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Abstract

Suppose that d ≥ 1 and α ∈ (0, 2). In this paper, we establish by using probabilistic
methods sharp two-sided pointwise estimates for the Dirichlet heat kernels of {∆ +

aα∆α/2; a ∈ (0, 1]} on half-space-like C1,1 domains for all time t > 0. The large
time estimates for half-space-like domains are very different from those for bounded
domains. Our estimates are uniform in a ∈ (0, 1] in the sense that the constants
in the estimates are independent of a ∈ (0, 1]. Thus they yield the Dirichlet heat
kernel estimates for Brownian motion in half-space-like domains by taking a → 0.
Integrating the heat kernel estimates with respect to the time variable t, we obtain
uniform sharp two-sided estimates for the Green functions of {∆+aα∆α/2; a ∈ (0, 1]}
in half-space-like C1,1 domains in Rd.
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1 Introduction and Setup

Throughout this paper, we assume that d ≥ 1 is an integer and α ∈ (0, 2). Let

∆ =
∑d
k=1

∂2

∂x2
k

be the Laplacian on Rd and ∆α/2 := −(−∆)α/2 the fractional Laplacian

on Rd. On C∞c (Rd), the space of smooth functions with compact support, the operator
∆α/2 coincides with the operator ∆̂α/2 defined by

∆̂α/2u(x) = lim
ε↓0

∫
{y∈Rd: |y−x|>ε}

(u(y)− u(x))
A(d, α)

|x− y|d+α
dy, (1.1)

where A(d, α) := α2α−1π−d/2Γ(d+α2 )Γ(1 − α
2 )−1. Here Γ is the Gamma function defined

by Γ(λ) :=
∫∞
0
tλ−1e−tdt for every λ > 0. For a > 0, define La = ∆ + aα∆α/2 on Rd. The
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Global heat kernel estimates for ∆ + ∆α/2 in half-space-like domains

non-local operator La is the infinitesimal generator of the Lévy process Xa := X0 + aY

on Rd, where X0 = (X0
t , t ≥ 0) is a Brownian motion in Rd with generator ∆ and

Y = (Yt, t ≥ 0) is an independent rotationally symmetric α-stable process in Rd whose
generator is ∆α/2. We will call the process Xa the independent sum of the Brownian
motion X0 and the symmetric α-stable process Y with weight a > 0. The process Xa is
a prototype of Lévy processes that have both diffusive and jumping components.

Due to their importance in theory and applications, fine potential theoretical prop-
erties of these Lévy processes have been under intense study recently. For any open set
D ⊂ Rd, let paD(t, x, y) be the Dirichlet heat kernel of La in D. The function paD(t, x, y)

is also the transition density with respect to the Lebesgue measure on D of the sub-
process Xa,D of Xa killed upon leaving D. In a recent paper [6], we established sharp
two-sided estimates of paD(t, x, y) on any C1,1 open set D for t ∈ (0, T ] in a uniform form
in a ∈ (0, 1] for every fixed T > 0. If in addition D is bounded, sharp two-sided estimates
on paD(t, x, y) for t > T are also obtained in [6]. However, when D is unbounded, the
large time behavior of paD(t, x, y) should be very different from that for bounded open
sets, as one can see from the symmetric stable processes case treated in [12].

The main purpose of this paper is to derive a sharp two-sided estimate of paD(t, x, y)

for all time on a large class of unbounded domains, namely, half-space-like C1,1 do-
mains. See below for the definition of half-space-like C1,1 domains. Obtaining sharp
two-sided Dirichlet heat kernel estimates for any Markov process is typically a non-
trivial and demanding task. This is especially so for Xa due to the different scalings in
Brownian motion and symmetric stable processes and the complications from the fact
that Xa has both a continuous component and a pure jump component. The analysis of
precise boundary behavior of paD(t, x, y) for large times turns out to be quite challeng-
ing and delicate. In [6], the correct boundary decay rate for paD(t, x, y) for small t was
established by using some exit distribution estimates obtained in [8]. Unfortunately the
estimates obtained in [8] are not suitable to use in the present case. Thus in this paper
we need first to derive new exit distribution estimates that are suitable for large time
heat kernel estimates. The first step is, similar to that in [3, 8, 13], to compute L1φ for
certain test functions. But unlike in [8], to obtain the desired estimates, we do not use
a combinations of test functions to construct suitable subharmonic and superharmonic
functions. Instead, we use a generalization of Dynkin’s formula to derive directly the
needed exit distribution estimates presented in Lemma 2.4 below. We believe that our
approach to obtain the correct boundary decay rate in this paper is quite general and
may be used for other types of jump processes.

In the remainder of this section, we will state the main result (Theorem 1.4) of this
paper, followed by some remarks, a conjecture (see Remark 1.5(i)) and an application
to Green function estimates (Theorem 1.7). To do so, we need first to recall some
known facts about Xa. Let pa(t, x, y) be the transition density of Xa with respect to the
Lebesgue measure on Rd. The function pa(t, x, y) is smooth on (0,∞)×Rd×Rd. For any

λ > 0, (λXa
λ−2t, t ≥ 0) has the same distribution as (Xaλ(α−2)/α

t , t ≥ 0) (see the second
paragraph of [6, Section 2]), so we have

paλ
(α−2)/α

(t, x, y) = λ−dpa(λ−2t, λ−1x, λ−1y) for t > 0 and x, y ∈ Rd. (1.2)

For a > 0 and C > 0, define

haC(t, x, y) :=
(
t−d/2 ∧ (aαt)−d/α

)
∧
(
t−d/2e−C|x−y|

2/t +

(
(aαt)−d/α ∧ aαt

|x− y|d+α

))
.

(1.3)
Here and in the sequel, we use “:=" as a way of definition and, for a, b ∈ R, a ∧ b :=

min{a, b} and a ∨ b := max{a, b}. The following sharp two-sided estimates on pa(t, x, y)
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Global heat kernel estimates for ∆ + ∆α/2 in half-space-like domains

follow from (1.2) and the main results in [11, 23] that give the sharp estimates on
p1(t, x, y).

Theorem 1.1. There are constants c, C1 ≥ 1 such that, for all a ∈ [0,∞) and (t, x, y) ∈
(0,∞)×Rd ×Rd,

c−1 haC1
(t, x, y) ≤ pa(t, x, y) ≤ c ha1/C1

(t, x, y).

We record a simple but useful observation. Its proof will be given at the end of this
section.

Proposition 1.2. For every c > 0 and c1 > 0, there is a constant c2 ≥ 1 such that for
any a > 0,

c−12

(
(aαt)−d/α ∧ aαt

|x− y|d+α

)
≤ hac (t, x, y) ≤ c2

(
(aαt)−d/α ∧ aαt

|x− y|d+α

)
holds when either t ≥ c1a−2α/(2−α) or |x− y| ≥ a−α/(2−α).

Recall that a domain (a connected open set) D in Rd (when d ≥ 2) is said to be C1,1 if
there exist a localization radius R0 > 0 and a constant Λ0 > 0 such that for every z ∈ ∂D,
there exist a C1,1 function ψ = ψz : Rd−1 → R satisfying ψ(0) = 0, ∇ψ(0) = (0, . . . , 0),
‖∇ψ‖∞ ≤ Λ0, |∇ψ(x)−∇ψ(w)| ≤ Λ0|x−w|, and an orthonormal coordinate system CSz:
y = (y1, · · · , yd−1, yd) := (ỹ, yd) with origin at z such that B(z,R0) ∩D = {y = (ỹ, yd) ∈
B(0, R0) in CSz : yd > ψ(ỹ)}. The pair (R0,Λ0) will be called the C1,1 characteristics of
the domain D. A C1,1 domain in R is simply a possibly unbounded open interval.

For a domain D ⊂ Rd and λ0 ≥ 1, we say the path distance in D is comparable to
the Euclidean distance with characteristic λ0 if for every x, y ∈ D, there is a rectifi-
able curve l in D connecting x to y so that the length of l is no larger than λ0|x − y|.
Clearly, such a property holds for all bounded C1,1 domains, C1,1 domains with compact
complements and domains above the graphs of bounded C1,1 functions.

For any open subset D ⊂ Rd, we use τaD to denote the first time the process Xa exits
D. We define the process Xa,D by Xa,D

t = Xa
t for t < τaD and Xa,D

t = ∂ for t ≥ τaD, where
∂ is a cemetery point. Xa,D is called the subprocess of Xa in D. The generator of Xa,D

is denoted by La|D. It follows from [11] that Xa,D has a continuous transition density
paD(t, x, y) with respect to the Lebesgue measure. One can easily see that, when D is
bounded, the operator −La|D has discrete spectrum. In this case, we use λa,D1 > 0 to
denote the smallest eigenvalue of −La|D.

For an open set D ⊂ Rd and x ∈ D, we will use δD(x) to denote the Euclidean
distance between x and Dc. The following is a particular case of a more general result
proved in [6, Theorem 1.3] (cf. Proposition 1.2 above).

Theorem 1.3. Suppose that D is a C1,1 domain in Rd with characteristics (R0,Λ0) such
that the path distance in D is comparable to the Euclidean distance with characteristic
λ0.

(i) For every M > 0 and T > 0, there are constants c1 = c1(R0,Λ0, λ0,M, α, T ) ≥ 1

and C2 = C2(R0,Λ0, λ0,M, α, T ) ≥ 1 such that for all a ∈ (0,M ] and (t, x, y) ∈
(0, T ]×D ×D,

c−11

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
haC2

(t, x, y)

≤ paD(t, x, y) ≤ c1
(

1 ∧ δD(x)√
t

)(
1 ∧ δD(y)√

t

)
ha1/C2

(t, x, y).
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(ii) Suppose in addition that D is bounded. For every M > 0 and T > 0, there is a
constant c2 = c2(D,M,α, T ) ≥ 1 so that for all a ∈ (0,M ] and (t, x, y) ∈ [T,∞) ×
D ×D,

c−12 e−t λ
a,D
1 δD(x) δD(y) ≤ paD(t, x, y) ≤ c2 e

−t λa,D1 δD(x) δD(y).

Note that Theorem 1.3 does not give large time estimates for paD(t, x, y) when D

is unbounded. The goal of this paper is to establish large time two-sided estimates
on paD(t, x, y) for a large class of unbounded C1,1 domains, namely half-space-like C1,1

domains. A domain D is said to be half-space-like if, after isometry, there exist two real
numbers b1 ≤ b2 such that Hb2 ⊂ D ⊂ Hb1 . Here and throughout this paper, Hb stands
for the set {x = (x1, . . . , xd) ∈ Rd : xd > b}. We will denote H0 by H.

We are now in a position to state the main result of this paper. For a > 0, define
φa(r) := r ∧ (r/a)α/2.

Theorem 1.4. Suppose D is a half-space-like C1,1 domain with C1,1 characteristics
(R0,Λ0) and Hb ⊂ D ⊂ H for some b > 0 such that the path distance in D is comparable
to the Euclidean distance with characteristic λ0. Then for any M > 0, there exist
constants ci = ci(R0,Λ0, λ0,M, α, b) ≥ 1, i = 1, 2, such that for all a ∈ (0,M ] and (t, x, y) ∈
(0,∞)×D ×D,

c−11

(
1 ∧ φa(δD(x))√

t

)(
1 ∧ φa(δD(y))√

t

)
hac2(t, x, y)

≤paD(t, x, y) ≤ c1
(

1 ∧ φa(δD(x))√
t

)(
1 ∧ φa(δD(y))√

t

)
ha1/c2(t, x, y). (1.4)

Remark 1.5. (i) The Lévy process Xa is uniquely determined by its characteristic func-
tion

Ex

[
eiξ·(X

a
t −X

a
0 )
]

= e−t(|ξ|
2+aα|ξ|α) for every x ∈ Rd and ξ ∈ Rd.

Hence the Lévy exponent for Xa is Φa(|ξ|) with Φa(r) := r2 + aαrα. The function φa(r)

is related to Φa(r) as follows:

1

Φa(1/r)
=

1

r−2 + aαr−α
� 1

r−2
∧ 1

(a/r)α
= r2 ∧ (r/a)α = φa(r)2.

Here for two non-negative functions f and g, the notation f � g means that there is a
positive constant c ≥ 1 so that g(x)/c ≤ f(x) ≤ cg(x) in the common domain of definition
for f and g. Hence in view of Theorem 1.1, the estimates (1.4) can be restated as
follows. For every M > 0, there are constants c1, c2 ≥ 1 so that for every a ∈ (0,M ] and
(t, x, y) ∈ (0,∞)×D ×D,

c−11 Cpa(t, c2x, c2y) ≤ paD(t, x, y) ≤ c1Cpa(t, x/c2, y/c2)

where

C =

(
1 ∧ 1

tΦa(1/δD(x))

)1/2(
1 ∧ 1

tΦa(1/δD(y))

)1/2

We conjecture that the above Dirichlet heat kernel estimates hold for a large class of
rotationally symmetric Lévy processes in Rd; see [7, Conjecture].

(ii) Note that t ≤ a2α/(α−2) if and only if (aαt)−d/α ≥ t−d/2. If (δD(x)/a)α/2 < δD(x), then
δD(x) ≥ aα/(α−2) and so δD(x) ∧ (δD(x)/a)α/2 ≥ aα/(α−2). Thus when t ≤ a2α/(α−2) and

(δD(x)/a)α/2 < δD(x), we have (δD(x)/a)α/2√
t

≥ aα/(α−2)

aα/(α−2) = 1, and consequently

1 ∧ δD(x) ∧ (δD(x)/a)α/2√
t

= 1 = 1 ∧ δD(x)√
t
.
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Hence in view of Theorem 1.1 and Proposition 1.2, the statement of Theorem 1.4 can
be restated as follows. For all a ∈ (0,M ] and (t, x, y) ∈ (0, a2α/(α−2)]×D ×D,

c−11

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)(
t−d/2e−c2|x−y|

2/t + t−d/2 ∧
(

aαt

|x− y|d+α

))
≤ paD(t, x, y) ≤ c1

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)(
t−d/2e−|x−y|

2/(c2t) + t−d/2 ∧
(

aαt

|x− y|d+α

))
(1.5)

and for all a ∈ (0,M ] and (t, x, y) ∈ [a2α/(α−2),∞)×D ×D,

c−11

(
1 ∧ δD(x) ∧ (a−1δD(x))α/2√

t

)(
1 ∧ δD(y) ∧ (a−1δD(y))α/2√

t

)(
(aαt)−d/α ∧ aαt

|x− y|d+α

)
≤ paD(t, x, y) ≤

c1

(
1 ∧ δD(x) ∧ (a−1δD(x))α/2√

t

)(
1 ∧ δD(y) ∧ (a−1δD(y))α/2√

t

)(
(aαt)−d/α ∧ aαt

|x− y|d+α

)
.

(1.6)

In fact, Theorem 1.4 will be proved in this form. 2

Remark 1.6. Unlike [7, 12], there are dramatic differences between the behaviors of
the heat kernel paD(x, y) on half-space-like C1,1 domains and disconnected half-space-
like C1,1 open sets even if x and y are in the same connected component. For example,
if D is H ∪B(x0, 1) where x0 = (0, . . . , 0,−2) and x, y ∈ B(x0, 1), then, as a→ 0, paD(x, y)

converges to p0B(x0,1)
(x, y), the Dirichlet heat kernel for Brownian motion on B(x0, 1).

Thus, in this case, the heat kernel estimates for paD(t, x, y) when t is large cannot be of
the form (1.4) even if x and y are in the same connected component. Furthermore, as
one can see from [6, Theorem 1.3], when D is a disconnected half-space-like C1,1 open
set (containing bounded connected component), we can not expect that the heat kernel
estimates for paD(x, y) to be written in a simple form as the one in (1.4). To keep our
exposition as transparent as possible, we are content with establishing the heat kernel
estimates for half-space-like C1,1 domains. 2

Integrating the heat kernel estimates in Theorem 1.4 with respect to t, we get sharp
two-sided estimates on the Green function GaD(x, y) :=

∫∞
0
paD(t, x, y)dt for Xa in half-

space-like C1,1 domains D.

Define for d ≥ 1 and a > 0,

faD(x, y) =



1
|x−y|d−α

(
a−α/2 ∧ φa(δD(x))

|x−y|α/2

)(
a−α/2 ∧ φa(δD(y))

|x−y|α/2

)
when d > α,

log

((
1 + a φa(δD(x))φa(δD(y))

|x−y|

)1/a)
when d = 1 = α,

φa(δD(x))φa(δD(y))
|x−y| ∧

(
a−1 (φa(δD(x))φa(δD(y)))

(α−1)/α
)

when d = 1 < α.

(1.7)
For d ≥ 2 and a > 0, define

gaD(x, y) =


1

|x−y|d−2

(
1 ∧ δD(x)δD(y)

|x−y|2

)
when d ≥ 3,

log
(

1 + a2α/(α−2)∧(δD(x)δD(y))
|x−y|2

)
when d = 2,
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for d = 1 and a > 0, define

gaD(x, y) =


(δD(x)δD(y))

1/2 ∧ δD(x)δD(y)
|x−y| ∧

(
a−α(δD(x)δD(y))(α−1)/2

)
when α ∈ (1, 2),

δD(x)δD(y)
|x−y| ∧ log

(
1 + a (δD(x)δD(y))

1/2
)1/a

when α = 1,

(δD(x)δD(y))
1/2 ∧ δD(x)δD(y)

|x−y| ∧ aα/(α−2) when α ∈ (0, 1).

Theorem 1.7. Suppose D is a half-space-like C1,1 domain with C1,1 characteristics
(R0,Λ0) and Hb ⊂ D ⊂ H for some b > 0 such that the path distance in D is comparable
to the Euclidean distance with characteristic λ0. Then for any M > 0, there exists a
constant c = c(M,R0,Λ0, λ0, b, α) ≥ 1 such that for all a ∈ (0,M ] and (x, y) ∈ D ×D,

c−1gaD(x, y) ≤ GaD(x, y) ≤ cgaD(x, y) when |x− y| ≤ a−α/(2−α), (1.8)

c−1faD(x, y) ≤ GaD(x, y) ≤ cfaD(x, y) when |x− y| ≥ a−α/(2−α) . (1.9)

Remark 1.8. (i) Note that, when d ≥ 3, gaD(x, y) is independent of a and is comparable
to the Green function of Brownian motion in a bounded C1,1 domain or in a domain
above the graph of a bounded C1,1 function. On the other hand, when d = 1 or 2,
gaD(x, y) depends on a, which is due to recurrent nature of one- and two-dimensional
Brownian motions.

(ii) Observe that if (Xa,D
t , t ≥ 0) is the subprocess in D of the independent sum of a

Brownian motion and a symmetric α-stable process inRd with weight a, then (λXa,D
λ−2t, t ≥

0) is the subprocess in λD of the independent sum of a Brownian motion and a sym-
metric α-stable process in Rd with weight aλ(α−2)/α (see the second paragraph of [6,
Section 2]). Consequently for any λ > 0, we have

paλ
(α−2)/α

λD (t, x, y) = λ−dpaD(λ−2t, λ−1x, λ−1y) for t > 0 and x, y ∈ λD. (1.10)

When D is a half space, we see from (1.10) that Theorems 1.4 and 1.7 hold with M =∞.

(iii) The estimates in Theorems 1.4 and 1.7 are uniform in a ∈ (0,M ] in the sense that
the constants c1, c2 and c in the estimates are independent of a ∈ (0,M ]. Since Xa con-
verges weakly to X0, by taking a → 0 these estimates yield the following estimates for
the heat kernel p0D(t, x, y) and Green function G0(x, y) of Brownian motion in half-space-
like domains D in which the path distance is comparable to the Euclidean distance:

c−11

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
t−d/2e−c2|x−y|

2/t

≤ p0D(t, x, y) ≤ c1
(

1 ∧ δD(x)√
t

)(
1 ∧ δD(y)√

t

)
t−d/2e−|x−y|

2/(c2t) (1.11)

for every (t, x, y) ∈ (0,∞)×D ×D, and

c−12 g0D(x, y) ≤ G0
D(x, y) ≤ c2 g

0
D(x, y) for x, y ∈ D. (1.12)

The estimates (1.11) and (1.12) extend the main results in [21], where the correspond-
ing estimates were established for domains in Rd with d ≥ 3 that are above the graphs
of bounded C1,1 functions.

(iv) By Theorem 1.4, for each fixed t > 0, when x ∈ D is near the boundary ∂D of D
relative to time t in the sense that δD(x) ∧ δD(x)α/2 ≤

√
t, the boundary decay rate of

the Dirichlet heat kernel of L1 is given by δD(x) ∧ δD(x)α/2/
√
t. This indicates that the

Dirichlet heat kernel estimates for L1 = ∆+∆α/2 in half-space-like C1,1 domains cannot
be obtained by a “simple" perturbation argument from ∆ nor from ∆α/2.
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Since the Lévy process Xa contains a discontinuous component aY , its Lévy system
plays an important role in our approach. As

aα|ξ|α =

∫
Rd

(1− cos(ξ · y))
aαA(d, α)

|y|d+α
dy,

Xa has Lévy intensity function

Ja(x, y) = ja(|x− y|) := aαA(d, α)|x− y|−(d+α).

The function Ja(x, y) determines a Lévy system forXa, which describes the jumps of the
process Xa: for any stopping time T (with respect to the filtration of Xa), any x ∈ Rd
and any non-negative measurable function f on R+ ×Rd ×Rd with f(s, y, y) = 0 for all
y ∈ Rd and s > 0,

Ex

∑
s≤T

f(s,Xa
s−, X

a
s )

 = Ex

[∫ T

0

(∫
Rd
f(s,Xa

s , y)Ja(Xa
s , y)dy

)
ds

]
(1.13)

(see, for example, [9, Proof of Lemma 4.7] and [10, Appendix A]).
Throughout this paper, the constants C1, C2, C3, R0, R1, R2, R3 will be fixed. The

lower case constants c1, c2, . . . will denote generic constants whose exact values are
not important and can change from one appearance to another. The dependence of the
lower case constants on the dimension d will not be mentioned explicitly. We will use
∂ to denote a cemetery point and for every function f , we extend its definition to ∂ by
setting f(∂) = 0. We will use dx or m(dx) to denote the Lebesgue measure in Rd. For
a Borel set A ⊂ Rd, we also use |A| to denote its d-dimensional Lebesgue measure. For
every function f , let f+ := f ∨ 0. We now present the

Proof of Proposition 1.2. We first deal with the case a = 1. For t ≥ c1 and r ≥ 0,

t−d/2e−cr
2/t ≤ t−d/2 c2

(cr2/t)(d+α)/2
≤ c3

tα/2

rd+α
≤ c4

t

rd+α
.

Hence for t ≥ c1,

t−d/α ∧
(
t−d/2e−c|x−y|

2/t + t−d/α ∧ t

|x− y|d+α

)
� t−d/α ∧ t

|x− y|d+α
. (1.14)

Thus h1c(t, x, y) � t−d/α ∧ t
|x−y|d+α on [c1,∞)×Rd ×Rd. On the other hand, for r ≥ 1,

t−d/2e−cr
2/t ≤ t−d/2 c5

(cr2/t)(d/2)+1
=

c6t

rd+2
≤ c6t

rd+α
.

So for t ∈ (0, c1] and r ≥ 1,

t−d/2e−cr
2/t +

(
t−d/2 ∧ t

rd+α

)
� t−d/2 ∧ t

rd+α
� t

rd+α
� t−d/α ∧ t

rd+α
.

Thus this and (1.14) prove the proposition for a = 1. For a > 0, with λ = aα/(2−α),

hac (t, x, y) = λdh1c(λ
2t, λx, λy)

� λd
((
λ2t
)−d/α ∧ λ2t

λd+α|x− y|d+α

)
= (aαt)−d/α ∧ aαt

|x− y|d+α
,

provided either λ2t ≥ c1 or λ|x− y| ≥ 1. This completes the proof of the proposition. 2
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Global heat kernel estimates for ∆ + ∆α/2 in half-space-like domains

The rest of the paper is organized as follows. In Section 2, we derive some prelim-
inary exit probability estimates that will be used later to obtain large time two-sided
estimates on pH. These estimates are derived through some detailed estimates of L1φ

for some testing functions φ. The upper bound estimate on pH is established in Section
3, while the lower bound estimate is derived in Section 4. The two-sided Dirichlet heat
kernel estimates in half-space-like C1,1 domains are then established in Section 5 from
that of pH by a “push in" method (see Lemma 3.7 below) that is originally employed in
[12]. Integrating the estimates for pD(t, x, y) given by Theorem 1.4 yields the uniform
sharp estimates of the Green function GaD(x, y) of La in D. However it is far from trivial
and requires considerable amount of effort. This is done in Section 6.

2 Preliminary estimates

We will focus on the case D = H in Sections 2–4. In this section we will prove some
preliminary estimates that will be used to establish our heat kernel estimates in H. We
start with some one-dimensional results.

Let S be the sum of a unit drift and an α/2-stable subordinator and let W be an
independent one-dimensional Brownian motion. Define a process Z by Zt = WSt . The
process Z is simply the process X1 in the case of dimension 1 defined in the previous
section. We will use the fact that S is a complete subordinator, that is, the Lévy measure
of S has a completely monotone density (for more details see [18] or [22]). Let Zt :=

sup{0∨Zs : 0 ≤ s ≤ t} and let Lt be a local time of Z−Z at 0. L is also called a local time
of the process Z reflected at the supremum. Then the right continuous inverse L−1t of
L is a subordinator and is called the ladder time process of Z. The process ZL−1

t
is also

a subordinator and is called the ladder height process of Z. (For the basic properties
of the ladder time and ladder height processes, we refer our readers to [1, Chapter 6].)
Let V (dr) denote the potential measure of the ladder height process ZL−1

t
of Z and v(r)

its density, which is a decreasing function on [0,∞). We know by [16, (5.1)] that

v(r) � 1 ∧ rα/2−1 for r > 0. (2.1)

Let G(0,∞) be the Green function of Z(0,∞), the subprocess of Z in (0,∞). By using
[1, Theorem 20, p. 176] which was originally proved in [19], the following formula for
G(0,∞) was shown in [15, Proposition 2.8]:

G(0,∞)(x, y) =

∫ x∧y

0

v(z)v(z + |x− y|)dz. (2.2)

For any r > 0, let G(0,r) be the Green function of Z(0,r), the subprocess of Z in (0, r).
Then we have the following result.

Proposition 2.1. There exists c = c(α) > 0 such that for every r ∈ (0,∞),∫ r

0

G(0,r)(x, y)dy ≤ c(r ∧ rα/2)
(

(x ∧ xα/2) ∧ ((r − x) ∧ (r − x)α/2)
)
, x ∈ (0, r).

Proof. For every r > 0 and every x ∈ (0, r), we have by (2.2) and (2.1) that∫ r

0

G(0,r)(x, y)dy ≤
∫ r

0

G(0,∞)(x, y)dy

=

∫ x

0

∫ x

x−y
v(z)v(y + z − x)dzdy +

∫ r

x

∫ x

0

v(z)v(y + z − x)dzdy

=

∫ x

0

v(z)

∫ x

x−z
v(y + z − x)dydz +

∫ x

0

v(z)

∫ r

x

v(y + z − x)dydz

≤ 2V ((0, r))V ((0, x)) ≤ c(r ∧ rα/2)(x ∧ xα/2).
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Global heat kernel estimates for ∆ + ∆α/2 in half-space-like domains

This together with the property that G(0,r)(x, y) = G(0,r)(r − x, r − y) establishes the
proposition. 2

Now we return to the process X1 in Rd. Recall that C∞c (Rd) is contained in the
domain of the L2-generator L1 of X1 and

L1φ(x) = ∆φ(x) +

∫
Rd

(φ(x+ y)− φ(x)− (∇φ(x) · y)1B(0,ε)(y))j1(|y|)dy, ∀φ ∈ C∞c (Rd)

(see [20, Section 4.1]). Using the argument in [14, page 152], one can easily see that
the last formula on [14, page 152] is valid for X1 for all d ≥ 1. Thus we have the
following generalization of Dynkin’s formula: for every φ in C∞c (Rd) and x ∈ U ,

Ex

[
φ
(
X1
τ1
U

)]
− φ(x) =

∫
U

G1
U (x, y)L1φ(y)dy = Ex

∫ τ1
U

0

L1φ(X1
s )ds. (2.3)

The following estimates on harmonic measures will play a crucial role in Section 3.

Theorem 2.2. For any R > 0, there exists a constant c = c(α,R) > 0 such that for every
r ≥ R and open set U ⊂ B(0, r),

Px

(
X1
τ1
U
∈ B(0, r)c

)
≤ c r−α

∫
U

G1
U (x, y)dy, for every x ∈ U ∩B(0, r/2).

Proof. Without loss of generality, we assume that R ∈ (0, 1). Take a sequence of radial
functions φk in C∞c (Rd) such that 0 ≤ φk ≤ 1,

φk(y) =


0, if |y| < 1/2

1, if 1 ≤ |y| ≤ k + 1

0, if |y| > k + 2,

and that
∑
i,j |

∂2

∂yi∂yj
φk| is uniformly bounded. Define φk,r(y) = φk(yr ). Then we have

0 ≤ φk,r ≤ 1,

φk,r(y) =


0, if |y| < r/2

1, if r ≤ |y| ≤ r(k + 1)

0, if |y| > r(k + 2),

and sup
y∈Rd

∑
i,j

∣∣∣∣ ∂2

∂yi∂yj
φk,r(y)

∣∣∣∣ < c1 r
−2.

Using this inequality, we have for r ≥ R∣∣L1φk,r(z)
∣∣

≤ c1 r−2 + sup
k≥1

sup
z∈Rd

∣∣∣∣∫
Rd

(φk,r(z + y)− φk,r(z)− (∇φk,r(z) · y)1B(0,r)(y))j1(|y|)dy
∣∣∣∣

≤ c1 r−2 + c2 sup
k≥1

sup
z∈Rd

(∫
{|y|≤r}

∣∣∣∣φk,r(z + y)− φk,r(z)− (∇φk,r(z) · y)

|y|d+α

∣∣∣∣ dy +

∫
{r<|y|}

|y|−d−αdy

)

≤ c1 r−2 + c3

(
1

r2

∫
{|y|≤r}

|y|2

|y|d+α
dy +

∫
{r<|y|}

|y|−d−αdy

)
≤ c1 r

−2 + c4r
−α. (2.4)

When U ⊂ B(0, r) for some r ≥ R, we get, by combining (2.3) and (2.4), that for any
x ∈ U ∩B(0, r/2),

Px

(
X1
τ1
U
∈ B(0, r)c

)
≤ lim
k→∞

Ex

[
φk,r

(
X1
τ1
U

)]
≤ c5r−α

∫
U

G1
U (x, y)dy.
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Global heat kernel estimates for ∆ + ∆α/2 in half-space-like domains

2

In the remainder of this section we will establish a result (Lemma 2.4) that will be
crucial for our heat kernel estimates in Section 4.

Recall that the operator ∆̂α/2 is defined in (1.1) and that ∆̂α/2 = ∆α/2 on C∞c (Rd).
For x ∈ Rd and p > 0, set wp(x) := (x+d )p. For 0 < p < α < 2, let

Λ = Λ(α, p) =
pA(d,−α)

α

∫ 1

0

tα−p−1 − tp−1

(1− t)α
dt

∫
|y|=1,yd≥0

yαd m(dy), (2.5)

with the convention that m(dy) is the Dirac measure when d = 1. Then it follows from
[13, Lemma 6.1] that

∆̂α/2wp(x) =Λ(α, p)wp−α(x), x ∈ H. (2.6)

In particular, on H we have

∆̂α/2wp < 0, 0 < p < α/2; ∆̂α/2wp = 0, p = α/2; ∆̂α/2wp > 0, α/2 < p < α. (2.7)

For any x ∈ Rd and a, b > 0, we define

Qx(a, b) := {y ∈ H : |ỹ − x̃| < a, yd < b} (2.8)

and Q0(a, b) will simply be denoted as Q(a, b). Note that, when d = 1, Qx(a, b) = Q(a, b)

is simply the open interval (a, b).

Lemma 2.3. Suppose 0 < p ≤ α
2 and R > 8. Let

hp(y) := wp(y)1Q(R,R)(y), y ∈ H. (2.9)

There exist constants c1, c2 > 0 such that for every R > 8 and x ∈ Q(2R/3, 2R/3),

− c1(xd)
p−α ≤ ∆̂α/2hp(x) ≤ Λ(xd)

p−α when 0 < p <
α

2
(2.10)

and
− c1R−α/2 ≤ ∆̂α/2hα/2(x) ≤ −c2R−α/2 when p =

α

2
, (2.11)

where Λ = Λ(α, p) < 0 is the constant defined in (2.5).

Proof. Since hp(y) = wp(y) for y ∈ Q(R,R), by (2.7), we have for any x ∈ Q(2R/3, 2R/3),

∆̂α/2hp(x) = ∆̂α/2(hp − wp)(x) + ∆̂α/2wp(x)

= −
∫
Q(R,R)c

(y+d )p
A(d,−α)

|x− y|d+α
dy + ∆̂α/2wp(x).

Observe that for x ∈ Q(2R/3, 2R/3) and y ∈ Q(R,R)c, |y − x| ≥ |y|/3. Thus for x ∈
Q(2R/3, 2R/3), by the change of variable z = R−1y,∫
Q(R,R)c

(y+d )p

|x− y|d+α
dy ≤ c1

∫
{y∈Rd: |y|>R}

1

|y|d+α−p
dy ≤ c2Rp−α

∫
{z∈Rd: |z|>1}

1

|z|d+α−p
dz

≤ c3R
p−α.

On the other hand, since |x| ≤ 2
√

2R/3 ≤ 2
√

2(|ỹ| ∨ |yd|)/3 ≤ 2
√

2|y|/3 on Q(R,R)c, we
have |x− y| ≤ (1 + 2

√
2/3)|y| on Q(R,R)c. Moreover, ypd ≥ c4|y|p on {yd ≥ R, |ỹ| ≤ R} ⊂

Q(R,R)c. Thus ∫
Q(R,R)c

(y+d )p

|x− y|d+α
dy ≥ c4

∫
{y∈Rd: yd≥R,|ỹ|≤R}

1

|y|d+α−p
dy

≥ c5Rp−α
∫
{z∈Rd: zd≥1,|z̃|≤1}

1

|z|d+α−p
dz ≥ c6Rp−α.
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Global heat kernel estimates for ∆ + ∆α/2 in half-space-like domains

The conclusion of the lemma now follows from the above three displays and (2.6)–(2.7).
2

Lemma 2.4. There exist c = c(α) > 0 and R1 = R1(α) > 2 such that for every R > 8R1

and x ∈ Q(R/4, R/2) \Q(R/4, 2R1), we have

Px

(
X1
τ1
VR

∈ Q(R,R) \Q(R,R/2)
)
≥ cδH(x)α/2

Rα/2
,

where VR := Q(R/2, R/2) \Q(R/2, R1).

Proof. Recall that hp is defined in (2.9). We fix p := (α/4) ∨ (α − 1). We choose R1 > 2

large such that

α

2
(1− α

2
)(R1/2)α−2 ≤ |Λ|, (2.12)

where Λ is the constant defined in (2.5). Obviously, with the above value of p, Λ < 0.
For R > 8R1 and y ∈ Q(2R/3, 2R/3) \ Q(2R/3, R1/2), by Lemma 2.3 and using the fact
that 0 ∨ ( 3α

2 − 2) < p < α
2 < 1, we obtain

(∆ + ∆̂α/2)
(
hα/2(y)−Rα/2−p1 hp(y)

)
≥ −α

2
(1− α

2
)(yd)

α
2−2 − c1R−α/2 −Rα/2−p1 p(p− 1)(yd)

p−2 + |Λ|Rα/2−p1 (yd)
p−α

= (yd)
p−α

(
|Λ|Rα/2−p1 + p(1− p)Rα/2−p1 (yd)

α−2 − α

2
(1− α

2
)(yd)

3α
2 −2−p

)
− c1R−α/2

≥ (yd)
p−α

(
|Λ|Rα/2−p1 − α

2
(1− α

2
)(R1/2)

3α
2 −2−p

)
− c1R−α/2.

Now, using (2.12), we have, for y ∈ Q(2R/3, 2R/3) \Q(2R/3, R1/2),

(∆ + ∆̂α/2)
(
hα/2(y)−Rα/2−p1 hp(y)

)
≥ −c1R−α/2. (2.13)

Moreover, for y ∈ Q(R,R1),

(hα/2 −R
α/2−p
1 hp)(y) = y

α/2
d (1− (R1/yd)

α/2−p) ≤ 0. (2.14)

Let g be a nonnegative smooth radial function with compact support in Rd such that
g(x) = 0 for |x| > 1 and

∫
Rd
g(x)dx = 1. For k ≥ 1, define gk(x) = 2kdg(2kx). Define

uk(z) := gk ∗
(
hα/2 −R

α/2−p
1 hp

)
(z) :=

∫
Rd
gk(y)(hα/2 −R

α/2−p
1 hp)(z − y)dy ∈ C∞c (Rd).

Let QR,k := {z ∈ H : dist(z, Q(R,R)) < 2−k} and Ak = {x ∈ H : xd ∈ (R1 − 2−k, R1]}.
Note that uk = 0 on QcR,k and by (2.14), uk(z) ≤ 0 for every k ≥ 1 and zd ≤ R1 − 2−k.
Moreover, for z ∈ VR, by (2.13),

L1uk(z) = (∆ + ∆̂α/2)uk(z) = gk ∗ (∆ + ∆̂α/2)(hα/2 −R
α/2−p
1 hp)(z) ≥ −c1R−α/2.
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Therefore, using these observations, (2.3) and (2.14), we have for every x ∈ VR,

uk(x) = −Ex

[∫ τ1
VR

0

L1uk(X1
t )dt

]
+ Ex

[
uk

(
X1
τ1
VR

)]
≤ c1R

−α/2Ex[τ1VR ] + Ex

[
uk

(
X1
τ1
VR

)
: X1

τ1
VR

∈ QR,k \Q(R,R1)
]

+Ex

[
uk

(
X1
τ1
VR

)
: X1

τ1
VR

∈ Ak
]

≤ c1R
−α/2Ex[τ1VR ] + sup

z∈Ak
|uk(z)| Px

(
X1
τ1
VR

∈ Ak
)

+

(
sup

z∈QR,k\Q(R,R1)

uk(z)

)
Px

(
X1
τ1
VR

∈ QR,k \Q(R,R1)
)

≤ c1R
−α/2Ex[τ1VR ] + sup

z∈Ak
|uk(z)|+

(
sup

z∈QR,k
hα/2(z)

)
Px

(
X1
τ1
VR

∈ QR,k \Q(R,R1)
)

≤ c1R
−α/2Ex[τ1VR ] + sup

z∈Ak
|uk(z)|+Rα/2Px

(
X1
τ1
VR

∈ QR,k \Q(R,R1)
)
.

Since hα/2(z) − Rα/2−p1 hp(z) = 0 when zd = R1, limk→∞ supz∈Ak |uk(z)| = 0. Observe

that QR,k(R,R) \Q(R,R1)) decreases to Q(R,R) \Q(R,R1) as k →∞. We have

lim
k→∞

Px

(
X1
τ1
VR

∈ QR,k \Q1(R,R1)
)

= Px

(
X1
τ1
VR

∈ Q(R,R) \Q(R,R1)
)

= Px

(
X1
τ1
VR

∈ Q(R,R) \Q(R,R1)
)
,

where the last equality is due to an application of the Lévy system (1.13) and the fact
that ∂Q(R,R) has zero Lebesgue measure. Therefore for x ∈ Q(R/2, R/2)\Q(R/2, 2R1),
since xd ≥ 2R1,

(1− 2p−α/2)(xd)
α/2 ≤ (xd)

α/2(1− (R1/xd)
α/2−p) = lim

k→∞
uk(x)

≤ c1R
−α/2Ex[τ1VR ] +Rα/2Px

(
X1
τ1
VR

∈ Q(R,R) \Q(R,R1)
)
,

which implies

(xd)
α/2 ≤ c1

R−α/2

1− 2p−α/2
Ex[τ1VR ] +

Rα/2

1− 2p−α/2
Px

(
X1
τ1
VR

∈ Q(R,R) \Q(R,R1)
)
. (2.15)

Now take a non-negative function φ in C∞c (Rd) such that 0 ≤ φ ≤ 1,

φ(y) =


0 if |ỹ| < 1/4 or |yd| > 2,

1 if 1/2 ≤ |ỹ| ≤ 2 and |yd| < 1,

0 if |ỹ| > 3,

and that
∑
i,j |

∂2

∂yi∂yj
φ| is uniformly bounded. Define φR(y) = φ( yR ). Then we have

0 ≤ φR ≤ 1,

φR(y) =


0 if |ỹ| < R/4 or |yd| > 2R,

1 if R/2 ≤ |ỹ| ≤ 2R and |yd| < R,

0 if |ỹ| > 3R,

and sup
y∈Rd

∑
i,j

∣∣∣∣ ∂2

∂yi∂yj
φR(y)

∣∣∣∣ < c2R
−2.

(2.16)
Using this inequality, by the argument leading to (2.4), we get supz∈Rd |L1φR(z)| ≤
c3R

−α for every k ≥ 1. Thus, by this and the fact that ∆̂α/2hα/2 ≤ 0 on Q(2R/3, 2R/3)
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by Lemma 2.3, we obtain that for R > 8R1 and y ∈ Q(2R/3, 2R/3),

(∆ + ∆̂α/2)
(
hα/2(y) +

2Rα/2

1− 2p−α/2
φR(y)

)
≤ −α

2
(1− α

2
)(yd)

α
2−2 + c4R

α/2R−α ≤ c4R−α/2.

(2.17)

For any k ≥ 1, define

vk(z) := gk ∗
(
hα/2 +

2Rα/2

1− 2p−α/2
φR

)
(z) ∈ C∞c (Rd).

Put ΩR := Q(R,R/2)\(Q(R,R1)∪Q(R/2, R/2)). By (2.17), we have L1vk(y) ≤ c4R−α/2 for
all y ∈ VR. Thus, using this and (2.3), we have that for any k ≥ 1 and x ∈ Q(R/4, R/2) \
Q(R/4, 2R1),

vk(x) = −Ex

[∫ τ1
VR

0

L1vk(X1
t )dt

]
+ Ex

[
vk

(
X1
τ1
VR

)]
≥ −c4R−α/2Ex[τ1VR ] + Ex

[
vk

(
X1
τ1
VR

)
: X1

τ1
VR

∈ ΩR

]
.

Letting k → ∞ and using (2.16), we get that for any x ∈ Q(R/4, R/2) \ Q(R/4, 2R1)

(where φR(x) = 0),

(xd)
α/2 =

(
hα/2 +

2Rα/2

1− 2p−α/2
φR

)
(x) = lim

k→∞
vk(x)

≥ −c4R−α/2Ex[τ1VR ] + Ex

[(
hα/2 +

2Rα/2

1− 2p−α/2
φR

)(
X1
τ1
VR

)
: X1

τ1
VR

∈ ΩR

]
≥ −c4R−α/2Ex[τ1VR ] +

2Rα/2

1− 2p−α/2
Px

(
X1
τ1
VR

∈ ΩR

)
. (2.18)

Combining (2.15) and (2.18), we get

(xd)
α/2 ≤ c1R

−α/2

1− 2p−α/2
Ex[τ1VR ] +

Rα/2

1− 2p−α/2
Px

(
X1
τ1
VR

∈ Q(R,R) \Q(R,R/2)
)

+
Rα/2

1− 2p−α/2
Px

(
X1
τ1
VR

∈ ΩR

)
≤ c1R

−α/2

1− 2p−α/2
Ex[τ1VR ] +

Rα/2

1− 2p−α/2
Px

(
X1
τ1
VR

∈ Q(R,R) \Q(R,R/2)
)

+
1

2

(
c4R

−α/2Ex[τ1VR ] + (xd)
α/2
)
.

Therefore, we conclude that

(xd)
α/2 ≤

(
2c1

1− 2p−α/2
+ c4

)
R−α/2Ex[τ1VR ]+

2Rα/2

1− 2p−α/2
Px

(
X1
τ1
VR

∈ Q(R,R) \Q(R,R/2)
)
.

(2.19)
On the other hand, by the Lévy system of X1,

Px

(
X1
τ1
VR

∈ Q(R,R) \Q(R,R/2)
)
≥ Px

(
X1
τ1
VR

∈ Q(R,R) \Q(R, 3R/4)
)

= Ex

[∫ τ1
VR

0

(∫
Q(R,R)\Q(R,3R/4)

J1(X1
s , z)dz

)
ds

]
≥ c5R−αEx[τ1VR ].

This together with (2.19) establishes the lemma. 2
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Global heat kernel estimates for ∆ + ∆α/2 in half-space-like domains

3 Upper bound heat kernel estimates on half-space

In this section we will establish the desired large time upper bound for p1H(t, x, y).

Lemma 3.1. For any t0 > 0 and R > 0, there exists c = c(α, t0, R) > 1 such that for
t ≥ t0 and x ∈ H with δH(x) = xd ≥ R, we have

Px(τ1H > t) ≤ c
(
δH(x)α/2√

t
∧ 1

)
.

Proof. Clearly, we can assume R ≤ t
1/α
0 and we only need to show the lemma for

R ≤ δH(x) < t1/α. Let u(x) = (x+d )α/2 +1 and U(r) := {x ∈ H;xd < r}. By (2.7), for every
x ∈ H with δH(x) ≥ R,

(∆ + ∆̂α/2)u(x) = −α
2

(1− α

2
)(xd)

α/2−2 < 0.

Using the same approximation argument as in the proof of Lemma 2.4 with uk(z) :=

(gk ∗u)(z) where gk is the function defined in the proof of Lemma 2.4 and letting k →∞,
we see that for x ∈ H with r > δH(x) = xd > R,

(1 +R−α/2)x
α/2
d ≥ xα/2d + 1 = u(x) ≥ Ex

[
u
(
X1
τ1
U(r)

)]
≥ rα/2Px

(
X1
τ1
U(r)
∈ H \ U(r)

)
.

Applying this and Proposition 2.1, we get that for R < δH(x) < t1/α,

Px
(
τ1H > t

)
≤ Px

(
τ1U(t1/α) > t

)
+ Px

(
X1
τ1

U(t1/α)

∈ H \ U(t1/α)

)
≤ 1

t
Ex

[
τ1U(t1/α)

]
+ (1 +R−α/2)

δH(x)α/2√
t

≤ c1
1

t
(t1/α ∧ t1/2)(δH(x)α/2 ∧ δH(x)) + (1 +R−α/2)

δH(x)α/2√
t

≤ c2
δH(x)α/2√

t
.

2

Lemma 3.2. For every t0 and R > 0, there exists c = c(α, t0, R) > 1 such that for every
(t, x, y) ∈ [t0,∞)×H×H with δH(x) ≥ R,

p1H(t, x, y) ≤ ct−d/α
(
δH(x)α/2√

t
∧ 1

)
.

Proof. Let C(t) := supz,w∈Rd p
1(t/3, z, w). By the semigroup property and symmetry,

p1H(t, x, y) =

∫
H

∫
H

p1H(t/3, x, z)p1H(t/3, z, w)p1H(t/3, w, y)dzdw

≤ C(t)Px(τ1H > t/3)Py(τ1H > t/3).

Now the lemma follows from Theorem 1.1 and Lemma 3.1. 2

The next lemma and its proof are given in [6] (also see [4, Lemma 2] and [5, Lemma
2.2]).

Lemma 3.3. Suppose that U1, U3, E are open subsets of Rd with U1, U3 ⊂ E and
dist(U1, U3) > 0. Let U2 := E \ (U1 ∪ U3). If x ∈ U1 and y ∈ U3, then for all t > 0,

p1E(t, x, y) ≤ Px
(
X1
τ1
U1

∈ U2

)(
sup

s<t, z∈U2

p1E(s, z, y)

)
+ Ex

[
τ1U1

](
sup

u∈U1, z∈U3

J1(u, z)

)
.

(3.1)
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Global heat kernel estimates for ∆ + ∆α/2 in half-space-like domains

Lemma 3.4. Suppose that t0, R > 0. There exists c = c(α, t0, R) > 0 such that for every
(t, x, y) ∈ [t0,∞)×H×H with δH(x) ≥ R,

p1H(t, x, y) ≤ c
(
δH(x)α/2√

t
∧ 1

)(
t−d/α ∧ t

|x− y|d+α

)
.

Proof. By Theorem 1.1, Proposition 1.2 and Lemma 3.2, without loss of generality we
can assume R = t

1/α
0 and it is enough to prove the lemma for t1/α0 ≤ δH(x) ≤ (16)−1t1/α

and |x − y| ≥ t1/α. Let x0 = (x̃, 0), U1 := B(x0, 8
−1t1/α) ∩ H, U3 := {z ∈ H : |z − x| >

|x− y|/2} and U2 := H \ (U1 ∪ U3).
Let X1 = (X1,1, . . . , X1,d) and, for any open interval (β, γ) in R, let τ̂(β,γ) := inf{t >

0 : X1,d /∈ (β, γ)}. Note that, by Proposition 2.1 and the assumption that 16−1t1/α ≥
δH(x) = xd ≥ t1/α0 , we have

Ex[τ1U1
] ≤ Exd [τ̂(0,t1/α)] ≤ c1

√
t x

α/2
d = c1

√
t δH(x)α/2. (3.2)

Since U1 ∩ U3 = ∅ and

|z − x| > |x− y|
2

≥ 1

2
t1/α for z ∈ U3,

we have for u ∈ U1 and z ∈ U3,

|u− z| ≥ |z − x| − |x0 − x| − |x0 − u| ≥ |z − x| − 4−1t1/α ≥ 1

2
|z − x| ≥ 1

4
|x− y|. (3.3)

Thus,

sup
u∈U1, z∈U3

J1(u, z) ≤ sup
(u,z):|u−z|≥ 1

4 |x−y|
J1(u, z) ≤ c3|x− y|−d−α. (3.4)

If z ∈ U2,

3

2
|x− y| ≥ |x− y|+ |x− z| ≥ |z − y| ≥ |x− y| − |x− z| ≥ |x− y|

2
≥ 2−1t1/α. (3.5)

By Theorem 1.1 and (3.5),

sup
s≤t, z∈U2

p1(s, z, y) ≤ c4 sup
s≤t

|x−y|/2≤|z−y|

(
sJ1(z, y)

)
+ c4 sup

|x−y|/2≤|z−y|≤
√
s≤
√
t

s−d/2

+ c4 sup
s≤t√

s∧(|x−y|/2)≤|z−y|≤1

s−d/2e−c5|z−y|
2/s

≤ c6t|x− y|−d−α + 2d+αc4

(
sup
s≤t

sα/2

|x− y|d+α

)
+ c4

(
sup
a≥1

a−d/2e−c5a
)

sup
|x−y|/2≤|z−y|≤1

|z − y|−d

≤ c7t|x− y|−d−α + c8 sup
|x−y|/2≤|z−y|≤1

|z − y|α

|x− y|d+α
≤ c9t|x− y|−d−α. (3.6)

Applying Lemma 3.3, (3.2), (3.4) and (3.6), we obtain,

p1H(t, x, y) ≤ c10Ex[τ1U1
]|x− y|−d−α + c11Px

(
X1
τ1
U1

∈ U2

)
t|x− y|−d−α

≤ c12
√
t δH(x)α/2|x− y|−d−α + c11Px

(
X1
τ1
U1

∈ U2

)
t|x− y|−d−α.

Finally, applying Theorem 2.2 with U = U1 and r = 8−1t1/α ≥ 2t0
1/α, we have

Px

(
X1
τ1
U1

∈ U2

)
≤ Px

(
X1
τ1
U1

∈ B(x0, 8
−1t1/α)c

)
≤ c14

1

t

∫
U1

G1
U1

(x, y)dy = c14
1

t
Ex[τ1U1

].

Now applying (3.2), we have proved the lemma. 2
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Lemma 3.5. For every R > 0 and t0 > 0, there exists a constant c = c(R,α, t0) such
that for all (t, x, y) ∈ [t0,∞)×H×H with δH(x) ∧ δH(y) ≥ R.

p1H(t, x, y) ≤ c

(
δH(x)α/2√

t
∧ 1

)(
δH(y)α/2√

t
∧ 1

)(
t−d/α ∧ t

|x− y|d+α

)
.

Proof. By Lemma 3.4 and Theorem 1.1, we only need to prove the lemma for δH(x) ∨
δH(y) ≤ t1/α. Denote by q(t, x, y) the transition density of the α-stable process Y in Rd.
It is well-known (see, e.g., [2, 9]) that

q(t, x, y) �
(
t−d/α ∧ t

|x− y|d+α

)
on (0,∞)×Rd ×Rd. (3.7)

By Lemma 3.4 and the lower bound estimate of q(t, x, y) in (3.7), there is a constant
c1 > 0 so that

p1H(t/2, x, z) ≤ c1

(
δH(x)α/2√

t
∧ 1

)
q(t/2, x, z) and p1H(t/2, z, y)

≤ c1

(
δH(y)α/2√

t
∧ 1

)
q(t/2, y, z).

Thus, by semigroup property and the upper bound estimate of q(t, x, y) in (3.7),

p1H(t, x, y) =

∫
H

p1H(t/2, x, z)p1H(t/2, z, y)dz

≤ c22
(
δH(x)α/2√

t
∧ 1

)(
δH(y)α/2√

t
∧ 1

)∫
H

q(t/2, x, z)q(t/2, y, z)dz

≤ c22
(
δH(x)α/2√

t
∧ 1

)(
δH(y)α/2√

t
∧ 1

)
q(t, x, y)

≤ c3
(
δH(x)α/2√

t
∧ 1

)(
δH(y)α/2√

t
∧ 1

)(
t−d/α ∧ t

|x− y|d+α

)
.

2

To get the sharp upper bound estimate on pH, we need two results that will be used
several times in this paper. Let ed denote the unit vector in the positive direction of the
xd-axis in Rd.

Lemma 3.6. Let D be an open set in Rd so that Hb ⊂ D ⊂ H for some b > 0. For
any t0 ≥ b2 and M > 0, there exists a constant c = c(α,M, t0, b) > 1 such that for any
a ∈ (0,M ] and (t, x) ∈ [t0,∞)×D,

(1 ∧ δD(x))

(
1 ∧ δH(x0) ∧ (a−1δH(x0))α/2√

t

)
≤ c

(
1 ∧ δD(x) ∧ (a−1δD(x))α/2√

t

)
,

(1 ∧ δD(x))

(
1 ∧ δHb(x0) ∧ (a−1δHb(x0))α/2√

t

)
≥ c−1

(
1 ∧ δD(x) ∧ (a−1δD(x))α/2√

t

)
where x0 := x+ 2t

1/2
0 ed.

Proof. Note that δD(x) + t
1/2
0 ≤ δHb(x0) ≤ δD(x) + 2t

1/2
0 and δD(x) + 2t

1/2
0 ≤ δH(x0) ≤

δD(x) + 3t
1/2
0 . When δD(x) > t

1/2
0 , we have δD(x) ≤ δHb(x0) < δH(x0) ≤ 4δD(x). Thus in
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this case, the conclusion of the lemma is trivial. When δD(x) ≤ t1/20 , using the fact t ≥ t0
and a ∈ (0,M ], we have

(1 ∧ δD(x))

(
1 ∧ δH(x0) ∧ (a−1δH(x0))α/2√

t

)
� (1 ∧ δD(x))

(
1 ∧ δHb(x0) ∧ (a−1δHb(x0))α/2√

t

)
� δD(x)

(
1 ∧ 1√

t

)
� 1 ∧ δD(x)√

t
� 1 ∧ δD(x) ∧ (a−1δD(x))α/2√

t
.

The proof is now complete. 2

The next result will allow us to “push" points inD a fixed distance away fromD when
doing heat kernel estimates. Such a strategy has been previously used in [12], where
global Dirichlet heat kernel estimates are obtained for symmetric α-stable processes in
half-space-like C1,1-open sets as well as in C1,1 exterior open sets.

Lemma 3.7. Suppose that D is a half-space-like C1,1 domain with C1,1 characteristics
(R0,Λ0) and Hb ⊂ D ⊂ H for some b > 0 such that the path distance in D is comparable
to the Euclidean distance with characteristic λ0. Fix t0 > b2 and define for x ∈ D,
x0 := x+2t

1/2
0 ed. Then there exists c = c(b, t0, R0,Λ0, α, λ0) ≥ 1 such that for all x, z ∈ D,

c−1 (1 ∧ δD(x)) ≤ p1D(t0, x, z)

p1D(t0, x0, z)
≤ c (1 ∧ δD(x)) . (3.8)

Proof. First observe that
δD(x0) ≥ δH(x0) > t

1/2
0 , (3.9)

and |x− x0| = 2t
1/2
0 . Let C2 be the constant in Theorem 1.3 (i) with T = t0. By Theorem

1.3(i) and (3.9), we see that

c−11

(
1 ∧ δD(x)√

t0

)(
h1C2

(t0, x, z)

h11/C2
(t0, x0, z)

)
≤ p1D(t0, x, z)

p1D(t0, x0, z)
≤ c1

(
1 ∧ δD(x)√

t0

)(
h11/C2

(t0, x, z)

h1C2
(t0, x0, z)

)
.

(3.10)

For z ∈ B(x0, 2
−1t

1/2
0 ) we have

3

2
t
1/2
0 ≤ |x0 − x| − |z − x0| ≤ |x− z| ≤ |z − x0|+ |x0 − x| = |z − x0|+ 2t

1/2
0 ≤ 5

2
t
1/2
0 .

Similarly, for z ∈ B(x, 2−1t
1/2
0 ) we have 3

2 t
1/2
0 ≤ |x− z| ≤ 5

2 t
1/2
0 . Thus in these cases, (3.8)

follows from (3.10) and Proposition 1.2.
In the case z 6∈ B(x, 2−1t

1/2
0 ) ∪ B(x0, 2

−1t
1/2
0 ), we have |x − z| ≤ |z − x0| + |x0 − x| =

|z − x0|+ 2t
1/2
0 ≤ 5|z − x0| and |x0 − z| ≤ |z − x|+ |x0 − x| = |z − x|+ 2t

1/2
0 ≤ 5|z − x|. So

5−1|x0 − z| ≤ |z − x| ≤ 5|x0 − z|. Therefore using this and Proposition 1.2, we have

h11/C2
(t0, x, z)

h1C2
(t0, x0, z)

≤ c2 and
h1C2

(t0, x, z)

h11/C2
(t0, x0, z)

≥ c3.

2

Theorem 3.8. Let t0 be a positive constant. Then there exists a constant c = c(α, t0) > 0

such that for all t ∈ [t0,∞) and x, y ∈ H,

p1H(t, x, y) ≤ c
(
δH(x) ∧ δH(x)α/2√

t
∧ 1

)(
δH(y) ∧ δH(y)α/2√

t
∧ 1

)(
t−d/α ∧ t

|x− y|d+α

)
.
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Proof. Define for x and y in D,

x0 := x+ 2t
1/2
0 ed and y0 := y + 2t

1/2
0 ed . (3.11)

By the semigroup property and (3.8), we have

p1H(t, x, y) =

∫
H

∫
H

p1H(t0, x, z)p
1
H(t− 2t0, z, w)p1H(t0, w, y)dzdw

� (1 ∧ δH(x)) (1 ∧ δH(y))

∫
H

∫
H

p1H(t0, x0, z)p
1
H(t− 2t0, z, w)pH(t0, w, y0)dzdw

= (1 ∧ δH(x)) (1 ∧ δH(y)) p1H(t, x0, y0). (3.12)

By Lemma 3.5 and the fact |x0 − y0| = |x− y|, we have

p1H(t, x0, y0) ≤ c1
(
δH(x0)α/2√

t
∧ 1

)(
δH(y0)α/2√

t
∧ 1

)(
t−d/α ∧ t

|x− y|d+α

)
.

This together with Lemma 3.6 (with a = 1 there) and (3.12) proves the theorem. 2

4 Lower bound heat kernel estimates on half-space

In this section we establish the desired sharp large time lower bound on p1H(t, x, y).
We will use some ideas from [4, 6].

Lemma 4.1. For any positive constant t0, there exists c = c(t0, α) > 0 such that for any
t ≥ t0 and y ∈ Rd,

Py

(
τ1B(y,8−1t1/α) > t/3

)
≥ c.

Proof. By [11, Proposition 6.2], there exists ε = ε(t0, α) > 0 such that for every t ≥ t0,

inf
y∈Rd

Py

(
τ1B(y,16−1t1/α) > εt

)
≥ 1

2
.

Suppose ε < 1
3 , then by the parabolic Harnack inequality in [11, 23],

c1 p
1
B(y,8−1t1/α)(εt, y, w) ≤ p1B(y,8−1t1/α)(t/3, y, w) for w ∈ B(y, 16−1t1/α),

where the constant c1 = c1(t0, α) > 0 is independent of y ∈ Rd. Thus

Py

(
τ1B(y,8−1t1/α) > t/3

)
=

∫
B(y,8−1t1/α)

p1B(y,8−1t1/α)(t/3, y, w)dw

≥ c1

∫
B(y,16−1t1/α)

p1B(y,8−1t1/α)(εt, y, w)dw ≥ c1
2
.

2

The next result holds for any symmetric discontinuous Hunt process that possesses
a transition density and whose Lévy system admits a jumping density kernel. The proof
is the same as that of [7, Lemma 3.3] and so it is omitted here.

Lemma 4.2. Suppose that U1, U2, U are open subsets of Rd with U1, U2 ⊂ U and
dist(U1, U2) > 0. If x ∈ U1 and y ∈ U2, then for all t > 0,

p1U (t, x, y) ≥ tPx(τ1U1
> t)Py(τ1U2

> t) inf
u∈U1, z∈U2

J1(u, z) . (4.1)
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Lemma 4.3. Suppose that t0 > 0. There exists c = c(t0, α) > 0 such that for all t ≥ t0
and u, v ∈ Rd with |u− v| ≥ t1/α/2,

p1B(u,t1/α)∪B(v,t1/α)(t/3, u, v) ≥ c t |u− v|−d−α.

Proof. Let U = B(u, t1/α) ∪ B(v, t1/α), U1 = B(u, t1/α/8), U2 = B(v, t1/α/8) and K =

infw∈U1, z∈U2
j1(|w − z|). We have by Lemma 4.2 that

p1U (t/3, u, v) ≥ Kt

3
Pu(τ1U1

> t/3)Pv(τ
1
U2
> t/3) .

Moreover, for (w, z) ∈ U1×U2, |w−z| ≤ |u−v|+|w−u|+|z−v| ≤ |u−v|+t1/α/4 ≤ 3
2 |u−v|.

Hence K ≥ c1|u− v|−d−α. Thus by Lemma 4.1,

Kt

3

(
P0(τ1B(0,t1/α/8) > t/3)

)2
≥ c2 t |u− v|−d−α.

2

The next result follows from [23, Proposition 3.4].

Lemma 4.4. There exist R2 = R2(α) > 1 and c = c(α) > 0 such that for all t ≥ Rα2 ,

inf
x,y∈B(0,6t1/α)

p1B(0,12t1/α)(t/3, x, y) ≥ c t−d/α.

For the remainder of this section, we define R3 := R1 ∨ R2, where R1 > 2 is the
constant in Lemma 2.4. Recall that Qx(a, b) is defined in (2.8).

Lemma 4.5. There is a positive constant c = c(α) such that for all (t, x) ∈ ((4R1)α,∞)×
H with 2R1 < δH(x) < t1/α/2,

Px(τ1Qx(2t1/α,2t1/α) > t/3) ≥ cδH(x)α/2√
t

.

Proof. Without loss of generality we assume that x̃ = 0̃. Recall that Q(a, b) = Q0(a, b).
Let V (t) := Q(t1/α/2, t1/α/2) \Q(t1/α/2, R1). By Lemma 2.4, Lemma 4.1 and the strong
Markov property,

Px

(
τ1Q(2t1/α,2t1/α) > t/3

)
≥ Px

(
τ1Q(2t1/α,2t1/α) > t/3, X1

τ1
V (t)
∈ Q(t1/α, t1/α) \Q(t1/α, t1/α/2)

)
= Ex

[
PX1

τ1
V (t)

(
τ1Q(2t1/α,2t1/α) > t/3

)
: X1

τ1
V (t)
∈ Q(t1/α, t1/α) \Q(t1/α, t1/α/2)

]
≥ Ex

[
PX1

τ1
V (t)

(
τ1B(X1

τ1
V (t)

, 4−1t1/α) > t/3
)

: X1
τ1
V (t)
∈ Q(t1/α, t1/α) \Q(t1/α, t1/α/2)

]
≥ c1Px

(
X1
τ1
V (t)
∈ Q(t1/α, t1/α) \Q(t1/α, 2−1t1/α)

)
≥ c2

δH(x)α/2√
t

.

This proves the Lemma. 2

Recall that ed denote the unit vector in the positive direction of the xd-axis in Rd.

Lemma 4.6. There is a positive constant c = c(α) such that for all (t, x, y) ∈ [(4R3)α,∞)×
H×H with δH(x) ∧ δH(y) ≥ 2R3,

p1H(t, x, y) ≥ c
(
δH(x)α/2√

t
∧ 1

)(
δH(y)α/2√

t
∧ 1

)(
t−d/α ∧ t

|x− y|d+α

)
.
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Proof. Fix x, y ∈ H. Let x0 = (x̃, 0), y0 = (ỹ, 0), ξx := x+ 32t1/αed and ξy := y + 32t1/αed.
If 2R3 ≤ δH(x) < t1/α/2, by Lemmas 4.1, 4.2 and 4.5,∫

B(ξx,2t1/α)

p1H(t/3, x, u)du

≥tPx
(
τ1Qx(2t1/α,2t1/α) > t/3

) inf
v∈Qx(2t1/α,2t1/α)

w∈B(ξx,4t
1/α)

J1(v, w)

 ∫
B(ξx,2t1/α)

Pu

(
τ1B(ξx,4t1/α)

> t/3
)
du

≥c1tPx
(
τ1Qx(2t1/α,2t1/α) > t/3

)
t−d/α−1P0

(
τ1B(0,t1/α/8) > t/3

)
|B(ξx, 2t

1/α)|

≥c2Px
(
τ1Qx(2t1/α,2t1/α) > t/3

)
≥ c3

δH(x)α/2√
t

.

On the other hand, if δH(x) ≥ t1/α/2 ≥ 2R3, by Lemmas 4.1 and 4.2,∫
B(ξx,2t1/α)

p1H(t/3, x, u)du

≥tPx
(
τ1B(x,8−1t1/α)∩H > t/3

) inf
v∈B(x0,2t

1/α)∩H
w∈B(ξx,4t

1/α)

J1(v, w)

 ∫
B(ξx,2t1/α)

Pu

(
τ1B(ξx,4t1/α)

> t/3
)
du

≥c4tPx
(
τ1B(x,8−1t1/α) > t/3

)
t−d/α−1P0

(
τ1B(0,t1/α/8) > t/3

)
|B(ξx, 2t

1/α)|

≥c5Px
(
τ1B(x,8−1t1/α) > t/3

)
≥ c6.

Thus ∫
B(ξx,2t1/α)

p1H(t/3, x, u)du ≥ c7
(

1 ∧ δH(x)α/2√
t

)
, (4.2)

and similarly, ∫
B(ξy,2t1/α)

p1H(t/3, y, u)du ≥ c7
(

1 ∧ δH(y)α/2√
t

)
. (4.3)

Now we deal with the cases |x− y| ≥ 5t1/α and |x− y| < 5t1/α separately.

Case 1: Suppose that |x − y| ≥ 5t1/α. Note that by the semigroup property and
Lemma 4.3,

p1H(t, x, y)

≥
∫
B(ξy,2t1/α)

∫
B(ξx,2t1/α)

p1H(t/3, x, u)p1H(t/3, u, v)p1H(t/3, v, y)dudv

≥
∫
B(ξy,2t1/α)

∫
B(ξx,2t1/α)

p1H(t/3, x, u)p1B(u,t1/α)∪B(v,t1/α)(t/3, u, v)p1H(t/3, v, y)dudv

≥c8t
(

inf
(u,v)∈B(ξx,2t1/α)×B(ξy,2t1/α)

|u− v|−d−α
)∫

B(ξy,2t1/α)

∫
B(ξx,2t1/α)

p1H(t/3, x, u)p1H(t/3, v, y)dudv.

It then follows from (4.2)–(4.3) that

p1H(t, x, y) ≥ c9t
(

inf
(u,v)∈B(ξx,2t1/α)×B(ξy,2t1/α)

|u− v|−d−α
)(

δH(x)α/2√
t

∧ 1

)(
δH(y)α/2√

t
∧ 1

)
.

(4.4)
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Using the assumption |x−y| ≥ 5t1/α we get that, for u ∈ B(ξx, 2t
1/α) and v ∈ B(ξy, 2t

1/α),
|u− v| ≤ 4t1/α + |x− y| ≤ 2|x− y|. Hence

inf
(u,v)∈B(ξx,2t1/α)×B(ξy,2t1/α)

|u− v|−d−α ≥ c10|x− y|−d−α. (4.5)

By (4.4) and (4.5), we conclude that for |x− y| ≥ 5t1/α

p1H(t, x, y) ≥ c11
(
δH(x)α/2√

t
∧ 1

)(
δH(y)α/2√

t
∧ 1

)
t|x− y|−d−α.

Case 2: Suppose |x−y| < 5t1/α. In this case, for every (u, v) ∈ B(ξx, 2t
1/α)×B(ξy, 2t

1/α),
|u − v| ≤ 9t1/α. Thus, using the fact that δH(ξx) ∧ δH(ξy) ≥ 32t1/α, there exists w0 ∈ H
such that

B(ξx, 2t
1/α) ∪B(ξy, 2t

1/α) ⊂ B(w0, 6t
1/α) ⊂ B(w0, 12t1/α) ⊂ H. (4.6)

Now, by the semigroup property and (4.6), we get

p1H(t, x, y)

≥
∫
B(ξy,2t1/α)

∫
B(ξx,2t1/α)

p1H(t/3, x, u)p1B(w0,8t1/α)
(t/3, u, v)p1H(t/3, v, y)dudv

≥
(

inf
u,v∈B(w0,6t1/α)

p1B(w0,12t1/α)
(t/3, u, v)

)∫
B(ξy,2t1/α)

∫
B(ξx,2t1/α)

p1H(t/3, x, u)p1H(t/3, v, y)dudv.

It then follows from (4.2)–(4.3) and Lemma 4.4 that

p1H(t, x, y) ≥ c12
(
δH(x)α/2√

t
∧ 1

)(
δH(y)α/2√

t
∧ 1

)
t−d/α.

Combining these two cases, we have proved the lemma. 2

Theorem 4.7. There exists a positive constant c = c(α) such that for all t ∈ [(4R3)α,∞)

and x, y ∈ H,

p1H(t, x, y) ≥ c
(

1 ∧ δH(x) ∧ δH(x)α/2√
t

)(
1 ∧ δH(y) ∧ δH(y)α/2√

t

)(
t−d/α ∧ t

|x− y|d+α

)
.

Proof. Let t0 = (4R3)2 > (4R3)α and let x0 and y0 be as in (3.11). By the semigroup
property and (3.8) we have

p1H(t, x, y) =

∫
H

∫
H

p1H(t0, x, z)p
1
H(t− 2t0, z, w)p1H(t0, w, y)dzdw

� (1 ∧ δH(x)) (1 ∧ δH(y))

∫
H

∫
H

p1H(t0, x0, z)p
1
H(t− 2t0, z, w)p1H(t0, w, y0)dzdw

= (1 ∧ δH(x)) (1 ∧ δH(y)) p1H(t, x0, y0). (4.7)

Since, δH(x0) ∧ δH(y0) > t
1/2
0 = 4R3, by Lemma 4.6 and the fact |x0 − y0| = |x− y|,

p1H(t, x0, y0) ≥ c1
(
δH(x0)α/2√

t
∧ 1

)(
δH(y0)α/2√

t
∧ 1

)(
t−d/α ∧ t

|x− y|d+α

)
≥ c1

(
δH√t0

(x0)α/2
√
t

∧ 1

)(
δH√t0

(y0)α/2
√
t

∧ 1

)(
t−d/α ∧ t

|x− y|d+α

)
.

The conclusion of the theorem now follows from the above inequality, Lemma 3.6 and
(4.7). 2
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5 Heat kernel estimates on half-space-like domains

In this section, we will establish the main result of this paper. In the remainder
of this paper we will always assume that D is a half-space-like C1,1 domain with C1,1

characteristics (R0,Λ0) and Hb ⊂ D ⊂ H for some b > 0 such that the path distance in
D is comparable to the Euclidean distance with characteristic λ0. Fix t0 := 1 ∨ b2 and
for x, y ∈ D, let x0 and y0 be defined as in (3.11). Using Theorem 1.3(i), the following
result can be proved in a similar way as that for Lemma 3.7.

Lemma 5.1. For any M > 0, there exists c = c(b, R0,Λ0, α, λ0) ≥ 1 such that for all
a ∈ (0,M ] and x, z ∈ D,

c−1 (1 ∧ δD(x)) (1 ∧ δD(z))ha25C2
(t0, x0, z)

≤ paD(t0, x, z) ≤ c (1 ∧ δD(x)) (1 ∧ δD(z))ha1/(25C2)
(t0, x0, z), (5.1)

where C2 is the constant in Theorem 1.3(i) with T = t0.

Combining Theorem 1.3(i), Theorems 3.8 and 4.7, we get that for every T > 0, there
exist constants ci = ci(α, T ) ≥ 1, i = 1, 2, such that for all (t, x, y) ∈ (0, T ]×H×H,

c−11

(
1 ∧ δH(x)√

t

)(
1 ∧ δH(y)√

t

)(
t−d/2e−c2|x−y|

2/t +

(
t

|x− y|d+α
∧ t−d/2

))
≤ p1H(t, x, y) ≤ c1

(
1 ∧ δH(x)√

t

)(
1 ∧ δH(y)√

t

)(
t−d/2e−|x−y|

2/(c2t) +

(
t

|x− y|d+α
∧ t−d/2

))
and for all t ∈ [T,∞) and x, y in H,

c−11

(
1 ∧ δH(x) ∧ δH(x)α/2√

t

)(
1 ∧ δH(y) ∧ δH(y)α/2√

t

)(
t−d/α ∧ t

|x− y|d+α

)
≤ p1H(t, x, y) ≤ c1

(
1 ∧ δH(x) ∧ δH(x)α/2√

t

)(
1 ∧ δH(y) ∧ δH(y)α/2√

t

)(
t−d/α ∧ t

|x− y|d+α

)
.

Now using (1.10), we established Theorem 1.4 for D = H in the form of (1.5)–(1.6).

Theorem 5.2. For every T > 0, there exist c = c(α, T ) ≥ 1 and C3 = C3(α, T ) ≥ 1 such
that for all a > 0 and (t, x, y) ∈ (0, a2α/(α−2)T ]×H×H,

c−1
(

1 ∧ δH(x)√
t

)(
1 ∧ δH(y)√

t

)(
t−d/2e−C3|x−y|2/t +

(
aαt

|x− y|d+α
∧ t−d/2

))
≤ paH(t, x, y) ≤ c

(
1 ∧ δH(x)√

t

)(
1 ∧ δH(y)√

t

)(
t−d/2e−|x−y|

2/(C3t) +

(
aαt

|x− y|d+α
∧ t−d/2

))
and for all t ∈ [a2α/(α−2)T,∞) and x, y in H,

c−1
(

1 ∧ δH(x) ∧ (a−1δH(x))α/2√
t

)(
1 ∧ δH(y) ∧ (a−1δH(y))α/2√

t

)(
(aαt)−d/α ∧ aαt

|x− y|d+α

)
≤ paH(t, x, y)

≤ c
(

1 ∧ δH(x) ∧ (a−1δH(x))α/2√
t

)(
1 ∧ δH(y) ∧ (a−1δH(y))α/2√

t

)(
(aαt)−d/α ∧ aαt

|x− y|d+α

)
.

Now we are in a position to establish the main result of this paper.

Proof of Theorem 1.4. We first observe the following trivial inequalities

paHb(t, x, y) ≤ paD(t, x, y) ≤ paH(t, x, y), a > 0, (t, x, y) ∈ (0,∞)×Hb ×Hb. (5.2)
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Recall that t0 = 1 ∨ b2. It follows from Theorem 1.3 that we only need to prove the
theorem for t > 3t0. Now we suppose t > 3t0. For any x, y ∈ D, we define x0 and y0 as
in (3.11). By the semigroup property and Lemma 5.1, we have

paD(t, x, y) =

∫
D×D

paD(t0, x, z)p
a
D(t− 2t0, z, w)paD(t0, w, y)dzdw

≤ c1 (1 ∧ δD(x))(1 ∧ δD(y))

∫
D×D

ha1/(25C2)
(t0, x0, z)p

a
D(t− 2t0, z, w)ha1/(25C2)

(t0, w, y0)dzdw.

It follows from Theorem 5.2 with T = 1 and (5.2),

paD(t− 2t0, z, w) ≤ paH(t− 2t0, z, w)

≤ c2



(
1 ∧ δH(z)√

t−2t0

)(
1 ∧ δH(w)√

t−2t0

)(
(t− 2t0)−d/2e−|z−w|

2/(C3(t−2t0)) +
(
aα(t−2t0)
|z−w|d+α ∧ (t− 2t0)−d/2

))
,

for t ∈ (2t0, 2t0 + a2α/(α−2)];(
1 ∧ δH(z)∧(a−1δH(z))

α/2

√
t−2t0

)(
1 ∧ δH(w)∧(a−1δH(w))α/2√

t−2t0

)(
(aα(t− 2t0))−d/α ∧ aα(t−2t0)

|z−w|d+α

)
,

for t ≥ 2t0 + a2α/(α−2),

where C3 is the constant in Theorem 5.2 with T = 1. Put A = (C3 ∨ (25C2)) where C2 is
the constant in Theorem 1.3 with T = t0. Applying Theorem 5.2 with T = 1 again, we
get paD(t− 2t0, z, w) ≤ c3paH(t− 2t0, A

−2z,A−2w) and so, by Theorem 1.3

paD(t, x, y)

≤c4 (1 ∧ δD(x))(1 ∧ δD(y))

∫
D×D

ha1/A(t0, x0, z)p
a
H(t− 2t0, A

−2z,A−2w)ha1/A(t0, w, y0)dzdw

≤c4 (1 ∧ δD(x))(1 ∧ δD(y))

∫
H×H

ha1/A(t0, x0, z)p
a
H(t− 2t0, A

−2z,A−2w)ha1/A(t0, w, y0)dzdw

≤c5 (1 ∧ δD(x))(1 ∧ δD(y))

∫
H×H

(1 ∧ δH−b/2(z))(1 ∧ δH−b/2(x0))ha1/A(t0, x0, z)

× paH(t− 2t0, A
−2z,A−2w)(1 ∧ δH−b/2(y0))(1 ∧ δH−b/2(w))ha1/A(t0, w, y0)dzdw

≤c6 (1 ∧ δD(x))(1 ∧ δD(y))

∫
H−b/2×H−b/2

(1 ∧ δH−b/2(z))(1 ∧ δH−b/2(x0))

×
(
t
−d/2
0 e−|x0−z|2/(At0) +

(
aαt0

|x0 − z|d+α
∧ t−d/20

))
paH(t− 2t0, A

−2z,A−2w)

× (1 ∧ δH−b/2(y0))(1 ∧ δH−b/2(w))

(
t
−d/2
0 e−|w−y0|

2/(At0) +

(
aαt0

|w − y0|d+α
∧ t−d/20

))
dzdw.

Thus, by a change of variable ẑ = A−2z, ŵ = A−2w, and using (5.2) and Theorem 1.3,
the above is less than or equal to (1 ∧ δD(x))(1 ∧ δD(y)) times

c7

∫
H−b/(2A2)×H−b/(2A2)

(1 ∧ δH−b/(2A2)
(ẑ))(1 ∧ δH−b/(2A2)

(A−2x0))

×
(
t
−d/2
0 e−C2|A−2x0−ẑ|2/t0 +

(
aαt0

|A−2x0 − ẑ|d+α
∧ t−d/20

))
× paH−b/(2A2)

(t− 2t0, ẑ, ŵ)(1 ∧ δH−b/(2A2)
(A−2y0))

× (1 ∧ δH−b/(2A2)
(ŵ))

(
t
−d/2
0 e−C2|ŵ−A2y0|2/t0 +

(
aαt0

|ŵ −A−2y0|d+α
∧ t−d/20

))
dẑdŵ

≤c8
∫
H−b/(2A2)×H−b/(2A2)

paH−b/(2A2)
(t0, A

−2x0, ẑ)p
a
H−b/(2A2)

(t− 2t0, ẑ, ŵ)paH−b/(2A2)
(t0, ŵ, A

−2y0)dẑdŵ

=c8 p
a
H−b/(2A2)

(t, A−2x0, A
−2y0).
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Now using (1.10) and Theorem 5.2 with T = A−4(1 ∧M2α/(2−α))t0, we get

paD(t, x, y) ≤ c9(1 ∧ δD(x))(1 ∧ δD(y))pA
2(α−2)/αa

H−b/2
(A4t, x0, y0)

≤ c10



(1 ∧ δD(x))

(
δH−b/2 (x0)
√
t

∧ 1

)
(1 ∧ δD(y))

(
δH−b/2 (y0)√

t
∧ 1

)
×
(
t−d/2e−|x−y|

2/(c11t) +
(

aαt
|x−y|d+α ∧ t

−d/2
))

for t ∈ (3t0, t0a
−2α/(2−α)],

(1 ∧ δD(x))

(
δH−b/2 (x0)∧(a−1δH−b/2 (x0))

α/2

√
t

∧ 1

)
(1 ∧ δD(y))

×
(
δH−b/2 (y0)∧(a

−1δH−b/2 (y0))
α/2

√
t

∧ 1

)(
(aαt)−d/α ∧ aαt

|x−y|d+α

)
for t > t0/a

2α/(2−α)

≤ c12



(1 ∧ δD(x))
(
δH(x0)√

t
∧ 1
)

(1 ∧ δD(y))
(
δH(y0)√

t
∧ 1
)

×
(
t−d/2e−|x−y|

2/(c11t) +
(

aαt
|x−y|d+α ∧ t

−d/2
))

for t ∈ (3t0, t0a
−2α/(2−α)];

(1 ∧ δD(x))
(
δH(x0)∧(a−1δH(x0))

α/2

√
t

∧ 1
)

(1 ∧ δD(y))

×
(
δH(y0)∧(a−1δH(y0))

α/2

√
t

∧ 1
)(

(aαt)−d/α ∧ aαt
|x−y|d+α

)
for t > t0/a

2α/(2−α).

In the case when t > M2α/(2−α) t0a
2α/(α−2), since M2α/(2−α) t0a

2α/(α−2) ≥ t0, the
desired result follows from (5.2), Lemma 3.6, Theorem 5.2 and Remark 1.5(ii). In the
case when 3t0 < t ≤ M2α/(2−α) t0a

2α/(α−2), the desired upper bound follows from (5.2),
Theorem 5.2, Remark 1.5(ii) and [12, Lemma 2.2] (with α there replaced by 2).

The lower bound can be proved similarly. We omit the details. 2

6 Green function estimates

In this section, we give the full proof of Theorem 1.7. Recall that D is a fixed half-
space-like C1,1 domain with C1,1 characteristics (R0,Λ0) and Hb ⊂ D ⊂ H for some
b > 0 such that the path distance in D is comparable to the Euclidean distance with
characteristic λ0. We first establish a few lemmas.

Recall that φa(r) = r ∧ (r/a)α/2. When a = 1, we simply denote φ1 by φ; that is,
φ(r) = r ∧ rα/2.

Lemma 6.1. For every r ∈ (0, 1] and every open subset U of Rd,

1

2

(
1 ∧ r

2φ(δU (x))φ(δU (y))

|x− y|α

)
≤
(

1 ∧ rφ(δU (x))

|x− y|α/2

)(
1 ∧ rφ(δU (y))

|x− y|α/2

)
≤ 1∧r

2φ(δU (x))φ(δU (y))

|x− y|α
.

(6.1)

Proof. The second inequality holds trivially. Without loss of generality, we assume
δU (x) ≤ δU (y). If both rφ(δU (x))

|x−y|α/2 and rφ(δU (y))
|x−y|α/2 are less than 1 or if both are larger than

one, (
1 ∧ rφ(δU (x))

|x− y|α/2

)(
1 ∧ rφ(δU (y))

|x− y|α/2

)
= 1 ∧ r

2φ(δU (x))φ(δU (y))

|x− y|α
.

So we only need to consider the case when rφ(δU (x))
|x−y|α/2 ≤ 1 < rφ(δU (y))

|x−y|α/2 . Note that

φ(δU (y)) ≤ φ(δU (x) + |x − y|). If δU (x) ≥ |x − y|, then φ(δU (y)) ≤ φ(2δU (x)) ≤ 2φ(δU (x))

and so

1 ∧ r
2φ(δU (x))φ(δU (y))

|x− y|α
≤ 1 ∧ 2

(
rφ(δU (x))

|x− y|α/2

)2

≤ 2

(
1 ∧ rφ(δU (x))

|x− y|α/2

)
.

When δU (x) < |x− y|, then φ(δU (y)) ≤ φ(2|x− y|) ≤ 2|x− y|α/2 and so

1 ∧ r
2φ(δU (x))φ(δU (y))

|x− y|α
≤ 1 ∧ 2r2φ(δU (x))|x− y|α/2

|x− y|α
≤ 2

(
1 ∧ rφ(δU (x))

|x− y|α/2

)
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where the assumption r ≤ 1 is used in the last inequality. This establishes the first
inequality of (6.1). 2

For every open subset U of Rd and a > 0, let

qaU (t, x, y) :=

(
1 ∧ φa(δU (x))√

t

)(
1 ∧ φa(δU (y))√

t

)(
(aαt)−d/α ∧ aαt

|x− y|d+α

)
. (6.2)

The following lemma is a direct consequence of (the proof of) Proposition 1.2, Theo-
rem 1.4 and Remark 1.5(ii).

Lemma 6.2. For every positive constants c1, c2, there exists c3 = c3(c1, c2) > 1 such
that for every a > 0, t ≤ c1a

−2α/(2−α), every open subset U of Rd and x, y ∈ U with
|x− y| ≥ a−α/(2−α),

c−13

(
1 ∧ δU (x)√

t

)(
1 ∧ δU (y)√

t

)
hac2(t, x, y) ≤ qaU (t, x, y) ≤ c3

(
1 ∧ δU (x)√

t

)(
1 ∧ δU (y)√

t

)
hac2(t, x, y).

(6.3)
Under the assumption of Theorem 1.4, there is a constant c = c(M,R0,Λ0, λ0, α, b) ≥ 1

such that

c−1qaD(t, x, y) ≤ paD(t, x, y) ≤ cqaD(t, x, y)

holds for every a ∈ (0,M ], t <∞, x, y ∈ D with |x− y| ≥ a−α/(2−α).

Observe that

φa(δD(λx)) =
(
λδλ−1D(x)

)
∧
(
λα/2a−α/2δλ−1D(x)α/2

)
for every λ > 0. (6.4)

Let xa := aα/(2−α)x, ya := aα/(2−α)y and Da := aα/(2−α)D. By (6.4),

φa(δD(x)) = φa(δD(a−α/(2−α)xa)) = a−α/(2−α)φ(δDa(xa)) (6.5)

and so, for every s > 0,

qaD(a−2α/(2−α)s, x, y) = qaD(a−2α/(2−α)s, a−α/(2−α)xa, a
−α/(2−α)ya) = aαd/(2−α)q1Da(s, xa, ya).

(6.6)

We recall that faD(x, y) is defined in (1.7).

Lemma 6.3. For every d ≥ 1 and x, y ∈ D,
∫∞
0
qaD(t, x, y)dt � faD(x, y), where the implicit

constants are independent of D.

Proof. Let U be an arbitrary open subset of Rd. We first consider the case a = 1 and
prove the lemma for U . By a change of variable u = |x−y|α

t , we have∫ ∞
0

q1U (t, x, y)dt

=
1

|x− y|d−α

(∫ 1

0

+

∫ ∞
1

)(
u(d/α)−2 ∧ u−3

)(
1 ∧
√
uφ(δU (x))

|x− y|α/2

)(
1 ∧
√
uφ(δU (y))

|x− y|α/2

)
du

=: I + II. (6.7)
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Note that

1

2|x− y|d−α

(
1 ∧ φ(δU (x))

|x− y|α/2

)(
1 ∧ φ(δU (y))

|x− y|α/2

)
=

1

|x− y|d−α

∫ ∞
1

u−3
(

1 ∧ φ(δU (x))

|x− y|α/2

)(
1 ∧ φ(δU (y))

|x− y|α/2

)
du

≤ II =
1

|x− y|d−α

∫ ∞
1

u−2
(
u−1/2 ∧ φ(δU (x))

|x− y|α/2

)(
u−1/2 ∧ φ(δU (y))

|x− y|α/2

)
du

≤ 1

|x− y|d−α

∫ ∞
1

u−2
(

1 ∧ φ(δU (x))

|x− y|α/2

)(
1 ∧ φ(δU (y))

|x− y|α/2

)
du

=
1

|x− y|d−α

(
1 ∧ φ(δU (x))

|x− y|α/2

)(
1 ∧ φ(δU (y))

|x− y|α/2

)
. (6.8)

(i) Assume d > α. Observe that

I ≤ 1

|x− y|d−α

(
1 ∧ φ(δU (x))

|x− y|α/2

)(
1 ∧ φ(δU (y))

|x− y|α/2

)∫ 1

0

u(d/α)−2du

≤ α

d− α
1

|x− y|d−α

(
1 ∧ φ(δU (x))

|x− y|α/2

)(
1 ∧ φ(δU (y))

|x− y|α/2

)
. (6.9)

So by (6.7)–(6.9),∫ ∞
0

q1U (t, x, y)dt � 1

|x− y|d−α

(
1 ∧ φ(δU (x))

|x− y|α/2

)(
1 ∧ φ(δU (y))

|x− y|α/2

)
. (6.10)

For the rest of the proof, we assume without loss of generality that δU (x) ≤ δU (y)

and define

u0 :=
φ(δU (x))φ(δU (y))

|x− y|α
.

(ii) Now assume d = α = 1. We have by Lemma 6.1,

I �
∫ 1

0

u−11{u≥1/u0}du+

∫ 1

0

u01{u<1/u0}du

= log(u0 ∨ 1) + u0 ((1/u0) ∧ 1) = log(u0 ∨ 1) + (u0 ∧ 1). (6.11)

Now by Lemma 6.1, (6.7)-(6.8) and (6.11), we have∫ ∞
0

q1U (t, x, y)dt � log(u0 ∨ 1) + 1 ∧ u0 � log(1 + u0).

(iii) Lastly we consider the case d = 1 < α < 2. By Lemma 6.1,

I � 1

|x− y|1−α

(∫ 1

0

u(1/α)−21{u≥1/u0}du+

∫ 1

0

u0u
(1/α)−11{u<1/u0}du

)
=

1

|x− y|1−α

(
α

α− 1

(
(u0 ∨ 1)1−(1/α) − 1

)
+ αu0(u0 ∨ 1)−1/α

)
.

Hence by (6.7)-(6.8), Lemma 6.1 and the last display we have∫ ∞
0

q1U (t, x, y)dt

� 1

|x− y|1−α
(1 ∧ u0) +

1

|x− y|1−α
((

(u0 ∨ 1)1−(1/α) − 1
)

+ u0(u0 ∨ 1)−1/α
)

� 1

|x− y|1−α
(
u0 ∧ u1−(1/α)0

)
=
φ(δU (x))φ(δU (y))

|x− y|
∧ (φ(δU (x))φ(δU (y)))

(α−1)/α
.
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Thus we have proved the lemma for any open set U and a = 1. For general a > 0, we
have by (6.5) and (6.6) that∫ ∞

0

qaD(t, x, y)dt = a−2α/(2−α)
∫ ∞
0

qaD(a−2α/(2−α)s, x, y)ds = aα(d−2)/(2−α)
∫ ∞
0

q1Da(s, xa, ya)ds

�aα(d−2)/(2−α)


1

|xa−ya|d−α

(
1 ∧ φ(δDa (xa))

|xa−ya|α/2

)(
1 ∧ φ(δDa (ya))

|xa−ya|α/2

)
when d > α,

log
(

1 +
φ(δDa (xa))φ(δDa (ya))

|xa−ya|α

)
when d = 1 = α,

φ(δDa (xa))φ(δDa (ya))
|xa−ya| ∧ (φ(δDa(xa))φ(δDa(ya)))

(α−1)/α when d = 1 < α.

=aα(d−2)/(2−α)


a−(d−α)α/(2−α)

|x−y|d−α

(
1 ∧ aα/(2−α)φa(δD(x))

aα2/2(2−α)|x−y|α/2

)(
1 ∧ aα/(2−α)φa(δD(y))

aα2/2(2−α)|x−y|α/2

)
when d > α,

log
(

1 + a2φa(δD(x))φa(δD(y))
a|x−y|

)
when d = 1 = α,

a2α/(2−α)φa(δD(x))φa(δD(y))
aα/(2−α)|x−y| ∧

(
a2α/(2−α)φa(δD(x))φa(δD(y))

)(α−1)/α
when d = 1 < α

=faD(x, y).

2

Lemma 6.4. For every c > 0, when |x− y| ≤ a−α/(2−α),

∫ a−2α/(2−α)

0

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)[
t−d/2e−c

|x−y|2
t +

(
aαt

|x− y|d+α
∧ t−d/2

)]
dt

�


|x− y|2−d

(
1 ∧ δD(x)δD(y)

|x−y|2

)
when d ≥ 3,

log(1 + a2α/(α−2)∧(δD(x)δD(y))
|x−y|2 ) when d = 2,

aα/(α−2) ∧ (δD(x)δD(y))
1/2 ∧ δD(x)δD(y)

|x−y| when d = 1,

where the implicit constants depend only on c, α and d.

Proof. We first consider the case a = 1 and assume U is an arbitrary open set and

x, y ∈ U with |x− y| ≤ 1. Using the change of variables u = |x−y|2
t , we have

∫ 1

0

(
1 ∧ δU (x)√

t

)(
1 ∧ δU (y)√

t

)[
t−d/2e−c1

|x−y|2
t +

(
t

|x− y|d+α
∧ t−d/2

)]
dt

=|x− y|2−d
(∫ 2

|x−y|2
+

∫ ∞
2

)(
1 ∧
√
uδU (x)

|x− y|

)(
1 ∧
√
uδU (y)

|x− y|

)[
ud/2e−c1u +

(
|x− y|2−α

u
∧ ud/2

)]
du

u2

=:I1 + I2 .

Note that since |x− y|2−α ≤ 1, for u ≥ 2, |x−y|
2−α

u ∧ ud/2 = |x−y|2−α
u . Thus for any d ≥ 1,

I2 = |x− y|2−d
∫ ∞
2

(
u−1/2 ∧ δU (x)

|x− y|

)(
u−1/2 ∧ δU (y)

|x− y|

)[
ud/2e−c1u +

|x− y|2−α

u

]
du

u

≤ |x− y|2−d
(

1 ∧ δU (x)

|x− y|

)(
1 ∧ δU (y)

|x− y|

)∫ ∞
2

(
ud/2−1e−c1u + u−2

)
du

≤ c2|x− y|2−d
(

1 ∧ δU (x)

|x− y|

)(
1 ∧ δU (y)

|x− y|

)
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and

I2 ≥ |x− y|2−d
∫ ∞
2

(
1 ∧ δU (x)

|x− y|

)(
1 ∧ δU (y)

|x− y|

)[
ud/2e−c1u +

|x− y|2−α

u

]
du

u2

≥ |x− y|2−d
(

1 ∧ δU (x)

|x− y|

)(
1 ∧ δU (y)

|x− y|

)∫ ∞
2

ud/2−2e−c1u du

≥ c3|x− y|2−d
(

1 ∧ δU (x)

|x− y|

)(
1 ∧ δU (y)

|x− y|

)
.

One the other hand, since |x− y|2−α ≤ 1, if u ≤ 2, then

u−2
[
ud/2e−c1u +

(
|x− y|2−α

u
∧ ud/2

)]
� ud/2−2.

Using this and the fact that for every r ∈ (0, 2],(
1 ∧ rδU (x)

|x− y|

) (
1 ∧ rδU (y)

|x− y|

)
≤ 1 ∧ r

2δU (x)δU (y)

|x− y|2
≤ 4

(
1 ∧ rδU (x)

|x− y|

) (
1 ∧ rδU (y)

|x− y|

)
,

(6.12)
we have

I1 � |x− y|2−d
∫ 2

|x−y|2

(
1 ∧ uδU (x)δU (y)

|x− y|2

)
ud/2−2 du.

Let u0 := δU (x)δU (y)
|x−y|2 .

(i) When d ≥ 3, it is easy to see that I1 ≤ |x− y|2−d (1 ∧ u0) .

(ii) Assume d = 2. We deal with three cases separately.
(a) u0 ≤ 1: In this case, since |x − y| ≤ 1, we have δU (x)δU (y) ≤ 1 and I1 �∫ 2

|x−y|2 u0du � u0 � log(1 + u0).

(b) u0 > 1 and |x− y|2 ≤ 1/u0: In this case we have δU (x)δU (y) ≤ 1 and

I1 �
∫ u−1

0

|x−y|2
u0du+

∫ 2

u−1
0

u−1du = u0(u−10 − |x− y|2) + log 2 + log u0

=(1− u0|x− y|2) + log 2 + log u0 � log(1 + u0).

(c) u0 > 1 and |x− y|2 > 1/u0: In this case we have δU (x)δU (y) ≥ 1 and

I1 �
∫ 2

|x−y|2
u−1du = log 2 + log |x− y|−2 � log(1 + |x− y|−2) = log

(
1 +

1 ∧ (δU (x)δU (y))

|x− y|2

)
.

(iii) Now we consider the case d = 1. We again deal with three cases separately.
(a) u0 ≤ 1. In this case we have

I1 � |x− y|
∫ 2

|x−y|2
u0u
−1/2du � |x− y|u0(

√
2− |x− y|) � |x− y|u0.

(b) u0 > 1 and |x− y|2 ≤ 1/u0. In this case we have

I1 �|x− y|
∫ u−1

0

|x−y|2
u0u
−1/2du+ |x− y|

∫ 2

u−1
0

u−3/2du

�u0|x− y|(u−1/20 − |x− y|) + |x− y|(u1/20 − 2−1/2) � |x− y|u1/20 .

(c) u0 > 1 and |x− y|2 > 1/u0. In this case we have

I1 � |x− y|
∫ 2

|x−y|2
u−3/2du � |x− y|(|x− y|−1 − 2−1/2) � 1− 2−1/2|x− y| � 1.
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So we have

I1 + I2 �


|x− y|2−d

(
1 ∧ δU (x)δU (y)

|x−y|2

)
when d ≥ 3,

log(1 + 1∧(δU (x)δU (y))
|x−y|2 ) when d = 2,

1 ∧ (δU (x)δU (y))
1/2 ∧ δU (x)δU (y)

|x−y| when d = 1.

(6.13)

Thus we have proved the lemma for any open set U and a = 1. For general a > 0, we
have by (6.5), (6.6) and (6.13),

∫ a−2α/(2−α)

0

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)[
t−d/2e−c1

|x−y|2
t +

(
aαt

|x− y|d+α
∧ t−d/2

)]
dt

=a−2α/(2−α)
∫ 1

0

(
1 ∧ δD(x)

a−α/(2−α)
√
s

)(
1 ∧ δD(y)

a−α/(2−α)
√
s

)
×
[
(a−2α/(2−α)s)−d/2e

−c1 |x−y|2

a−2α/(2−α)s +

(
aαa−2α/(2−α)s

|x− y|d+α
∧ (a−2α/(2−α)s)−d/2

)]
ds

=aα(d−2)/(2−α)
∫ 1

0

(
1 ∧ δDa(xa)√

s

)(
1 ∧ δDa(ya)√

s

)[
s−d/2e−c1

|xa−ya|2
s +

(
s

|xa − ya|d+α
∧ s−d/2

)]
ds

�aα(d−2)/(2−α)


|xa − ya|2−d

(
1 ∧ δDa (xa)δDa (ya)

|xa−ya|2

)
when d ≥ 3,

log(1 +
1∧(δDa (xa)δDa (ya))

|xa−ya|2 ) when d = 2,

1 ∧ (δDa(xa)δDa(ya))
1/2 ∧ δDa (xa)δDa (ya)

|xa−ya| when d = 1

=


|x− y|2−d

(
1 ∧ δD(x)δD(y)

|x−y|2

)
when d ≥ 3,

log(1 + a2α/(α−2)∧(δD(x)δD(y))
|x−y|2 ) when d = 2,

aα/(α−2) ∧ (δD(x)δD(y))
1/2 ∧ δD(x)δD(y)

|x−y| when d = 1.

2

Lemma 6.5. For every d ≥ 2, there exists c = c(α, d) > 1 such that, for every a > 0,
when |x− y| ≤ a−α/(2−α),∫ ∞

a−2α/(2−α)

qaD(t, x, y) dt ≤ caα(d−2)/(2−α)
(

1 ∧ δD(x)δD(y)

|x− y|2

)
.

Proof. We first consider the case a = 1 and assume U is an arbitrary open set and
x, y ∈ U with |x− y| ≤ 1. Let J :=

∫∞
1
q1U (t, x, y) dt. By a change of variables u = |x−y|α

t ,

J = |x− y|α−d
∫ |x−y|α
0

(
1 ∧
√
u(δU (x) ∧ δU (x)α/2)

|x− y|α/2

)(
1 ∧
√
u(δU (y) ∧ δU (y)α/2)

|x− y|α/2

)
×
(
ud/α ∧ u−1

) du

u2
. (6.14)

Since |x− y| ≤ 1, for u ∈ [0, |x− y|α], ud/α ∧ u−1 = ud/α. Hence

J ≤ |x− y|α−d
(

1 ∧ δU (x) ∧ δU (x)α/2

|x− y|α/2

)(
1 ∧ δU (y) ∧ δU (y)α/2

|x− y|α/2

)∫ |x−y|α
0

ud/α−2 du

= c1

(
1 ∧ δU (x) ∧ δU (x)α/2

|x− y|α/2

)(
1 ∧ δU (y) ∧ δU (y)α/2

|x− y|α/2

)
.
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Since |x − y| ≤ |x − y|α/2 ≤ 1, we have that 1
|x−y|α/2 ≤

1
|x−y| and so 1 ∧ δU (x)∧δU (x)α/2

|x−y|α/2 ≤
1∧ δU (x)

|x−y| . Consequently, it follows from Lemma 6.1 by taking a = 1 and α = 2 there that

J ≤ c1
(

1 ∧ δU (x)

|x− y|

)(
1 ∧ δU (y)

|x− y|

)
≤ 2c1

(
1 ∧ δU (x)δU (y)

|x− y|2

)
. (6.15)

Thus we have proved the lemma for any open set U and a = 1. For general a > 0, by
(6.5), (6.6) and (6.15), we have for every a > 0,∫ ∞

a−2α/(2−α)

qaD(t, x, y)dt = aα(d−2)/(2−α)
∫ ∞
1

q1Da(s, xa, ya)ds

≤ 2c1a
α(d−2)/(2−α)

(
1 ∧ δDa(xa)δDa(ya)

|xa − ya|2

)
.

2

Lemma 6.6. For every c > 0, when d = 1 and |x− y| ≤ a−α/(2−α),∫ a−2α/(2−α)

0

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)(
t−d/2e−c

|x−y|2
t +

(
aαt

|x− y|d+α
∧ t−d/2

))
dt

+

∫ ∞
a−2α/(2−α)

qaD(t, x, y) dt � gaD(x, y)

where the implicit constants depend only on c and α.

Proof. We first consider the case a = 1 and assume U is an arbitrary open set and
x, y ∈ U with |x− y| ≤ 1. Let J :=

∫∞
1
q1U (t, x, y) dt and

I :=

∫ 1

0

(
1 ∧ δU (x)√

t

)(
1 ∧ δU (y)√

t

)(
t−1/2e−c1

|x−y|2
t +

(
t

|x− y|1+α
∧ t−1/2

))
dt.

By Lemma 6.4, I � 1 ∧ (δD(x)δD(y))
1/2 ∧ δD(x)δD(y)

|x−y| . Using Lemma 6.1 and (6.14), we
get that∫ ∞

1

q1U (t, x, y) dt � |x− y|α−1
∫ |x−y|α
0

(
1 ∧ uφ(δU (x))φ(δU (y))

|x− y|α

)
u1/α−2 du.

Put u0 := φ(δU (x))φ(δU (y))
|x−y|α . Then we have

J � |x− y|α−1
(
u0

∫ |x−y|α∧u−1
0

0

u1/α−1 du+

∫ |x−y|α
|x−y|α∧u−1

0

u1/α−2 du

)
.

Without loss of generality, we assume δU (x) ≤ δU (y). Note that, since |x − y| ≤ 1,
if δU (x) ≤ 1 then δU (y) ≤ 2, and if δU (x) > 1 then 1 < δU (x) ≤ δU (y) ≤ 2δU (x) and
δU (x)δU (y) ≥ |x− y|2.

Now we look at three separate cases.
(i) α ∈ (1, 2): In this case we have

J � |x− y|α−1
(
αu0

(
|x− y| ∧ u−1/α0

)
+

α

α− 1

(
|x− y|α ∧ u−10

)(1−α)/α − α

α− 1
|x− y|1−α

)
� φ(δU (x))φ(δU (y)) ∧ (φ(δU (x))φ(δU (y)))(α−1)/α.
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Thus

I + J �


(δU (x)δU (y))

1/2 when δU (x) ≤ 1, δU (x)δU (y) ≥ |x− y|2,
δU (x)δU (y)
|x−y| when δU (x) ≤ 1, δU (x)δU (y) ≤ |x− y|2,

(δU (x)δU (y))
(α−1)/2 when δU (x) > 1

= (δU (x)δU (y))
1/2 ∧ (δU (x)δU (y))

(α−1)/2 ∧ δU (x)δU (y)

|x− y|
.

(ii) α = 1: In this case we have

J �
(
u0(|x− y| ∧ u−10 ) + log

|x− y|α

|x− y|α ∧ u−10

)
� φ(δU (x))φ(δU (y)) ∧ 1 + log (1 ∨ φ(δU (x))φ(δU (y)))

� log (1 + φ(δU (x))φ(δU (y))) .

Thus

I + J �


(δU (x)δU (y))

1/2 when δU (x) ≤ 1, δU (x)δU (y) ≥ |x− y|2,
δU (x)δU (y)
|x−y| when δU (x) ≤ 1, δU (x)δU (y) ≤ |x− y|2,

log (1 + δU (x)δU (y)) when δU (x) > 1

� δU (x)δU (y)

|x− y|
∧ log

(
1 + (δU (x)δU (y))

1/2
)
.

(iii) α ∈ (0, 1): In this case (note that 1− 1/α is negative) we have

J � |x− y|α−1
(
αu0(|x− y| ∧ u−1/α0 ) +

α

1− α
|x− y|1−α − α

1− α
(|x− y|α ∧ u−10 )(1−α)/α

)
� φ(δU (x))φ(δU (y)) ∧ 1.

Thus

I + J �


(δU (x)δU (y))

1/2 when δU (x) ≤ 1, δU (x)δU (y) ≥ |x− y|2,
δU (x)δU (y)
|x−y| when δU (x) ≤ 1, δU (x)δU (y) ≤ |x− y|2,

1 when δU (x) > 1

= (δU (x)δU (y))
1/2 ∧ δU (x)δU (y)

|x− y|
∧ 1.

Therefore we have proved the lemma for any arbitrary open set U and a = 1. The
general case a > 0 now follows from the same scaling arguments as in the proofs for
Lemmas 6.3 and 6.4. 2

Proof of Theorem 1.7. Without loss of generality, we assume M = b = 1. Estimates
(1.8) follow from Theorem 1.4, Remark 1.5(ii) and Lemmas 6.4–6.6. Estimates (1.9)
follow from Theorem 1.4 and Lemmas 6.2 and 6.3. 2

Acknowledgment: While working on the paper [17], Z. Vondraček obtained the Green
function estimates of p1H in the case d ≥ 3 using Theorem 1.4 above. Some of his
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