jm,hh - F (/(Lf*h —L¥)? dx)) .
j=0

Similarly, let

-1
Q=Y Qg (4.6)

J, k=0

i<k

where, as in (2.2)
aj,k,l/l = /Lf/l o 9j/l LT/Z o Gk/l dx. (47)
Recall that in (2.8) we defined

o = / (L¥)* d. (4.8)
EJP 17 (2012), paper 7. ejp.ejpecp.org
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Therefore,
-1 -1
a1 = /LT LT dxr = Z aj,k,l/l = 2&[ + Zaj,j’l/l. (49)
J,k=0 j=0

In what follows we take [ to be a function of i such that lim,_,q {(h) = oco.

The main steps in the proof of Theorem 1.2 are to show that:

1. The ‘off-diagonal’ terms fl,h and v/a; are comparable, asymptoticly as h — 0.

2. The diagonal term Z;;% «; j.1,1 is negligible, as h — 0, compared to the terms in
1.

3. The diagonal term Z;;B Jj ji,n 1s such that

-1
> Jijun—E ( / (L{™h — L)? dzv) (4.10)
j=0

is negligible, as h — 0, compared to the terms in 1.

We now explain the precise meaning of these statements, and show how they imply
Theorem 1.2.

The precise meaning of step 1. is given by the following lemma. (Lemmas 4.1-4.3
are proved in the Appendix, Section I.)

Lemma 4.1 Under the hypotheses of Theorem 1.2 and with [ = [(h) = [log 1/h],

@46 O"E{(@)"} +o((M?(1/h)™™) m=2n
(7)) = T ) B G/ -
O(he(hy?(1/h))~™) otherwise,

for some ¢ > 0, where

Cohl = / (/ (A"ATFpy(2)) ds)2 dz. (4.12)

This lemma is the crux of the proof of Theorem 1.2. Although the appearance of
(4.11) and (2.10) might seem similar, the proof of this lemma is very different from the
proof of of Lemma 2.1.

The precise meaning of step 2. is given by the next lemma.

Lemma 4.2 Under the hypotheses of Theorem 1.2, for eachn, withl = [(h) = [log 1/h]9,
foranyq >0,
lim E(a;)" = E(a1/2)"™. (4.13)
h—0

The precise meaning of step 3. is given by the next lemma.

Lemma 4.3 Under the hypotheses of Theorem 1.2, with | = I(h) = [log1/h]?, for q
sufficiently large,

-1
Tim VhA(1/h) Y (Jj,j,l,h - E (/(Lff*h — L3)? dm)) = 0. (4.14)
j=0
in L.
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Finally, to prove Theorem 1.2, we also need the following limit.
Lemma 4.4 Under the hypotheses of Theorem 1.2,
Jimy h*(1/h)epna = caa (4.15)

Lemma 4.4 is proved in the Appendix, Section J.

Proof of Theorem 1.2 Let [ = [log1/h]? for some ¢ sufficiently large. In (4.11) we
replace J; , by 2.J; 5, and (4dey p1)" E{(c)"} by (8cy.n1)" E{(2a;)"} and write

E{2a)"} = E{(a1)"} - E{(2a)"} + E {(a1)"}. (4.16)

It follows from Lemmas 4.2 and 4.4 that for each m

i (v ieT7,) )

2n)!
(an). (8cg.)" E{(an)"} ifm=2n
= n (4.17)
0 otherwise.

We now show that the distribution of (8cg, 1)1/ * /a1 n is determined by its moments.
It follows from [5, (6.12)] that for the -stable process, with g > 1,

E { </(Lﬂf)2 dm)n} < C™((2n))Y/(20), (4.18)

(This was used in (2.16)). When ¢ is regularly varying at infinity with index g, for all
€ > 0, there exists a constant D = D, such that

/ e 5P gp < C <1 _|_/ o= sDp” dp> . (4.19)
0 1

Using this, and the same proof as in [5], one can show that (4.18) holds, with 3 replaced
by 8 — € for any € > 0, for any Lévy process with Lévy exponent ¢ (\) which is regularly
varying at infinity with index 5. Consequently

E{(a1)"} < C™((2n)))/B=) (4.20)

for any € > 0. As in the paragraph containing (2.16), this implies that the weak limit
(805,1)1/2 /a1 n is determined by its moments; (see [7, p. 227-228]). Therefore, by the
method of moments, [2, Theorem 30.2]), it follows from (4.17) that

lim 2 /W2 (1/R) Jypn = (8¢s.1)"? o . (4.21)
—
Theorem 1.2 now follows from (4.5), (4.21) and Lemma 4.3 . O
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Appendix

When we say, ‘the paper’ we mean the paper to which this is an appendix. Sections
B-F contain the proofs of many of the fundamental lemmas needed to give complete
proofs of Lemmas 2.1-2.4, which are used in Section 3 of the paper to prove Theorem
1.1. The most critical ingredient in the proof of these lemmas is Lemma B.1, which is
the same as Lemma 3.1 in the paper. To prove Lemma B.1 we need estimates on the
asymptotic behavior of fixed differences of the transition probability densities for the
Lévy processes under consideration.

Sections G-K provide the details for the proof of Theorem 1.2. We discuss this in
greater detail when we get to them.

In this Appendix, references such as (3.2) are to Section 3 of ‘the paper’. Similarly,
all citations are to the References at the end of ‘the paper’.
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Central limit theorems for the L? norm of increments of local times

A Estimates for the asymptotic behavior of fixed differences of
the transition probability densities of certain Lévy processes

Let ps(x) denote the density of the symmetric Lévy process X with Lévy exponent
¥ (\) as described in (1.4). Let AY denote the finite difference operator on the variable

z, 1.e.
AL f(z) = flz+7) = flz) (A1)
We write A” for AY when the variable z is clear.
Let
t
u(z,t) = / ps(x) ds (A.2)
0
t
vy(z,t) = / |AY ps(z)| ds (A.3)
0
t
wy(z,t) = / |ATAT Y ps(x)| ds (A.4)
0
We also write v(x,t) for vy (z,t) and w(x,t) for wy (z, ).
The Lemmas in this section are proved in Section C.
Lemma A.1 Under the hypotheses of Theorem 1.1, for all t sufficiently large
sup u(z,t) < Ctyp~(1/t); (A.5)
TzER!
sup v(z,t) < Clogt; (A.6)
zER!
sup w(z,t) < C, (A.7)
zER!
and
/u(w tyde = t; (A.8)
/v(x,t) de < Ct(y'(1/t))logt; (A.9)
/w(x,t) dr < C(logt)?% (A.10)
/wz(:c,t)dx < Clogt; (A.11)
log t)?
/ Wz tyde < o8 (A.12)
lz|>u u
Lemma A.2 Under the hypotheses of Theorem 1.1, for all t sufficiently large
_ 3
[Alp(0)] < C (v (1/1)", (A.13)
and
2t 2t 5
/ / |A'p, 1 4(0)|drds < C (t2 (v~H(1/t))" + L(t) + 1) , (A.14)
o Jo
where L(t) is a slowly varying function at infinity.
Lemma A.3 Under the hypotheses of Theorem 1.1,
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/ Al p,(0)ds = — Cy,0; (A.15)
0
00 2
/(/ AtAT ps(x)ds) dz = cypa; (A.16)
0
and
¢ 2
/(/ AlA_lps(x)ds> dr = cyq +O(t™3), (A.17)
0
ast — oo.

B Moments of increments of local times.

We use the method of moments to prove Theorem 1.1. In the next lemma we cal-
culate the moments that we need. The terms I;; and «; are defined in (2.1) and
(2.2).

Lemma B.1 Letm;, 0 < j <k < K be positive integers with 31, _o .,
m; . = m. If all the integers m; ;. are even, then for some € > 0

K

E| ] Gr)™" (B.1)

7, k=0
i<k

K
21 1.)! )
=TI gy o) 2

AL k(n k')

—

(ajn0)"* | + 0 (t(zq/ﬁ)m/%e) ’

(S
/\ kol

Il
LN

where n; , = m; /2.
If any of the m;; are odd, then

K
B[ I o™ | =0 (/=) (B.2)

3,k=0
j<k

In (B.1) and (B.2) the error terms may depend on m, but not on the individual terms
mj,;f.

Proof We can write

E| ] Tiw)™" (B.3)

([l 20 00y (AL, L0 0 01) dojns)

7, k=0 =1
j<k
K mjk K mjk
— 1,5 1,k 96 ki Tj ki
_/ H H A%{MA% ki H H ” ) (L™t o ekt))
J k=0 i=1 j,k=0 i=1
i<k i<k
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where the notation A}E’J_j ., indicates that we apply the difference operator A;j ., to

ij """ 0 6;;. Note that there are 2m applications of the difference operator Al
Consider

K mjk

H H zj ki ) (Lt%h Oekt)) i (B.4)

k=0 1=1
i<k

We collect all the factors containing #;; and write

K mjk
H H TJ ki ) (qu“ ° th))) (B.5)

where
l—1mj K mik
=TI I] e ( II 11 Lf) : (B.6)

By the Markov property

K K
E (H H o 9”) - F (Ho EX <H H,o 0(l—1)t>> . (B.7)
=0 =1

Z mlHZmﬂ, 1=0,...,K —1, (B.8)

k=Il+1

Let

and note that m; is the number of local time factors in H;.

Let .
fly) =EY (H Hyo 9(11)t> ~ (B.9)

=1

It follows from Kac’s Moment Formula, Theorem F.1, that for any z € R!

K
E* (H H, o 91t> (B.10)
=0

= E7(Ho (X))

Z/ Pro sy ‘rﬂ'o Hproq Tro(q 'rﬂ'o(qfl))
Z 0 roq<t}
mo
(/P @ = 200 0 dy> I] dro.s
q=1 g=1
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where the sum runs over all bijections 7o from [1,m] to

K

Io= | J{(0, k), 1 <i < mou}. (B.11)
k=1

Clearly, I is the set of subscripts of the terms z. appearing in the local time factors in
Hy.
By the Markov property

K
fly) = EY (HlEX” (HHl 09(l2)t>> (B.12)
1=2

= Ey (ng(XQt)) .

Therefore, by (B.7)~(B.12), for any 2’ € R!
K
E* (H Ho 9“) (B.13)
1=0
- B (H()EXt (Hy9(X21)))

mo
- Z/ mo o Proa@ro) =) [ Pro o @nota) = roe-)
o {Zqzl TO,qSt} q=2

mo
(/p(t_zmﬂl ro,q)(y - xﬂo(mo))Ey (H19(X2t)) dy) H droq
q= =1
mo
= Pr (xﬂ' - Z/) Pr _q(‘rﬂ' — Lro(q— )
;AZ?OI ro.<t} 0,1 o(1) ;IEIQ 0, 0(q) o0(g—1)

Pa=32"0 np ) (U~ Tro(mo)

Z/ iy (@ey ) = ¥) [ [ Py @y (0) = Tra(a-1)

my
1 {Zqzl 71,95t} q=2

mo

my
(/p(t_zz;ll 7’1,q)(y/ - xwl(mﬂ)g(yl) dy/> H drl,q dy H drO,q
g=1 g=1

where the second sum runs over all bijections m; from [1,m;] to

K
Il = {(07171)7 1 S 1 S mO,l} U{(lvkaz)a 1 S ? S ml,k} (B14)
k=2

As above, I is the set of subscripts of the terms x. appearing in the local time
factors in H;.

We now use the Chapman-Kolmogorov equation to integrate with respect to y to get

E* (HoE™X* (Hy 9(Xy))) (B.15)
mo
= Pr (xﬂ- - ZI) Pro 4 (:Eﬂ' — Lro(qg— )
Tr;l /{Z:LOI ro.q <t} 0,1 o(1) (];[2 0, 0(q) o(g—1)

/{Zml T1,q<t} p(t*ZZ;Ol T0,q)+T1,1 (Iﬂl(l) a x‘ﬂ'o(mo))
miy
H Pryq (zm(q) - xm(q—l))
q=2
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Iterating this procedure, and recalling (B.5) we see that

K mj k

H H mJ ki ) (Lf]k? o okt)) (B.16)

j k=0 1=1

j<k
,Z H/ T,,qgt}p“—ZZ:;lv'zfl.q>+m,1<xm<1>—%fmmzfl))

, T 1=0
my my
[1rr. @rie) = 2ria—1) T drias
q=2 q=1

where 7_1(m_1) :=0and 1 — Zm 'r_1,4:=0.In(B.16) the sum runs over all m, ..., T
such that each 7 is a bijection from [1,my] to

-1

K
=G L, 1 <i<myy | ki), 1<i <ml. (B.17)

j=0 k=Il+1

As in the observations about I, and 17, we see that I; is the set of subscripts of the terms
x . terms appearing in the local time factors in H;. Since there are 2m local time factors
we have that 3/ m; = 2m.

We now use (B.16) in (B.3) and continue to develop an expression for the left-hand
side of (B.3). Let B to denote the set of (K + 1)-tuples, m = (m,..., 7k ), of bijections
described in (B.17). Clearly

K
B| = [[mu! < 2m)!. (B.18)

Also, similarly to the way we obtain the first equality in (B.5), we see that

K mjk K my
H HAMI =TT A - (B.19)
1=0g=1
FPT
Consequently
K
E H (L e) ™5 Z /T T H dzj 1.i (B.20)
j,k=0 ] To,.., G.k,i
i<k

where we take the productover {0 <j <k < K,1<i< mjyk}, 7 € Band

Ti(z; 7T) (B.21)
K my
UOU T / AP ey i (T @) = T o)
my my
Hp”,q (xﬂ'l(Q) - ‘T‘ffz(q—l)) H driq-
q=2 q=1

We continue to rewrite the right-hand side of (B.20).
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In (B.21), each difference operators, say Ai is applied to the product of two terms,
say p. (u—a)p.(u—1b), using the product rule for difference operators we see that

Al{p. (u—a)p. (u—0b)} (B.22)
=Alp (u—a)p. (u+1-b)+p. (u—a)ALp. (u—b).

Consider an example of how the term A!Alp. (u — a) may appear. It could be by the
application
Al (A}lp. (u—a)p.(v—a)), (B.23)

in which we take account of the two terms to which A! is applied. Using the product
rule in (B.22) we see that (B.23)

= (AALp. (u—a))p.(v—(a+1)+ALp. (u—a)Alp.(v—a). (B.24)
Consider one more example

AL (ALp.(u—a)A)p. (v—a)) (B.25)
~ (AlALp (- ) Alp. (v (0 +1)
TALp. (u— a)ALALp. (v — a).

Note that in both examples the arguments of probability densities with two difference
operators applied to it does not contain a 1. This is true in general because the differ-
ence formula, (B.22), does not add a 1 to the argument of a term to which a difference
operator is applied. Otherwise we may have a +1 added to the arguments of probability
densities to which one difference operator is applied, as in (B.25), or to the arguments
of probability densities to which no difference operator is applied, as in (B.24).

Based on the argument of the preceding paragraph we write (B.21) in the form

K

ElI] @e)™ =3 > / T (w; m,0) [] dajnis (B.26)
j,.k=k:0 a To,..., TK 7.k,
1<

where

s ar(1,1) as(1,1)
T( e — 1 1
T, (2; 7,0) = E)/Rl ((A%m) (AL, o) (B.27)

#
p(t_222;1 N W, (x‘frz(l) - xﬂll(mll)))
- ai(l,q) ax(1,q) -
H ((Aiﬂ(w) (Aiﬂl(Q—l)) pglﬁz (:Eﬂl(Q) - xﬂl(Ql))) H drig-
q=2 qg=1

In (B.27) Ry = {>_;, 11,4 < t}. In (B.26) the first sum is taken over all
a=(ar,a2) : {(1,q),0<I<K,1<qg<m}+— {0,1} x{0,1} (B.28)

with the restriction that for each triple j, k, ¢, there are exactly two factors of the form
A;j ..+ each of which is applied to one of the terms pt (-) that contains z;, in its
argﬁment. This condition can be stated more formally by saying that for each [ and
g=1,...,m —1,ifm(q) = (j, k,7), then {a1(l,q),a2(l,g+ 1)} = {0,1} and if ¢ = m; then
{a1(l,m;),a2(l+1,1)} = {0,1}. (Note that when we write {a;(l, q),a2(l,q+1)} = {0,1} we
mean as two sets, so, according to what a is, we may have a;(l,q) =1 and as(l,q+1) =0
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orai(l,q) = 0and ax(l,q+1) = 1 and similarly for {a;(l,m;),a2(I+1,1)}.) Also, in (B.27)
we define (A} )° =1 and (Ag) = 1.

In (B.27), p (2) can take any of the values p, (z), p,. (z+1) or p, (z—1). (We must con-
sider all three possibilities, as explained in the paragraph containing (B.22), ) Finally, it
is important to emphasize that in (B.27) each of the difference operators is applied to
only one of the terms p. (-).

.

Rather than (B.26), we first analyze
Z Z /ﬁ(m, T, a) H dx; ki, (B.29)
a TQ,..., TR 7.k,

where

K

Ti(x; m,a) = H/R ((A;ﬂl(l))al(l’l) (Aim_l(m_l))w(l’l) (B.30)
1

=0

D=3y ) (B (1) — l‘m(mu)))

L a1(l,q) az(l,q) L
H ((A;ﬂ(q)> o (Ai”l(q—l)) o Priq (l‘m(q) - xm(ql))) H drig-
q=1

q=2

The difference between 7;(z; 7, a) and 7/ (z; 7, a) is that in the former we replace p* by
p. It is easier to analyze (B.29) than (B.26). At the conclusion of this proof we show that
both (B.29) and (B.26) have the same asymptotic limit as ¢ goes to infinity.

We first obtain (B.1). Let m = 2n, since m; = 2n;;, m; = 2n; for some integer n;.
(Recall (B.8)). To begin we consider the case in which a = e, where

e(l,2¢) = (1,1) and e(l,2¢—1)=(0,0) Vq. (B.31)

When a = e we have

K
Tilame) = H)/Rl p(t—Z:L—_lfl ”*Lq)‘*’rl,l(xm(l) = Ty (mio)

ny

H Priog-1 (xm(qul) - xm(2q72)) (B32)
q=2

ny my

H ATATL Prisg (xm(Qq) — mTrl(qul)) H dry q.

q=1 g=1

Here we use the following notation: Alp(u—v) = p(u—v+1) —p(u—v), i.e., when A' has
no subscript, the difference operator is applied to the whole argument of the function.
In this notation,

ALAYD(u—v) = A'A 7 p(u —v). (B.33)

v

Consider the multigraph G, with vertices {(j,k,7), 0 < j < k < K, 1 < i < m;}.
Assign an edge between the vertices m;(2¢g—1) and 7;(2¢) foreach0 </ < Kand1 < ¢ <
n;. Each vertex is connected to two edges. To see this suppose that m;(2q) = {(j,k,1)},
with j = [l and k = I # [, then there is a unique ¢’ such that 7 (2¢’) or m;(2¢' — 1) is
equal to {(j, k,7)}. Therefore all the vertices lie in some cycle. Assume that there are S
cycles. We denote them by C, s = 1,...,5. Clearly, it is possible to have cycles of order
two, in which case two vertices are connected by two edges.

EJP 17 (2012), paper 7. ejp.ejpecp.org
Page 22/111


http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/

Central limit theorems for the L? norm of increments of local times

It is important to note that the graph G, does not assign edges between 7;(2¢) and
m(2q + 1), although these vertices may be connected by the edge assigned between
7 (2¢' — 1) and 7 (2¢’) for some !’ and ¢’.

We proceed to estimate (B.30) by breaking the calculation into two cases: when
a = e and all the cycles of GG, are of order two; when a = ¢ and not all the cycles of G
are of order two or when a # e.

B.1 a = e, with all cycles of order two

Let P = {(72v—-1,720), 1 < v < n} be a pairing of the m vertices
{(,k,1),0<j <k <K, 1<i<myu}

of G, that satisfies the following special property: whenever (j, k,i) and (j',k’,i’) are
paired together, j = 7/ and k = k’. Equivalently,

K
P=J P (B.34)

J, k=0
<k

where each P; , is a pairing of the m; ; vertices
{(jvkvi)v 1 S 1 S mj,k}~

We refer to such a pairing P as a special pairing and denote the set of special pairings
by S.
Given a special pairing P € S, let 7 be such that foreach 0 <! < K and 1 < ¢ < n,,

{m(2¢ — 1), m(29)} = {v2v-1, 720} (B.35)

for some, necessarily unique, 1 < v < n;. In this case we say that 7 is compatible with
the pairing P and write this as 7 ~ P. (Recall that when we write {m;(2¢ — 1), m(2¢)} =
{Y20-1, 720}, We mean as two sets, so, according to what ; is, we may have m;(2¢ — 1) =
~Yoy—1 and m(2q) = v, or m (29 — 1) = 72, and m;(2g) = y2,-1.) Clearly

—~

S| < 2n)!

- 2npl

(B.36)

the number of pairings of m = 2n objects.

Let m € B be such that G consists of cycles of order two. It is easy to see that 7 ~ P
for some P € S. To see this note that if {(j, k,4), (', k,i’)} form a cycle of order two,
there must exist [ and !’ with [ # I’ and ¢ and ¢’ such that both {(j, k,4), (', k',i')} =
{m(2¢ — 1),m(2q)} and {(j, k, 1), (', k',¢)} = {m(2¢' — 1), 7/ (2¢')}. This implies that
j=j4', k=K and {j,k} = {l,I'}. Furthermore, by (B.35) we have

{m2¢—1),m29)} = {m(2¢' = 1), 7 (2¢")} = {V20-1,720} (B.37)

When 7 ~ P and all cycles are of order two we can write

K ng
H H ATATT DPry o (xm(Qq) - xm(2q71)) (B.38)
1=0¢q=1
n
= H ATAT Dry, (x"rzv - xvzvfl)AlA_l Dry (x'YZ‘U - x"/2v71)7
v=1
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where 7y, and r5, are the rearranged indices r; 5, and ry o,,. We also use the fact that

Zzlio n; = 2n.
For use in (B.44) below we note that

t pt
/0/0 |A1A_1przu <x72v - x72v71)| |A1A_1p7‘éu (x/YZv - xV2v71)‘ dray dr/21/

t 2
= (/O |A1A_1p7‘(x’)’2u - m’Y2v—1)| dT) = wQ(m’sz - x’yZ’u—l’t)’ (B39)

(see (C.7).)

We want to estimate the integrals in (B.29). However, it is difficult to integrate
Ti(z; 7, e) directly, because the variables,

{xm(l) - ‘Tﬂ'l,l(ml,l)v :1771'[(2(]—1) - xm(Qq—?)v ITI'Z(Qq) - Im(2q—1);

le [OaK}v qc [1,7’”]},
are not independent. We begin the estimation by showing that over much of the domain
of integration, the integral is negligible, asymptotically, as t — co. To begin, we write

n

1= H (1{\%2“ —y,, |<tE-D/GmYy T e *:vwz,v,l\zt(“l)/(“’”}) (B.40)

v=1

and expand it as a sum of 2" terms and use it to write

/72(96; me) [ dzjn.i (B.41)
gkt
= / II (1{‘%0_%%1‘Stw,n/(w)}) Ti(w; moe) [T daji + B
v=1 ki

We now show that
Bl =0 (t—(ﬂ—l)/(w) (t2¢—1(1/t))") _ (B.42)

3

Note that every term in E; ; can be written in the form

Bi(m,e,D) := / H 1p, Te(xz; m,e) H dz;j g (B.43)
v=1

Jiksi

where each D, is either {|z.,, — 2,, ,| < tP=V/EDY or {|z,, —z,,, ,| > tF-D/EA)},
and at least one of the D, is of the second type.

Consider (B.43) and the representation of 7;(x; 7, ¢e) in (B.32). We take absolute
values in the integrand in (B.32) and take all the integrals with r. between 0 and t and
use (B.39) to get

n K
|Bt(7ra €, D)l < / H 1Dvw2(x72v - :L.'72vfl’t) H u(xm(l) — Loy (mi—1)> t)
v=1 =0
ng
[T w(@n20-1) = Tri20-2)5 ) ] djins (B.44)
q=2 Jrkyi
We now take
{y2, = Typeyv=1,...,n} (B.45)
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and an additional n variables from the 2n arguments of the u terms,

U{io{xm(l) T _1(my_1)) Tmy(2q—1) = Ty (2¢—2)> 4 = 2,... 7nl} (B.46)

so that the chosen 2n variables generate the space spanned by the 2n variables {z;  ;}.
There are n variables in (B.46) that are not used. We bound the functions « of these
variables by their sup norm, which by (C.5) is bounded by Cty~1(1/t). Then we make a
change of variables and get that

2n
Bire,D)| < C(t(1/1) /Hla,w vort) T ot dev
v=n-+1
< O (/) /Hlpw Yo, t) dev,
_ O(tfwfl)/(w) (t2y~ (1/t))) (B.47)

Here we use (A.8) to see that the integral of a  term is £. Then we use (A.11) and (A.12)
to obtain (B.42). (Note that it is because at least one of the D, is of the second type
that we can use (A.12).)

We now study
/H (1{\%% ﬂmflgt(a—n/(w)}) Ti(ws me) [] dojini- (B.48)
v=1 Jskyi
We identify the relationships in (B.37) by setting v = 0;(¢) so that
{m(2¢ = 1), m(29)} = {Y201(¢)-1>120:(a) }» (B.49)

foreach 0 <[ < K and 1 < ¢ <n;. We use both (B.37) and (B.49) in what follows.
We now make a change of variables that, eventually, enables us to make the argu-
ments of the u terms and the w terms independent. For ¢ > 2 we write

Priog_1 (xm(qul) - xm(2q72)) (B-SO)
= Priog-1 (x’ngl(q)fl - x’72al(q71)—1) + Ahl'qpﬁ,zqfl (‘T’ngl(q)fl - x’72al(q71)—1)’

where hy g = (Zx,(29—1) — ;v%alwfl) + (xWQUZ(q71)71 — Ty, (2g—2))- When ¢ = 1 we can make
a similar decomposition

p(t—z:mj*1 Ti—1,q)+71,1 (1'7”(1) - w”lfl(mlfl)) (B.51)

=P Zmz Lri1,g) 4T (x%“z(l)*l - $720171("171)*1)
Ahl 1p(l Z’"’ 1 n,l,q)+rlvl(x’72gl<1)f1 - z’Y2al71(nl71)—1)7
where ;1 = (Tr,(1) = Tya0, 0y 1) + (@rag, (1)1 — Tm_1(mi_1))- Note that because of the
presence of the term HZ:1 (1{%21],%2%1 |§t<5,1)/(45)}) in the integral in (B.48) we need

only be concerned with values of |y ,| < 2¢t3~1D/(48), 0 < < Kand1<q <.
Forgq=1,...,n;,1=0..., K, we substitute (B.50) and (B.51) into the term T;(x; 7, ¢e)
in (B.48), (see also (B.32)), and expand the products so that we can write (B.48) as a

K
sum of ZZz:o ™ terms, which we write as

/H (P KA | KT (B.52)

7.k,

/H (g =Ty |<EE— 1)/(46)})7?1(56 T, e) H dzjk,i + Eat,

I,k
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where

K
Tia(z; me) = H/R Py s Tzf1,q)+m,1(x72"z(1)*1 - x’hal,l(n,,l)q)
=0’ R

q=1

ng

Hprl,2q—1(x72al(q)—l - x'Y?al(q—l)fl) (B.53)
q=2

ng my
[T2' A b, (@20 = 2r2g-1) T drig.
q=1 qg=1
Using (B.38) we can rewrite this as

Tea(z; me) (B.54)

K
= Hp =y =l 0 4 (‘T’Yza W-1 " Tyae, i (n )71)
/720><---><RK l:()( Zqzl 1—1,q) 71,1 1 1—1(np—1
T
Hprlﬂqfl(x%al(q)q - {'L"‘/Zal(qfl)—l)
q=2

n
<H AlAil Drs, (x’yzm - x’mu—l)AlAil pré,, (x’Y2v - x’Y'zu—l))

v=1
K my

[T dria.

1=0q=1

where 79, and 75, are the rearranged indices r; 2, and ry 24.

The usefulness of the representations in (B.50) and (B.51) is now apparent. Since
the variables z.,, , v =1,...,n, occur only in the last line of (B.54), we make the change
of variables x.,, — %y,,_, = %,, and z,,, _, — ¥,,_, and get that

/72,1(56; me) [[ duj. (B.55)

Jikst

K
= Hp t—y -1 (x"mg o1 Lyag n 71)
//Rox___xRK o (t=) T reg) 1 1—1(m_1)
ng
Hprl,%—l(fv%ol(q)q - :L‘A/2al(q—1)—1)

q=2
n K my
(H AtAT Pry, (x"/zru)AlA_lpréu (‘fL"Y?v)> H H drlﬂ H dxj7k;i'
v=l 1=0g=1 Jiksi
Now, since the variables z., ,v = 1,...,n occur only in the last line of (B.55) and the
variables x.,, _,, v = 1,...,n occur only in the second and third lines of (B.55), we can

write (B.55) as

/72,1(96; me) [ doj (B.56)

Jiksi

K
= Hp _N"M-1 . L \X T _
/7’30><‘.,><RK / =0 (t ZqZI ,lfl’q)—‘r”’l( V201 (1)1 T2o1-1 (1) 1)

ny

n
HpTl,qul(z’)?al(q)fl - x7201<q1)1)> H dx’YQv—l
v=1

q=2
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n K my
<H /AlA_lpTQV (‘r’sz)AlA_lpréu (x’YZv) dm"mu) H H drl»‘l'
v=1 1=0q=1

Note that we also use Fubini’s Theorem, which is justified since the absolute value of
the integrand is integrable, (as we point out in the argument preceding (B.44)). (In
the rest of this section use Fubini’s Theorem frequently for integrals like (B.56) without
repeating the explanation about why it is justified.)

We now show that

Eai=O (fwfl)/(zza) (t2¢*1(1/t))") , (B.57)

To see this note that the terms in F, ; are of the form

/H (1{‘1721; 7z72071\§t(f’—1)/(43)}> (B58)
v=1

K

H/ Py mo r )47 B2o =1 a0y ng_yy—1)
1=0"/ R
ng

| I p7‘l.2q71(x’7201(q)71 - x7201<q71)71)
q=2
ny

my
H A'AT (T (2g) — Tr(2g-1)) H dryq H dzj ki,

=1 ¢=1 gk

where p,, ,, , is either p,,, , or A}”Hp,«mq_l. Furthermore, at least one of the terms
DPri.aq_y is of the form AMtap, .
As in the transition from (B.43) to (B.44) we bound the absolute value of (B.58) by

/H (1{\%”—%1,_1\Stw*w@m}) W (T35, = Tasy 1) (B.59)

v=1
ny

K
HU(I’YZUl(l)fl T Tyaey i (np_)—1) t) H U(I'yz”(q),l - 'I’Y2al(q—1)—1’t)
=0 q=2

IT dzjwis

X
where each u( -, ) is either of the form u(-,¢) or vy,  (-,1); (see (A.3)).

We need to introduce the following notation and estimates. The next lemma is
proved in Section C. Let

t=1(1/t) /\tl +10g+x) (B.60)

Vi (, 1) := <logt/\ 2] 2

Lemma B.2 Under the hypotheses of Theorem 1.1, for all t sufficiently large,

On,,(@,1) < Chi v.(a,t) (B.61)
sup vy (x,t) < logt (B.62)
zER!
/v*(x,t)dw < Ct(yp1(1/t)) logt. (B.63)
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Proof of Lemma B.1 continued: We have J terms of the type vy, (-,t), for some
J > 1. It follows from (B.61) and and the fact that |h; | < 2¢t(3~1)/(45), that we can
bound the integral in (B.59) by

O (B-1)/(25) / TT w*(rs — 7900 10 1) (B.64)
v=1

g

K
Hu(xwal(l)—1 - xvzal,l(nl,l)q ) t) H u(x“/2al(q)—1 - x’y?:”(q—l)—l’t)

=0 q=2
IT dzjni

Jikst

where u( -, t) is either u(-,t) or v.(-,t), and we have precisely J of the latter.

Since the variables z., , v = 1,...,n, occur only in the w terms in (B.64) and the
variables z,,, ,, v =1,...,n occur only in the u terms in (B.64), (refer to the change of
variables arguments in (B.55) and (B.56)), we can write (B.64) as

T(B-1)/(28) s
t - ~
Ct / (Hu(x’YZal(l)l - x720171(n171)71 ’ t) (B'65)
1=0
ny n n n
~ 2
H u(x’\/Zol(q)fl - x'YQol(ql)l’t)> H dx'Y?v—l H w (x’mvt) H dl"yzu
q=2 v=1 v=1 v=1

K
T(B—1)/(28) ~
G I || O

=0

ny

n
H u(x"/zal(q)—l - 'r'YQoL(q—l)—l’t)> H dx’szfl
v=1

q=2

where the last inequality uses (A.11).

As we have been doing we extract a linearly independent set of variables from the
arguments of the u terms. The other u terms we bound by their supremum. Then we
make a change of variables and integrate the remaining u terms.

Compare (A.5) with (B.62). Replacing the sup of a u term by the sup of a v, term
reduces the upper bound by a factor of 1/(t)~1(1/t)), (neglecting the factor of logt
which is irrelevant.) On the other hand, considering (A.8) and (B.63), we see that
replacing the integral of a v term by the integral of a v, term reduces the upper bound
by a factor of »~1(1/t), (again neglecting the factor of logt.) Counting the initial factor
of t7(F=1)/(28) we have a reduction with is at least

(10D a1 1)) = o ((twwm)") (B.66)

for all ¢ > 0. Since J > 1, we get (B.57).
Analogous to (B.41) we note that

/72,1(17; T, e) H dzj i (B.67)
gk,
n _
= / H (1{|m721,7172%1|gt<ﬁ—1>/<4ﬁ>}) Tia(z; m,e) H dzj ki + E1t,
v=1 Jikoi

where E; ; = O (¢~ (B-1/5H) (th‘l(l/t))"). The proof of (B.67) is the same as the proof
of (B.42).
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Since ¢ is regularly varying with index § > 1 we see that there exists an ¢(8) := ¢ > 0
such that

B+ Eyy + E2,t =0 (t(Q_l/ﬂ)n_E) . (B.68)
Therefore, it follows from (B.41), (B.52) and (B.67) that
/72(:5; me) [[ dejn.i (B.69)
5.k,
= /7;’1(1‘; T, e) H dxjp: + O (t(2—1/ﬁ)n—e) _
G,k

We now obtain a sharp estimate , (asymptotically as ¢ — c0), of the second integral
in (B.69) that leads to the (B.1). Let R;(s) = {Z;”:l T1,29—1
<t —s}and 0;(q) = Y20,(q)—1- We define

Fi(o,s0,...,5K) (B.70)
K

= ~ ~ p — - T — _1—8]— T
/ </720(80)><»»-><RK(81<) g ¢ quzll 1-1,2¢-1=81-1)F71,1
ny ny
(l’;(l) - x;,_l(nl_l)) 1_[217?“1,2(171(%;1(,]) - x};l(q,l)) 1_[1 drl,Qq—l) dx,
q= q=

where (t — ZZ;{ r_1,29-1 — S—1) := 0 and d_1(n_1) := 0. Here the generic term dz
indicates integration with respect to all the variables x. that appear in the integrand.
Since 7;(q) = V20,(q)—1 We can also write (B.70) as

Fi(c,s0,...,5K) (B.71)
K

= . . p _ ny_1 — Ci—s
/</720(80)><'~~><RK(8K)H (t Zqzl 1-1,2g—1—S1—1)+71,1

ny
(x'YZal(l)—l - x720171(m71)—1) HpTl,Qq—l(x’YZal(q)—l - x’yQ(rl(q—l)—l)

q=2
ny
H dTl,gq_1 dx,
q=1

with 2, . :=0.

Consider (B.71). By extending the time integration we have

Ft(ﬁ, 80,...7SK) (B72)

K
< /H u(m’v2al(1)—1 - x’YZdlil(nlil)—l)
=0

ny
(H Ury nq-1 (x'YZdl(q)—l - $72al(q—1)—1) da.
q=2

Note that there are n different x. variables, each one of which appears twice. There-
fore, by an argument similar to the one in the paragraph containing (B.47), we see
that

Fy(G,s0,-..,51) < C (BP9~ (1/1)", (B.73)

for some constant depending only on m = 2n.
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Let R; = {22”:1 T12¢ <t}, 1 =0,..., K. We break up the integration over Ry x --- x
Rk in (B.56) into integration over ﬁg X oo X ﬁK and ﬁo X oo X ﬁK; (see (B.71)). If one

carefully examines the time indices in (B.30) and (B.70) and uses Fubini’s Theorem, one
sees that

/T zymye) [[ dwjn (B.74)

7.k,

no nK
:/A R Ft(0'7§ 7“0,2q7-~-7§ T'K,2q)
Rox- xRy e e
n

II (/ (AtA™ p,,(x)) (A Alp, ) d:z:) H dry dr.

i=1

The variables {r;,r;|i =1,...,n} are simply a relabeling of the variables {r; 2, |0 <1 <
K,1 < g < n;}. (The exact form of this relabeling does not matter in what follows.)
Here, as always, we set p,(z) =0, if r < 0.

By Parseval’s Theorem

/(AlA_lpT(x)) (A'AT py(2)) da (B.75)

= / 2 = P — =P P) g

sin*(p/2)e VPl W) gp > 0.
0

Using this, (B.73) and Fubini’s Theorem, we see that
no ng
~ ~ Fy(o, T0,2q 1+ -5 TK,2q) (B.76)
/(ROX xR )ﬂ( (0,727 )e ; q Z: q
H(/AA pri(z ))(AA pri( ) )Hdndr

<O (BPy7h/e)"

n

\/(\[0’\/{]277,)0. g

<C (B t/)" </ </(A1A1pr(x)) dr)z dx)
/ {/ / (A'A™ p,, (@) (A'A pyy (@) dr drg}dx
t

< C (Y H(1/1))

/{/O /ﬁ (A'AT p,, (2)) (AlA_lprl((x)> dmdr;}dx,

by (A.11). By (A.16) and (A.17) the integral in the final line of (B.76)

Vi 2
<cya —/ (/ ATATY po(x) ds) dx <O (t*l/G) . (B.77)
0

Therefore the first integral in (B.76) is O(t(2~1/#)"=<) for some € > 0.

</ (A'A p,, (z)) (AlAflpr; (x)) dx) f[l dr; dr)
n—1

EJP 17 (2012), paper 7. ejp.ejpecp.org
Page 30/111


http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/

Central limit theorems for the L? norm of increments of local times

Since (7%0 NPT ﬁK) > [0,v1]?", for 2nvi < ¢, it follows from (B.74) and the
preceding sentence, that

/T z;mye) [] dejn (B.78)

7.k,
:/ ZTOQ(I?...,ZTKQ(])H(/(AIA—lpri(w))
0, fz” g=1 i=1
K n
(AlA_lprg (.’L‘)) d.%‘) H H dryoq + O(t@_l/ﬁ)n_e)
1=0g=1

We use the next lemma which is proved in Subsection B.3.

Lemma B.3 Under the hypotheses of Theorem 1.1, for any fixed m and sg,...,Sg <
my/t and 1 < 8 < 2, there exists an € > 0 such that for all t > 0, sufficiently large,

|Fi (5, s0,.-.,8K) — Fi(3,0,...,0) < C (BB~ (1/8))" " (B.79)

Proof of Lemma B.1 continued: It follows from (B.78) and Lemmas B.3 and A.3, that

/wae dejkl (B.80)

7,k
= AlA_l .
/[sz"i 1(/( pr.(@))
K n
(AlAfl pr (x)) dx) H 1_1 driaq + O (t(2*1/5)n*6)
1=0g=1

= (Cw,l)n Ft(5707 o 70) +0 (t(2—l/ﬂ)n—e> 7

for some ¢ > 0.

Consider the mappings o; that are used in (B.70). Recall that 0;(q) is defined by the
relationship {m;(2¢ — 1), m(2¢)} = {V201(q)=1>V201(q) }- Therefore, since 7;(q) = V20, (q)-1
we can have that either 5;(q) = m(2¢ — 1) or 7,(¢) = m(2¢q). However, since the terms
01(q) are subscripts of the terms z, all of which are integrated, it is more convenient to
define o, differently.

Recall that P, (see (B.34)), is a union of pairings P; ;, of the m; ; vertices

{(jvkvi)v 1< < mj,k}'

Each P; i consists of n; , pairs, that can ordered arbitrarily. Consider one such ordering.
If {720’[((1)717

Y20:(q)} 18 the i-th pair in P;, we set 0;(q) = (j, k,4). (Necessarily, I will be either j or
k, as we point out in the paragraph containing (B.37)). Thus, each 7, is a bijection from
[1,m] to

K
U {0 k), 1 <i <mpd LG L), 1< i <myy) (B.81)
k=1+1 §=0

Let B denote the set of K + 1 tuples, 0 = (69, ...,0k) of such bijections. Note that with
this definition of 5;(¢), (B.70) remains unchanged since we have simply renamed the
variables of integration.
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By interchanging the elements in any of the 2n pairs {m;(2¢ — 1), 7;(2¢)} we obtain
a new 7’ ~ P. In fact we obtain 22" different permutations 7, in this way, all of which
are compatible with P, and all of which give the same ¢ in (B.70). Furthermore, by
permuting the pairs {m(2¢ — 1), m(29)}, 1 < g < ny, for each I, we get all the possible
permutation T ~ P, and these give all possible mappings o € B. Note that \B\
T, ! < (2n).

We now use the notation introduced in the paragraph containing (B.81), and the fact
that there are 22" permutations that are compatible with P, to see that

Z/T:mre T daj. (B.82)

T~P Jik,t

— (4ep)" Y Fi(3.0,...,00+ 0 (t@*l/ﬁ)"*) .
S

ceB

Since |B| < (2n)!, we see that the error term only depends on m. Consider (B.82) and
the definition of F;(7,0,...,0) in (B.70) and use (B.16), with m;; replaced by n;, to
see that

Z/wae T daj. (B.83)

T~P gk,

K

= (e )" B | T (agu)™ | +0 (1@71/0mc);
7, k=0
j<k
(o) ¢ is defined in (2.2)).
Recall the definition of S, the set of special pairings, given in the first paragraph of
this subsection. Since there are % pairings of the 2n;; elements {1,...,m;},

(recall that m; ;, = 2n; 1), we see that when we sum over all the special pairings we get

ZZ/TI me Hdmﬂ” (B.84)

PES TP ki
K 2n K
\elgk)- njk ) nj k (2—1/B)n—e
H Qnﬂn ! (4ey1)" " E ,.l,l(a]’k’t) ! +0(t )
<k

It follows from (B.36) that the error term, still, only depends on m.

The right-hand side of (B.84) is precisely the desired expression in (B.1). Therefore,
to complete the proof of Lemma B.1, we show that for all the other possible values of a,
the integral in (B.26) can be absorbed in the error term.

B.2 a = e but not all cycles are of order two or a # e

We show that when a = e but not all cycles are of order two or when a # e

‘/7;(1}, T, Q) H dxj ki

Jiksi

~0 ((t21/)_1(1/t))% t—E) : (B.85)

for some € = €5 > 0. In this subsection we do not assume that m is even.
Consider the basic formula (B.30). Since we only need an upper bound, we take
absolute values in the integrand and extend all the time integrals to [0,¢], as we have
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done several times above. We refer to this integral as the extended integral. We take
the time integrals and get an upper bound for (B.30) involving the terms u, v and w. As
we have done several times above, we choose m of the u, v and w terms with arguments
that span R™. We then bound the remaining u, v and w terms and then make a change
of variables and integrate the u, v and w terms with the chosen arguments. Since we
want to find the smallest possible upper bound for the extended integral, it is obvious
that we first integrate as many of the w terms as possible, since such integrals are
effectively bounded. (We continue to ignore slowly varying functions of ¢). We then try
to integrate as many of the v terms as possible.

In order to do this efficiently, we divide the v and w terms into sets. As we construct
the sets of v and w terms, we also choose a subset 7 of the v and w terms with arguments
that are linearly independent. The cardinality of this subset is a lower bound on the
number of v and w terms that we can integrate.

This is how we divide the v and w terms into sets. For each m and a we de-
fine a multigraph G, with vertices {(j, k,7),0 < j < k < K,1 < i < m;}, and
an edge between the vertices m;(¢ — 1) and m;(¢) whenever (a;1(l,q),a2(l,q)) = (1,1),
1=0,...K,2<qg<my, and an edge between the vertices m;(1) and m;_1(m;), whenever
(al(l, 1),61,2(1, 1)) = (1, 1), 1 < l < K.

This graph divides the w terms into cycles and chains. Assume that there are S
cycles. We denote them by C; = {¢s1,...,ds,(s)}, Written in cyclic order, where the
cycle length I(s) = |Cs] > 1and 1 < s < §. For each 1 < s < S we take the set of [(s)
terms

g:yde = {w(x%a - x¢s,1)7 T 7w(x¢s,l(s) - x¢s,l(s)—1)7 w(x¢s,1 - x¢s,l(s))}' (B.86)

Let
Yoo = Losi = Lops,izns i= 2a"'7l(8)' (B.87)

It is easy to see that {y,,, i = 2,...,l(s)}, are linearly independent. We put the corre-
sponding w terms, w(zy, , — T¢, ), W(Tg, .y — To,,(.)_,) into Z. (On the other hand,

since
1(s)

Zy¢s,i = _(‘Td)s,l - ‘/'E(bs,l(s))? (B.88)
=2

we see that we can only extract /(s) — 1 linearly independent variables from the I(s)
arguments of w for a given s.)
A cycle of length 1 consists of a single point ¢, 1 = ¢;(5),1 in the graph, so in this case

GIe = {w(0)}. (B.89)

We explain below how this can occur. Obviously, w(0) is not put into Z.
Next, suppose there are S’ chains. We denote them by C, = {¢’

FRERRRE

o (S)}, written in order, where I’(s) = |C}| > 2 and 1 < s < §’. Note that there are
l/
l/

5

(s) — 1, w terms corresponding to C.. Then for each 1 < s < S’ we form the set of
(s)

+ 1 terms
gghain - {v($¢é,1 — l'a(s)), ’ll)(.%‘d,/s,2 — $¢;y1)7 RN (B.90)
o ’w(xd’ls,z(s) - x%,us)q)’ U(xb(s) - xd’ls,z(s))}
where v(zy4  —T4(s)) is the unique v term associated with Al , and similarly, v(Zp(s) —
s, T
Ty )) is the unique v term associated with AL =~ . (This deserves further clarifica-

s,0(s

s,0(s)
tion. There may be other v terms containing the variable x4 in the extended integral,
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but there is only one v term of the form

[

where u is some other z. variable which we denote by z,(,). This is because one op-
erator A/}%, is associated with w(zy , — Ty 1) and there are precisely two operators
51 s s
A}%, in (B.30)).
s,1
It is easy to see that variables y, = zy  — g

Al ps(wy | —u)|ds, (B.91)

€T
Ps1

i =2,...,l(s), are linearly
independent. We put the w terms, w(zy , — x4 ), w(Ty o — T, )71) into 7. We

leave the v terms in G4 out of 7.

At this stage we emphasize that the terms we have put in Z from all cycles and chains
have linearly independent arguments. If fact, the set of x’s appearing in the different
chains and the cycles are disjoint. This is obvious for the cycles and the interior of the
chains since there are exactly two difference operators Ay for each z. It also must be
true for the endpoints of the chains, since if this is not the case they could be made into
larger chains or cycles.

For the same reason, if a v term involving A, is not in any of the sets of chains, then
z' will not appear in the arguments of the terms that are put in Z from all the cycles and
chains.

Suppose, after considering the w terms and the v terms associated with the chains
of w terms, that there are p pairs of v terms left, each pair corresponding to difference

operators A;j, j=1,...,p; (p may be 0). Let

Z:={z1,...,2p} (B.92)

A typical v term is of the form
t
v (25 —uj) = v(z5 —uj) = /0 AL py(z; — ujr)| dt, (B.93)

where u;/ is some . term. We use the superscript (j) is to keep track of the fact that
this v term is associated with the difference operator Aij. We distinguish between the
variables z; and u; by referring to z; as a marked variable. Note that if u; is also in Z,
say uj = z, then u; is also a marked variable but in a different v term. (In this case,
in v(’“)(z;€ — uys), where uy, is some other x. variable.)

Thus Z is the collection of marked variables. Consider the corresponding terms

v (zj —w;) and oW (z;—v;), j=1,....p (B.94)

where u; and v; represent whatever terms x. and z’. are coupled with the two variables
Zj.
There may be some j for which u; and v; in (B.94) are both in Z. Choose such a j.
Suppose u; = v; = 2. We set
G2 = 09 (25 — ), 09 (25 — ), (B.95)
P (2, — ug), v® (2 — v}
and put v\)(z; — 2;) into Z. Here u;, and vy are whatever two variables appear with the
two marked variables zj.
On the other hand, suppose u; and v; are both in Z but u; = 2 and v; = 2 with
k # 1. We set
ng’Q = {oW) (25 — 2¢), v (2j — z), (B.96)

o) (zr — uk)m(k)(zk — vk),v(l)(zl — ul),v(l)(zl —u)}
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and put both v()(z; — 2;) and vV (z; — 2) into Z.

We then turn to the elements in Z which have not yet appeared in the arguments of
the terms that have been put into Z. If there is another j’ for which u; and v;, are both
in Z, choose such a j' and proceed as above. If there are no longer any such elements
in Z, choose some remaining element, say, z;. Set

gfv?’ = {U(i)(Zi - Ui),U(i)(zi —v;)} (B.97)

and if u; ¢ Z, place v(¥)(z; — u;) into Z. If u; € Z, so that v; & Z, place v (z; — v;) into Z.

We continue until we have exhausted Z.

The v and w terms in Z have linearly independent arguments. We choose an addi-
tional Z/ = m — |Z| terms from the remaining u, v and w terms so that the arguments of
the m terms are a spanning set of R"*. We bound the remaining terms by their supre-
mum. We then make a change of variables and integrate separately each of the m terms
in ZUZ'. Our goal is to integrate as few u terms as necessary.

Let S; denote the number of cycles of length 1. The number of w terms in Z from

cycles is
s s

;(Z(S) -1)> ;;l(s) - % (B.98)
The number of w terms in 7 from chains is
i([’(s) 1) > 1i(y(s) 42 (B.99)
pt 24 2

The number of w terms may be less than m. (In general it is, but we see below that
it is possible that the number of w terms may be equal to m.) Suppose there are p terms
of type w. Then the number of v terms must be 2(m — p), and consequently, the number
of u terms must be p.

We note that

Sl
p=>_Us)+ Y (I'(s)—1). (B.100)
s=1 s=1
Since the total number of w terms is p, we see from (B.98) and (B.99) that the number
of w terms in 7 is at least g g
P 1
— 4 = — —. B.101
55 3 ( )
This shows that for a given p the the number of w terms in 7 is minimized when their
are no chains.
We now turn to the number of integrated v terms. Since the total number of v terms

is 2(m — p), and there are also two v terms in each set G*" we see that

2(m—p) =Y _|G7"|+25". (B.102)

,J

It is easily seen that we place in 7 at least 1/4 the number of v terms in the sets QJZZ
for all 7, j. Consequently, the number of v terms with arguments in 7 is at least

1 Z.i m P Sl
ZZ\% =5 -5-% (B.103)
1,3
Combined with (B.101) we see that the number of w and v terms in 7 is at least
m p S p S 5 m S
_—— == — —t = | = = - —. B.104
( 2 2 2 > + (2 * 2 2 2 2 ( )
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Since % — % is an integer, it is at least

+

m S
it B.1
2 2 ’ (B.105)

SR

where 1 =0, if m — S; is even, and 1 = 1, if m — S is odd.

Suppose that p > F + % — 1/2. Then, since there are m terms that are integrated,
the upper bound of the extended integral will be greatest if we integrate 3 + % —-1/2
terms of the form u, and bound the remaining u terms by their supremum. (Note that
T+ % — 1/2 is also an integer.) This gives a bound for the u terms of

m

— 5 1
EEHR I (gt (1) E (B.106)

(We ignore slowly varying function of t.)

Note that when we integrate 3 + % — 1/2 terms of the form u, we only integrate
T - % + 1/2 terms of the form v and w. By Lemma A.1 integrated v terms are much
larger than integrated u terms. What is the maximum number of v terms that can be
integrated?

The maximum number of v terms that can be integrated occurs when all the w terms
are in cycles of length 1 or 2, in which case (p—.57)/2 terms of the form w are integrated.
This is easy to see, since in this case the right-hand side of (B.98) is realized. (We point
out in the paragraph containing (B.101) that to minimize the number of w terms that
are integrated there should be no chains.)

We are left with & — 2 4+ 1 /2 terms of the form v that are integrated. Since, by (A.6),

272
the supremum of the v terms are effectively bounded this gives a contribution from all

v terms of (ty~1(1/t)) Fop/2H1/2 Combining the bounds for v and v terms we obtain

%}

FERE 2 (i (1)) (B-107)

s

= (2o (1/0) ¥ (ot (1y0) " E T 0 ayn) T
—1 2 1/2
(twra/m)%)
It follows from [11, (4.77)] that
tp N (1/)2<C Vit >t (B.108)
Therefore, when p > 2 + 5L — 1/2, (B.107) is bounded by

S1

(0 (1) " TP (1) T (B.109)

m
2

C (P97 (1/1)

On the other hand, when p < 3 + % — 1/2, we get the largest upper bound for the
extended integral when we integrate all p of the u terms. As above, to get the most v
terms integrated, we only integrate (p — S1)/2 terms of the form w. Consequently, since
m terms are integrated, m — %p + % of the v terms are integrated. (The remaining v
terms are bounded by their supremum, which is effectively bounded.) Combining the
bounds for u and v terms we obtain

51

2 (b= (1) E T (B.110)

(w—l(l/t))% :

—p/2 m
2

= (e tam)* (et am)’) 7wt am)
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We now show that we obtain (B.85) when S; = 0. Consider the case when p < % —1/2
and refer to (B.110). Note that

—p/2 m
(f (wil(l/t))3> P (wfl(l/t)) 2 t(3/ﬁ*1)P/2*m/(25)L(t)
< t(3/5—1)m/4—m/(25)L(t)
_ - B-nm/B) gy, (B.111)

where L(t) is slowly varying at infinity and we use the facts that (3/5)—1 > 0O and p < 7.

Now we consider the case when p > % — 1/2. In dealing with (B.109) we also have
that p < m — 1, since we arrived at this inequality by assuming that all cycles are of
order two, but are excluding the case when the graph G, consists solely of cycles
of order two. Therefore % — (p/2) in (B.109) is strictly positive. This observation and
(B.111) gives (B.85) when S; = 0.

We now eliminate the restriction that S; = 0. This requires additional work since the
estimates on the right-hand side of (B.107) and (B.110) are larger in this case. Actually
we show that the bounds in (B.107) and (B.110) that we obtained when S; = 0, remain
the same when S # 0.

The only way there can be cycles of length one is in terms of the type

1A-1
ATA p(t_z;Z;l rlil,q)-‘,-rl.l(x'yzal(l)—l - 1."/20171(7”,1)71) (BllZ)
when a5, (1)-1 = V20,_(n,_1)—1- In this case
i
1A-1
/0 ‘A A ps(x’)/zal(1)f1 - 1"725[71(7”71)71” ds = U)(O,t) (B113)
Note that
1A-1 _ 1
|A A p“*ZZQ? Tl—l,q)+Tl,1(O)| = 2|A p(t*Z:lfl Tl—l,q)+7‘l,1(0)|' (B114)

This is how we bound the right-hand side of (B.85) when G, , contains cycles of
length one. We return to the basic formulas (B.29) and (B.30). We obtain an upper
bound for (B.30) by taking the absolute value of the integrand. However, we do not,
initially extend the region of integration with respect to time. Instead we proceed as
follows: Let !’ be the largest value of [ for which Y201 (1)=1 = V20,1 (ni_1)—1- We extend the
integral with respect to r; , to [0,¢] for all [ > {’, and also for { = !’ and ¢ > 1, and bound
these integrals with terms of the form u(-,¢), v(-,t) and w(-,t). We then consider the
integral of the term in (B.114) with respect to r ;.

Clearly

my
g=1 Tl/'-1,4

t 2t —
/0 Alpy g O)]dres g/ o IAlp.(0)|ds  (B.115)
q= —1,q9 ,1 — —

g=1 TU/-1,4

If ZZZII ri—1,4 < t/2, we use (A.13) to bound the left-hand side of (B.115) by

2t
/ 1A, (0)|dr < Ct (=1 (1/8))° < Cyp(1/1), (B.116)
t/2

by (B.108).
Suppose, on the other hand, that /" "7, 1, > t/2. Then for some ¢ we have
Ti—1,q4 > t/2m. We do two things. We bound the contribution of

a1 (l—1,q9) az(l—1,q)
‘ ((A;ﬂll(q)) (Aiﬂ'l—l(Q—l)) prlfl,q(xm—l(Q) o ‘rﬁl—l(ql))) ‘ (B.117)
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by its supremum over ¢/2m < ri—1,g <L
To express we use the notation

w(x,t)= sup wu(z,r), U(x,t)= sup o(z,7r), (B.118)
t/2m<r<t t/2m<r<t
and
w(xz,t) = sup w(x,r), (B.119)
t/2m<r<t
so that the bound of (B.117) may be
ﬂ(xm_1(q) - mm_1(q71)>t)v 6(xfrz_l(q) ~ LTm_1(g—1)» t) (B.120)

or
W(Tr,_y(q) = Tri_y(g=1)1)
according to whether there are no, one or two difference operators.

The terms in (B.120) no longer depend on 7;_; 4 therefore we can integrate (B.114)
with respect to both r;; and r;_; , and use (A.14) get

/% /% |A'p,15(0)|drds < C <t2 (=1 (1/0)° + L(t) + 1) , (B.121)
0 0

where L(t) is a slowly varying function at infinity.
Consider how (B.117) contributes to the bounds in (B.107) and (B.110). If there are
no difference operators they would ultimately contribute either

supu(z,t)  or /u(x, t) dx (B.122)
Now because of the bound in (B.120) we get a contribution of
supu(z,t)  or /ﬁ(x,t) dx (B.123)

The following table summarizes results from Lemmas A.1 and C.6. It shows that each
term in (B.122) is smaller than the corresponding term in (B.123) by a factor of Ct~!.
Up to factors of logt the same diminution, or more, occurs when we compare the two
functions of v(x,t) with those of (z,t) and the two functions of w(x,t) with those of
w(x,t).

f(z,t) sup, f(z,1) < [ fl@,t)da <
u(x,t) Ctyp=1(1/t) t

u(z,t)) Cy=1(1/t) C

v(z,t) Clogt Cty=1(1/t)logt
o(e,t) || C (w0’ <c/t | Cypi(1/)logt
w(z,t) c C(logt)?
wt) | C@m)’ | Ca/)’ <ot
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To read the table note that the second line states that sup, u(x,t) < Cy~1(1/t) and
J u(x,t)dz < t, and similarly for the remaining lines.

Combined with (B.121) we see that we have reduced the bounds in (B.107) and
(B.110) by a factor of

c (t (pta/n)’ + L(t)t+1) <y (1)), (B.124)

where for the last inequality we use (B.108), as we do in (B.116).

We apply a similar procedure for each [/ in decreasing order, with one exception. If
Ti—1, = Ti—1,1, i.e., ¢ = 1 in this case and we are also in the (B.114) with [ is replaced
by [ — 1, we skip this term because this it has already been modified. We then proceed
to deal with remaining terms as we did when we assumed that there were no cycles of
length one.

Consequently, if there are S; cycles of length 1 we have diminished the bounds in

(B.107) and (B.110) by a factor of at least C' ( (l/t)) 2 , if S7 is even and by a factor

S1,1
of at least C' (¢ '(1/t)) >3 i S, is odd.
In the case of (B.107) we are precisely in the case we considered when S; = 0,

S
which gives (B.85). In the case of (B.110) the final factor is now (t(¢~*(1/¢))?) Tl, which
is bounded by a constant by (B.108). Thus we are again in the case we considered when
S1 = 0, which also gives (B.85).

It follows from (B.84) and (B.85) that when m is even

> > /Tl’ﬂa 1T dzj. (B.125)

a T, TK 7.k,
(2n77k)' Mjk s Nj k (2_1//3)”_6
= II 552 (ep )™ EQ T (i) +0 (t ) _
J,k=0 Jik o
i<k i<k

We now show that we get the same estimates when T;(x; , a) is replaced by 7/ (z; 7, a);
(see (B.27) and (B.30)).

We point out, in the paragraph containing (B.22) that terms of the form A'A~1p? in
(B.27) are always of the form AlAflp.. Therefore, in showing that (B.26) and (B.29)
have the same asymptotic behavior as t — oo we need only consider how the proof of
(B.125) must be modified when the arguments of the density functions with one or no
difference operators applied is effected by adding +1.

It is easy to see that the presence of these terms has no effect on the integrals that
are O ((t*~1(1/t))"¢™) as t — 0. This is because in evaluating these expressions we
either integrate over all of R! or else use bounds that hold on all of R!. Since terms
with one difference operator only occur in these estimations, we no longer need to be
concerned with them.

Consider the terms with no difference operators applied to them, now denoted by
pﬁ. So, for example, instead of F(7,0,...,0) on the right-hand side of (B.80), we now
have

K
~ ~ p (B.126)
/ </RD(0)><...><RK(0)Z]‘__‘([J Z - 17"l 1,2q—1—81—1)+71,1

ny ny
(xgz(l) Ul 1(ng—1) Hp” 2q— 1 O’z(q ;z(qfl)) H drl’Qq_1> dz.
q=2

q=1
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Suppose that pﬁ(ya(i) ~Yo(i—1)) = Pr(Yo(i) — Yo(i-1) £ 1). We write this term as

PEWoti) = Yoli-1)) = PrWoti) = Yo(i-1)) + A2 (Yo (i) = Yo(io1))- (B.127)

Substituting all such terms into (B.126) and expanding we get (B.125) and many other
terms with at least one p,(y,(;) — ¥»(i—1)) Teplaced by Ailpr(yg(i) — Yo (i—1))-

Substitute (B.127) into (B.126) and write it as the sum of 2™ terms. One term, which
contains no difference operator, is the term we analyzed when we replaced p? by p. All
the other terms contain at least one difference operator. It is easy to see that all these
other terms are O ((t2¢~'p;(z,y)1/t)" ¢t~¢), for some € > 0.

By (B.73) the term with no difference operators is bounded by C/((#?
©»~1(1/t))"). This bound is obtained by extending the integrals to [0,¢] in (B.72) and
integrating or bounding the resulting terms u(-,¢). We are in a situation similar to the
one considered in the paragraph containing (B.122). Each difference operator in the
other terms replaces a u(-,t) term by a v(-,t) term. By Lemma A.1 each replacement
reduces C/((t>
¥ ~1(1/t))") by a factor of at least (t¢p~'(1/t))~'. Therefore, the replacement of p by p*
doesn’t change (B.125) when m is even.

We now obtain (B.2). In Subsection B.2 we do not require that m is even. Therefore,
(B.2) follows from (B.85) unless G , consists solely of cycles of order two and there are
no terms with a single difference operator. Therefore, (B.2) follows from (B.85) when
m is odd unless we are in the situation covered in Subsection B.1. This also holds when
when p. is replaced by p@ for the reasons given in the case when m is even.

However, if any of the m;; are odd we can not be in the situation covered in Sub-
section B.1. Consider the multigraph G, described in the paragraph following (B.33),
with vertices {(j,k,i), 0 < j <k < K, 1 <i < m;}, and an edge between the vertices
m(2¢ — 1) and m(2¢) foreach 0 <[ < K and 1 < ¢ < n;. Each vertex is connected to two
edges. Suppose that {(j, k,i)} = m(2q), with j =1 and k = I’ # [. Then there is a unique
¢’ such that 7 (2¢’) or m;(2¢' — 1) is also equal to {(j, k,4)}.

Suppose 7/ (2¢") = {(j,k,4)} and consider m;(2¢ — 1) and 7 (2¢' — 1) Suppose that
m(2qg — 1) = {(j,k,7)} for some k' and n(2¢' — 1) = {(j’, k,7")} for some j'. In order
that G, consist of cycles or order two, we must have (j,k',i') = (j', k,4"), in particular,
j' = j,k' =k, (but, of course, i # ¢’). This shows that for G, to consist of cycles or order
two m,; ;, must be even for each j, k.

This completes the proof of Lemma B.1. O

B.3 Proof of Lemma B.3
For any A C [0, 3t]™ we set

K
Fa= / {/A H p"l,l(x;z(l) N x;z—l(nz—1)> (B.128)

=0

ny K n ny
Hp’“mq—l(x;z(q) - x;z(q—l)) H H drmql} H dxgz(q)'
q=2

1=0g=1 g=1

Rather than bound the time integral by that over [0, 3¢]” as we have in the past, we have
to be more careful.

It follows from (B.70), paying special attention to the time variable of p. in the
second line, that

F(O’,807...,SK):FA, (B129)
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where

ny

Zt—qu 1= 5)) <Z7“12q | (B.130)
A=0
1—1
gz<tzm,2q_1sn+<tsl>;zo,l,...,K}.
q=1

A=0

ASO ..... SK - {r 6 Ri

In particular

°
|

AO,... = {T [O 3t

Zt—qu 1 <Zm2q 1 (B.131)
A=0 q=1

50, DN Ao, 0 (B.132)

11 (r ZS,\<ZTl2q 1< dr- 1()}
Gr—a(r +t—ZSA<Zrl2q 1< dia(r) + }

K
= U A, U B;
=1
where, setting ¢;_1(r) = ¢_1(r) — ;”;11 T1,2¢—1 W€ can write
A= {T € 10,30 |d1-1(r) = Y _ 53 < Tr2n-1 < ¢l—1(7’)} (B.133)
A=0
and
B, = {T € (0,3 |Groa(r) +t =D sx < man-1 < G (r) + t} : (B.134)
A=0

(The first union in (B.132) are the points in A, ., thatarenotin Ay o and the second
union are the points in Ay . o that are notin A, . s,.)

Note that each time 7} 5,,,—1 is contained in an interval of length 2(K + 1)n\/i

We bound each F4, and Fj, as in (B.73) except that we only integrate with respect
to ;2,1 over A; or BB;. Therefore, instead of getting a bound of u(z,t) or [u(z,t)dx
from this term we get a smaller bound.

To see this, for fixed a,b > 0, let

a+b

Ugp(x) = / ps(z)ds. (B.135)
a
Clearly
a+b

/ua,b(x) dx = / 1ds =b. (B.136)

a
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In addition, by (C.5),

a+b
sup Ug () = sup/ /eipxefsw(p) dpds (B.137)

a-+b b
:/ /e*SW) dpds g/ /e*w@ dpds < Cbypy~1(b).
a 0

Using (B.135)—(B.137) with b = C'v/t, and Lemma A.1 we see that the bound in (B.73)
is reduced by a factor of at least (t)=1(1/t))~(z2=<) for any ¢ > 0. O

C Proofs of Lemmas A.1-A.3 and B.2

Since the Lévy processes, X, that we are concerned with satisfy (1.6), it follows from
the Riemann Lebesgue Lemma that they have transition probability density functions,
which we designate as p;( - ). Taking the inverse Fourier transform of the characteristic
function X, and using the symmetry of ), we see that

1 .
ps(z) = %/esz e—s%(P) dp (C.1)

1 o0
= —/ cos(pz) e~V P dp,
0

™

Our basic hypothesis is that ¢ (\) is regularly varying at 0 with index 1 < 8 < 2.
Therefore (- ) is asymptotic to an increasing function near zero. Considering the way
we use (- ) in the estimates below, we can assume that () is strictly increasing for
0 < X < )\, for some \g > 0, and that ¢~1()\) is well defined for 0 < A\ < \q. Actually,
we are really interested in ¢~1(1/s) as s — oo. Therefore, there exists an sy such that
©~1(1/s), as a function of s is regularly varying with index —1/43 for s > s.

The next two lemmas give fundamental estimates that are used in the proofs of the
lemmas in Section A.

Lemma C.1 Let X be a symmetric Lévy process with Lévy exponent 1»(\) that is regu-
larly varying at 0 with index 1 < 8 < 2 and satisfies (1.6)-(1.8). Then for all v > 1 and
for all s sufficiently large and all z € R,

-1 1 .
ps(m) S C <’(/) (1/8) A 1/11(1/8)1'2) ’ (CZ)
O, + xr
|ATps(z)] < O ((wl(l/s))2 A l“xf') ; (C.3)
[ATATp(a)] < CH? <(w1<1/s>)3 A W) : (C.4)

Lemma C.2 Let X be a symmetric Lévy process with Lévy exponent 1(\) that is regu-
larly varying at 0 with index 1 < 8 < 2 and satisfies (1.6)—(1.8). Then for all t sufficiently
large and all v € R!

t +
u(z, t) = / pe(z)ds < C (m—la/t) A W) : (C.5)
0 T
t tp~H(1/t) 1+ logt |z
Uy (z,t) = / |A7 py(x)|ds < Cy? <logt A 2] At e ) (C.6)
0
and . )
logt typ—(1/t
wy (z,t) == |AYATY py(x)| ds < Cy? <1 A T§| A id |xT2/ )> . (C.7)
0
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We use the following lemma repeatedly.

Lemma C.3 Forallp € R' and s,q > 0,

C
—sv(p)
e < STi0p)” (C.8)
Proof This is elementary since for all ¢ > 0
qq)yq —s¥(p)
¢msip) < SWPazo SWIP)ETE) (C.9)
- s199(p)
O
Proof of Lemma C.1 We first note that by (C.8) with ¢ = 1, and (1.6)
/ e~V @) gp (C.10)
0

$H(1/s) 1 o0
< / =5V gy + / =5V gp 4 / =) g
~\Jo Y=1(1/s) 1

Y R IR
= <1/1 A/s)+ s /1/11(1/5) Y(p) i 3/1 Y(p) dp)

<C (w_l(l/s) + 1) < CyH(1/s),

S

for all s sufficiently large. Therefore, it follows from (C.1), that for all s sufficiently large

ps(z) <C (v~1(1/s)) . (C.11)
By integration by parts
1 oo
ps(x) = — e ) d(sin px) (C.12)
s 0
- oL sin px (desw(p)) dp
Tz Jo dp

Il

S
2
S

L Lap—
e COSpxr | —5¢€
w2 Jo b dp?
where the last line uses the fact that ¢/(0) = 0, which follows from (1.5) and the first

inequality in (1.7).
We have

2
(;Lerfs’lP(P) — (52(1][}/(])))2 o sw//(p)) efsw(p) (C.13)

By (C.8) and (1.7) forp < 1

! 2
2017 2,—s9%(p) < OSW () 051/)(17) (C.14)
P )20 < ORI < 0%
and
s|y” (p)le™ v W) < Csﬁgp). (C.15)
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Therefore, for all s sufficiently large

Y H(1/s) 2 PH(1/s)
/ COS px <d268¢(p)> dp’ < C’s/ ¥(p)
0 dp 0
C
< — (C.16)
P1(1/s)
By (C.8), (C.13) and (1.7), forp < 1
& w’(p)>2 " (p)] c
)| < ¢ ( + < =, (C.17)
‘dp - { ¥(p) ) |~
Therefore, for all s sufficiently large
1 d2
Lo = 4
$1(1/s) dp $=1(1/s >P
< (C.18)
(1/8)

By (C.17) and (1.8)

[ e (o) ] < /100{(%)))2* %/(gn} o cio)

Using (C.11), (C.12), (C.16), (C.18) and (C.19) we get (C.2).
We now obtain (C.4).

ATATTpy(x) = 2ps(z) —ps(z+7) = ps(z —7) (C.20)

4 oo
— / cos(px) sin® (py/2) e==¥®) dp.
T™Jo

Therefore, by (C.8)
|AYAT ()] (C.21)

< C’/ sin?(py/2) e*¥®) dp
0

o2 /wl(l/ s) 2 1 1

< p-ap + */

T\ 3 Jy-1(1/8) ¥ 1/"’
_ 3

<Oy (p7(1/s))".

We next show that

2 (8, 2)

8 K
ATATY — C.22
ps(@) = —— 5 (C.22)
where
oo 1
K, (s,x):= / sin®(px/2) (sinQ(p’y/2) e_sw(p)) dp. (C.23)
0
To get this we integrate by parts in (C.20),
/ cos px sin?(py/2) e v @) gp (C.24)
0
1 o0
= f/ sin?(py/2) e=*¥P) d(sin pz)
T Jo
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1 [ !
= _;/ sin pz (sinz(p'y/2) efsql’(p)) dp
0

1 ) / P
= _7/ (sing(p'y/Q) efsw(p)) d </ sinrz dr>
T Jo 0

1 [ /
=—— (sinQ(p'y/2) e_sd’(p)) d (1 — cospz)
= Jo

2 = 1
= 72/ SinQ(px/Q) (81112(pfy/2) e*Sw(P)) dp.
= Jo

which gives (C.22).
Let g(p) = e *¥(P) and note that

(2 sin®(py/2) eV ))/ = 79(p) sin(py) + 2¢'(p) sin®(p7/2) (C.25)
and
(25in2(p/2) =) = 22g(p) cos(py) + 29’ (p) sin() + 29" (p) sin®(p7/2).  (C.26)

Substituting (C.26) in (C.23) we write K., (s,z) =1 + II + III.

Note that
Il = 72‘/ cos(pw)sin2(px/2)e_‘w(p)dp‘ (C.27)
0
< [ e <o)
0
by (C.10).
By (C.26)
1| = 27‘ / sin(py) sin® (pz/2)g' (p) dp (C.28)
0
Y7 (1/s)
< Oy / ps|d’ (p)| e > ) dp
0

1
+Cv2/ sy’ (p)] e~ *¥®) dp
v=1(1/s)

+Cv/ sy’ (p)| e =¥ ) dp
1

By (1.7) and (C.8) the first of these last three integrals

P H(1/s) YH(1/s)
< C/ sih(p) e =¥ P) dp < C/ dp < Cyp~1(1/s). (C.29)
0 0
By (1.7) and (C.8) the second of the last three integrals in (C.28)
c [t 292 c [t d
- 7/ VD) i) g < 7/ P op1(1/s). (C.30)
s Jy-1175) (D) s Jy-1317s) ¥(p)
By (1.8) and (C.8) the third of the last three integrals in (C.28)
1 /°° 22,310 (O] _spp) 1[4/ (p)| c
- s“Y?(p)—5—¢ Pdpgf/ dp < —. (C.31)
s J1 ( )7/’2(17) sJ1 3(p) 5
Since 1/s < 1~ 1(1/s) for all s sufficiently large, and v > 1, we see that
|[T| < Cy*p~t(1/s) VaxeR. (C.32)
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Similarly,

\IT1|

2’/0 sin2(p7)51112(px/2)g"(p)dp’ (C.33)

¥h(1/s)
072/ p? (s[¢” ()| + s* [/ (p)[*) e =¥ ) dp
0

IA

1
40%4(/fﬂ%ﬂm+¥W@ﬂeWW@
—1(1/s

+C’/1 (19" (0)] + 52|’ (p)[2) e~ dp

IN

PpT1(1/s)
cfA (s0(p) + $20%(p)) €@ dp

cy? [t L 20 3,3 —s9(p) g

+= r1e) 5) (s°¢%(p) + s°¢°(p)) e P
9 A 90, P (D) 3.3 |1//(p)|2> —s¢(p) ¢
+51G¢@W@+W@W%)e v

< Cy*H(1Ys).

Note that limy_, ¥(\) = o0, see e.g. [11, Lemma 4.2.2], so that (1.8) implies that

' (A2 O]
/1 NETPY d\ < 00, /1 NEIY d\ < oo. (C.34)

We use this to bound the next to last line in (C.33).
Combining (C.21), (C.22), (C.27), (C.32), and (C.33) we get (C.4).

We now obtain (C.3). Note that

AVps(z) = ps(z+7) —ps(x) (C.35)

1 oo
- / (cosp(z + ) — cos pz) e VP dp
0

2 oo
= 77/ cos(px) sin?(py/2)e 5P
™ Jo

1

—f/ sin(pz) sin(py) e =¥ ®) dp
T Jo

Thus

AVps(z) = f%AWA*WpS(x) — l/ sin(pz) sin(py) e *¥®) dp. (C.36)
T Jo

The second order difference is bounded in (C.4). We deal with the second integral which
is bounded by

(o)
/ |sin(py)| e=*¥®) dp (C.37)
0

D 1 o0
<~ / pdp+/ pe=sv®) dp+/ =) g
0 P=1(1/s) 1

PRI P R
=4 <(w (s)"+ s? /w—1(1/5> V2 (p) Wtz /1 Y3 (p) dp)
<Oy (671(1/9)"
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This gives us the first bound in (C.3). To obtain the second bound we integrate by parts
twice to get

/ sin(pz) sin(py) e =¥ ® dp (C.38)
0
1 [ ;

=—— / sin(py) e~ *¥®) d(cos px)

T Jo

1 [ /
- = ; —sv(p)

37/0 cos(px) (sm(p'y)e ) dp

1 [ !
= ﬁ/o (sin(pfy) efsw(p)> d (sin px)
LY i ~sv(p))”
= ; sin(px) (sm(p'y) e ) dp.
G
==
Since

1

(sin(pv) e_sw(m) (—’yz sin(py) — 2sv cos(py) ¥’ (p) (C.39)

—sin(py)(s 9" (p) — s*(¢' (p))?) e ¥ @),

we can write
G =G+ Gy + Gs, (C.40)

where
Gi| = 72] / sin(p) sin(py) e~ ®) dp (C.41)
0

Cy? (v1(1/s)),

IA

for all s sufficiently large, by (C.10).
Using (C.8), (1.7) and (1.8), we see that

|Ga] = 2w‘ / sin px cos(py) <¢'(p) se_sw(p)) dp (C.42)
0
1 [ee}
< 0 [ Isinpal W se P dp+ Oy [ lse ) dp
0 1
1 . o) 2
C
< o [y, O IO,
0 p s J1 Pi(p)
< Cy(1+ log™ z + (1/s)),
where we use ]
1) z| |
/ Mdp:/ Mdpg Cy (1—|—log+ |x\) ) (C.43)
0 p 0 p
Therefore, for s sufficiently large
|G| < Cy (1 +1og™ |z]). (C.44)
Similarly,
oo
Ga| = ‘ / sinpz sinpy (s¢(p) — 5>/ (p)?) e dp‘
0
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1
< C’Y/O | sin px| p (s|¢//(p)| + SQ(w/(m)z) e 5P dp (C.45)
+C’/1 (sl ()] + (W' (p))?) =@ dp

1
C’Y/O | sin px| (Swl()pﬂ + s%[;j(p)) eV @) dp

= ()] | (W (p)?
*C/l <w<p> TR ) )dp

1 .
07</ “’ll;.f‘”'dp+c> < Cv (1 +1log* |z]).
0

Combining (C.41)-(C.45) we get the second bound in (C.3). O

IN

IN

We use the next two lemmas in the proof of Lemma C.2.

Lemma C.4 Let X be a symmetric Lévy process with Lévy exponent ¢)()\) that is reg-
ularly varying at zero with index 1 < 8 < 2 and satisfies (1.6). Then for any r > 0 and

t>0,

t 1 r+1

/ sTe 5P gg < Ck (t A ) ; (C.46)
0 7?(17)

for allt > 0, where C}, < oo, is a constant depending on k. Furthermore, for any r > 0
and all t sufficiently large,
00 t
/ z/ﬂ(p)/ s"e VW) dsdp < Ctyp 1 (1/t). (C.47)
0 0
Proof The first part of the bound in the first inequality in (C.46) comes from taking

e~ 5%() < 1; the second from letting ¢ = .
Since

W (p)sTe W) — 9T (p) (i)T o= 5U(D)/2 o= 50(p) /2 (C.48)
2 ’ ’
it follows from (C.8) and (C.10) that
/ wr(p)sre_sw(p) dp < C'/ e 5% (0)/2 dp < C’w_l(l/s) (C.49)
0 0
for all s sufficiently large. On the other hand for any fixed g,
[e'e] to o0 1 _ *tow(P)/Q
/ / VP2 s dp = 2/ e dp < o0, (C.50)
0 Jo 0 ¥(p)
by (1.6). Putting these two together, and using the fact that 1»~!(1/t) is regularly varying
at infinity, gives (C.47). O

Lemma C.5 Under the hypotheses of Theorem 1.1, forr =0,1,...

1 . r+1
[sinpz| . ( 1)
e ()

1 ; 1 r+1 .
/Ow(p) (tAW)) dp < Ctp=H(1/t); (C.52)

t o)
/ / | sin pry| e =¥ ®) dp ds
0o Jo

for all t sufficiently large.

IN

Ct(1 +log™ |z|); (C.51)

IN

Cvylogt, (C.53)
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Proof We first note that forr =0,1,...
r+1

" (p) <t A w(lp))r+2 <¢"(p) (t A 1/}(11))) (C.54)

So we need only prove (C.51) and (C.52) for » = 0. In this case, (C.51) follows immedi-
ately from (C.43).
For (C.52) we have

[ (tn i)

L(1/¢) 1
d —d C 1
f e [ a

I /\

for all ¢ sufficiently large.
By (C.50) and (C.37), there exists a ty such that for all ¢t > %,

/ / |sinpy|e” ) dpds (C.55)
to t (oo}
< / / e V@) dpds + / / | sin pry| e =¥ ®) dp ds
o Jo to JO

t
< C’—i—CW/ (w_l(l/s))2 ds < C+ Cvlogt,

to

where for the last bound we use (B.108). (This bound can not be smaller since we may
have 1 (p) = p%.) O

Proof of Lemma C.2 For the first bound in (C.5) we use (C.1) and (C.47) withr =0
to get

t e’} t
L/m@%él/l/fw®%®=ww4wm, (C.56)
0 ™ Jo 0

as t — oo. For the second bound in (C.5) we use (1.7), (C.46) and (C.51), to see that

t 1 (o) t
/ ps(z)ds = 7/ COS px / eV (®) ds dp (C.57)
0 T Jo 0

1 oo t
— / / e=*¥(®P) ds d(sin px)
T Jo 0

1 o0
< —/ | sin pz| i/ —sv®) ds| dp
mlz| Jo dp
s ()
< — sinpz||[Y' (p)| [t AN —— | dp
il Jo 1P @I G
C /1 | sin pz| < 1 )2
< = Pp) [ tAN —— dp
m<o » YOG
<[ )] )
+/ dp
1 Y3 (p)
+
o otltlog™ e
||
Thus we get (C.5).
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We next obtain (C.7). Consider (C.20). For v > 1

> sin® (py/2)
S C.58
/0 o P (€.59)

1/~ p?
< C~? dp—|—/ —dp+/ —dp
0 "/}(p) /'y

< (am )

and for v = 1 the integral is a constant. It follows from this and (B.108) that

sup/ |[ATA Y p(z)| ds < CH2. (C.59)
z€R! JO

This gives the first bound in (C.7).
To obtain the third bound in (C.7), consider (C.22)-(C.26). By (C.47) with r = 0, we

have
t t o)
Ilds = ~2 cos py sin? (pz/2)e*¥®) dp| ds (C.60)
Y
0 o 'Jo

e} t
72/ (/ e V(@) ds) dp < Cy*typ~1(1/1),
0 0

for all ¢ sufficiently large. Using (1.7). (1.8) and (C.47) with r = 1 we get

t t
/ [11]ds 27/
0

IN

/ sin py sin?(pz/2)g p)dp’ds (C.61)

o i ([ o)
2 / sinGe) /9| /Otseswds) p
<o o) ( /tsew“’)ds) dap
on [0
< o (tw*(l/t))wv /1 'zg(g)' dp
< Oy (7' (1/1) + C.

Similarly;,

t t 0o
[IIT|ds = 2 / / sin?(py/2) sin’(pz/2)g” (p) dp‘ ds (C.62)
0 o 'Jo

2 /01p2 (/Of (slv” (p)| + s*[' (p)]?) e~ ¥ @ ds) dp

IA
Q
2

I
Q
2
[\v]
\H
N S
\
~ /7 - I/~
<=
s
SN—
_|_
Vo)
n
<
[\v]
S
S~—
SN—
w
£
<2
QL
~
<

IN
Q
Q

-
%
=
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Combining (C.60)-(C.62) with (C.22) we get the third bound in (C.7).
To get the second bound in (C.7) we use the third integral in (C.24) to see that

ATA T Tpy(x) = ,é L(s, m,) (C.63)
T
where
oo i
L(s,x) :/ sin px (sinQ(p’y/2) 6_81/)(1))) dp. (C.64)
0
Using (C.25) and (1.7) we see that
t
/ |L|ds (C.65)
0

t o0 t [e'e)
< Cv/ / | sinpy|g(p) dp ds + C/ / sin® (py/2)|g’ (p)| dp ds.
0 0 0 0

By (C.53) the first term on the right-hand side is bounded by Cv?logt. For the second
term we note that

t [e%¢]
/ / sin? (py/2)lg' (p)| dp ds (C.66)
0 0
1 t
§072/ pzlw’(p)\/ se”*®) ds dp
0 0

[e%e] t
i [T [ s dsdp
1 0

— IV 4V
By (C.46)
2 ! 2 1
v < C /pwp (t A )dp (C.67)
7 0 () 1/12(10)
W(1/8) 1 »
< Ot / p(p) dp + Cy? / ——dp
0 P=1(1/t) 1/)(19)
1
1
< PP [
p=1(1/t) P
< Cy’logt,

where we use (B.108) which implies that p/y(p) < C/p for p € [0,1]. The integral V < C
by (C.46) and (1.8). Using all the material from (C.63) to this point we get the second
bound in (C.7). This completes the proof of (C.7).

Using (C.36), (C.59), (C.7) and (C.53) we get the first bound in (C.6).
We now obtain the third bound in (C.6). Considering (C.36) and (C.7), it suffices to
show that

t o0 —+
141
/ / sin(pz) sin(py) e =¥ ®) dp‘ ds < Ct72+07§|x|. (C.68)
o 'Jo z
Consider (C.38)-(C.40). We have
t t [e’e]
/ |G1lds = 72/ / sin pa sinpy e ¥ ®) dp| ds (C.69)
0 0 0
t o]
< v2/ / e W dp < CPyp T (1/1),
0 Jo
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by (C.47).
Using (C.51) and (1.8), we see that

t t
/ Ga|ds = 27/
0 0

/ sin px cos pry (zp’(p) se_sw(p)> dp’ ds (C.70)
0

1 f * [¢/(p)]
< o [ psnpello/ @) ([ s as) apez [T LG
0 0 1 ¥3(p)
< C /1|Sinpx|¢()<t/\1>2d +C
= P o)) T
< Oyt (1+1log™|z|).
Similarly,
t
/|G3|d3 (C.71)
0

= /Ot ‘ AOO sinpx sinpy (Sw"(p) - 32(1//(17))2) e_sd)(p) dp‘ ds
<o [ ' |sinpa|p ( / (b )]+ 20 (0)?) e ds> dp
so [ ( | G+ 2w ) e ds) dp

Y| sinpz| ( 1>2
SCV/O —) '@ o)

1 . 3
or /0 'S”;m'w%p) (mwlp)) dp

= 9" (p)] > W'®)?
+C/1 e P 0/1 I
< Cvy (1+]1og" |z[) .

This completes the proof of (C.68) and gives us the third bound in (C.6)
The second bound in (C.6) follows from the third line of (C.38) and the observation

that
t o) ’
// CoS px (Sin(p"y)e_sw(p))> dp
0o Jo
3} t e} t
<y [ [ asaps [ [ sl plse 0 dsdy
o Jo o Jo

< a0+ b ) (t A 1)2 dp

Y(p)
= 1Y (p)]
+/1 ¥2(p) v

< CVy) (Y™ (1/4)).

In this chain of inequalities we use (C.47), (1.7), (1.8) and (C.52). O

(C.72)

Proof of Lemma A.1 The inequalities in (A.5)-(A.7) follow immediately from Lemma
C.2.
The inequality in (A.8) is trivial, since ps(x) is a probability density for all s > 0.
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To obtain (A.9) we use (C.6) with v = 1 to get

/ v(z,t) d (C.73)
0

= (1/1) 2e/971(1/t)
<C logt/ daz—f—tw_l(l/t)/ —dx
0 t

vy ®
> I
+Ct / %62
2e/p-11/0) ¥

< C(ty~'(1/t)logt),

for all ¢ sufficiently large. Note that when 3 < 2 it is clear that ty~1(1/t) < 1/¢71(1/t)
for all ¢ sufficiently large. In general we use (B.108) with ¢ representing the constant.
For (A.11) we use (C.7) to see that

2

oo t
/ </ AlAlps(x)|ds) dx (C.74)
0 0
logt t 2
SC/ (/ AlA_lpS(a:)|ds> dx
0 0

o0 t
+2/ ( |A1A1ps(:c)|ds> dx
1 0

ogt
> (logt
§C10gt+C/ (og) dxr < Clogt.
logt 2

A similar argument gives (A.12) since

2

oo t oo 2 2
/ </ |ATAT py()] ds) dz < C/ (IOth) dx = CM. (C.75)
u 0 u xz u
Finally, to obtain (A.10) we use (C.7) to get
[e'e] t
I
1t tp~L(1/t)  pt
:/ / ‘AlA_lps(a:)‘dsdx—i—/ /
0o Jo 0
oo 3
1(1/t)

RCVOR
<C’/ 1dx+Clogt/ —dzx
1

||

1
+C’/ L} (2 /) dx
typ—1(1/t) ||

< C+C(logt)? +C.

(.Z’)‘ dsdx (C.76)

(x)|dsdx

ds dx

We use the next lemma in the proof of Lemma A.2.

Lemma C.6 Under the hypotheses of Theorem 1.1, for all t sufficiently large and all
r€R!

Wt = sup pale) < c(w-1<1/t>A¢_11); €77

St<s<t (1/t)x?
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1+log™
te.t)= s (M) < ¢ (@am) At TE ) e
“L1/t
w(e.t)i= sup |ANAIp(o)] < c(@r%uanﬂ’;/>). (©.79)
In addition
/ﬂ(a@t)dm < C; (C.80)
/E(:mt)da: < Cy~i(1/t)logt; (C.81)
/w(x,t)da: < c(w—l(l/t))QS% (C.82)
Proof By (C.2)
. 1
2,020 (470050 ). 8

and by the regular variation property ~!(1/§t) < Cy~'(1/t). (The constant depends
on ¢ but that doesn’t matter.) The inequalities in (C.78) and (C.79) follow similarly from
(C.3) and (C.4).

The inequalities in (C.80)-(C.82) follow easily from (C.77)-(C.79). For (C.80) we write

a oo 1
m < -1 S E— .
/u(x,t) dz < C/O P (1/t) da +/a (1022 dz, (C.84)
where a = 1/¢~1(1/t). For (C.81) and (C.82) we proceed similarly with a = 1/1~1(1/t)
in both cases. m|

Proof of Lemma A.2 The inequality in (A.13) follows from (C.36) and (C.4).
To obtain (A.14) we write

2t 2t
/ / Ay (0)] dr ds (C.85)
0 0

2t 4t
= / u\Alpu(0)|du+/ (4t—u)\A1pu(0)|du.
0 2

t

By (C.36) and (C.20)

2t 2t
/ u|A'p, (0)|du < / / sin?(p/2) e ") dp du (C.86)
0
= f/ sin (p/2)/ we P du dp.
T Jo 0
In addition o

1 Ct
we P gy < ( 1—e 20 A > , (C.87)

/0 ~\¥?(p) ( ) ¥(p)

where, for the final inequality we use Lemma C.3. Consequently, for all ¢ sufficiently
large,

o] 2t
/ sin2(p/2)/ we™ " ®) du dp (C.88)
0 0
YL/t 2 1
P 1
< Ct/ ——dp+ 7/ /
0 Y(p) 4 -1 1/’ ) %/12

2 (1 3 } 1 p
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Note that
1 2 (v~ (1/t)°  if B> 3/2
/ ]297 dp < ¢ L(t) if 3 =3/2
w1/ $2(p) c if B < 3/2,

where L(t) is a slowly varying function at infinity. Therefore

2t .
/ ulAp, (0) du < O (2 (6(1/0)° + L(1) +1) (C.89)
0
In addition

4t 4t
/ (4t — u)|Alp, (0)| du < Ct/ |A ., (0)] du (C.90)
2 2

t t

2t
_ o / ALy 20(0)] do
0
Note that by (C.36), (C.20) and (C.79)

1
[A'py12:(0)] = §|A1A_1pv+2t(0)| (C.91)

< %IAlA*1p2t<O>| <C(wa/m)’.

Here we also use the fact that A'A~1p,(0) is decreasing in s, and the regular variation
of ). Consequently

4t
/ (4t — u)|Alp, (0)] du < C# (1 (1/8))°. (C.92)

t

Thus we obtain (A.14). O

Proof of Lemma A.3 The equality in (A.15) follows easily from (C.1).
The equality in (A.16) follows from (B.75) integrated with respect to r and r’.
For (A.17) we use Parseval’s Theorem, (see (B.75)) to get

t 2 oo i 4
A1 16 sin”(p/2) )2
/(/0 A'ATY p(x) ds) do = — Nl (1 e p) dp. (C.93)

To complete the proof of (A.17) we note that by (C.8)

> sin*(p/2) t) C [ sin*(p/2) C
2 O A) o =tb(p) gy < 2\ < )
I o0

Proof of Lemma B.2 The first inequality is given in (C.6). The second inequality
follows from the definition of v, in (B.60). For (B.63) we note that in the proof of (A.9),
on page 53, we are actually integrating v, (z, ). |
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D Proof of Lemma 2.4

Set
h=1v¢"'(1/t), sothat (h)=1/t. (D.1)

Proof of Lemma 2.4 By the Kac Moment Formula, (see (3.9)),

5(( furra)) w2

=2 Z/ (/ 2n H Ds; y‘“’(z) Ym(i-1) dsl) H dy;

{Z: si<t} i

1
=" 7/ / / i (Y (i) =Y (im 1))6—3L¢(Pl)dp ds;
S o [ ([ oI

Here the sum in the second line runs over all maps 7 of {1,...,2n} into {1,...,n},
such that |7 ~!(j)| = 2 for each 1 < j < n, and we set 7(0) = 0. Thus, by (D.1) and many
changes of variables

ey e ((furra) ) (0.3)
= (27)*"t7"h 2" E <(/(Lf)2 d:z:> n)
:hfngnz/ (/{22” . / Pi(um ) Ui 1) g0 00) g ds)
= %St i=

:hHQHZ/ / H/ iPih(Yr (i) =Ym(i-1)) g —sitP(Pih) dp; ds;
™ {le sl<1}l 1

2rL
—o9n / / / Di (Y (i) ~Yn(i-1)) g =5i¥ (Pih) /P (h) dp; ds)
zﬂ: ( {212 si<1} iy

Using the regular variation of v at zero the proof follows once we justify interchanging
the limit and the integrals.
For o fixed let

dy;

dy;

1;:1: 1»’:13

::]:

dy;.

Il
_

1

2n

In(y) / ePivie= s (i) /V(h) g g, (D.4)

/{Zf"l si<1} 1:11

2n %)
_ o / 11 / cos pyy; e~ P@ M) g g
0o, si<1y iy Jo

Considering (D.3) it suffices to show that for each fixed y = (y1,...,yn)

2n

o0
lim f (y )72%/ > H/ cos pyy €7 dp; ds;. (D.5)
h—0 52 si<1y 2y Jo
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and fj(y) is bounded and integrable in y, uniformly in h < hg, for some hy > 0, suffi-
ciently small. In fact we show that

2n

1
sup |frn(y)| < C (1 A ) . (D.6)
sup | frn(y)] l;[1 2
We first obtain (D.5). For M large, write
2n
1= (opicary + Lpizary) (D.7)
i=1
and
2n M
fn(y) = 22”/ , H / cos pyy; e VPV g ds + G, (D.8)
o si<1y ;g Jo

Here G}, is a sum of many terms, in each of which p; > M, for at least one 1 < i < 2n.
Suppose there are k terms with p; > M. We bound these terms by

1 M 2n—k 1 poo k
92n ( / / esw<ph>/¢<h>dpds> ( / / esw@h)/w(h)dpdS), (D.9)
0 0 0 M
D

By (1.5), for any € > 0, (see also [3, Theorem 1.5.6]),

1 M
/ / =5V @h) [¥(h) g s (D.10)
0 0

1 oM
<1 +/ / eV PR/ () qp ds
0 J1

1 oM o
<1 +/ / eSO dp ds,
0o J1

which is bounded by a constant independent of M. Using the regular variation of ¢ at
zero, we have

1 [e’s)
/ / e=sV@n[B(h) g s (D.11)
0o JMm
> 1 Yh) [ 1
<) [ ap= "0 [ s
Q v Y(hp) h na Y(8)
() / 1 (h) /°° 1
= d8+ dS
h hM ¢(3) h 1 1/)(5)
Y(h)M Y(h)
<
< C¢(hM) +C n
for all h sufficiently small. Therefore, as in (D.10),
1 (e’ C
lim su // e~ s @h)/Y(h) g ds < —— . (D.12)
h—>0p 0 JM P MPB=1

Thus

limsup |Gp| < (D.13)

h—0 MB=1
Now consider the integral in (D.8). By the regular variation of v at zero and the
Dominated Convergence Theorem,

2n M
lim / COS P;Yi e s Wih) /9y (h) dp; ds; (D.14)
h—0 {Zjil si<1} ;7 Jo
2n M 5
:/ an H / e"Pi¥i cos p;y; e~ P dp; ds;.
o si<1y ;2 Jo
EJP 17 (2012), paper 7. ejp.ejpecp.org

Page 57/111


http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/

Central limit theorems for the L? norm of increments of local times

Thus we get (D.5).
We show below that for any J C {1,...,2n} we have

sup |fa(y |<CH< ) (D.15)

h<ho ieJ

In particular, (D.15) also holds when J is the empty set, so that sup, <y,
|fn(y)| < C. Using this it is easy to see that (D.6) holds.
It follows from integrating by parts twice that

o0 1 o0 17
/ cos(py) e=H@h /UMb g, - / cos(py) (efswph)/zz)(h)) dp. (D.16)
0 0

where we use the fact that ¢’(0) = 0, which follows from (1.5) and the first inequality in
(1.7). Applying this for all i € J we see that

-1 o "
fnly) = ()/ / cospyy; (e VPNV dp, ds;
UG7) fisor oy 1 ( )

ieJ
H / cos pyy; e~ SR qp. dg, . (D.17)
ieJe
Therefore
" 17|
)| < ( ) ( / [ | (evomo | pas)
v
[7¢]

(/ /Oo eS¢<Ph>/w<h>dpds> . (D.18)
0 0

It is easily seen that

1 [e%e]
—su(ph) /i (h) Wl))
/0/0 e P dpds < CSLile/<1/\1/J(hP) dp. (D.19)
Therefore, for h <1,
vy
/ <M w)) P (b-20)
! Y (h) < a(h)
1d ——d ——d
SA A AT p*/l/h o) 7

:1+w§lm</hlw(1p)dp+/loow(lp)dp)<0

Consequently, to obtain (D.15) we need only show that, for h <1,

1 (o] 1"
/ / ’ (e_sw(ph)/w(h)) ‘ dpds < . (D.21)
o Jo
We have
‘ (e (D.22)
< ‘h2(¢/(hp))2 $2e—s(oh) [V (k) | ‘h%"(hp)) ’sesw(ph)/w(h).
W) ¥(h)
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Using (1.7) and (1.8) we see that, for h <1,

b hQ(wl(hp))Q s2e—s¥(Ph) /v (h) s
/o / () apd
> | h2(¢/ (hp))? w(h) \

SC/O () (Mwmp)) »

2 1 0o / 2
< o [ W an+cnnon [T g,

Ch (" < ((5))?
<w2(h)/0 (W(5)) ds+Chw(h)/h s

h (") P
§C<¢2(h)/o 5 d +hz/z(h)/h ek +C)
<.

L

<o [7[Rum (1, w0 ) ;

h) Y(hp)
Ch2 ! 1 2
w(h)/o V" (hp) dp + Ch?y(h) :

ch (" ,
s@/o ' (s)ds+ Cho(h) |

Similarly;,

2" (hp)) ‘Sesw@h)/w(h) dp ds

> 4" (hp)

Y2 (hp)
o0 '(/)N (S)
P2(s)

ho " a(s) |
SC(W/O st [ d”C)

<.
Thus we obtain (D.21).

< dp

ds

E Estimates for the mean and variance

Proof of Lemma 3.2 By the Kac Moment Formula

E (/(Lf“ — L¥)? dm)

=2 // Alp,, (x)A'p,,(0) dry dry dx

+2 / / P () ATAT 1, (0) dry dry dex.
(0, o<t}

=

(D.23)

(D.24)

(E.1)

When we integrate with respect to x we get zero in the first integral and one in the

second. Consequently, by (C.1)

E(/(Lf“ Lf)2dx> = 2/ . A*AT1p,, (0) dry dry (E.2)
o <t}
t
= 4 [ =D e0) = (1)
0
8 [ ¢ .
= —/ sinzp/2/ (t —r)e @) dr dp.
™ Jo 0
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Note that
t t 1 — e~ te(p)
t—r)e "P) g = — . E.3
J e ar= s - s (&)
By (1.12)
8t [ sin?(p/2)
— ————dp=4 t. EA4
T Jo Y(p) p=ro E4

Therefore the absolute value of the error term in (3.16) is

8 [*sin’(p/2) (1 i) 8 [ sin’(p/2)
7r/o ¥2(p) (1 ) dp < 7r/0 2 0) (LAt (p)) dp. (E.5)

We break this last integral into three parts and see that it is bounded by

T/t 2 1
C LA E.6
(t/o ¥(p) p+/ =1(1/t) ¢ / ¥2(p) > (E-0)

We have
<o gy
t/ = _dp < Ct? (v (1/1))". (E.7)
0 ¥(p)
In addition
<1
——dp < C. (E.8)
/1 ¥2(p)
Ifg>3/2
! P 2 1 3
dp < Ct* (v (1/t)) . (E.9)
/1(1/t) Y2 (p) (= a/m)
Ifg=3/2
1 2
dp < CL(t (E.10)
/ a0 ¥V2(p) )
for some function L that is slowly varying at infinity. If 8 < 3/2
1 2
——dp < C. (E.11)
/wlu/t) ¥*(p)

Using (E.5)—(E.11) we get (3.17).

Let
Z = /(Lf;’+1 — L?)%dx. (E.12)

We get an upper bound for the variance of Z by finding an upper bound for £Z? and us-

ing (3.16) to estimate (EZ)?. We proceed as in the beginning of the proof of Lemma B.1,

however there are enough differences that it is better to repeat some of the arguments.
By the Kac Moment Theorem

2

(H (A5 L) AM%”)) (E.13)
i=1

2

“TI Z/ ‘ T[p (o) — oli— 1) Hdrz

i=1 TSt}
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where the sum runs over all bijections o : [1,4] — {x;,y;, 1 < i < 2} and we take
a(0) = 0. We rewrite (E.13) so that each A! applies to a single p. factor and then set
y; = x; and then integrate with respect to x1,...,x,, to get

E ((/(Lf“ — L;’)de>2> (E.14)

a1 (4) as(i
8 [T )

i=1
4 2
Pgi (Tr(i) = Tr(i-1)) H dr; H dz;.
i=1 i=1

In (E.14) the sum runs over all maps 7 : [1,4] — [1,2] with |[7~!(i)| = 2 for each i and
over all a = (a1,a2) : [1,...,4] — {0,1} x {0,1} with the property that for each i there
are exactly two factors of the form A}E The factor 4 comes from the fact that we can
interchange each y; and x;, i = 1,2. As usual we take 7(0) = 0.

As we did in Section B, we continue the analysis with p? replaced by p.

Note that in (E.14) it is possible to have ‘bound states’, that is values of ¢ for which
7(1) = w(i — 1). We first consider the terms in (E.14) with two bound states. There are
two possible maps. They are (7(1),7(2),7(3),7(4)) = (1,1,2,2) and (7 (1), 7(2),7(3),7(4))
(2,2,1,1). The terms in (E.14) for the map (7(1),7(2),7(3),7(4)) = (1,1,2,2) are of the
form
4 aq (i) as (%)

(Aiﬂ(i)) (A;W(Fl)) Dr; ((ﬁﬂ,(i) — xﬂ(i_l)), (E15)
=1

7

where the density terms have the form

Pry (21)Pr, (Y1 — T1)Drg (X2 — Y1)Prs (Y2 — 22), (E.16)

and where y; —z; =0, 1 =1,2.

The value of the integrals of the terms in (E.15) depend upon how the difference
operators are distributed. In many cases the integrals are equal to zero. For example
suppose we have

A, pry (21) A5, Pra (0) AL, pry (w2 — 21) Ay, pr, (0), (E.17)
which we obtain by setting y; = x1. Written out this term is

(Pry (21 + 1) = pry (1)) AL, pr, (0) (E.18)
(pry (x2 — 21 4+ 1) = pry (x2 — 21)) AL, Py, (0)

By a change of variables one sees that the integral of this term with respect to xz; and
To 1S zZero.
The only non-zero integrals in (E.15) comes from

Pry (21) AT AT, (0)pry (22 — 21) AT AT p,., (0). (E.19)
The integral of this term with respect to x; and x5 is

A'A7p, (0) AT A p,, (0). (E.20)
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We get the same contribution when (7(1),7(2),7(3),7(4)) = (2,2,1,1). Consequently,
the contribution to (E.14) of maps with two bound states is

4
8/ A'AT ., (0) ATA T, (0) || dr; (E.21)
{ijl rist} H

- /{z 0= pa0) () =0 H dr;

= 16/ (t —u—0)% (pu(0) = pu(1)) ((po(0) = pu(1)) dudv.
{u+v<t}

< 168 ( / " (pu(0) — pu(1) du)2 — (degot)?,

(see (A.15)).

We next consider the contribution from terms with exactly one bound state. These
come from maps of the form (7 (1), 7(2),7(3),n(4)) = (1,2,2,1) or (w(1),n(2),7(3),7(4)) =
(2,1,1,2). These terms give non-zero contributions of the form

Qs = / /{ > Pri (2) A5, (y — ) Ay A pry (0) Agpy, (2 — )

4

H dri dz dy (E.22)

i=1

= Aflpr2 y AlAflpr )A™ pr4 dr; dy;
/ /{Zflw} v ! H

Q= | /{ Gy PEAB =) 2 0) AL =
__lri_t

4
11 drid=dy (E.23)

i=1

4
= A'A e, () pry (0) A Ay, (y) | ] drs dys
//{Zj_l ri<t} 11;]1:

and

Qa:= / /{Z; P (@) AL A L, (y — 2) Aypry (0) Agpy, (x — y)

4
H dr; dz dy (E.24)
=1

-/ ATA" . (5) Alpry (0) A lpr, (y Hdndy
0

Z -1 ri<t}

For further explanation consider ;. This arrangement comes from the sequence
(z1,y2,22,y1). The expression it is equal to comes by making the change of variables,
y — ¢ — y and then integrating with respect to x.

Integrating and using (A.6), (A.7) and (A.9) we see that

Q2] < (/ |IATA1p,(0 |ds) /</ A p,(y |dr) dy (E.25)
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IN

(0. supoe.t) [ ol 0)dy
Ct*p~1(1/t)(logt)?.

IN

To obtain a bound for ()3 we use (A.5) and (A.11) to see that it is bounded in absolute

value by
t(/otps(O) ds) /(/Ot|A1A_1pr(y)| dr>2 dy

:fU(O,t)/wz(y,t) dy
< Ct*p1(1/t) logt. (E.26)

Integrating ()4 we see that it is bounded in absolute value by

t/ot dr/ </Ot‘A1A_1p7.(y)| dr/ot A p, ()] dr) dy

< tv(0,1) st;pv(x,t)/w(y,t) dy

< Ct(logt)?, (E.27)

Alp,.(0)

by (A.6) and (A.10).

Finally, we consider the contribution from terms in (E.14) with no bound states.
These have to be from 7 of the form (7 (1), 7(2),7(3), 7(4))
= (1,2,1,2) or of the form (7 (1), n(2),7(3),7(4)) = (2,1,2,1). They give contributions of
the form

0s (E.28)
= //{24 < }p7'1 (l‘)A;pm (y - Qf) Azl/AalcpTS (.13 - y) Azllp7'4 (y - '7;)
r; <t

4
H dr; dz dy

i=1

and

@ (E.29)
— / / pry ()ALALp, (y — ) pry (2 — y) ARALp, (2 — )
{24 i<t}

4
H dr; dx dy

=1
4
= AN, (y) pry () AT A pr, () | dridy.
/ /{Z‘_‘ i<t} E

Clearly

t
Q5| gt/(/o IAlpr(y)ldr) (E.30)
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(/Ot |A1pr(y)|dr) (/Ot |A1A_1pr(y)|dr> dy

< tsupvz(x,t)/w(%t) dy.
< Ct(logt)?,

by (A.6) and (A.10).
The term g is bounded the same way we bounded 3 and has the same bound.

We can now obtain an upper bound for the variance. Note that by (3.16)

2
(EZ)2 = (E (/(Lf+1 — Lf)2 dx)) = (4c¢,0t)2 + O (tg(t)). (E.31)
Therefore, it follows from (E.14) and (E.21) that
6
Var Z < EZ® — (BEZ)* = |Q;] + Ctg(t) (E.32)
j=2

as t — oo. Thus we see that

Var Z < C (tg(t) +t*~ ' (1/t)logt) . (E.33)
Note that for all ¢ sufficiently large

tg(t) < (¢ (1/0)° < CLw 1 (1/1), (E.34)
where we use (B.108). Thus we get (3.18). O

F Kac Moment Formula

We derive the version of the Kac Moment Formula that we have been using.

Let X = {X;,t € R;} denote a symmetric Lévy process with continuous local time
L = {L¥; (z,t) € R' x R;}. Since L is continuous we have the occupation density
formula,

¢
/g(Xs)ds:/g(m)Lfdx, (F.1)
0

for all continuous functions g with compact support. (See, e.g. [11, Theorem 3.7.1].)
Let f(z) be a continuous function on R' with compact support with [ f(z)dz = 1.

Let fe,(z) :== 1f (22). Le., fcy(x) is an approximate §-function at z. Set

t
Lfge:/ fou (X4 ds. (F.2)
0

It follows from (F.1) that
Ly = lin% Ly, a.s. (E.3)
: ,

Let p;(z,y) denote the probability density of X;.

Theorem F.1 (Kac Moment Formula) Let X = {X;,t € R;} denote a symmetric
Lévy process with continuous local time L = {L?; (z,t) € R' x R;}. For any fixed

0 < t < oo, bounded continuous g, and any 1, ..., Tm, 2z € R!,
E* (H Ly Q(Xt)> = Z/ N Hprj (Tr(j—1), Tr(j)) (F.4)
i=1 w0 sty i

( / Pt—r (@ (m)» ¥)9(Y) dy) 11 ar),
j=1
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where the sums run over all permutations © of {1,...,m} and 7(0) := 0 and x¢ := z.
Proof Let
Ft(zl,...,xm) = / . Hprj('rj—laxj) (FS)
{ijl rj<t} ;1

( / Pt—r, (Tm, Y)9(y) dy) f[l dr;

Then

E* <H Lyt g(Xt)> (F.6)

i=1

_ B T e (X0s,)) 90X0) | TT dtns
s ,/{OSt«u)S...gt,r(m)St} ]];[1 ( t (_)) t U )

- Z E* ex o (Xt X | | dt.
T ~/{0St1§-4.§tm§t} ]1;[1‘][’ w(5) ( t]) g( t) i j

2 > ety (Yi)Pr; (Y5-1, Y5 (E7)
T /A ;'n:l rjgt}jl;[lf * (J)(y])p J(y] ! y])

< / Do Um>1)9(y) dy> 11 dr;dy
j=1
= Z/Ft(y()a cee aym) H fe,zw(j)(yj) dyj
™ Jj=1

where yg := 2.

Since the integrand in (F.5) is dominated by (27)~"/2 H;”Il rj_l/ * it follows from
the Dominated Convergence Theorem that Fj(z1,...,z,,) is a continuous function of
(x1,...,2y) for all 0 < ¢ < oo and all m. It then follows immediately from (F.6) and the
fact that [}, fe ., (y;) has compact support that

m
lim <H Lffe g(Xt)> = Z Ft(.ﬁﬂ.(o),xﬂ,(l), e ,l‘ﬂ.(m)). (FS)

e—0 /
=1

A repetition of the above proof shows that F ({H:il Lffe}Q) is bounded uniformly in
€ > 0. This fact and (F.3) show that

lm B ([[1 L'f,ig(Xt)> =E <Z]:[1 Lfig(Xt)> : (F9)

Obviously (F.8) and (F.9) imply (F.4). O

G Estimates for the asymptotic behavior of small differences of
the transition probability densities of certain Lévy processes

Sections G-K contain the proofs of the lemmas needed to prove Theorem 1.2. The
most critical ingredient in the proof of Theorem 1.2 is Lemma H.1. To prove it we need
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estimates on the asymptotic behavior of small differences of the transition probability
densities for the Lévy processes under consideration.

The proofs of the following lemmas are given in Section J. For notation see the first
paragraph of Section A.

Lemma G.1 Let X be a symmetric Lévy process with Lévy exponent ¢)(\) that is reg-
ularly varying at infinity with index 1 < 8 < 2 and satisfies (1.16) and (1.17). Let ps(x)
denote the transition probability density of X. Then

YH(1/s) V1 1
<c—12 T2 ; :
ps(z) <C 322 Ve e R, s € (0,1]; (G.1)
= < — : .
u(x) /0 ps(x)ds < sy Vre R, (G.2)
t
// ps(x)dsdr =1, (G.3)
0
and for all h sufficiently small
! 1 h  h
v(x) = Ahpsx ds < C’(/\/\) (G.4)
@ = [ 1) o M 2

= hwg/h) (1+1x2>’

/v(x) dx = O (hlog1/h), (G.5)

and N
/vp(x) dx =0 (hp_lwp_l(l/h)> , p>2, (G.6)

as h — 0. In addition,
w(T) = 1 hA=" x)|ds 1 1 h—2 :
= [ 188 nolan < (A S A ) @7
/w(m) dr =0 (W) ; (G.8)
) 1
2 (1) da b

fp. @ <0 atim): (610

ash — 0.

Lemma G.2 Under the same hypotheses as Lemma G.1,

\/E 2
ha(1/h) cl/,7h71—/</ AlAT ps(a:)ds> dz | = O(h'/?). (G.11)
0

Remark G.3 We allow v to be regularly varying at infinity with index 2, but note that
that because v is the Lévy exponent of a symmetric Lévy process

Pp(A) =0(\?)  as A — oo (G.12)

(See, e.g., [11, Lemma 4.2.2] and then include Brownian motion.)
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Lemma G.4 Under the same hypotheses as Lemma G.1,

sup p,(0) < C (¢~ (1/6) V1); (G.13)
s<r<1
h Co
sup [A"p(0)] < k% (G.14)
6<r<1 &
and
h A—h o

sup [A"ATp.(0)] < A% (G.15)
5<r<1 d

Lemma G.5 Let0 < ¢ < 1, then, under the hypotheses of Theorem 1.2, for

s (z) = éiuglpr(x), Ts(x) == 5iu1<)1 |Ahpr(az:)|7 (G.16)

and Ws(z) == sup |A"AT"p.(x)],

6<r<1

we have
us(z) < Cy'(1/6) <1 A ;) : (G.17)
Ts(x) < %h (mgjz), (G.18)

and
ws(z) < %hQ (ma;). (G.19)
In addition

/E;(x) dx < Cy1(1/6), /(ué(x))de <C (¢_1(1/6))2 , (G.20)
/65(96) dx < %h, /fg(x) dx < (%h?, (G.21)
/w,;(z) dx < %hQ, /wg(:c) dx < 6%}#, (G.22)

ash — 0.

H Moments of increments of local times.

Refer to (4.1) and (4.5). To simplify the notation we set
Jigen = Jjkn1,  QGk = QG (H.1)

Lemma H.1 Let m;, 0 < j < k < K be positive integers with E; k=0,j<k
mj . = m. If all the integers m;  are even, then for some € > 0

K
E| ] (iwn)™" (H.2)
e
2”] k gk - g,k (28—1)n+e
— H 2n]k n 4th1) ) H (Oéjk/) ’ +O(h ),
3, k=0 k 3, k=0
i<k j<k
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where n; , = m; /2 and n = m/2. If any of the m; ; are odd, then

K
E| ] Gun)™" | =0 (h(25‘1)m/2+€). (H.3)
4, k=0
j<k
In (H.2) and (H.3) the error terms may depend on m, but not on the individual terms
mj7k.

Proof We can write

K
E| ] (Fiwn)™" (H.4)
J, k=0
i<k
m]-,k
5| LTI (o, o000 (A, 0% o0 do )
j,k=0 1=1
j<k
K mjk K mjk
:/ H Angkl ZJkkl E H ((LIJk1 003) (ijkzoek)>
j k=0 1=1 k=0 1=1
<k i<k

K mj
H I oy
0 i=1

where the notation A_Z;jk . indicates that we apply the difference operator AZJ, ., to
L77"" 0 0;. Note that there are 2m applications of the difference operator A",
Consider

.#I:]w

H L™ 06;) (L™ o 6y)) | - (H.5)
]<k =1

We collect all the factors containing #; and write

H ;LJ ki (L'f.}yk,b o ek)) (H6)

m:»

K 1—1mj K mpk
Ti1.4 T, k,i
eI (ITT s ) { I TTee) fon
1=0 j=0i=1 k=I4+1 i=1
K
= H Hl e} 91 y
where
—1mj 1 mik
- (ITre I ). @)
=0 =1 k=Il+1 =1
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By the Markov property

<HH1 oel> = (HO EX (f[lHl 0911>) . (H.8)

Z mlk+zmﬂ, 1=0,...,K —1, (H.9)

k=I+1

Let

and note that m,; is the number of local time factors in H;.

Let
K
Y (H Hl o 91_1> . (H]-O)
=1

It follows from the Kac Moment Formula, Theorem F.1, that for any z € R!

K
: (HHlO‘91> (H.11)
=0

= E*(Ho f(X1))

= Z/ Pro sy 'rTro Hpmq Tro(q xwo(qfl))
T

{Z;":Ol 70,g<1}

</p<12?°1 ro.) Y = Lo (mo) ) f () dy> H1 dro,q;
=

where the sum runs over all bijections 7 from [1,m] to
K
Io = [J{(0, ki), 1 < i <mo ). (H.12)
k=1

Clearly, I, is the set of subscripts of the terms 2. appearing in the local time factors in
Hy.
By the Markov property

K
fly) = FEY <H1EX2 <HH10612>> (H.13)

=2
= EY(Hi9(X2)).

Therefore, by (H.8)-(H.13), for any 2’ € R!
K
E* <HHZ 09l> (H.14)
1=0
= E¥ (HoEX' (Hy g(X2)))

mo
- Z /{Zmo vty (o =2 qllprw (Tr0(q) — Tmolq—1))

([ Pamssrs, 0= 2o B (91320 ) T] o
q= a=1

_Z/{ m pml Tro(1) — HpT’Oq Lro(q) — m)(q—l))
™0 q

:01 r0,q<1}
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Pa=3"0 10, (Y = Tro(mo))

Pri \Try(1) — prlq m1(q) — Lmy( —1))
ﬂzl/{zgnll <1} 1 1 H 1{q 1(q

mo
(/Pa—zg"a r )W = T m))9(y) dy ) H dri,q dy H dro,q

where the second sum runs over all bijections m; from [1,m4] to

K
I ={(0,1,i), 1 <i<moa} ({1 k,0), 1 < i <mag} (H.15)
k=2

As above, I, is the set of subscripts of the terms x. appearing in the local time
factors in H;.

We now use the Chapman-Kolmogorov equation to integrate with respect to y to get

E¥ (HoEX' (Hy g(X1))) (H.16)

= Dr 1 Lo (1 Dr q Ly Lo (g—1 )
W;1AZ:01Tan<1} " o H " ol Trola=l)
Jismn ey PO s = o)
=1 l,g>

H Pri Ty () = Try(g-1))

(/ru-sz 0 ~znmtowa ) IL e, T

Iterating this procedure, and recalling (H.6) we see that

K
E(]] (L7770 0;) (L77™" 0 0y)) (H.17)

PA=Y 0 iy s (Fra1) ~ Ty (i)

Hpnq Tri(q) — Tmy(qg—1) H drlqa

where 7_1(m_;) :=0and 1 —quz‘f r_1,4:=0.In(H.17) the sumruns over all mg, ..., g
such that each 7 is a bijection from [1,m,] to

my
0,5, TR 1=0 {Zq:l T1,q<1}

-1

U{jJ,z 1<i<m,,} U{lkl 1<i<myg} (H.18)
7=0 k=l+1

As in the observations about I and I;, we see that I; is the set of subscripts of the terms
x . terms appearing in the local time factors in H;. Since there are 2m local time factors
we have that 3/ m; = 2m.

We now use (H.17) in (H.4) and continue to develop an expression for the left-hand
side of (H.4). Let B to denote the set of K + 1 tuples 7 = (m,...,7x) of bijections
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described in (H.18). Clearly

K
B =] mu! < (2m)!. (H.19)

Also, similarly to the way we obtain the first equality in (H.6), we see that

K mjk K my
h.j
I ITas i, = 1111 A% (F.20)
j,k=0 i=1 1=0q=1
i<k
Consequently
K
Bl L™ | = % [ Tt ) I dos (H.21)
J,k=0 05+ TK 7.k,
i<k

where we take the product over {0 < j <k < K,1<i¢<mji}, 7€ Band

T(@; m) (H.22)
K my

= AR /
qul;[l () Zml -

Da- Z =14 1q)+r,1(x7fl(1) xﬂ—l(mz—l))

my
H pTL,q (xm(q) - xm(qfl)) H drl,q-
q=2 g=1

We continue to rewrite the right-hand side of (H.21).

In (H.22), each difference operators, say AZ is applied to the product of two terms,
say p. (u— a)p. (u —b), using the product rule for difference operators we see that

AMp (u—a)p. (u—Db)} (H.23)
=Alp.(u—a)p. (ut+h—=b)+p. (u—a)Alp. (u—->b)

Consider an example of how the term A?A"p (u — a) may appear. It could be by the
application
Al(Allp.(u—a)p.(v—a)), (H.24)

in which we take account of the two terms to which AZ is applied. Using the product
rule in (H.23) we see that (H.24)

= (ArALp. (u—a))p.(v—(a+h)+Alp. (u—a)Alp. (v—a). (H.25)
Consider one more example

Al (AZp (w—a)Alp. (v - a)) (H.26)
= (AALp. (u—a) AYp. (v—(a+h)
+A"Mp (u—a) A A (v —a).

Note that in both examples the arguments of probability densities with two difference
operators applied to it does not contain an h. This is true in general because the differ-
ence formula, (H.23), does not add an h to the argument of a term to which a difference
operator is applied. Otherwise we may have a +h added to the arguments of probability
densities to which one difference operator is applied, as in (H.26), or to the arguments
of probability densities to which no difference operator is applied, as in (H.25).
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Based on the argument of the preceding paragraph we write (H.22) in the form

K

E|T] Giew)™ | =>0 > / Ti(w; ma) [ dajr, (H.27)
jtk:k:O a To,..., TK 7.k,
1<
where
K
o B A a1 (l,1) A az(l,1)

Tiasma) =] /R | ((AIW) (a o) (H.28)

=0

#
p(lfzmlil Ti—1 q)+Tl 1 (xm(l) N xﬂll(mll)))
g=1 ’ ’

- a1(l,q) a2 (,q) -
H ((AZ"L(Q)> o (A;L”l(q—l)) o pg’hq (‘r“l(q) - xﬂ'l(ql))> H drl’q’
g=1

q=2
and where R; = {Z;":’l r1,¢ < 1}. In (H.27) the first sum is taken over all
a=(ar,a2) : {(1,q),0<I<K,1<qg<m}+—{0,1} x{0,1} (H.29)

with the restriction that for each triple j, k, ¢, there are exactly two factors of the form
A,’;j .. €ach of which is applied to one of the terms pf (-) that contains x4, in its
argilfnent. This condition can be stated more formally by saying that for each [ and
g=1,...,m; —1,if m(q) = (4, k,1), then {a1(l,q),a2(l,g+ 1)} = {0,1} and if ¢ = m; then
{a1(l,my),a2(14+1,1)} = {0,1}. (Note that when we write {a1(, q), a2(l,¢+1)} = {0,1} we
mean as two sets, so, according to what a is, we may have a1 (l,q) =1 and as(l,¢q+1) =0
oraj(l,q) = 0and as(l,g+1) = 1 and similarly for {a; (I, m;),as(I+1,1)}.) Also, in (H.28)
we define (A )° =1 and (Af) = 1.

In (H.28), p! (2) can take any of the three values p, (z), p,.(z + h), or p, (z — h). (We
must consider all three possibilities.) Finally, it is important to emphasize that in (H.28)
each of the difference operators is applied to only one of the terms pf (-).

To avoid confusion caused by the ambiguity of pﬁ, , we first analyze
Z Z /771(905 T, a) H dx; ks, (H.30)
a TQ,...,TK i,k

where

K , a@y) o, as(1,1)
Ti(a; m,a) = H/Rl (Awl)) (A%il(mm)) (H.31)
PA=F 0 g (Fma(1) — xm-mmz-l)))

U a1(l,q) ax(1,q) o~

h h
l I ((Azmm) (Arw,(qfl)) Priq (T (q) _xm(q—l))) | I dri,q.
q=2 q=1

The difference between 7y,(z; 7, a) and 7}/ (z; 7, a) is that in the former we replace p* by
p. (I.e. we set h = 0 in the arguments of the pjj terms in (H.28).) At the conclusion of
this proof we show that both (H.30) than (H.27) have the same asymptotic limit as h
goes to zero.

We first obtain (H.2). Let m = 2n, since m;; = 2n;, m; = 2n; for some integer n;.
(Recall (H.9)). To begin we consider the case in which a = ¢, where

e(l,2¢q) =(1,1) and e(l,2¢—1)=(0,0) Vq. (H.32)
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When a = e we have

K
Tn(x; m,e) = E)/Rz p(I,Z;ﬂ:zl—l TL—1,q)+’I‘l,1(x7Tl(1) - ‘Tﬂl—l(ml—l))
ny

Hprl,2q—l(x‘ﬂ'l(2q—1) - Im(2q—2)) (H.33)
q=2

ny my
H AhA*hp”,?q (zm(zq) — Im(2q—1)) H d’l”l7q.
q=1

q=1

Here we use the following notation: A"p(u —v) = p(u — v + h) — p(u — v), i.e., when
A" has no subscript, the difference operator is applied to the whole argument of the
function. In this notation,

APMAMp(u —v) = APAT p(u — v). (H.34)

H.1 a = e, with all cycles of order two

Consider the multigraph G, with vertices {(j, k,4),0 < j < k < K, 1 <1 < mj}.
Assign an edge between the vertices m;(2¢g—1) and 7;(2¢) foreach0 </ < Kand1 < ¢ <
n;. Each vertex is connected to two edges. To see this suppose that m;(2q) = {(j,%,¢)},
with j = [ and k = I # [, then there is a unique ¢’ such that 7 (2¢’) or m;(2¢' — 1) is
equal to {(j, k,7)}. Therefore all the vertices lie in some cycle. Assume that there are S
cycles. We denote them by C, s =1,...,5. Clearly, it is possible to have cycles of order
two, in which case two vertices are connected by two edges.

It is important to note that the graph G, does not assign edges between 7;(2¢) and
m(2¢ + 1), although these vertices may be connected by the edge assigned between
7 (2¢' — 1) and 7y (2¢’) for some I’ and ¢'.

We estimate (H.31) by breaking the calculation into two cases. In this section we
consider the case when a = ¢ and all the cycles of GG, are of order two. In Section H.2
we consider the cases when a = e and not all the cycles of G are of order two, and
when a # e.

Let P = {(720—-1,720), 1 < v < n} be a pairing of the m vertices
{(,k,i), 0<j <k <K, 1<i<mj}

of G, that satisfies the following special property: whenever (j,k,¢) and (j/,%,4') are
paired together, j = j' and k = k’. Equivalently,

K
P = U Pjx (H.35)
J, k=0
i<k
where each P; , is a pairing of the m; , vertices

{(jykvi)7 1 < 1 < mj,k}'

We refer to such a pairing P as a special pairing and denote the set of special pairings
by S.
Given a special pairing P € S, let 7 be such that foreach 0 <! < K and 1 < ¢ < n,,

{m(2¢ — 1), m(2¢9)} = {v2v-1, 720} (H.36)
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for some, necessarily unique, 1 < v < n;. In this case we say that 7 is compatible with
the pairing P and write this as 7 ~ P. (Recall that when we write {m;(2¢ — 1), m(2q9)} =
{Y20-1, 720}, We mean as two sets, so, according to what ; is, we may have m;(2¢ — 1) =
~Yay—1 and m;(2q) = vy, or m (29 — 1) = 72, and m;(2q) = y2,—1.) Clearly

(H.37)

the number of pairings of m = 2n objects.

Let m € B be such that GG; consists of cycles of order two. It is easy to see that 7 ~ P
for some P € S. To see this note that if {(j, k,4), (', k',i’)} form a cycle of order two,
there must exist [ and !’ with [ # !’ and ¢ and ¢’ such that both {(j, k,4), (', k',i')} =
{m(2¢ — 1),m(2q)} and {(j, k, 1), (', k',¢)} = {m(2¢' — 1), 7/ (2¢")}. This implies that
j=j', k=K and {j,k} = {l,I'}. Furthermore, by (H.36) we have

{m(2q = 1), m(2q)} = {m: (24" — 1), m:(24')} = {720-1, 720} (H.38)

When 7 ~ P and all cycles are of order two we can write

K ng
H H AhA_hpT'l,zq (xm(Qq) - xﬂ'z(2q71)) (H.39)
1=0q=1
= H AhA_h Dry, (xwv - xvzvfl)AhA_hpré,, ("I"Wzv - x’y2v—1)7
v=1

where 73, and r5, are the rearranged indices r; 5, and ry o,,. We also use the fact that

Zzlio n; = 2n.
For use in (H.45) below we note that

1 1
/0 / APAT pr (0, — gy ) [APA s () — 0y )| dray dr,
2

1
= </ |AhA7hp7'(‘r’Y2v - x'Y2'U71)| d’/‘) = wQ(‘x’eru - x"/2'v71)’ (H.40)
0

(see (G.7).)

We want to estimate the integrals in (H.30). However, it is difficult to integrate
Tr(z; m,e) directly, because the variables,

{Zr(1) = Ty (i) Tri(20-1) — Tmi(20-2)0 Tri(2q) ~ Tmi(20-1);
l € [OvKL q € [Lnl]}v

are not independent. We begin the estimation by showing that over much of the domain
of integration, the integral is negligible, asymptotically, as h — 0. To begin, we write

n

1=1] (1{\172,,—%,,15%} * Yien, mz,v,l\zﬁ}) (F.41)

v=1

and expand it as a sum of 2" terms and use it to write

/Th(w; me) [ dzjn.i (H.42)
Jikyi
- / H (1{‘m72177172v—1 ‘S\/E}) 7—]'1,(:'[;; ™ e) H dxj’k7i + El’h'
v=1 Jikyi
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We now show that

1 n
Ein=0(n"? | ——— . H.43
=0 (W (im (1.4
Note that every term in E; ;, can be written in the form
By(m,e, D) := / H 1p, Tn(z; 7€) H dzj ki (H.44)
v=1 7.k,

where each D, is either {|z,,, — =,, ,| < V&} or {|z,, — 2,,, ,| > Vh}, and at least
one of the D, is of the second type.

Consider (H.44) and the representation of 7j(z; 7, e) in (H.33). We take absolute
values in the integrand in (H.33) and take all the integrals with r. between 0 and 1 and
use (H.40) followed by (G.2) to get

K

|Bh(7rﬂ €, D)‘ < / H 1Duw2(w72v - x72u71) Hu(xﬂz(l) - xﬂ'l—l(ml—l))
v=1 =0

ny
[T w@m 201y = 2r20-2) TT dojna- (H.45)
g=2 g.k,i
We now take
{2y, =Ty, v=1,...,n} (H.46)

and an additional n variables from the 2n arguments of the u terms,

Ullio{xﬂ'z(l) Ly (my—1)s T (2g—1) — Tmy(2¢—2)) 4 = 2,... 7nl} (H.47)

so that the chosen 2n variables generate the space spanned by the 2n variables {z; ; ;}.
There are n variables in (H.47) that are not used. We bound the functions « of these
variables by their sup norm, which by (G.2) is finite. Then we make a change of variables
and get that

n 2n 2n
BumeD)| < [[nwtw) ] u) I don (H.48)
v=1 v=n-+1 v=1
<

C/H Lp,w’(y) [T dye,
v=1 v=1

(" (ratm) )

Here we use (G.2) to see that the integrals of the u terms is finite. Then we use (G.9)
and (G.10) to obtain (H.43). (Note that it is because at least one of the D, is of the
second type that we can use (G.10).)

We now study

n
T (e i) T ) TT e (H.A49)
v=1

Jiksi

Recall that foreach 0 <! < Kand 1 < ¢ <ny, {m(2¢—1),m(29)} = {7v2v—1, 720} for some
1 < v < n. We identify these relationships by setting v = 0;(¢) when {m;(2¢—1),m(2¢)} =
{720-1,720}, and sometimes write this last term as {y25,(q)—1: V20,(q) }-
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For q > 2 we write

pm,gqfl('rm@qfl) - xm(2q72)) (HSO)

_ hi, _
- p""l,Qq—l (‘T'ngl(q)fl - I'YZul(qfl)—l) + A 'qpﬁ,zqfl (x’y2al(q)71 ‘r'Yzal(q71)71)a

where hy g = (T, (29-1) = Tyag, 1) T @0, g 1)1 — Tm(2¢-2))- When ¢ = 1 we can make
a similar decomposition

p(l—zgn:lfl ri1,q)+T (wm(l) - xﬂl—l(ml—l)) (H.51)

= p(l—z;z;l T'l—l,q)"!‘rl,l(x’)/?“l(l)*l - x’\/20'171(71171)—1)

hy 1 m _
+A p(lfzq:ll_l Ti—1,¢)FT1,1 (x72‘71(1)*1 1'720171("171)*1)’

where ;1 = (Tr,(1) = Tyapy1y1) + (Tyau,  (n,_)-1) — Tm_y(my_1))- Note that because of
the presence of the term ngl (1{\% —a, |<\/ﬁ}) in the integral in (H.49) we need
2v 2v—11—=

only be concerned with values of |h; 4| < 2vh, for 0 <1< Kand1<q<n.
Forq=1,...,m,1=0..., K, we substitute (H.50) and (H.51) into the term 7, (z; 7, ¢€)
in (H.49), (see also (H.33)), and expand the products so that we can write (H.49) as a

K
sum of QZz:o ™ terms, which we write as

/H (1{‘%2u_%m‘§ﬁ}) Tale; m,e) [ da (H.52)
v=1 jvkai
B / H (1{|m72v _z’YZv—llS\/ﬁ}) 771’1(1.; m ) H i+ E2 b
v=1 gk,

where
K
Th,1(1‘; , 6) = H/R; p(lfz;":ll—l rl_l)q)«‘rrl,l(x’)ﬁol(l)—l - 1‘720[_1(7”_1)—1)
ny
Hprl,2q71(x72al(q)fl - x72al(q71)—1) (H.53)
q=2

ny my
[T A" A prsy (@ny20) = Trieq-1) [ ] dri:
qg=1

q=1
Using (H.39) we can rewrite this as

Th(z; w,e) (H.54)

= HP N (Tyam, 11— Tva0y 1ty y1)
/Rox---xRK ( (1 a—1 ri—1,q)+71,1 207(1)—1 20p _1(np_1)-1
ny
Hprl,zq—l(xvgol(q)—l - m"/2al(q—1)_1)
q=2

n
<H AhAihpT"zu (x"/m; - x’vzu—1)AhA7hpréV ($’72u - x’Y%—l))

v=1
K my
IT1I dria:
1=0q=1
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where 7o, and rj, are the rearranged indices 7,2, and 7 2,. Since the variables

Ty, ¥ = 1,...,m, occur only in the last line of (H.54), we make the change of vari-
ables z.,, — Ty,,_;, = Tvy,, and x,, ;| — Z,,_, and get that
/Elxwe 1T 4. (H.55)
J.k,t

= Hp I= 17" V+r ( Lyoe,1)=1 — Ty20,_1(n )71)
//720><--~><72K (l : Z 1—1,q) 71,1 L 1—1(np—1

7y

Hprl,qul(x'YQo'[(q)—l - x’YZal(qfl)—l)

q=2
K my
(H AMAT przu(x'yzu)AhA Pry, (Tra, )HH driq H dj g i-
v=1 1=0q=1 7,k

Since the variables z,,,, v = 1,...,n occur only in the last line of (H.55) and the vari-
ables z,,,_,, v=1,...,n occur only in the second and third lines of (H.55), we can write
(H.55) as

/ﬂnw me) [ dwjn.i (H.56)

I,k

- /Rox...xRK / (Hp(l Dot g) @001 T Tray 1)
n
HpTL,qul("L")?al(q)fl - I’Yzal(q71)71) H dz’Y2v71
q=2 v=1

K my

(H / APAT (20, ) AP ATy (24,) d»cm)HH drig.

1=0q9=1

Note that we also use Fubini’s Theorem which is justified since the absolute value of
the integrand is integrable, (as we point out in the argument preceding (H.45)). (In the
rest of this section use Fubini’s Theorem frequently for integrals like (H.56) without
repeating the explanation about why it is justified.)

Analogous to (H.42) we note that

/T"””T@ IT dwsi (H.57)
7.k,
/H {|1V2v Ty — 1|<\@}) ﬁll x ™, e H dx]k1+E1 hs
v=1 by

where E; ), = O (h1/2 (W) ) The proof of (H.57) is the same as the proof of
(H.43).

We now show that

Fan =0 <<W(11/h)>1/2 (hw%ll/h))n) | (H:58)

To see this note that the terms in F, ; are of the form
/ H (1{‘37'0@ TTrygy 1 ‘S\/E}) (H59)
v=1
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K
H/R p(l—Z:’i;l ’r’l,lﬁq)—‘rrlwl(xw@al(l)—l B x726171("1,71)—1)
1=0'Ru

ny

H Prisg_1 ('/'L"YZUl(q)fl - x72ol(q71)71)
q=2

np my
H A}LA_}LpTz,Qq (‘rﬁz(Qq) - x7\'ﬂ2(]*1)> H drl;q H dx.ja’“ﬂ"

q=1 qg=1 7.k,

where p,, ,,_, is either p,,, , or Ahvapn,Qq_l. Furthermore, at least one of the terms
Prisg_, is of the form a AMtap,, .
As in the transition from (H.44) to (H.45) we bound the absolute value of (H.59) by

n
2
/H (g 1)) 7@ = 000 ) (H.60)
v=1
K n
Hu(x"/zal(1)f1 - x’72ol_1(nl_1)—1) H u(x’)?ol(q)fl - x’YQol(qfl)—l) H dxj}k‘fi’
1=0 q=2 Jikt

where each u is either of the form u or v, in Lemma G.1, and where, obviously, the A
in (G.4) is h; 4. Furthermore, we have J terms of the type v, for some J > 1. It follows
from (G.4), the regular variation of ) and the fact that |h; 4| < 2v/h, that

1 12
(=0 (rim) T (H.61

Using this and (G.2) we can bound the integral in (H.60) by

1 J/2 n
C <> /H W (L, — Trgy ) (H.62)

hi(1/h) et
K 7]
Hﬂ(I’YZol(l)—l - 'r’Yzal,l(nl,l)fl) H /l_l/(x’yQUL(q)fl - x’YZal(qfl)fl) H dzj»kvi
1=0 q=2 Ik

where all the terms u(y) = (1 +y?)~ L.

Since the variables z,,,, v = 1,...,n, occur only in the w terms in (H.62) and the
variables z., _,, v = 1,...,n occur only in the w terms in (H.62) , (refer to the change
of variables arguments in (H.55) and (H.56)), we can write (H.62) as

1 J/2 K
(i) (e oo e

ng

n n n
— 2
H u('r’YQol(q)fl - x’YZUl(qfl)—l) H dx'YZv—l H w ('r’)’zv) H d$72u'
v=1 v=1 v=1

q=2

As we have been doing we extract a linearly independent set of variables from the
arguments of the @ terms. The other u terms we bound by one. Then we make a change
of variables and integrate the remaining % terms and the w? terms using (G.2) and (G.9).
Since J > 1, we get (H.58).

Since 1 is regularly varying with index 5 > 1 we see that there exists an ¢ > 0 such
that N
B+ Ba + Bayy = O (h20-0mte). (H.64)
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Therefore, it follows from (H.42), (H.52) and (H.57) that

/Ew e Hdl‘],m (H.65)
7.k,
/77L x; e dej,m—i-O(hw 1”“).
7.k,

Let Ry(s) = {30y 1129-1 < 1 — s} and &(q) := Ya4,(q)—1. We define

F(&,So,...,SK) (H66)

K
= ~ ~ P - Ti—1.29—1—S1—1 T
/ (»/730(SU)><~~-><RK(SK) ll_[ (1 quzll 1-1,2¢g—1—81-1)+711

ny ny
@50 = %5 ) T Precess @5, =75, 0) 11 d’"wa) dz,
2

q= q=1

where (1 — 22"1 r_1,24-1 — S—1) := 0 and o_1(n_1) := 0. Here the generic term dx
indicates integration with respect to all the variables x. that appear in the integrand.
Since 71(q) = 720,(q)—1 We can also write (H.66) as

F(5780,...,$K) (H67)

= _ P ”l 1 _
/(/Ro(so)x xRk SK)H) (2= oz o)t

ny

(x'YZcrl(l)—l - x’yQGl_l(nl_l)—l) Hprl,2q71(x72al(q)fl - x72ol(q71)71)

q=2
ny
H d'rl,qul d.’E,
q=1

= 0.

x'YZo‘_l(n_l)—l

Consider the mappings o, that are used in (H.66). Recall that o,(g) is defined by the
relationship {m;(2¢ — 1), m(2¢)} = {V201(q)=1>V201(q) }- Therefore, since 7;(q) = V20,(q)-1
we can have that either 7;(¢) = m(29 — 1) or 7;(q) = m(2q). However, since the terms
o1(q) are subscripts of the terms =z, all of which are integrated, it is more convenient to
define o; differently.

Recall that P, (see (H.35)), is a union of pairings P; ;. of the m; ; vertices

Each P; ;, consists of n; ;, pairs, that can ordered arbitrarily. If {72(,1((1),1,
Y20:(q)} 18 the i-th pair in P;, we set 0;(q) = (j, k,4). (Necessarily, I will be either j or
k, as we point out in the paragraph containing (H.38)). Thus, each o; is a bijection from

[1anl] to
-1

U{lkz)1<z<nlk}U{],l,z ), 1<i<mj} (H.68)
k=l+1 7=0

Let B denote the set of K + 1 tuples, 0 = (09, ...,0k) of such bijections. Note that with
this definition of 7;(¢) (H.66) remains unchanged since we have simply renamed the
variables of integration.
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By interchanging the elements in any of the 2n pairs {m;(2¢ — 1), 7;(2¢)} we obtain
a new 7’ ~ P. In fact we obtain 22" different permutations 7, in this way, all of which
are compatible with P, and all of which give the same ¢ in (H.66). Furthermore, by
permuting the pairs {m;(2¢ — 1),m(2¢)}, 1 < ¢ < n;, for each [, we get all the possible
permutation T ~ P, and these give all possible mappings o € B. Note that \g\ =
T, ! < (2n).

Consider (H.67). Since z.,, . , , =0, z,, , appears alone as the argument of
one of the density functions. Therefore we can extract a linearly independent set from
the arguments of the densities that spans the space spanned by all the arguments of
the densities. We use (G.1) to bound the density functions with arguments that are
not in the spanning set by C1~1(1/s). We then integrate them with respect to the time
variables. Since the time variables are bounded, all this contributes only some constant.
With what is left we can make a change of variables and use (G.1) again to see that

F(G,50,...,5x) < C, (H.69)

for some constant depending only on m.

Let ﬁl = {Z;”: 1T1,2¢ < 1}. We break up the integration over R, into integration over

ﬁl(s) and ﬁl in (H.56) and (H.67). If one carefully examines the time indices in (H.31)
and (H.66) and uses Fubini’s Theorem, one sees that

/E(w; T, e) H dzjp (H.70)
Joksi
no nk
:/A —~ F(gver,Qqa"'erqu)
RoX - XRk q=1 q=1
n n
H (/ (A]LA_h Dr, (.’1?)) (AhA—h Pr! (Jj‘)) daj‘) H dr; d?";
i=1 i=1
The variables {r;,r;|i =1,...,n} are simply a relabeling of the variables {r; s, |0 <1 <

K,1 < g < n;}. (The exact form of this relabeling does not matter in what follows.)
Here, as always, we set p,.(z) =0, if r <0.

By Parseval’s Theorem,
/(AhA_hpr(x)) (AhA_hpr/ (z)) da (H.71)
— QL / |2 _ eiph _ e—iph|26—7'1/1(p)e—7"1/;(p) dp > 0.
i

Using this, (H.69) and Fubini’s Theorem, we see that

no ng
~ ~ F(g, T0,2q s> TK,2 ) (H.72)
/(RoxmeK)m([o’\/ﬁ]%,)c ; q qzzl q

n

1;[ (/ (A"A"p, (2) (Ahﬁ_hpr; (33)> da:) li[ dr; dr!

< c/([oﬁ]%)c I1 (/ (ARA p, (x)) (AhA_hpT; (x)) dm) ﬁ dr; dr!

i=1 i=1

<C </ </(A’LA_hpr(x))dr>2 dx) "
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/{/OOC /; (APA" p,. () (AhA—hpT;(;p)) dr; dr;}dx
- CCZ’_hl’l / { /oOO /\/;O (AT pr, (@) (AhAfhPr; (T/)) dr; drg} dz,

by (4.12). The integral in the final line of (H.72)

i 2
< cyohi —/ (/ APA—R ps(x) ds) dx. (H.73)
0

Therefore, it follows from Lemma G.2 that the first integral in (H.72) is O(h(m‘l)”“)7
for some ¢ > 0.

Since (ﬁo X ﬁK) > [0,v/A]>" for 2nv/h < 1, it follows from (H.70) and the
preceding sentence, that

/Th(x; T, e) H dz; j.q (H.74)
7.k,
= / F(ZT"ZTO:QQV"’ZTKQQ)H (/ (AhA_hpri(l‘))
[07\/ﬁ n q=1 g=1 =1
K n
(8"a p@)) do) ITTT g + O025-m)
1=0q=1

We use the next lemma which is proved in Subsection H.3.

Lemma H.2 For any fixed m and s, .. .,sx < my\h, there exists an ¢ > 0 such that for
all h > 0, sufficiently small,

|F(5, s0,-..,5K) — F(5,0,...,0)| < Ch. (H.75)

Proof of Lemma H.1 continued It follows from (H.74) and Lemmas H.2 and G.2, that

/Th(x; me) [ dwjn. (H.76)

7.k,
I ( [ @ratp, @)

:F(5,0,...,O)/
[0,Vh)2" ;4
K n

(AhA_h Pr (m)) d:v) H H dryeq + O(h(QB_l)”+€)

1=0q=1
= (cpn1)" F(7,0,...,0) + O(hZ8-1nte), (H.77)

We now use the notation introduced in the paragraph containing (H.68), and the fact
that there are 22" permutations that are compatible with P, to see that

> /7%(3:; me) |1 dwjni (H.78)

T~P 7.k,
= (4eyn1)" Y F(5,0,...,0) + O(hPF-Dnte),
GeB
Since |B| < (2n)!, we see that the error term only depends on m, (recall that m = 2n).

Consider (H.78) and the definition of F(7,0,...,0) in (H.66) and use (H.17), with m, j,
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replaced by n;, to see that

/77L:r7re I dzjni (H.79)
T~P

J.ki

K
= (depn)" E | I (azn)™* | +O(n®F=0me).
J k=0
j<k
Recall the definition of S, to set of special pairings, given in the first paragraph of
this subsection. Since there are 2(37’,?%’“) pairings of the 2n;; elements {1,...,m;},
(recall that m; , = 2n; ), we see that when we sum over all the special pairings we get

ZZ/ﬁxﬂeﬂdﬂfm (H.80)

PeS n~P Jrkyi
K
277;17 nj k B nj k O h(2ﬁ—1)n+€
= H 2w, (e n,1) I (an) + :
J,k=0 k 4,k=0
Jj<k i<k

It follows from (H.37) that the error term, still, only depends on m.

The right-hand side of (H.80) is precisely the desired expression in (H.2). Therefore,
to complete the proof of Lemma H.1, we show that for all the other possible values of
a, the integral in (H.27) can be absorbed in the error term.

H.2 a = e but not all cycles are of order two or a # e

Lemma H.3 Suppose that a = e but not all cycles are of order two or a # e. Then

he "
/77153 7Ta de]kl:O(hw:l/h)) s (H81)

Jyki

for some ¢ > 0.

In the rest of this section we ignore all factors of log 1/h.

Proof Consider the basic formula (H.31). Since we only need an upper bound, we
take absolute values in the integrand and extend the time integral to [0,1], as we have
done several times above. We take the time integral and get an upper bound for (H.31)
involving the terms u, v and w. Since a # e, the number of w terms is less than 2n.

We obtain (H.81) by dividing the u, v and w terms in 7 (z; 7,a) into sets. Clearly,
if a set contains k terms of the form w and %’ terms of the form v, there are 2k + k'
difference operators A" associated with this set. There are no difference operators
associated with sets of u terms.

Consider a set of two w terms that lies in a cycle of order two. There are four
difference operators A" associated with this set. We show this set contributes a bound

to (H.81) that is
1
o (hdﬁ(l/h)) ' (1.:82)

(By contributes a bound we mean that this is what we get after we make an appropriate
change of variables and integrate out the w terms in this set.) Thus we may say that
each difference operator in a cycle of order two contributes a bound of

¢ <(h1/’2(11/h)))1/4> ) (H.83)
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We show that any set that has £ > 0 associated difference operators except for a set
of two w terms that forms a cycle of order two contributes a bound that is

1 k/4
o (——— he, H.84
<<hw2(1/h))> ) (154
for some ¢ > 0.

There are 4n difference operators A", in Tn(z; 7, a). Consequently unless the graph
associated with 7, (z; 7, a) consists solely of cycles of order two, we obtain (H.81).

As we construct the sets of u, v and w terms, we also choose a collection Z U Z’ of
m terms with arguments that are linearly independent. To bound the contribution of
each set we bound all the terms not in Z U Z’ by their supremum, and, after changing
variables, integrate the terms in Z UZ’. Using (G.4), (G.5), (G.7) and (G.8) we verify the
bounds given in the preceding paragraph. (Actually, there is an exceptions to this rule
which we also deal with.)

This is how we divide the u, v and w terms into sets. For each 7 and a we define
a multigraph G, , with vertices {(j,k,7),0 < j < k < K,1 < i < m;;}, and an edge
between the vertices m;(¢ — 1) and m;(¢) whenever a(l,q) = (1,1). This graph divides
the w terms into cycles and chains. Assume that there are S cycles. We denote them
by Cs = {¢s,1,- -, Ps,(s) }, Written in cyclic order, where the cycle length I(s) = |Cs| > 1
and 1 < s < S. For each 1 < s < S we take the set of [(s) terms

gSYde = {w(‘r%,z - 'r¢s,l)’ T 7w(x¢s,l(3) - x¢s,l(s)—1)’ w(‘r¢s,l - x¢s,z<s))}' (H.85)

Let
Yboi = Ty i — Thy i1 i=2,...,1s). (H.86)

It is easy to see that {y,,, i = 2,...,l(s)}, are linearly independent. We put the corre-
sponding w terms, w(zy, , — Tp, ), s W(Tp, .y — To.,_,) Into Z. (On the other hand,
since

1(s)
Zyd)s,i = _(x¢5,1 - x¢s,l(s))’ (H.87)
=2

we see that we can only extract [(s) — 1 linearly independent variables from the (s)
arguments of w for a given s.) A cycle of length 1 consists of a single point ¢;1 = ¢ys),1
in the graph, so in this case

Govele — L4v(0)}. (H.88)

We explain below how this can occur. Obviously, w(0) is not put into Z.

Next, suppose there are S’ chains. We denote them by C, = {¢/ ,,...,
@, 11(5)}» Written in order, where I'(s) = |[C;] = 2and 1 < 5 < 5. Note that there are
I'(s) — 1, w terms corresponding to C’. Then for each 1 < s < S’ we form the set of
U(s

) + 1 terms

gschain — {U(IWSJ _ ma(s))vw(xdﬂgg _ $¢;,1)7 s (H89)

o ’w(x¢;,z(s) o z¢;,1(.<)—1)’ U(xb(s) o x%,z(s))}

ZE¢/
where v(zy | —2,(s)) is the unique v term associated with A, ", and similarly, v(zs) —

$¢/
Ty . )) is the unique v term associated with A, =) " (This deserves further clarifica-

tion. There may be other v terms containing the variable x4 . But there is only one v
term of the form

1 Z g1
/0 ‘Ahd)s’lps(a:q&;’l —u)|ds (H.90)
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where u is some other z. variable which we denote by z,(,. This is because one op-

’
5,1

T
erator A, is associated with w(%/s , — Lo 1) and there are precisely two operators

Z'd)/
A, in (H.81)).
It is easy to see that variables yy = zy — 2y i = 2,.. .,1(s), are linearly
independent. We put the w terms, w(%/s , — Tyl 1)7 e w(Ty o T v>—1) into Z. We

leave the v terms in ggham out of 7.

At this stage we emphasize that the terms we have put in Z from all cycles and chains
have linearly independent arguments. If fact, the set of x’s appearing in the different
chains and the cycles are disjoint. This is obvious for the cycles and the interior of the
chains since there are exactly two difference operators Ay for each z. It also must be
true for the endpoints of the chains, since if this is not the case they could be made into
larger chains or cycles.

For the same reason, if a v term involving A, is not in any of the sets of chains, then
z’ will not appear in the arguments of the terms that are put in Z from all the cycles and
chains.

Suppose, after considering the w terms and the v terms associated with the chains
of w terms, that there are p pairs of v terms left, each pair corresponding to difference
operators A};j, j=1,...,p. (p may be 0). Let

Z:={z1,...,2p} (H.91)

A typical v term is of the form
_ 1
v (25 —ujr) = v(z5 —ujr) = A |Agjpt(zj — uyr)| dt. (H.92)

where ujs is some z. term. We use the superscript (j) is to keep track of the fact that
this v term is associated with the difference operator AZJ_. We distinguish between the
variables z; and u;- by referring to z; as a marked variable. Note that if u;. is also in Z,
say uj = z, then u; is also a marked variable but in a different v term. (In this case,
in v*) (2, — uy/), where uy is some other z. variable.)

Thus Z is the collection of marked variables. Consider the corresponding terms

v(j)(zj —u;) and v(j)(zj —v;), J=1,...,p (H.93)

where u; and v; represent whatever terms x. and z’. are coupled with the two variables
Zj.

There may be some j for which u; and v; in (H.93) are both in Z. Choose such a j.
Suppose u; = v; = 2. We set
Qf’l = (oW (25 — 2), 09 (zj — z1), (H.94)

v(k)(zk — ug), U(k)(zk — )}

and put v )(zj — zi) into Z. Here wuy, and vy, are whatever two variables appear with the
two marked variables z.

On the other hand, suppose u; and v; are both in Z but u; = 2; and v; = 2 with
k # 1. We set

ng’Q = {v(j)(zj — zk),v(j)(zj - 2z), (H.95)

8 (2 — ug), v (2 — vr), vV (2 — ), 0O (2 — )}

and put both v()(z; — 2;) and v (z; — 2) into Z.

EJP 17 (2012), paper 7. ejp.ejpecp.org
Page 84/111


http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/

Central limit theorems for the L? norm of increments of local times

We then turn to the elements in Z which have not yet appeared in the arguments of
the terms that have been put into Z. If there is another j’ for which u;» and v, are both
in Z, choose such a j’ and proceed as above. If there are no longer any such elements
in Z, choose some remaining element, say, z;. Set

G233 = (v (2 — u), v (2 — v3)} (H.96)

and if u; ¢ Z, place v(¥) (z; — u;) into Z. If u; € Z, so that v; ¢ Z, place v(¥) (z; — v;) into Z.

We then continue until we have exhausted Z. We form a final set G* which contains
all the u terms, so that all u, v and w terms have been divided into sets.

It is possible that there are no cycles of length one. We show how we get (H.81) in
this case.

We have constructed 7 so that all its members have linearly independent arguments.
However, 7 may contain less than m terms. We simply add to Z a set Z’ of enough of
the remaining v and v terms so that ZUZ’ has m terms, whose arguments span R?", the
space spanned by the original x. terms. (It follows from (H.87) that no further w terms
can be added to Z'). We bound the v terms in Z’ as follows:

1 C

v(z’ —2")| < T Toh (H.97)

We then make a change of variables setting the arguments of the terms in Z U 7’ equal
to ¥1, ..., Ym and bound the v terms not in Z UZ’ by C(ht(1/h))~! and the u terms not
in ZUZ by C. Finally we integrate. We have m one dimensional integrals which we
bound by (G.5) for the v terms in Z, by C(hy(1/h))~! for the v terms in Z’, and by (G.8)
for w terms in 7. The integrals of the u terms in 7 we bound by a constant; (see (G.2)).
Clearly G" gives a bounded contribution. We now show that (H.84) holds for all other
sets of v and w terms, with the exception of sets of w terms in cycles of length 2.
Consider first G¥°® for a cycle of lengths I(s). We integrate the /(s) — 1, w terms
which were put in Z and bound the remaining w term by C(ht(1/h))~! to obtain the

bound ) I(s)—1 1 ) I(s)—2 .
¢ <w(1/h)> ho/m <¢(1/h)> EGYE (H.98)
e 1 1/2 1 1/2
»(/h) h (;wz(l/h)) (H.99)

(H.98) is bounded by

(Us)-2)/2 1 o
O{h } (W> . (H.100)

Since a cycle of length I(s) involves 2[(s) difference operators Ay, and I(s)/2 = 2I(s)/4,
we are in the situation of (H.84), unless all cycles are of order two. (This shows, inci-
dentally, that when a = e, (H.81) holds unless all cycles are of order two.)

Consider next GP3®, Recall that there are I'(s) — 1, w terms in a chain, where
(s) > 2. We have put all I’(s) — 1 terms w in Z, and we can bound their integrals by

1 I'(s)—1
c (1/)(1/h)> . (H.101)

In addition there are two v terms in G"@", The ones not in 7’ can be bounded by
C(h(1/h))~! and the ones in 7’ are bounded by (H.97), which after integration also
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contributes C(h(1/h))~!. Thus we obtain the following bound for for Gehain:

4@)”“’” (M) (t1.102)
"(s)—3 2
=(gam)  (em)

<0h<l’<s>3>/2< 1 )”2< 1 )l’<s)/2
B hap2(1/h) 2 (1/h) }

Note that each chain of length !’(s) together with the two v terms associated with the
end points involves 2I’(s) difference operators A;. Clearly if I’(s) > 3 we are in the
situation of (H.84). This holds even for chains of length /’(s) = 2 since

(2-3)/2 1 v 1
A () = —-. (H.103)
ha?(1/h) hip(1/h)

Note that the v terms that were not initially in Z contribute a bound of C(ht(1/h))~1,
whether or not they are placed in Z'. We continue to use this fact below without com-
menting on it further.

We next consider gf Lowe integrate the one v term in 7 and any that are in Z’ and
bound the remaining ones. This gives a bound of

1 1 1
R2y3(1/h) — hp(1/h) (W(l/h)) : (H.104)

Since gf ! involves four A" operators we are in the situation of (H.84).

For gf 2 we integrate two v terms in 7 and any that are in 7’ and bound the remain-
ing ones. This gives a bound of

Since gf' '2 involves six Al operators we are in the situation of (H.84).

Finally, for gf 3 we integrate the one v term in Z and the other if it is in Z’. Otherwise
we bound it. This gives a bound of

1 — pl/2 b 1/2~ H.106
S (W(l/h)) ’ (H.106)

Since sz 3 involves two A" operators we are in the situation of (H.84).

This shows that if ¢ and the partition = does not generate exclusively w terms in
cycles of order two and are such that there are no cycles of length one, then (H.81)
holds.

We now remove the restriction that a and = does not give rise to cycles of length
one. The only way this anomaly can occur is in terms of the type

h A —h
ATA p(lfzgn:ll_l Tl—l,q)+7’l,,1(z72”l(1)*1 B x’yz’:’l—l("l—l)*l) (H.107)

when 726, (1)-1 = Y20, (n;_1)—1- Note that in this case
t
h A —H
/0 A"A Lps(x'yhrl(l)—l _x72al71(nl71)—1)d8 = w(O) (H.108)
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This is what we call a cycle of length one. In this case we have
h A—h _ h
A A p(I*Z;n:ll_l Tl,—l.,q)+7"l,1(0) = —2A p(172?;;1 Tl—l,q)+rl,1(0). (H].Og)

We now show how to deal with (H.109). We return to the basic formulas (H.30)
and (H.31). We obtain an upper bound for (H.31) by taking the absolute value of the
integrand. However, we do not, initially extend the region of integration with respect
to time. Instead we proceed as follows: Let !’ be the largest value of [ for which (H.109)
occurs. We extend the integral with respect to 7, for all > I’, and also for [ = I’ and
q > 1, and bound these integrals with terms of the form u, v and w. We then consider
the integral of the term in (H.109) with respect to ry ;.

Clearly
o T
/ AP g vy (Ol dri S/ N |APp (0)|ds  (H.110)
0 g=1 TU/-1,¢)TT1 1 1— A I
q=1 1 —1,q

If Z;n:l/fl ry_1,4 < 1/2 this last integral

2
S/ |A"py(0)| ds < Ch? (H.111)

1/2

by (G.14). Since we have only used two Al operators we are in the situation of (H.84).

If Y, " ry_1,4 > 1/2 then for some ¢ we have ry_j, > 1/2m. Note that the
variable r;_; o appears in (H.107) and in only one other term. If ¢’ > 1, then using
the fact that ry_q ¢ > 1/2m, we use one of the bounds in Lemma G.5, to bound a term
which in the non-exceptional case would be u, v or w, or their integrals with respect to
T, DY U1 /2m, V1/2m OF Wi 2,, OT their integrals with respect to z. One sees from Lemma
G.1 that we don’t loose anything in comparison with the non-exceptional case. The case
ry—1,1 > 1/2mand va5,, | (1)-1 # V20, _,(n,_,)—1 1S handled the same way.

On the other hand if rjy_; 1 > 1/2m and V2o 1 (1)—1 = V20, _,(ny_,)—1, WE USe Lemma
G.4 to get the same bound of Ch2.

After completing the procedure described in the previous two paragraphs we inte-
grate in (H.31) with respect to r;_; o and 7y 1, since these variables now appear only
in the term in (H.107). What we are left with is bounded by

1—2#4, T 1 gl .
/1/2 n /0 ‘A p(l_z;n:l,fl Ty 1)t (O)‘ drl,’l drl/il’q/ (H.112)
leta=1-— Zq;éq, ry/_1,4. We make the change of variables r = ry ; and s = —ry_; ¢ +

to get that (H.112)

1 1
< / / |A" ., (0)] dr dsw (H.113)
0 0

2 2
< / r|Arp,(0)dr < C [ r (/ sin?(ph)e v (P dp) dr

0 0

2
< C’hﬁ/ T </pﬁe”p(p) dp) dr
0

g r’ — 8
<Ch /1+¢2(p)dp—0(h )

Since

1/2
BP = PV 2(1/h) </u/)2(11/h)> (H.114)
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we are once again in the situation of (H.84).

We then apply a similar procedure for each [ in decreasing order, skipping those for
which (H.109) occurs, if they were already bounded by the procedure described in the
paragraph preceding the one containing (H.112). Thus we see that cycles of length one
are in the situation of (H.84). We proceed to deal with remaining terms as we did when
we assumed that there were no cycles of length one and see that (H.81) holds. This
completes the proof of Lemma H.3. O

It follows from (H.80) and Lemma H.3 that when m is even

> > /771(30% ma) [ daj. (H.115)

A Oy TK Ik,
K (20 4)! K
=11 ﬁnkl (depn)"* EQ I (ajm)™" 3 +0 (h(w*l)"“) .
3,k=0 3ok J.k=0
i<k j<k

We now show that we get the same estimates when 7, (z; 7, a) is replaced by T, (z; 7, a);
(see (H.28) and (H.30)).

We point out, in the paragraph containing (H.26) that terms of the form AhA*hp?i in
(H.28) are always of the form A" A~"p.. Therefore, in showing that (H.28) and (H.30)
have the same asymptotic behavior as h — 0 we need only consider how the proof of
(H.115) must be modified when the arguments of the density functions with one or no
difference operators applied is effected by adding +h.

It is easy to see that the presence of these terms has no effect on the integrals that
are O (h(2A=1n+<) as h — 0. This is because in evaluating these expressions we either
integrate over all of R! or else use bounds that hold on all of R'. Since terms with one
difference operator only occur in these estimations, we no longer need to be concerned
with them.

Consider the terms with no difference operators applied to them, now denoted by
pt. So, for example, instead of F(,0,...,0) on the right-hand side of (H.76), we now

have
A H.116
/(/io(o)x»--xﬁk(o Hp(l—zqzl”*12%1‘3!*1)”%1 ( :

) 1=0
ny ny
(xE,,u) - x’&,_l(nl_l)) H2p2'1,2q71($’51(q) - x'El(qq)) 1_[1 drlﬂq—l) dx.
q= q=

Suppose that pﬂ(yg(i) —Yo(i—1)) = Pr(Yo(i) — Yo(i—1) £ h). We write this term as

pg(yo(i) —Yo(i=1)) = Pr(Yo(i) = Yo(i-1)) T Aihpr(ya(i) — Yo (i—1))- (H.117)

Substituting all such terms into (H.116) and expanding we get (H.115) and many other
terms with at least one p, (Y, (i) — ¥o(i—1)) replaced by A*"'p,(y,(;) — yo(i—1))- In this case
simply take these terms, extend their integrals to [0, 1] and bound them as in (G.4). Then
follow the procedure in the paragraph containing (H.69) to deal with the remaining
terms and the functions 1/(1 + (Y»(i) — Yo(i—1))?)- In this the integral in (H.116) is
bounded by C(1/(hy(1/h)))?, where j is the number of terms that have the difference
operator applied. Thus we see that replacing 7, (x; 7, a) by 7, (z; 7, a) does not change
(H.115) when m is even.

When m is odd we can not construct a graph with all cycles of order 2. Therefore,
we are not in the situation covered by Section H.1. Moreover, in Section H.2 we never
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use the fact that m is even. We actually obtain (H.81) with n replaced by m/2, which is
what we assert in (H.3). This also holds when when p. is replaced by p# for the reasons
given in the preceding two paragraphs. O

H.3 Proof of Lemma H.2
For any A C [0, 3]" we set

K
Fa :/{/AHpm,l(x;l(l) T3 ) (H.118)
=0

ng K n
I 2ean @5 = 5o TLTT drioa- 1} H 43, gy
q=2 1=0q¢=1

Then by Hélder’s inequality, for any 1/a+1/b=1

{/AHPTH T3 1) x;lfl(nl—l))

=0
ny K n

Hp”,zqfl (@50~ a1y H H drl,gq_l} (H.119)

1=0qg=1

1/a
< |A‘ {/[03 H pm 1 o‘L(l) xazf1(m—1))
N K 1/b
b
Hprl,?qfl (I;Z(Q) o I;l(q—l)) H H drlﬂq_l} ’
q=2

1=0g=1

where |A| denotes the volume of A in R’}.
Since 8 > 1 we can choose a 1 < b < 8 such that

3
/ (¥1(1/s))" ds < C. (H.120)
0
Therefore it follows from (G.1) that
3 , 1
dr < C——. H.121
| <o (H.121)

Thus there exists a finite constant C, depending only on n and b, that is independent of
A, such that
Fy < C|AJYe. (H.122)

It follows from (H.66), paying special attention to the time variable of p. in the
second line, that

F(o,80,...,8x) =Fa, .. (H.123)
where
-1 n 7]
Aggroo e {r ERLIY (1= mazg1-5) <Y Tag1 (H.124)
A=0 g=1 q=1
-1 nx
2(1727’)\72q_1 *SX)+(175Z)7 Z_OalaaK}
A=0 q=1
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In particular

Ao, 02{ [0,3]"

Z 1_ZT>‘2q 1) <Zrl2q 1 (H.125)
A=0

-1 nx
<Y (=) ragg1) +1); l—071,...7K}.
A=0 q=1
Let ¢y(r) = 5\20(1 — > a21 Ta2¢-1)- We have
Agg,sxD Ao 0 (H.126)
K
QU{T [0,3]" |¢1—1(r ZSA<ZT12(; 1 < ¢ 1()}
=1
K
U {’I‘ S [ 3]" ¢l—1(7") +1-— ZS)\ < Z T2g—1 < (151_1(7“) + 1} .
1=0 A=0 q=1

(Note that the first union are the points in Ay, . ,, that are notin Ay o and the second
union are the points in Ay that are notin Ay, s,.)
Since for fixeda >b> 0

fren

AAp,..0

< Op™ (H.127)

b<ZT‘12q 1<a}

we have that

IN

805+ SK

K 2n
CK (Z 5A> (H.128)
A=0

< CK™M( max s))™,
0<A<K

when maxg<i<x s is sufficiently small. Let K’ be the cardinality of {l|n; > 0}. Itis
easy to see that we have actually proved (H.128) with K replaced by K'. Since K' < m,
the last line in (H.128) can be written in terms of {s)} and m. Lemma H.2 follows from
(H.122) and (H.128). 0

I Proof of Lemmas 4.1-4.3

Proof of Lemma 4.1 Using the multinomial theorem we have

-1

E((‘Z’h)m): > Hi_kl:r(iw E jEO(Jj,k,l,h)mj’k , (L.1)

meM j<k i<k
where
-1
M={im={mjp0<j<k<l—1} > mjp=m;. (1.2)
FPT

We now use Lemma H.1 to compute the expectation on the right-hand side of (I.1).
Even though Lemma H.1 is proved for time intervals of length 1, (see H.1), it is straight
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forward to check that it holds for any fixed time interval, if the term «; ;, in (H.1), is
altered to reflect the new length. Therefore, for some ¢ > 0

£ ((3)")

-1

m! — 2n k ; ]
=> | = H mo DTy e 4% n)"* ES T (egwn)™*
~ Hj.,k=0(mj7k!) - n k 4. k=0
meM G<k fo

+0 (mp(@s-nmte).

when m;; = 2n;;, for all j and k, and is O (I™h(2#=Vn+€) if any of the m,x are odd.
Here we use the fact that

3 # - (1.4)
M H.fjl;:]f(mj,k-)
to compute the error term. (Lemma H.1 is for a fixed partition of m. Here we include
the factor [, to account for the number of possible partitions. Note that [ is a function
of h.)

When m; , = 2n;;, for all j and k,

-1

m! H (2n;x)!  (2n)! n! (L5)
— ‘ : . .
Hj,k1:0(mj>k!) k=0 2n]’k(nﬂ’k!) 2mnl Hy k= 0(nj k!)
i<k i<k j<k

Using this in (I.3) we get

(7))
-1

2n)! n! .
(2n )‘ (deyna)” Z B E H ()"
N Hjjk:(J Ny k- G, k=0
i<k <k

20 (),

where N is defined similarly as M. Using the multinomial theorem as in (I.1) we see
that the sum in (I.6) is equal to £ {(a;)"}, which completes the proof of (4.11). O

Proof of Lemma 4.2 By the Kac Moment Formula

Ef()"} = E ((/(Lf)2dw) ) (L7)
2n n
= 27:2// o Hpn Tr(i) — m‘ﬂ)) H dr; H dx;,
i= r; <t} i—1 Py i1
where the sum runs over all maps 7 : [1,2n] + [1,n] with |[771(i)] = 2 for each i.

The factor 2" comes from the fact that we can interchange each x.;) and (1), i =
1,...,2n.

It is not difficult to see that we can find a subset J = {i1,...,i,} C [1,2n], such
that each of zy,...,x, can be written as a linear combination of y; := @x(;;) — Tr(i; 1),
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j=1,...,n. Fori € J° we use the bound p,, (i) — Z-1)) < pr,(0), then change
variables and integrate out the y;, to see that

sc(/ot ) /(H/pmxﬂ( T dn)del

icJ

<o([oon) (I [ )

ieJ
=Ct" (/0 p(0) dr) <O (Byp~(1/e)"

for all ¢ sufficiently small, where we use (G.3) and (J.7) for the last line.
It follows from (I.8) that

()
layilln < C 2 (L.9)
for all [ sufficiently large. Consequently, for [ sufficiently large,
-1
1280l =l lln| < 11280 = alln = 1D @ 517lln (1.10)
j=0
< I ao01/lln = Ul arplln
-1
< ot
This gives (4.13). O

The next three lemmas give estimates for the mean and variance of [ (Lf*h —L%)?dx.
They are proved in Section K.

Let o
conai= [ 0.0~ p.(h) ds L11)
0
Lemma I.1 Under the hypotheses of Theorem 1.2,
lim h’(/}(l/h)cd,’h)o = C3,0- (112)
h—0
Lemma 1.2 Under the hypotheses of Theorem 1.2; for small h and t(h) = 1/(log1/h),
E </(Lf+h — L¥)? d:c) = deypot 4+ O (g(h,t)) (1.13)
as h — 0, where
22 (=1 (1/1)° 3/2<B<2
g(h,t) = h2L(1/h) B=3/2 (1.14)
(hy2(1/h))~" 1<B<3/2
and L(-) is some function that is slowly varying at infinity. Also
Var (/(Lf“l —L7)? dx) (1.15)
tg(h,t 21/t t tlog1/h
Coftetht) L BUTY  Ct | Chlogl)
hp(1/h) — hp2(1/h)  h3/295/2(1/h) — h2p3(1/h)
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The proof of this lemma shows that we can take any function ¢ := ¢(h) such that
¥~1(1/t) << 1/h and limj,_,o t(h) = 0.

Lemma 1.3 Under the hypotheses of Theorem 1.2,

FE (/(L?Jrh — Lgf)2 dx) = 4cy no + O (?(h)) (I.16)
as h — 0, where
h? 3/2<B<2
g(h) =< h2L(1/h) B=3/2 (1.17)

(h*(1/h)) " 1<p<3/2
and L(-) is slowly varying at infinity.

Proof of Lemma 4.3 We use (4.4) with [ = [log1/h]. Since J;, ;5 0 <j <1—1, are
independent and identically distributed, E(J; ;1) = E(Jo0.,n), forall j =0,...,0 -1
and

-1
Var | /0p2(1/h) Y (i jun — E(Jjjum)) | = 1 (1/h)Var (Joo.n) (1.18)
§=0

Consequently, to obtain (4.14) it suffices to show that

Jim, Vhi2(1/h) <ZE(J070J,,L) - E/(Lgl“’h —L7)? dx) =0 (1.19)
and
lim 1h4p*(1/h)Var (Jo,0,.) = 0. (1.20)

Using (1.13) and (I.16) on the expectations in (I.19), and recalling that | = 1/t, we
see that

LE(Jo0,1,n) — E/(LT“‘ — L})? dz = O(g(h, t)/t) + O(g(h)) 1.21)
It is easy to verify that (I.19) holds.

Showing that (I.20) holds is a little more subtle so we provide some details. We first
consider the last three terms in (I.15) and multiply them by [h?(1/h) = he)?>(1/h)/t as
in (I1.18). The first of these is

h?(1/h) 29~ (1/1)

=t (1/t). 1.22
T T VI A (1:22)
This last function is regularly varying as ¢t — 0 with index 1 — 1/8 which is positive by
hypothesis.
The next term is
hap%(1/h) t 1

t B3252(1/h)  h/2p2(1/h) (1.23)

Here (h'/?1)'/2)~1 is regularly varying as h — 0 with index (8 — 1)/2 which is positive.
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The third of the last three terms is
hy?(1/h) tlogl/h  logl/h (1.24)
t h23(1/h)  hp(1/h)’ ’
Here (log1/h)(ht(1/h))~! is regularly varying as h — 0 with index (8 — 1) which is
positive. Thus (1.20) holds for these three terms.

We now consider
hy?(1/h) tg(h,t)

We use (1.14) to see that when 5 > 3/2 this is equal to
2~ (1/1))* W2 (1/h). (1.26)

Here we note that t?(¢)~1(1/t))3 is regularly varying at zero with index 2 — (3/) which
is positive since $ > 3/2. In addition by (G.12), limj, o h?¥(1/h) < oco.
When 8 = 3/2, (1.25) is equal to

RAL(1/Rh)(1/h). (1.27)

This function is regularly varying at zero with index 2 — (3/2).
When 3 < 3/2, (1.25) is equal to (h(1/h))~!, which is regularly varying at zero with
index S — 1. Thus we have verified (I1.20). This completes the proof. O

J Proofs of Lemmas G.1-G.5 and Lemma 4.4

Since the Lévy processes, X, that we are concerned with satisfy

1

————dp< o g1
/ 1+1(p)

it follows from the Riemann Lebesgue Lemma that they have transition probability den-

sity functions, which we designate as p;( - ). Taking the inverse Fourier transform of the

characteristic function X, and using the symmetry of ¢/, we see that

1 .
ps@) = o / e eV dp J.2)

1

(oo}
= 7/ cospz e *¥®) dp.
™ Jo

We begin with a technical lemma.

Lemma J.1 Let X be a symmetric Lévy process with Lévy exponent v(\) that is regu-
larly varying at infinity with index 1 < < 2 and satisfies (1.16). Then for any r > 0 and

t>0 . —
1 " 20t 1
rem ) g <c<m) < — . 3
[eemwsse(ings ) < gy 03
[e%s) 1
/ V" (p) ( / sTem V) ds) dp < C; J.4)
0 0
' $(p) ¢
: s r _—syP(p
J1sinthr ) ([ sresvias) ap< @5
and
! 1
s(0) —ps(h))ds < C—rr .6
| 0 =p)as < O 1.6)
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ash — 0.
In addition for allt < 1 and all y € R!

Apmnwscw*um. 0.7)

Proof The first part of the bound in the first inequality in (J.3) comes from taking
e~*¥(P) < 1; the second from letting ¢ = co. The second inequality in (J.3) is trivial.

Note that for any y > 0
1 1 Yy
yr/ s"e”Vds = 7/ s"e % ds. (J.8)
0 Y Jo

1 0o
1
yr/ s"e Y ds <sumee””) A </ she™?® ds) J.9)
0 x>0 YJo

cQA1><x>1
y 1+y

Consequently

IN

IN

Using this it is easy to see that

1 1
r re= VP dsdp < C/(l/\) d .10)
/w(p)/ose sdp < o) P ag
1 o0 1
< C/1d+C/ LI
0 b 1 w(p) b
which gives (J.4).
Similarly we obtain (J.5),
[e%e) 1
/ | sin(hp)|¥" (p) / s"e W) ds dp (.11)
0 0
b 1
<C in(h IN—— ] d
<o [ lsin p)< w<p)> P
> hp/\l
<c/ T

1/h p o] 1 C
SC(?A 1+¢@Vm+ﬁﬁ1+w@VW>ShMUM'

(In (J.11) we use the regular variation of 4 at infinity. We continue to do so throughout
the rest of this paper without further comment.)
For (J.6) we first note that by (J.2)

1

ps(0) —ps(h) = ;/0 (1 — cosph)e*¥®) dp J.12)

2 oo
— / sin? ph/2 eV dp.
™ Jo

Therefore by Fubini’s Theorem and (J.3),
1
JRCZORFROIEE 0.13)

0
2 oo 1

:—/ sin2ph/2/ e=*Y(®) ds dp
™ Jo 0

EJP 17 (2012), paper 7. ejp.ejpecp.org
Page 95/111


http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/

Central limit theorems for the L? norm of increments of local times

gc/om(mpz’*) (“w(lp)) dp

1/h 2 0o 1 1
Ch? P mio | —dp<CO—o—.
A ATy /Uh o) = Choym)

For (J.7) we use (]J.3) to see that

/Ot ps(y) ds

1 t
7/ /E*Sd}(?) dp ds
27T 0
C’/Oo (t A 1) dp
0 Y(p)

1 L
C <t¢ (1/t) + /1111(1/t) ¥(p) dp)
Ctp=(1/1).

IN

IN

IN

IN

Proof of Lemma G.1 We first note that

pa(x) < C (v71(1/s) V).

Refer to (J.2). It is obvious that for s > 1, ps(z) < C, for all z. In addition,

™

1 1 [
ps(z) < =Y (1/s) + 7/ e v ®) gp.
™ Y=1(1/s)
Also, for all s sufficiently small, the last integral is equal to

/ ey (ufs) < / T (ufs) e du

J.14)

(J.15)

(J.16)

(J.17)

by integration by parts, where we drop a negative term. The final integral in (J.17)

< vy [T e

< w—l(l/S)K/m w0 e du < CPT(1s),
1

(.18)

for all § > 0; where the constant K depends on §. (See e.g. [3, Theorem 1.5.6].) Thus

we get (J.15).
By integration by parts
1 o0
ps(x) = — e~ ¥ ®) d(sin pz) J.19)
T 0
1 > d
= —— sin px (esw(”)) dp
Tz Jo dp
1 o d?
- Zemsv® ) .
w2 /) Cos px <dp2e ) p
Furthermore
d? s —s
el B = (¢ (p))? - sv (p) eV (7.20)
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Therefore, by (1.17)

‘/Olcospx (CZ;e-swp)> dp’ <C (/01 (W' (p)* + Iw”(p)|)> dp < C. g.21)

(We use (1.17) repeatedly in the rest of the paper without comment.) In addition, by
(1.16), for all s sufficiently small

[e] d2
/ COS px <2esw(p)> dp‘ (J.22)
1 dp

* 1 —s —s
<C [ 5 (Bt s siple W) dp
1 P

*1
sc/ Lap<c,
1 P

since sup,~qz"e”* < C. Using (J.15) and (J.19)-(J.22) we get (G.1).
The inequality in (G.2) follows immediately from (G.1).

The equality in (G.3) is trivial since [ ps(z)dz = 1.

Note that
Alpy(z) = po(z+h) —ps(z) (J.23)
1 o0
= 7/ (cosp(z + h) — cos pz) e ¥ @) dp
™ Jo
2 o0
= 77/ cos(px) sin?(hp/2)e =)
™ Jo
1 o0
—— / sin(pz) sin(hp) e *¥®) dp
™ Jo
and
APA I p(z) = 2pg(x) — ps(z + h) — ps(z — h) (J.24)
4 oo
= f/ cos(pz) sin?(hp/2) e*¥®) dp.
™ Jo
Thus
1 1 [
Alp,(z) = fiAhA*hps(x) - 7/ sin(pz) sin(hp) e =5 ®) dp. (J.25)
™ Jo
We now note that
1 N C
sup/ A'ps(x)]ds < ———— (J.26)
A VD)
and
1
sup/ A"ATpg(2)] ds < . J.27)
2y s < gty
To obtain (J.27) we use (J.24) to see that
1 4 1 e}
sup/ |IAPAT p ()| ds < 7/ / sin?(hp/2) e=*¥®) dp ds. (J.28)
z Jo ™Jo Jo
Using the calculation in (J.13) we get (J.27).
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To obtain (J.26) we note that by (J.3), similarly to (J.13)

1 o)
sup/ / sin(px) sin(hp) e sV P) dp‘ ds J.29)

0 0
o ph 1
o () o)
1/h p S | 1
§0<h/0 T4 00) dp*/l/hw(p)dp> = Chat/m

Thus (J.26) follows from (J.25), (J.27) and (J.29).

We now show that

AMATIp(2) = §£2 J.30)
X
where
o "
K =K(s,z,h) ::/ sin?(pz/2) (sin2(hp/2) e_s’l’(p)) dp. (J.31)
0

To get this we integrate by parts in (J.24),

/ cos px sin? (hp/2) eV @) gp (J.32)
0

1 o0
;/ sin?(hp/2) e~**P) d(sin pz)
0

1 [ !
—f/ sin px (sin2(hp/2) e_w(p)) dp
T Jo

1 o0 / D
_E/o (sinz(hp/Q) e_sw(p)) d</0 sinm‘dr)

L (g2 ~sv@) g1 —
372/0 (sm (hp/2) e ) d (1 — cospx)

12
— sin?(pz/2) <sin2(hp/2) efsw(p)) dp.
= Jo

Let g(p) = e~*¥() and note that
I
(2 sin?(hp/2) e*W(P)) = g(p)hsin hp + 24/ (p) sin? (hp/2) (1.33)
and
1
(2 sin?(hp/2) e_‘gw(p)) (J.34)
= g(p)h?® cos hp + 2¢'(p)h sin hp + 24" (p) sin®(hp/2).

Substituting (J.34) in (J.32) we write K = I + II + II1. Using (J.3) we see that

1 1 00
/ [I|ds = h2/ ‘ / cos hpsin®(pz/2)e =¥ P dp‘ ds (J.35)
0 0 0
o) 1
< h2/ (/ e sv () ds) dp
0 0
< ChQ/lldpzo(fﬂ).
B o 1+9(p)
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Then using (1.16), (1.17) and (J.4) with » = 1 we get

ds (J.36)

1 1 oo
/ |[II|ds = 2h/ ‘ / sin hpsin® (px/2)g’ (p) dp
0 o 'Jo
o) 1

on [ i) o) ([ s as) ap
Ch? /Ooo lpy' (p)| (/0156_““1’) dS) dp
Ch? (01 +/1OO ¥(p) (/Olse—swm ds) dp) =0 (h?).

Similarly, and also using (J.4) with r = 1 we get

1
/ \I11|ds
0

IN

IN

IN

2 / | / " sin? (hp/2) sin®(pa/2)g" (») dp| ds
e [y ( / (s @) + 2 () 2) e ds) dp

Ch? {/ P> (19" 0)| + [¥'(p) ) dp

0

<[ ( / (s0(0) + $202(p) ) ds) dp}

= 0(n). J.37)

IN

IN

Combining (J.35)-(J.37) with (J.30) we get the third bound in (G.7). The first bound in
(G.7) follows from (J.27).

To get the second bound in (G.7) we use (J.24) and the third integral in (J.32) to see
that

4L
APAThp (2) = === (J.38)
T X
where
0 1
L=1L(s,z,h) ::/ sin px (Sin2(hp/2) efsw(p)) dp. (J.39)
0

Using (J.33), (1.16), (1.17) and (J.5) with » = 0 and 1, we see that

1
|L|ds J.40)

1 e’} ]
<o (h/o | sin hp|g(p) dp+/0 sin® (hp/2)|g’(p)|dp> ds

< Ch/ | sin hyp V() ds dp
0

1
-
0
o) 1
+Ch <cl+ / |sin (hp/2)||pY’ (p)] / se™sv(P) dsdp>
1 0

<0 <w(11/h)> +Ch /000 [sin (hp/2)[1(p) /01 se==0®) ds dp

<0 (gam)

Thus we get the second bound on the right-hand side of (G.7). This completes the proof
of (G.7).

EJP 17 (2012), paper 7. ejp.ejpecp.org
Page 99/111


http://dx.doi.org/10.1214/EJP.v17-1740
http://ejp.ejpecp.org/

Central limit theorems for the L? norm of increments of local times

To prove (G.4) we first note that by (J.25) it is less than w(z)/2 plus

1 00
C'/ ‘/ sin(pz) sin(hp) e *¥®) dp| ds
o 'Jo

Integrating by parts twice we obtain
/ sin(pz) sin(hp) e ¥ dp
0

1 oo
=—— / sin(hp) e =*¥®) d(cos px)
T Jo

1 [ ’
5/0 COS pT (sin(hp) e_s'/’(p))> dp
1 o0

/
=— sin(hp) e ¥ ®))  d (sinpx)
z2 Jo ( )

1 o ) "
= _72/ sin px (sin(hp) e_“z’(p)) dp.
= Jo

Note that /
(Sin(hp) e‘”l’(?)) — (h cos hp —gin hp(s ¢/(p)) e—sw(p)

J
Thus the left hand side of (J.42) is bounded by p where

B B 1 o0 /
J=J(s,z,h):= / ‘/ COS px. (sin(hp) e‘sw(p)) dp‘ ds.
o 'Jo

We write

where

1 o)
|1 < h// | cos pz: cos(hp)| e ~*¥P) dp ds
0o Jo

& 1
< Ch/ — _dp<C'h
o L1+v(p) b

and using (1.16), (1.17) and (J.4)

< [ leosprsnl o)l s apas

h / / Pl ()] se=*4) dpds
0 0
1 1

n [ W) / 56~V ds dp

+Ch// e P dpds < C'h.

IN

IN

Therefore _
T ool
2| ||

In addition (J.41) is % where
x
1 o) ]
G =G(z,h) = / ‘/ sin px (sin(hp) e_‘“/’(p)) dp‘ ds.
o 'Jo
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Since

(sin(hp) efsw(p))” 7.50)
= (—h®sinhp + 2hs cos hp ' (p) — sin hp(s " (p) — s*(¢'(p))?) e 5@

we can write
G < Gi+ G2+ Gs. (J.51)

Using (J.50) and (J.4) we get

|G1] h? /1 ‘ /OO sin px (Sin(hp) e_sq/’(p)) dp‘ ds (J.52)
o 'Jo

o0 1
< Ch? / / e *¥®) ds dp < Ch2.
0 0

Using (1.16), (1.17) and (J.4) we see that

1 e’}
|Ga] = 2h/ ‘/ sin px cos hp (1//(p) se_sw(p)> dp’ds (J.53)

2h// [0 (p V() dp ds
1
o / Sdl(l’)d>d>
(1+/1 p|¢(p)|<A se s | dp
) 1
ChlC SW)d)d) Ch.
(1+/1 w(m(/ose s) dp) <

IA

IN

IN

Similarly
|G|

3
1 o)
- / ‘ / sinpz sin hp (s¢" (p) — sZ(w’(p))Q) e sv (@) dp‘ ds

<i [T / (4 )] + 20 D)) e ds )

sch{cl+ (/01 sl (p)| + 2 (¥ (p))?) e =@ ds> dp}

p
< Oh{Cl + (/01( (1b(p))?) e~ 4@ ds) dp}

< Ch.

(J.54)

Thus we see that for all |z| > 0
G < Ch, J.55)

for some C < oo independent of |z|. Combining (J.26), (J.48) and (J.55) and taking into
account the value of w(zx), we get (G.4).

For (G.5) we use (G.4) to see that

/(/01 |Ahps(x)|ds> dx (J.56)
gc(/oawdﬁh[;dﬁh/lmldx)
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Seta = a(h) = h?(1/h). For Lévy processes excluding Brownian Motion, limj, . h?y(1/h) =
0; (see [11, Lemma 4.2.2]), and we can estimate (J.56) to obtain (G.5). For Brownian
Motion take ¢ = 1 in (J.56) to obtain (G.5).

Similarly, to obtain (G.6) we use (G.4) to get

/(/01 |Ahps(x)ds>p da C (/Oa hpwpl(l/h) dx+h”/aooxlpdx>

a h?
 (rramiam * 1) 027

IA

IN

For (G.9) we use (G.7) to see that
2

1
/(/ |AhA_hps(x)|ds> dx (J.58)
0

:/Oh (/01 |AhAhps(m)|ds>2 dz
+/h°° (/01 |AhA_hps(x)|ds>2 da

< C . C /°° 1 de — O 1
SRR w2 T\
The inequality in (G.10) follows similarly,

2

([ c  [*1 c
h A—h —
[ eatnoion) e s [ G- Gt 09

To obtain (G.8) we use (G.7) to see that

1
// ‘AhA_hps(x)‘dsdx (J.60)
0

hoopl 11
:/ / ‘A'LA_hpS(x)‘dsdm—i—/ / ‘AhA_hps(ac)‘dsdx
o Jo h Jo
0o 1
+/ / ’AhA*hps(x)‘ dsdx
1 Jo
C /h C /1 1 2/“ 1
< — ldz+ ———=~ | —dxz+Ch —= dx
h(L/h) Jo (/) Ju |zl 1 [

C  Clgl/h .,
Soam T enm T

[l
Proof of Lemma 4.4 Using 2 — e — e~ " = 45sin(hp/2) we see that
00 1 o . . .
/ AMATI () dt = — / /e‘“’w(Q — Pl — o7yt P) gy dt
0 2m Jo
4 . >
= — [e'P® sin2(hp/2)/ e~ W) dt dp (J.61)
21 0
[ i)
2 ¥(p)
It follows from Parseval’s Theorem that
00 2 s 4
_ 8 [ sin*(hp/2)
h A—h
Cypohl = A"AT "y (x dt) dx = —————=dp. (J.62)
o / </0 (@) ™ ¥2(p)
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Using this we write
9 16 [ sin?(p/2) 2
wimenn =2 [ (Gompiam) @ 063
Forafixed0 <a <1,

“ sin? p/2 2 B 9 e/h (sin?(ph/2) 2
[ Gamocm) @ = meam [ (55852) @
hoy2(1/h) [ pt
N 4 o Yi(p)

For any € > 0 we can find an hy > 0, such that for all 0 < h < hg, the last line above

dp. (J.64)

(Lt WPG2(1/h) (a/h) _ a2
S TTAB-28)  Wa/h) S 2(5-28)
Note that for any ¢ > 0 and p > a > 0, we can find an A > 0, such that for all
0 < h < hj < hy,

(J.65)

¢2(1/h) 1 1
(See [3, Theorem 1.5.6].) Therefore, it follows from the Dominated Convergence Theo-
rem that 9
[e's} 202 oo - 4

) sin” p/2 ) / sin® p/2

lim — | dp= dp. J.67)

h=0/, (w(p/h)/w(l/h) o« D
Since (J.64), (J.65) and (J.67) hold for all a > 0 sufficiently small, we get (4.15). |

Proof of Lemma G.2 We now consider (G.11). Just as we obtained (J.61) and (J.62) we
see that

/[0 i / (A"A" () (A" AT py (@) dadr dr’

8 [sin’(ph/2) VT
- T (1 _ eV ) dp. (1.68)
We show below that
s 4
hp2(1/h) W&Wﬂp) dp = O(h/?), (1.69)

which proves (G.11).
To obtain (J.69) we note that

i 4
h2(1/h) We\/ﬁw) dp (1.70)

.4
= h2(1/h M —Vh(p) g
v )/ogpgl V2 (p) ‘ v

.4
W (1/h sin”(ph/2) VR g
Ty )/1gpg1/h Y2 (p) ‘ b

.4
Wo(1/h sin” (ph/2) —VRu) g
The*(1/ )/p21/h ¥3(p) ‘ P
4
ChOY2(1/h Py
< OWR(1) )/ g
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5,/,2 L
+CR Y (1/h) /1§|P|§1/h V2(p) Vhib(p) w

1
+Chy?(1/h)e Ve a/m) / ——dp,
( / ) |p|>1/h ¥3(p)

where, in the next to last line of (J.70), we use the fact that fors > 0, e™% < (supSZO se=*)/s.

It is obvious that the first and last integral in the last inequality in (J.70) is O(\/E). As
for the second integral, if 1 < 8 < 5/3

4
5 p 1 1
h%/;%h/ - dp<C—-——=0(Vh); g.71)
tn 1<ipl<1/h Y2 (P) Vhap(p) h1/24(1/h) ( )
if5/3 < <2
4 5,12
5 p 1 h>yp=(1/h)
RPy2(1/h / dp<Cc——>1"2 —0(vh), (J.72)
(1/h) 1<lpi<1/n V2 (P) Ve (p) hl/2 ( )
where we use Remark G.3 when 8 = 2. When 8 =5/3
4 1 L(1/h)
Ro2(1/h / Pt <o <o .73)
WD [ cpressn 0261 Vi ™ = Criracamy = 00
for some function L(-) that is slowly varying at infinity. This gives us (J.69). O
Lemma J.2 Forr >0
1 2C
5 r —sw<p><0(1A ) < (J.74)
sup s'e < < ) .
5<s<1 Y (p) 1447 (p)
and fork > 0
rtk 1 2C
r_—s(p) < g s —s9(p) e — .75
52218 ¢ - 5221 ok ¢ — R L+ ortR(p) (.79

Proof The first inequality in (J.74) follows from the facts that y"e~¥% < C and, of course,
SUPs<s<1 s"e~5%(®) < 1. The second inequality in (J.74) is elementary. The inequality in
(J.75) follows from (J.74). O

Proof of Lemma G.4 The inequality in (G.13) follows immediately from (G.1).
By (J.75) withr =0 and k =3

1 o
sup |AMp (0)] = sup —/ sin?(ph/2) e~V P) dp (J.76)
6<s<1 6<s<1 T Jo
h? [
< sup o— [ pPetWadp

5<s<1 27 Jo

h2 oo p2 C
< C= ————dp < =1,
<5l e

Note that A"p,.(0) = p,.(h) — p.(0) < 0 and A" A~"p,.(0) = 2(p,(0) — p,(h)). Thus (G.15)
follows immediately from (G.14). O

Proof of Lemma G.5 The inequality in (G.17) follows immediately from (G.1).
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To obtain (G.19) consider the material in the proof of Lemma G.1 from (J.30) to the
statement that K = I+ 11+ I111. Now, instead of integrating I, I and /1] we take their
supremum as § < s < 1. We have

(oo}
sup |[I| < h? sup ’/ cos hpsin? (pz/2)e™**®) dp J.77)
5<s<1 s<s<11Jo
[ee]
< h? sup / eV @) qp
0<s<1Jo
cC [~ 1 C
< RB= ——dp < —h?,
6 Jo 1+4(p) 0
where we use (J.75) with r =0 and k£ = 1.
sup |[II] = 2 sup h‘/ sin hpsin? (px/2)g’ (p) dp (J.78)
5<s<1 s<s<1 1 Jo
< 2nswp [ [sin(hn) v ) e dp
§<s<1Jo
<

Ch? sup/ lp' (p)| se=*¥®) dp
0

6<s<1

6<s<1

< §r(as [ i)

where we use (J.75) with » = 1 and k£ = 1. Similarly, but with r,k = 0,1 and r, k = 2,1

< Ch® sup (Cl+/ w(p)se_sw(p) dp)
1

sup |III| < sup ‘/ sin2(hp/2)sin2(px/2)g”(p)dp‘
§<s<1 s<s<11Jo

Ch2 sup / p2 (|S¢I/(p)| —I—S2|z/)/(p)|2) e—ST/J(P) dp
0

6<s<1

IN

IN

on? { / P (10 ()| + &' (0)) dp (0.79)

+ sup /1 " (s(p) + 2P () @) dp}

6<s<1

< Ch? {Cl + sup /100 (s9(p) + s*¢*(p)) e~V ® dp}

5<s<1

c < () < Y%(p)
¢ Cifon [T gl [T 0D,
J ! 1 1+9%(p) 1 L+93(p)
Combining (J.77)-(].79) with (J.30) we get the second bound in (G.19).
The first bound on the right-hand side of (G.19) follows from (G.15) since,

sup A"AT"p, (z)
§<r<1

< sup AhA_hpr(O), (J.80)

5<r<1

(see (J.24).)
To get the second bound on the right-hand side of (G.18) consider the material in
the paragraph containing (J.41). For our purposes here we need to obtain

o0
sup ‘/ sin(pz) sin(hp) e ") dp (J.81)
s<s<11Jo
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Integrating by parts twice as in (J.42) we see that (J.81) is bounded by

1 © "
sup —2/ sin px (sin(hp) e_‘”/’(p)) dp‘ . (J.82)
5<s<1 2% Jo

Thus we have to take sups<,«; of the terms in (J.52)-(J.54), but without the integral on
s. It is easy to see that we g_et the same bounds as in (J.52)-(J.54) but with the factor
1/6 as in (J.77)-(.79),

By (J.23), (G.18) is bounded by (G.15) plus

Ch/pe_éw(p) dp (J.83)

PTH(1/6)
< Ch / pdp+—/
0 $=1(1/6) ¢

< Oh(u (1/8) < Oy

(For the second integral in the middle line of (J.83) see the comment following (J.70).)

This gives the first bound on the right-hand side of (G.18).
The inequalities in (G.20)-(G.22) follow easily from (G.17)-(G.19). O

K Proofs of Lemmas 1.1-1.3
Proof of Lemma I.1 By (J.2)

hp(1/R)cpno = ho(1/h) /0“1—;(();)(1911) dp (K.1)

~ 2mp(1/h) [ sin®(ph/2)
s /0 Y(p) ap

2 sinl(p)2)

= w/o Sy o) P

Compare this to (J.63). Following the proof of (4.15), from (J.64) to (J.67), with obvious
modifications, we get (1.12).

Proof of Lemma 1.2 By the Kac Moment Formula,

E (/(L;*h —L¥)? d:c) (K.2)
=2 // Alp, (2)A"p,., (0) dry dry d
DN

—|—2// pn(x)AhA_ Dry (0) dry dro dx
O

- 4/0 (t —7) (pr(0) — pp(h)) dr
- 8 - sin? t —r)e W) gy
S [ st [e=ne @ .

Here we use the facts that when we integrate the second and third integrals with re-
spect to x we get zero in the second integral and one in the third.
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Note that
1 — e t(p)

e g b
/o“ Je = 5y T )

8t [ sin®(ph/2)
™ Jo ¥(p)

This gives the dominant term in (I.13). The absolute value of the remainder is

8 [ sin’(ph/2) _ o te(®) 8 [ sin®(ph/2)
7T/0 Y2 (p) <1 ) dp < ﬂ-/o ¥2(p) (LA tp(p)) dp

We break this last integral into three parts and see that it is bounded by
YL/t 2 1/h 2 o 9
C h%/ p—dpwﬂ/ p—dp+/ — dp
( 0 ¥(p) w-1(1/t) V*(p) 1/n V2(p)

Yoo
B2 P < on2? (1 s
¢ / oy < One (0 agm)”,

(Since lim,_,o 1 (p)/p* > 0 this integral is finite; (see [11, Lemma 4.2.2]).
In addition

By (K.1)

dp = dey ot

We have

o0 1 1
- o~
/Uh 20 P = ChEam
If 3 > 3/2

1/h 2
h? U dp <ot (v i1/n)’.
/ w1 V2(p) p= E W)

If 3 =3/2

) 1/h p2 )
h / dp < Ch*L(1/h
P»=1(1/t) V3 (p) (1/h)

for some function L(-) that is slowly varying at infinity. If 8 < 3/2

) 1/h p2 1
h / ——dp < C—5——.
w-1(1/t) V2 (p) hy2(1/h)
Using (K.5)-(K.11) we get (1.14).

Let

7 = /(Lf“ — LY da.

(K.3)

(K.4)

(K.5)

(K.6)

(K.7)

(K.8)

(K.9)

(K.10)

(K.11)

(K.12)

We get an upper bound for the variance of Z by finding an upper bound for EZ? and us-
ing (1.13) to estimate (EZ)?. We proceed as in the beginning of the proof of Lemma H.1,
however there are enough differences that it is better to repeat some of the arguments.

By the Kac Moment Formula

2
(H (Al Ly AZ;%)) (K.13)
i=1
2
pr,(0(i) —o(i— 1)) dr;
TTesay fo. W}H NI
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where the sum runs over all bijections o : [1,4] — {x;,y;, 1 < i < 2} and we take
o(0) = 0. We rewrite (K.13) so that each A" applies to a single p. factor and then set
y; = x; and then integrate with respect to x1,...,x,, to get

E ((/(Lf*h — L) dz>2> (K.14)

4 a1 (i as (i
- 42//{221_17’1.@} };[1 (AZ’“(“) b (AZ”“*U) 2()

as in (H.28). As we did following (H.28) we continue the analysis with p* replaced by p.
In (K.14) the sum runs over all maps 7 : [1,4] ~ [1, 2] with |7 ~!(i)| = 2 for each i and
over all a = (a1,a2) : [1,...,4] — {0,1} x {0,1} with the property that for each i there
are exactly two factors of the form AZ The factor 4 comes from the fact that we can
interchange each y; and x;, i = 1,2. As usual we take 7(0) =0
Note that in (K.14) it is possible to have ‘bound states’, that is values of ¢ for which
7(i) = w(i — 1). We first consider the terms in (K.14) with two bound states. There are
two possible maps. They are (7(1), 7(2), 7(3),7(4)) = (1,1,2,2) and (7(1), 7(2), 7(3),7(4)) =
(2,2,1,
1). The terms in (K.14) for the map (7(1),7(2),7(3),7(4)) = (1,1, 2,
2) are of the form

4 a1 (3) a2 ()
H (AZWM) (A.Zm,l)) Pr; (Iﬂ(i) - x‘n’(i—l))v (K.15)

i=1

where the density terms have the form

Pry (21)Dry (Y1 — 21)Pry (T2 — Y1) Pr, (Y2 — 22), (K.16)

and where y; — z; = 0. The value of the integrals of the terms in (K.15) depend upon
how the difference operators are distributed. In many cases the integrals are equal to
zero. For example suppose we have

A:};lph (‘Tl)A;}zlprz (O>AZZPT3 (372 - 1‘1>A22pr4 (0)’ (K.17)

which we obtain by setting y; = z;. (Note that A;”lpr2 (0) should be interpreted as
Al pr,(z1 —y1) or A? p,, (y1 — x1)). Written out this term is

(pT1 (331 + h) — Pry (‘Tl)) A:}zlprz (0> (K.18)
(Prs (w2 — 21 + h) = pry (z2 — 21)) A p,, (0)

By a change of variables one sees that the integral of this term with respect to z; and
Ty iS zero.
The only non-zero integrals in (K.15) comes from

Pry (21) A" AT pr (0)pry (w2 — 1) A" A™"p,, (0). (K.19)

(Similar to the above A"A~"p,,(0) is Al A, "p,,(x1 — y1) where y; = x,.) The integral
of this term with respect to x; and x5 is

AMATRp, (0)ARATp,. (0). (K.20)
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We get the same contribution when (7(1),7(2),7(3),7(4)) = (2,2,1,1). Consequently,
the contribution to (K.14) of maps with two bound states is

4
8 / AN p,, (0) ARA D, (0) T drs (K.21)
{24 ri<t} H

[ 00 ) () Hdn

—16 [ (a0 (al0) = pu() (20(0) ~ pu(0) dude,
{utv<t}

<162 (7 (u(0) = pu) du) = (teynar

see (I.11).

We next consider the contribution from terms with exactly one bound state. These
come from maps of the form (7 (1), 7(2), 7(3),7(4)) = (1,2,2,1) or (x(1),7(2),7(3), 7(4)) =
(2,1,1,2). These terms give non-zero contributions of the form

Qs = / /{ Gy P A= 0) B0 0) (o~

4
H dr; dz dy (K.22)

=1
= Ay (y) A" A, (0) A, pry (y) [ ] drs dy;
//{Zflngt} H

Qs ::/‘/{Zjl TiSt}pm( z)AL Ahpw( — ) pry (0) AZ AhpM( — )

4
H dr; dz dy (K.23)

=1

4
= APATI, (y) pry (0) APATIp, (y) T drs dy;
//{Z;”St} .(0)pra 0) 1]

and

Qi = / /{Efl Py (£) A AR,y — ) Al (0) Al (z — )

4
H dr; dx dy (K.24)

i=1

= // AhAihpm (y) Ahpm( 0)A~™ p’"4 H dn dy
DN

For further explanation consider ;. This arrangement comes from the sequence
(z1,y2,z2,y1). The expression it is equal to comes by making the change of variables,
y — x — y and then integrating with respect to z.

Integrating and using (G.7) we see that

(/ |A"A"p(0 |d8> /(/A Py ) dy (K.25)
i [ ([ > o)
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Here we use the fact that [ A~"p,,(y)A~"p,,(y) dy > 0 to extend the region of integra-
tion with respect to r» and r4. By Parseval’s Theorem and (J.3)

/(/tA_hpr(y) dr)2 dy (K.26)
_ 7/|1 ¢ivh|2 (/ —r(p) dr>2 dp
!t o i) o

Similar to the transition between (K.5) and (K.6) the last integral is bounded by

C | n2e? v 2 dp + h? v Py Ty
t + / — +/ — . (K.27)
/0 nr p=1(1/1) ¥*(p) P 1/n V2(p) P

Note that

| /\

v (1/t) 5
h2t2/ p*dp < CR* (¥~ (1/t))". (K.28)
0

This bound is the right hand side of (K.7). Bounds for the other integrals are given in
(K.8)-(K.11). Since the bounds in (K.7)-(K.11) give (I.14), we see that

Ctg(h,t)
hip(1/h)

To obtain a bound for (3 we use (G.9) and (J.7) to see that it is bounded in absolute

value by ,
a1 /Otps<o> ) [(] 1|A’LA-hpr<y>|dr) wecl U wao

Integrating @4 and using the Cauchy-Schwarz Inequality we see that it is bounded in

absolute value by
1/2
( /Ahpr dr dy> . (K.31)

@2 < (K.29)

dy

1
t‘ / Alp,.(0) dr
0

By (G.4), (G.9) and (G.6) we get

/ AhA hpr dr

Ct

Finally, we consider the contribution from terms in (K.14) with no bound states.
These have to be from 7 of the form (7w(1),7(2),7(3),7(4)) = (1,2,1,2) or of the form
(m(1),7(2),7(3),7(4)) = (2,1,2,1). They give contributions of the form

Qs = / /{ 5 Pr (@) ALy, (y — ) Ay ALy, (x — y) Afpy, (y — )

4
H dr; dz dy (K.33)

i=1

= Ai Dry Y AhA pr pr4 dr; dy
/ /{Zjl rist} ( ) ’ H
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and
Qo= [ [ p @A 0o - 1) AL (o)
{Zizl ri<t}
4
H dr; dz dy (K.34)
=1
4
= AhAihprz (Z/) Drs (y) AhAihpm (y) dr; dy.
/ /{24 i<t} zl;[l
Clearly

Qs <t / ( / 1|A-hpT<y>|dr) )
(/01 IAhpr(y)ldr> (/01 |AhA_hpT(y)|dr> dy.

Using (G.4), and (G.8) we see that

Ctlogl/h
h23(1/h)’

The term Q¢ is bounded the same way we bounded @3 and has the same bound.

Qs < (K.36)

It follows from (I.13), Lemma I.1 and (K.21) that

6
_ tg(h,t) )
Var Z < C ;2|QJ|+ (hw(l/h) (K.37)

as h — 0, since g(h,t) < t/(hy(1/h). (We need a large constant because expressions for
Qj, j = 2,...,6 occur may ways, according to combinatorics of the distribution of the
difference operators.)

We leave it to the reader to verify that replacing p by p! only adds error terms that
do not change (1.16) and (1.17). O

Proof of Lemma 1.3 Use (K.2)-(K.6) with 1/~!(1/t) replaced by 1. In place of (K.7) we
have

1 2
E / P < on?. (K.38)
0 ¢(P) b

(Since lim, g ¥(p)/p? > 0 this integral is finite; (see [11, Lemma 4.2.2]).
In place of (K.9) we have, if 8 > 3/2

1/h p2
h? —dp < Ch2. (K.39)
1 Y2 (p)
The statements in (K.10) and (K.11) remain the same when w_l (1/t) replaced by 1. With
these changes the proof of (I.14) gives (I.16). O
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