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based on dependent data
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Abstract

Let (Xn) be any sequence of random variables adapted to a filtration (Gn). Define
an(·) = P

(
Xn+1 ∈ · | Gn

)
, bn = 1

n

∑n−1
i=0 ai, and µn = 1

n

∑n
i=1 δXi . Convergence in

distribution of the empirical processes

Bn =
√
n (µn − bn) and Cn =

√
n (µn − an)

is investigated under uniform distance. If (Xn) is conditionally identically distributed,
convergence of Bn and Cn is studied according to Meyer-Zheng as well. Some CLTs,
both uniform and non uniform, are proved. In addition, various examples and a
characterization of conditionally identically distributed sequences are given.
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1 Introduction

Almost all work on empirical processes, so far, concerned ergodic sequences (Xn)

of random variables. Slightly abusing terminology, here, (Xn) is called ergodic if the
underlying probability measure P is 0-1 valued on the sub-σ-field

σ
(

lim sup
n

1

n

n∑
i=1

IB(Xi) : B a measurable set
)
.

In real problems, however, (Xn) is often non ergodic in the previous sense. Most
stationary sequences, for instance, are non ergodic. Or else, an exchangeable sequence
is ergodic if and only if it is i.i.d..

This paper deals with convergence in distribution of empirical processes based on
non ergodic data. Special attention is paid to conditionally identically distributed (c.i.d.)
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Empirical processes for dependent data

sequences of random variables (see Section 3). This type of dependence, introduced in
[4] and [16], includes exchangeability as a particular case and plays a role in Bayesian
inference.

For convergence in distribution of empirical processes, the usual and (natural) dis-
tances are the uniform and the Skorohod ones. While such distances have various mer-
its, they are often too strong to deal with non ergodic data. Thus, in case of c.i.d. data,
empirical processes are also investigated under a weaker distance; see Meyer-Zheng’s
paper [19] and Subsection 5.2.

The paper is organized as follows. Sections 2 and 4 include preliminary material
(with the only exception of Example 4.4). Results are in Sections 3 and 5. Section 3
includes a characterization of c.i.d. sequences and a couple of examples. Section 5
contains some uniform and non uniform CLTs. Suppose (Xn) is adapted to a filtration
(Gn). Define the predictive measure an(·) = P (Xn+1 ∈ · | Gn), the empirical measure
µn = 1

n

∑n
i=1 δXi , and the empirical processes

Bn =
√
n (µn − bn) and Cn =

√
n (µn − an)

where bn = 1
n

∑n−1
i=0 ai. Our main results provide conditions forBn and Cn to converge in

distribution, under uniform distance as well as in Meyer-Zheng’s sense; see Theorems
5.2-5.6.

2 Notation and basic definitions

Throughout, (Ω,A, P ) is a probability space, X a Polish space and B the Borel σ-field
on X . The "data" are meant as a sequence (Xn : n ≥ 1) of X -valued random variables
on (Ω,A, P ). The sequence (Xn) is adapted to the filtration G = (Gn : n ≥ 0). Apart from
the final Section 5, (Xn) is assumed to be identically distributed.

Let S be a metric space. A random probability measure on S is a map γ on Ω such
that: (i) γ(ω) is a Borel probability measure on S for each ω ∈ Ω; (ii) ω 7→ γ(ω)(B) is
A-measurable for each Borel set B ⊂ S. If S = R, we call F a random distribution
function if F (t, ω) = γ(ω)(−∞, t], (t, ω) ∈ R×Ω, for some random probability measure γ
on R.

A map Y : Ω → S is measurable, or a random variable, if Y −1(B) ∈ A for all
Borel sets B ⊂ S, and it is tight provided it is measurable and has a tight probability
distribution. The outer expectation of a bounded function V : Ω → R is E∗V = inf EU ,
where inf ranges over those bounded measurable U : Ω→ R satisfying U ≥ V .

Let (Ωn,An, Pn) be a sequence of probability spaces and Yn : Ωn → S. The maps Yn
are not requested to be measurable. Denote by Cb(S) the set of real bounded continuous
functions on S. Given a Borel probability ν on S, say that Yn converges in distribution
to ν if

E∗f(Yn) −→
∫
fdν for all f ∈ Cb(S).

In such case, we write Yn
d−→ Y for any S-valued random variable Y , defined on some

probability space, with distribution ν. We refer to [11] and [21] for more on convergence
in distribution of non measurable random elements.

Finally, we turn to stable convergence. Fix a random probability measure γ on S and
suppose (Ωn,An, Pn) = (Ω,A, P ) for all n. Say that Yn converges stably to γ whenever

E∗
(
f(Yn) | H

)
−→ E(γ(f) | H) for all f ∈ Cb(S) and H ∈ A with P (H) > 0.

Here, γ(f) denotes the real random variable ω 7→
∫
f(x) γ(ω)(dx). Stable convergence

clearly implies convergence in distribution. Indeed, Yn converges in distribution to the
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Empirical processes for dependent data

probability measure E(γ(·) | H), under P (· | H), for each H ∈ A with P (H) > 0. Stable
convergence has been introduced by Renyi and subsequently investigated by various
authors (in case the Yn are measurable). We refer to [8], [15] and references therein
for details.

3 Conditionally identically distributed random variables

3.1 Basics

Let (Xn : n ≥ 1) be adapted to the filtration G = (Gn : n ≥ 0). Then, (Xn) is
conditionally identically distributed with respect to G, or G-c.i.d., if

P
(
Xk ∈ · | Gn

)
= P

(
Xn+1 ∈ · | Gn

)
a.s. for all k > n ≥ 0. (3.1)

Roughly speaking, (3.1) means that, at each time n ≥ 0, the future observations (Xk :

k > n) are identically distributed given the past Gn. Condition (3.1) is equivalent to

XT+1 ∼ X1 for each finite G-stopping time T.

(For any random variables U and V , we write U ∼ V to mean that U and V are iden-
tically distributed). When G0 = {∅,Ω} and Gn = σ(X1, . . . , Xn), the filtration is not
mentioned at all and (Xn) is just called c.i.d.. Clearly, if (Xn) is G-c.i.d. then it is c.i.d.
and identically distributed. Moreover, (Xn) is c.i.d. if and only if(

X1, . . . , Xn, Xn+2

)
∼
(
X1, . . . , Xn, Xn+1

)
for all n ≥ 0. (3.2)

Exchangeable sequences are c.i.d., for they meet (3.2), while the converse is not
true. In fact, by a result in [16], (Xn) is exchangeable if and only if it is stationary
and c.i.d.. Forthcoming Examples 3.3, 3.4 and 4.4 exhibit non exchangeable c.i.d. se-
quences. We refer to [4] for more on c.i.d. sequences. Here, it suffices to mention the
Strong Law of Large Numbers (SLLN) and some of its consequences.

Let (Xn) be G-c.i.d. and µn = 1
n

∑n
i=1 δXi

the empirical measure. Then, there is a
random probability measure γ on X satisfying

µn(B)
a.s.−→ γ(B) for every fixed B ∈ B.

As a consequence, given n ≥ 0 and B ∈ B, one obtains

E
{
γ(B) | Gn

}
= lim

k
E
{
µk(B) | Gn

}
= lim

k

1

k

k∑
i=n+1

P
(
Xi ∈ B | Gn

)
= P

(
Xn+1 ∈ B | Gn

)
a.s..

Suppose next X = R. Up to enlarging the underlying probability space (Ω,A, P ),
there is an i.i.d. sequence (Un) with U1 uniformly distributed on (0, 1) and (Un) inde-
pendent of (Xn). Define the random distribution function F (t) = γ(−∞, t], t ∈ R, and

Zn = inf{t ∈ R : F (t) ≥ Un}.

Then, (Zn) is exchangeable and 1
n

∑n
i=1 I{Zi∈B}

a.s.−→ γ(B) for each B ∈ B. The exchange-
able sequence (Zn) plays a role in forthcoming Theorems 5.5 and 5.6.

3.2 Characterizations

Following [10], let us call strategy any collection

σ = {σ(q) : q = ∅ or q ∈ Xn for some n = 1, 2, . . .}
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Empirical processes for dependent data

where each σ(q) is a probability on B and (x1, . . . , xn) 7→ σ(x1, . . . , xn)(B) is Borel mea-
surable for all n ≥ 1 and B ∈ B. Here, ∅ denotes "the empty sequence". Let πn be the
n-th coordinate projection on X∞, i.e.,

πn(x1, . . . , xn, . . .) = xn for all n ≥ 1 and (x1, . . . , xn, . . .) ∈ X∞.

By Ionescu Tulcea theorem, each strategy σ induces a unique probability ν on
(X∞,B∞). By "σ induces ν" we mean that, under ν,

π1 ∼ σ(∅) and {σ(q) : q ∈ Xn} is a version of the conditional (3.3)

distribution of πn+1 given (π1, . . . , πn) for all n ≥ 1.

Conversely, since X is Polish, each probability ν on (X∞,B∞) is induced by an (essen-
tially unique) strategy σ.

Let α0 and {α(x) : x ∈ X} be probabilities on B such that the map x 7→ α(x)(B)

is Borel measurable for B ∈ B. Say that {α(x) : x ∈ X} is a (Markov) kernel with
stationary distribution α0 in case α0(B) =

∫
α(x)(B)α0(dx) for B ∈ B.

If q = (x1, . . . , xn) ∈ Xn and x ∈ X , we write (q, x) = (x1, . . . , xn, x) and (∅, x) = x. In
this notation, the following result is available.

Theorem 3.1. Let ν be the probability distribution of the sequence (Xn). Then, (Xn)

is c.i.d. if and only if ν is induced by a strategy σ satisfying

(a) the kernel {σ(q, x) : x ∈ X} has stationary distribution σ(q)

for q = ∅ and for almost all q ∈ Xn, n = 1, 2, . . ..

Proof. Fix a strategy σ which induces ν. By (3.2) and (3.3), (Xn) is c.i.d. if and only if
X2 ∼ X1 and, under ν,

{σ(q) : q ∈ Xn} is a version of the conditional (3.4)

distribution of πn+2 given (π1, . . . , πn) for all n ≥ 1.

In view of (3.3), the condition X2 ∼ X1 amounts to∫
σ(x)(B)σ(∅)(dx) = P (X2 ∈ B) = P (X1 ∈ B) = σ(∅)(B), B ∈ B,

which just means that the kernel {σ(x) : x ∈ X} has stationary distribution σ(∅). Like-
wise, condition (3.4) is equivalent to

for all n ≥ 1, there is Hn ∈ Bn such that P
(
(X1, . . . , Xn) ∈ Hn

)
= 1

and

∫
σ(q, x)(B)σ(q)(dx) = σ(q)(B) for all q ∈ Hn and B ∈ B.

Therefore, (Xn) is c.i.d. if and only if σ can be taken to meet condition (a).

Practically, Theorem 3.1 suggests how to assess a c.i.d. sequence (Xn) stepwise.
First, select a law σ(∅) on B, the marginal distribution of X1. Then, choose a kernel
{σ(x) : x ∈ X} with stationary distribution σ(∅), where σ(x) should be viewed as the
conditional distribution of X2 given X1 = x. Next, for each x ∈ X , select a kernel
{σ(x, y) : y ∈ X} with stationary distribution σ(x), where σ(x, y) should be viewed as
the conditional distribution of X3 given X1 = x and X2 = y. And so on. In other terms,
for getting a c.i.d. sequence, it is enough to assign at each step a kernel with a given
stationary distribution. Indeed, a plenty of methods for doing this are available: see the
statistical literature on MCMC, e.g. [18] and [20].
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Empirical processes for dependent data

Finally, we recall that exchangeable sequences admit an analogous characterization.
Say that {α(x) : x ∈ X} is a reversible kernel with respect to α0 in case∫

A

α(x)(B)α0(dx) =

∫
B

α(x)(A)α0(dx) for all A, B ∈ B.

If a kernel is reversible with respect to a probability law, it admits such a law as a
stationary distribution. The following result, firstly proved by de Finetti for X = {0, 1},
is in [14].

Theorem 3.2. The sequence (Xn) is exchangeable if and only if its probability distri-
bution is induced by a strategy σ such that

(b) {σ(q, x) : x ∈ X} is a reversible kernel with respect to σ(q),
(c) σ(

∼
q) = σ(q) whenever

∼
q is a permutation of q,

for q = ∅ and for almost all q ∈ Xn, n = 1, 2, . . .. (with
∼
q = q if q = ∅).

3.3 Examples

It is not hard to see that condition (b) reduces to (a) whenever X = {0, 1}. Thus,
for a sequence (Xn) of indicators, (Xn) is exchangeable if and only if it is c.i.d. and its
conditional distributions σ(q) are invariant under permutations of q. It is tempting to
conjecture that (b) can be weakened into (a) in general, even if the Xn are not indica-
tors. As shown by the next example, however, this is not true. It may be that (Xn) fails
to be exchangeable, and yet it is c.i.d. and its conditional distributions meet condition
(c).

Example 3.3. Let X = Y × (0,∞), where Y is a Polish space. Fix a constant r > 0 and
Borel probabilities µ1 on Y and µ2 on (0,∞). Define σ(∅) = µ1 × µ2 and

σ(x1, . . . , xn)(A×B) = σ[(y1, z1), . . . , (yn, zn)](A×B)

=
r µ1(A) +

∑n
i=1 zi IA(yi)

r +
∑n
i=1 zi

µ2(B)

where n ≥ 1, xi = (yi, zi) ∈ Y × (0,∞) for all i and A ⊂ Y, B ⊂ (0,∞) are Borel sets. By
construction, σ satisfies condition (c). By Lemma 6 of [6], (πn) is c.i.d. under ν, where
ν is the probability on (X∞,B∞) induced by σ. However, (π1, π2) is not distributed as
(π2, π1) for various choices of µ1, µ2 (take for instance Y = {0, 1}, µ1 = (δ0 + δ1)/2 and
µ2 = (δ1 + δ2)/2). Hence, (πn) may fail to be exchangeable under ν.

The strategy σ of Example 3.3 makes sense in some real problems. In general, the
zn should be viewed as weights while the yn describe the phenomenon of interest. As
an example, consider an urn containing white and black balls. At each time n ≥ 1, a
ball is drawn and then replaced together with zn more balls of the same color. Let yn
be the indicator of the event {white ball at time n} and suppose zn is chosen according
to a fixed distribution on the integers, independently of (y1, z1, . . . , yn−1, zn−1, yn). This
situation is modelled by σ in Example 3.3. Note also that σ is of Ferguson-Dirichlet type
if zn = 1 for all n; see [13].

Finally, suppose (Xn) is 2-exchangeable, that is,

(Xi, Xj) ∼ (X1, X2) for all i 6= j.

Suggested by de Finetti’s representation theorem, another conjecture is that the prob-
ability distribution of (Xn) is a mixture of 2-independent identically distributed laws.
More precisely, this means that

P
(
(X1, X2, . . .) ∈ B

)
=

∫
ν(B)Q(dν), B ∈ B∞, (3.5)
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Empirical processes for dependent data

where Q is some mixing measure supported by those probability laws ν on (X∞,B∞)

such that (πn) is 2-independent and identically distributed under ν. Once again, the
conjecture turns out to be false. As shown by the following example, it may be that
(Xn) is c.i.d. and 2-exchangeable and yet its probability distribution does not admit
representation (3.5).

Example 3.4. Let m be Lebesgue measure and f : [0, 1] → [0, 1] a Borel function satis-
fying ∫ 1

0

f(u) du =
1

2
,

∫ 1

0

u f(u) du =
1

3
, m{u ∈ [0, 1] : f(u) 6= u} > 0. (3.6)

Let (Un : n ≥ 0) be i.i.d. with U0 uniformly distributed on [0, 1]. Define X = {0, 1} and
Xn = IHn

, where

H1 = {U1 ≤ f(U0)}, Hn = {Un ≤ U0} for n > 1.

Conditionally on U0, the sequence (Xn) is independent with

P (X1 = 1 | U0) = f(U0) and P (Xn = 1 | U0) = U0 a.s. for all n > 1.

Basing on this fact and (3.6), it is straightforward to check that (Xn) is c.i.d. and 2-
exchangeable. Moreover, 1

n

∑n
i=1Xi

a.s.−→ U0. By Etemadi’s SLLN, if (πn) is 2-independent
and identically distributed under ν, then

1

n

n∑
i=1

πi
ν−a.s.−→ Eν(π1).

Letting π∗ = lim supn
1
n

∑n
i=1 πi, it follows that

ν
(
π∗ ∈ I, π1 = 1

)
= ν

(
π∗ ∈ I, π2 = 1

)
for all Borel sets I ⊂ [0, 1].

Hence, if representation (3.5) holds, one obtains∫
I

f(u) du =

∫
{U0∈I}

P (X1 = 1 | U0) dP = P (U0 ∈ I, X1 = 1)

=

∫
ν
(
π∗ ∈ I, π1 = 1

)
Q(dν) =

∫
ν
(
π∗ ∈ I, π2 = 1

)
Q(dν)

= P (U0 ∈ I, X2 = 1) =

∫
I

u du for all Borel sets I ⊂ [0, 1].

This implies f(u) = u, for m-almost all u, contrary to (3.6). Thus, the probability distri-
bution of (Xn) cannot be written as in (3.5).

4 Empirical processes

This section includes preliminary material. Apart from Example 4.4, which is new,
all other results are from [4]. First, the empirical processes Bn and Cn are introduced
for an arbitrary G-adapted sequence (Xn). Then, in case (Xn) is G-c.i.d., some known
facts on Bn and Cn are reviewed.

4.1 The general case

Fix a subclass F ⊂ B. Also, for any set T , let l∞(T ) denote the space of real bounded
functions on T equipped with the sup-norm

‖φ‖ = sup
t∈T
|φ(t)|, φ ∈ l∞(T ).
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Empirical processes for dependent data

In the particular case where (Xn) is i.i.d., the empirical process is

Gn =
√
n (µn − µ)

where µn = 1
n

∑n
i=1 δXi

is the empirical measure and µ = P ◦ X−1
1 the probability

distribution common to the Xn. From the point of view of convergence in distribution,
Gn is regarded as a (non measurable) map Gn : Ω→ l∞(F).

If (Xn) is not i.i.d., Gn needs not be the "right" empirical process to be dealt with.
A first reason is that µ only partially characterizes the probability distribution of the
sequence (Xn) (and usually not in the most significant way). So, in the dependent case,
Gn is often not much interesting for applications. A second reason is the following. If
Gn converges in distribution, as a map Gn : Ω→ l∞(F), then

‖µn − µ‖ =
1√
n
‖Gn‖

P−→ 0.

But ‖µn − µ‖ typically fails to converge to 0 when (Xn) is non ergodic. In this case, Gn
is definitively ruled out as far as convergence in distribution is concerned.

Hence, when (Xn) is non ergodic, empirical processes should be defined in some
different way. One option is

∼
Gn = rn (µn − γn),

where the rn are constants such that rn → ∞ and the γn random probability measures

on X satisfying ‖µn − γn‖
P−→ 0.

As an example, if there is a random probability measure γ on X satisfying

µn(B)
a.s.−→ γ(B) for each fixed B ∈ B,

it is tempting to let γn = γ for all n. Such γ is actually available when (Xn) is c.i.d..
Further, if (Xn) is exchangeable, (Xn) is conditionally i.i.d. given γ. In the latter case,
it is rather natural to take rn =

√
n. The corresponding empirical process

Wn =
√
n (µn − γ)

is examined in [4] and [5].
For another example, define the predictive measure

an(·) = P
(
Xn+1 ∈ · | Gn

)
.

In Bayesian inference and discrete time filtering, evaluating an is a major goal. When an
cannot be calculated in closed form, one option is estimating it by data and a possible
estimate is the empirical measure µn. For instance, µn is a sound estimate of an if
(Xn) is exchangeable and Gn = σ(X1, . . . , Xn). In such cases, it is important to evaluate
the limiting distribution of the error, that is, to investigate convergence in distribution

of
∼
Gn = rn (µn − an) for suitable constants rn → ∞. Among other things, µn is a

"consistent estimate" of an if
∼
Gn converges in distribution. In this case, in fact, ‖µn −

an‖ = 1
rn
‖
∼
Gn‖

P−→ 0. Thus, in a Bayesian framework, it is quite reasonable to let
γn = an. Letting also rn =

√
n leads to the empirical process

Cn =
√
n (µn − an).

In case of c.i.d. data, Cn is investigated in [2], [4], [6].
A third example, considered in [4] for c.i.d. data, is

Bn =
√
n (µn − bn) where bn =

1

n

n−1∑
i=0

ai.
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Empirical processes for dependent data

The empirical process Bn plays a role in calibration, stochastic approximation and gam-
bling; see [3] and references therein. Following [9] and focusing on calibration, we now
give some motivations to Bn.

Example 4.1. Let X = R and T a real random variable. At each time n ≥ 0, you are
requested to predict the event {Xn+1 ≤ T} basing on the available information Gn. Your
predictor is P

(
Xn+1 ≤ T | Gn

)
and prediction performances are assessed through

Vn =
1

n

n∑
i=1

I{Xi≤T} −
1

n

n∑
i=1

P
(
Xi ≤ T | Gi−1

)
= µn(−∞, T ]− bn(−∞, T ].

Loosely speaking, you are well calibrated if Vn is small. Let F = {(−∞, t] : t ∈ R}. Then,
|Vn| ≤ ‖µn − bn‖. Furthermore, ‖µn − bn‖

a.s.−→ 0 provided µn converges uniformly on F
a.s.; see [3]. Thus, the rate of convergence of ‖µn− bn‖ should be investigated, and this
leads to rn (µn − bn) for some choice of the constants rn. The process Bn corresponds
to rn =

√
n.

A last remark is that

Bn = Cn = Wn = Gn

when (Xn) is i.i.d., G0 = {∅,Ω} and Gn = σ(X1, . . . , Xn). Generally, however, Bn, Cn
and Wn are technically harder than Gn to work with. In fact, Gn is centered around the
fixed measure µ, while Bn, Cn and Wn are centered around random measures (bn, an
and γ, respectively) possibly depending on n.

4.2 The case of c.i.d. data

In the sequel, we focus on

X = R and F = {(−∞, t] : t ∈ R}.

For each φ ∈ l∞(F), we write φ(t) instead of φ
(
(−∞, t]

)
and we regard φ as a member

of l∞(R). Accordingly, Bn and Cn are regarded as maps from Ω into l∞(R). Precisely,
for each t ∈ R, they can be written as

Bn(t) =
√
n
{
Fn(t)− bn(−∞, t]

}
and Cn(t) =

√
n
{
Fn(t)− P

(
Xn+1 ≤ t | Gn

)}
where Fn(t) = µn(−∞, t] =

1

n

n∑
i=1

I{Xi≤t}.

Let Nk(0,Σ) denote the Gaussian law on the Borel sets of Rk with mean 0 and co-
variance matrix Σ (possibly singular). We let Nk(0, 0) = δ0 and, for k = 1 and u ≥ 0, we
write N(0, u) instead of N1(0, u).

Suppose (Xn) is G-c.i.d.. Then, a possible limit in distribution for Bn or Cn is a tight
random variable G : Ω0 → l∞(R), defined on some probability space (Ω0,A0, P0), such
that

P0

(
(G(t1), . . . ,G(tk)) ∈ A

)
=

∫
Nk
(
0,Σ(t1, . . . , tk)

)
(A) dP (4.1)

where t1, . . . , tk ∈ R, A ⊂ Rk is a Borel set and Σ(t1, . . . , tk) a random covariance ma-
trix on (Ω,A, P ). One significant case is the following. Recall that there is a random
distribution function F such that Fn(t)

a.s.−→ F (t) for each t ∈ R. Define

GF (t) = B(M(t)), t ∈ R,
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where B and M are defined on (Ω0,A0, P0), B is a Brownian bridge, M a random distri-
bution function independent of B, and M ∼ F . Then, equation (4.1) holds with G = GF

and

Σ(t1, . . . , tk) =
(
F (ti ∧ tj)(1− F (ti ∨ tj)) : 1 ≤ i, j ≤ k

)
.

Generally, GF : Ω0 → l∞(R) can fail to be measurable if l∞(R) is equipped with the
Borel σ-field; see [5] and references therein. However, GF is measurable and tight
whenever every F -path is continuous on Dc for some fixed countable set D ⊂ R.

As a trivial example, suppose (Xn) i.i.d., G0 = {∅,Ω} and Gn = σ(X1, . . . , Xn). Then
F = H a.s., where H is the distribution function common to the Xn, and D can be taken

to be D = {t : H(t) > H(t−)}. Thus, GF = GH is measurable and tight and Gn
d−→ GH

(recall that Bn = Cn = Wn = Gn in this particular case).
Let (Yn) be any sequence of real random processes indexed by R, with bounded

cadlag paths, defined on (Ω,A, P ). According to Theorem 1.5.6 of [21], a necessary
condition for Yn to converge in distribution to a tight limit is: For all ε, η > 0, there is a
finite partition I1, . . . , Im of R by right-open intervals such that

lim sup
n

P
(
max
j

sup
s,t∈Ij

|Yn(s)− Yn(t)| > ε
)
< η. (4.2)

We are now able to state a couple of results from [4].

Theorem 4.2. Suppose (Xn) is G-c.i.d. and Bn meets (4.2) (i.e., (4.2) holds with Yn =

Bn). Then Bn
d−→ GF , under uniform distance on l∞(R), and GF is tight.

Theorem 4.3. Suppose (Xn) is G-c.i.d., Cn meets (4.2), and supnE
{
Cn(t)2

}
< ∞ for

all t ∈ R. Suppose also that

1

n

n∑
i=1

qi(s) qi(t)
a.s.−→ σ(s, t) for all s, t ∈ R

where qi(t) = I{Xi≤t} − i P
(
Xi+1 ≤ t | Gi

)
+ (i− 1)P

(
Xi ≤ t | Gi−1

)
.

Then Cn
d−→ G, under uniform distance on l∞(R), where G is a tight process with

distribution (4.1) and Σ(t1, . . . , tk) =
(
σ(ti, tj) : 1 ≤ i, j ≤ k

)
.

Both Theorems 4.2 and 4.3 require condition (4.2) and it would be useful to have a
criterion for testing it. In the exchangeable case, one such criterion is tightness of the
process GF . Suppose in fact (Xn) exchangeable and GF tight. Then,

Wn =
√
n {Fn − F}

d−→ GF .

Hence, Wn meets (4.2) and, as a consequence, Bn and Cn satisfy (4.2) as well; see
Remark 4.4 of [4]. Furthermore, GF is tight whenever P (X1 = X2) = 0 or X1 has a
discrete distribution. Unfortunately, this useful criterion fails in the G-c.i.d. case. As we
now prove, it may be that (Xn) is G-c.i.d., GF tight, and yet condition (4.2) fails for Cn.

Example 4.4. Let (αn) and (βn) be independent sequences of independent real random
variables, with αn ∼ N(0, cn − cn−1) and βn ∼ N(0, 1 − cn) where
cn = 1− ( 1

n+1 )
1
5 . Define

Xn =

n∑
i=1

αi + βn, G0 = {∅,Ω}, Gn = σ(α1, β1, . . . , αn, βn).
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In Example 1.2 of [4], it is shown that (Xn) is G-c.i.d. and Xn
a.s.−→ X for some random

variable X. Given t ∈ R, since Xn
a.s.−→ X and P (X = t) = 0, then Fn(t)

a.s.−→ I{X≤t}.
Therefore, F = I[X,∞) and GF = 0, so that GF is tight.

The finite dimensional distributions of Cn converge weakly to 0. In fact,

P
(
Xn+1 ≤ t | Gn

)
= Φ

( t− Sn√
1− cn

)
where Sn =

∑n
i=1 αi and Φ is the standard normal distribution function. Hence,

Cn(t) =
√
n
(
Fn(t)− I{Sn≤t}

)
+
√
n
(
I{Sn≤t} − Φ

( t− Sn√
1− cn

))
.

For fixed t, since P (X = t) = 0, Xn
a.s.−→ X and Sn

a.s.−→ X, it is not hard to see that
Cn(t)

a.s.−→ 0.

Toward a contradiction, suppose now that Cn meets (4.2) and define

In =

∫ Sn+1

Sn−1

Cn(t) dt.

Then Cn
d−→ 0, so that |In| ≤ 2 ‖Cn‖

P−→ 0. On the other hand,

In =
1√
n

n∑
i=1

(
Sn + 1−Xi ∨ (Sn − 1)

)+

−
√
n

∫ Sn+1

Sn−1

Φ
( t− Sn√

1− cn
)
dt

=
1√
n

n∑
i=1

(
Sn + 1−Xi ∨ (Sn − 1)

)+

−
√
n.

Let

Jn =
1√
n

n∑
i=1

(
Sn + 1−Xi

)
−
√
n =

1√
n

n∑
i=1

(
Sn −Xi

)
.

Then In − Jn
a.s.−→ 0, due to Sn −Xn

a.s.−→ 0, and thus Jn
P−→ 0. But this is a contradiction,

since Jn ∼ N(0, σ2
n) with σ2

n →∞. Precisely,

σ2
n = − n

(n+ 1)
1
5

+
2

n

n∑
i=1

i

(i+ 1)
1
5

so that
σ2
n

n
4
5

−→ 1

9
.

Therefore, condition (4.2) fails for Cn.

Incidentally, neither Wn =
√
n (Fn − F ) meets (4.2). In fact, Wn(t)

a.s.−→ 0 for fixed t.

Thus, if Wn meets (4.2), then supt |Wn(t)−Wn(t−)| ≤ 2 ‖Wn‖
P−→ 0. But this is again a

contradiction, for P (Xi 6= X for all i) = 1 and

sup
t

∣∣∣Wn(t)−Wn(t−)
∣∣∣ ≥ ∣∣∣Wn(X)−Wn(X−)

∣∣∣ =
√
n on the set {Xi 6= X for all i}.

5 Uniform CLTs for the empirical processes Bn and Cn

Theorems 4.2 and 4.3 apply to G-c.i.d. sequences and refer to uniform distance.
In this section, two types of results are obtained. First, Theorems 4.2 and 4.3 are
extended to any G-adapted sequence. Second, conditions for Bn and Cn to converge
in distribution, under a certain distance weaker than the uniform one, are given for
G-c.i.d. sequences. We again let X = R and F = {(−∞, t] : t ∈ R}.
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5.1 Convergence in distribution under uniform distance

Our main tools are the following two (non uniform) CLTs. The first is already known
(see Theorem 1 of [7]) while the second is new.

Theorem 5.1. Suppose (Xn) is G-adapted and (X2
n) uniformly integrable. Define Xn =

1
n

∑n
i=1Xi and Un = E(Xn+1 | Gn). Then,

√
n
{
Xn − Un

}
−→ N(0, L) stably

provided

n3E
{(
E(Un+1 | Gn)− Un

)2} −→ 0,

1√
n
E
{

max
1≤i≤n

i |Ui−1 − Ui|
}
−→ 0,

1

n

n∑
i=1

{
Xi − Ui−1 + i (Ui−1 − Ui)

}2 P−→ L.

Theorem 5.2. Suppose (Xn) is G-adapted and (X2
n) uniformly integrable. Then,

Mn =

∑n
i=1

{
Xi − E(Xi | Gi−1)

}
√
n

−→ N(0, L) stably

whenever
1

n

n∑
i=1

{
Xi − E(Xi | Gi−1)

}2 P−→ L. (5.1)

Moreover, condition (5.1) applies if

1

n

n∑
i=1

X2
i

P−→ Y and
1

n

n∑
i=1

E(Xi | Gi−1)2 P−→ Y − L

for some random variable Y , or if

E(X2
n | Gn−1)− E(Xn | Gn−1)2 P−→ L.

Proof. For n ≥ 1 and i = 1, . . . , n, define Fn,0 = G0, Fn,i = Gi and

Yn,i = n−1/2
{
Xi − E(Xi | Gi−1)

}
.

Then, Mn =
∑n
i=1 Yn,i. Further, Yn,i is Fn,i-measurable, Fn+1,i = Fn,i, and

E(Yn,i | Fn,i−1) = 0 a.s..

So, by the martingale CLT (see Theorem 3.2, p. 58, of [15]), it suffices proving that

n∑
i=1

Y 2
n,i

P−→ L, max
1≤i≤n

|Yn,i|
P−→ 0, sup

n
E
(

max
1≤i≤n

Y 2
n,i

)
<∞.

Let Di = Xi − E(Xi | Gi−1). By (5.1),
∑n
i=1 Y

2
n,i = 1

n

∑n
i=1D

2
i

P−→ L. Since (X2
n) is

uniformly integrable, (D2
n) is uniformly integrable as well. Given ε > 0, take a > 0 such

that E
(
D2
i I{|Di|>a}

)
< ε for all i. Then,

E
(

max
1≤i≤n

Y 2
n,i

)
≤ a2

n
+

1

n

n∑
i=1

E
(
D2
i I{|Di|>a}

)
<
a2

n
+ ε.
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Therefore, limnE
(
max1≤i≤n Y

2
n,i

)
= 0, and this implies that max1≤i≤n|Yn,i|

P−→ 0 and
supnE

(
max1≤i≤n Y

2
n,i

)
<∞.

This concludes the proof of the first part. We next prove the sufficient conditions for
(5.1). Define ∆i = E(X2

i | Gi−1)− E(Xi | Gi−1)2 and note that

E
∣∣∣ n∑
i=1

(D2
i −∆i)

∣∣∣ ≤ E∣∣∣ n∑
i=1

(
X2
i − E(X2

i | Gi−1)
)∣∣∣+ 2E

∣∣∣ n∑
i=1

DiE(Xi | Gi−1)
∣∣∣.

Since (X2
n) is uniformly integrable, given ε > 0, there is a > 0 such that

sup
i
E
{
X2
i (1− IAi)

}
< ε where Ai = {|Xi| ≤ a}.

Further,{
E
∣∣∣ n∑
i=1

(
X2
i IAi − E(X2

i IAi | Gi−1)
)∣∣∣ }2

≤ E
{( n∑

i=1

(
X2
i IAi − E(X2

i IAi | Gi−1)
))2}

=

n∑
i=1

E
{(
X2
i IAi

− E(X2
i IAi

| Gi−1)
)2} ≤ na4.

Thus,

1

n
E
∣∣∣ n∑
i=1

(
X2
i − E(X2

i | Gi−1)
)∣∣∣ ≤ a2

√
n

+ 2 sup
i
E
{
X2
i (1− IAi

)
}
<

a2

√
n

+ 2 ε.

Similarly, letting d =
√

supiED
2
i , one obtains

2

n
E
∣∣∣ n∑
i=1

DiE(Xi | Gi−1)
∣∣∣ ≤ 2 a d√

n
+ 2 sup

i
E
{
|Di|E

(
|Xi| (1− IAi

) | Gi−1

)}
≤ 2 a d√

n
+ 2 sup

i

√
ED2

i E
{
X2
i (1− IAi

)
}
<

2 a d√
n

+ 2 d
√
ε.

It follows that

E
∣∣∣ 1

n

n∑
i=1

X2
i −

1

n

n∑
i=1

E(X2
i | Gi−1)

∣∣∣ −→ 0, (5.2)

E
∣∣∣ 1

n

n∑
i=1

D2
i −

1

n

n∑
i=1

∆i

∣∣∣ −→ 0. (5.3)

Suppose that 1
n

∑n
i=1X

2
i

P−→ Y and 1
n

∑n
i=1E(Xi | Gi−1)2 P−→ Y−L. Then, 1

n

∑n
i=1E(X2

i |
Gi−1)

P−→ Y by (5.2), so that 1
n

∑n
i=1 ∆i

P−→ L. Thus, (5.3) implies 1
n

∑n
i=1D

2
i

P−→ L, i.e.,
condition (5.1) holds.

Finally, suppose ∆n
P−→ L. Then E|∆n−L| −→ 0, due to (∆n) is uniformly integrable,

so that E| 1n
∑n
i=1 ∆i − L| −→ 0. Again, (5.1) follows from (5.3).

In order to apply Theorem 5.2, note that 1
n

∑n
i=1X

2
i converges a.s. under various

assumptions. This happens, for instance, if EX2
1 < ∞ and (Xn) is G-c.i.d. or stationary

or 2-exchangeable. (In the 2-exchangeable case, just apply the SLLN in [12]). In turn,
1
n

∑n
i=1E

(
Xi | Gi−1

)2
converges a.s. provided E

(
Xn | Gn−1

)
converges a.s., which

is true at least in the G-c.i.d. case. We do not know of any example where (Xn) is

stationary, EX2
1 <∞, and yet 1

n

∑n
i=1E

(
Xi | Gi−1

)2
fails to converge in probability. But

such example possibly exists.
We now turn to uniform CLTs.
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Theorem 5.3. Suppose (Xn) is G-adapted, Bn meets condition (4.2), and

1

n

n∑
i=1

I{Xi≤t}
P−→ a(t),

1

n

n∑
i=1

P (Xi ≤ s | Gi−1)P (Xi ≤ t | Gi−1)
P−→ b(s, t),

for all s, t ∈ R. Then Bn
d−→ G, under uniform distance on l∞(R), where G is a tight

process with distribution (4.1) and

Σ(t1, . . . , tk) =
(
a(ti ∧ tj)− b(ti, tj) : 1 ≤ i, j ≤ k

)
.

Proof. By (4.2), it suffices to prove convergence of finite dimensional distributions; see
e.g. Theorem 1.5.4 of [21]. Fix t1, . . . , tk, u1, . . . , uk ∈ R and define

L =

k∑
r=1

k∑
j=1

ur uj
(
a(tr ∧ tj)− b(tr, tj)

)
.

Define also f =
∑k
r=1 ur I(−∞,tr]. Then,

1

n

n∑
i=1

f(Xi)
2 =

k∑
r=1

k∑
j=1

ur uj
1

n

n∑
i=1

I{Xi≤tr∧tj}
P−→

k∑
r=1

k∑
j=1

ur uj a(tr ∧ tj).

Moreover,

1

n

n∑
i=1

E
(
f(Xi) | Gi−1

)2
=

1

n

n∑
i=1

{ k∑
r=1

ur P
(
Xi ≤ tr | Gi−1

)}2

=

k∑
r=1

k∑
j=1

ur uj
1

n

n∑
i=1

P
(
Xi ≤ tr | Gi−1

)
P
(
Xi ≤ tj | Gi−1

) P−→
k∑
r=1

k∑
j=1

ur uj b(tr, tj).

Thus, Theorem 5.2 applies to (f(Xn)), so that

k∑
r=1

urBn(tr) =
√
n
{ 1

n

n∑
i=1

f(Xi)−
1

n

n∑
i=1

E
(
f(Xi) | Gi−1

)}
−→ N(0, L) stably.

In particular,
∑k
r=1 urBn(tr) converges in distribution to the probability measure

ν(B) =

∫
N(0, L)(B) dP for all Borel sets B ⊂ R.

On noting that
∑k
r=1 ur G(tr) ∼ ν, one obtains

∑k
r=1 ur Bn(tr)

d−→
∑k
r=1 ur G(tr). By

letting u1, . . . , uk vary, it follows that(
Bn(t1), . . . , Bn(tk)

) d−→
(
G(t1), . . . ,G(tk)

)
.

For the next result, as in Theorem 4.3, we let

qi(t) = I{Xi≤t} − i P
(
Xi+1 ≤ t | Gi

)
+ (i− 1)P

(
Xi ≤ t | Gi−1

)
.
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Theorem 5.4. Suppose (Xn) is G-adapted, Cn meets condition (4.2), and

n3E
{(
P (Xn+2 ≤ t | Gn)− P (Xn+1 ≤ t | Gn)

)2} −→ 0,

1√
n
E
{

max
1≤i≤n

|qi(t)|
}
−→ 0,

1

n

n∑
i=1

qi(s) qi(t)
P−→ σ(s, t),

for all s, t ∈ R. Then Cn
d−→ G, under uniform distance on l∞(R), where G is a tight

process with distribution (4.1) and Σ(t1, . . . , tk) =
(
σ(ti, tj) : 1 ≤ i, j ≤ k

)
.

Proof. We just give a sketch of the proof, for it is quite analogous to that of Theorem 5.3.
By (4.2), it is enough to prove finite dimensional convergence. Fix t1, . . . , tk, u1, . . . , uk ∈
R and define L =

∑k
r=1

∑k
j=1 ur uj σ(tr, tj) and ν(·) =

∫
N(0, L)(·) dP . Since

∑k
r=1 ur G(tr)

has probability distribution ν, it suffices to show that

k∑
r=1

ur Cn(tr) −→ N(0, L) stably.

To this end, we let f =
∑k
r=1 ur I(−∞,tr] and we apply Theorem 5.1 to (f(Xn)). Define

Un = E
(
f(Xn+1) | Gn

)
=
∑k
r=1 ur P

(
Xn+1 ≤ tr | Gn

)
. On noting that

E
(
Un+1 | Gn

)
= E

(
f(Xn+2) | Gn

)
=

k∑
r=1

ur P
(
Xn+2 ≤ tr | Gn

)
,

one obtains

n3E
{(
E(Un+1 | Gn)− Un

)2} ≤ n3 k2 max
1≤r≤k

u2
r E
{(
P (Xn+2 ≤ tr | Gn)− P (Xn+1 ≤ tr | Gn)

)2} −→ 0,

1√
n
E
{

max
1≤i≤n

i |Ui−1 − Ui|
}
≤

k∑
r=1

|ur|
E
{

max1≤i≤n |qi(tr)|
}

+ 1
√
n

−→ 0,

1

n

n∑
i=1

{
f(Xi)− Ui−1 + i (Ui−1 − Ui)

}2
=

k∑
r=1

k∑
j=1

ur uj
1

n

n∑
i=1

qi(tr) qi(tj)
P−→ L.

Hence,
∑k
r=1 ur Cn(tr) =

√
n
{

1
n

∑n
i=1 f(Xi)− Un

}
−→ N(0, L) stably.

5.2 Convergence in distribution according to Meyer and Zheng

Checking condition (4.2) is hard in real problems. Indeed, unless (Xn) is exchange-
able, uniform distance is often too strong for tightness of empirical processes. Condi-
tions for convergence in distribution under some weaker distance, thus, are useful.

Let L0 = L0(m), where m is Lebesgue measure on the Borel σ-field on R. Thus, L0

is the space of (equivalence classes of) Borel functions f : R→ R. Define

ρ(f, g) =

∫ ∞
−∞

1 ∧ |f(t)− g(t)| e−|t| dt for f, g ∈ L0.

Then, ρ is a distance on L0 and (L0, ρ) is a Polish space. Further, ρ(fn, f) → 0 means
that fn

m−→ f on compacts. Convergence in distribution under ρ has been investigated
by Meyer and Zheng in [19]. A clear exposition is in Section 4 of [17].

In the sequel, the expression "almost all (t1, . . . , tk) ∈ Rk" is meant with respect to
Lebesgue measure on Rk. A real process U on (Ω,A, P ) is called jointly measurable if
the map (t, ω) 7→ U(t, ω) is measurable. Two basic facts are to be mentioned.
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(i) Let U and V be real jointly measurable processes indexed by R. Then, U and V

are L0-valued random variables and U ∼ V if and only if(
U(t1), . . . , U(tk)

)
∼
(
V (t1), . . . , V (tk)

)
for all k ≥ 1 and almost all (t1, . . . , tk) ∈ Rk.

(ii) Let Un and U be real jointly measurable processes indexed by R. For Un
d−→ U

under ρ, it suffices that the sequence (Un) is tight under ρ and(
Un(t1), . . . , Un(tk)

) d−→
(
U(t1), . . . , U(tk)

)
for all k ≥ 1 and almost all (t1, . . . , tk) ∈ Rk.

In view of (i), Bn : Ω→ L0 and Cn : Ω→ L0 are L0-valued random variables. Another
fact needs to be recalled from Subsection 3.1. Let (Xn) be G-c.i.d.. Up to enlarging the
underlying probability space (Ω,A, P ), there are a random distribution function F and
an exchangeable sequence (Zn) such that

Fn(t)
a.s.−→ F (t) and F ∗n(t)

a.s.−→ F (t) for each t ∈ R, (5.4)

where Fn(t) =
1

n

n∑
i=1

I{Xi≤t} and F ∗n(t) =
1

n

n∑
i=1

I{Zi≤t}.

Our last results deal with the asymptotic behavior of Bn and Cn under ρ. In such
results, (Xn) is G-c.i.d., (Zn) is exchangeable, F is a random distribution function, and
Fn, F

∗
n and F satisfy condition (5.4).

Theorem 5.5. If

√
n
{
Fn(t)− F ∗n(t)

} a.s.−→ 0 and
√
n
{
F (t)− E(F (t) | Gn)

} a.s.−→ 0 (5.5)

for almost all t ∈ R, then Bn
d−→ GF and Cn

d−→ GF under ρ.

Proof. Let Rn =
√
n
{
F ∗n − F

}
. If (Zn) is i.i.d., Rn

d−→ GF under uniform distance.

Hence, Rn
d−→ GF under ρ, for uniform distance is stronger than ρ. Next, suppose

(Zn) exchangeable (and not necessarily i.i.d.). Since (L0, ρ) is Polish, de Finetti’s rep-

resentation theorem again implies Rn
d−→ GF under ρ. Thus, it suffices to prove that

ρ(Bn, Rn)
P−→ 0 and ρ(Cn, Rn)

P−→ 0.
Since P (Xi ≤ t | Gi−1) = E(F (t) | Gi−1) a.s., then

Bn(t)−Rn(t) =
√
n
{
Fn(t)− F ∗n(t)

}
+

n∑
i=1

(n i)−1/2
(√

i
{
F (t)− E(F (t) | Gi−1)

})
a.s..

Because of (5.5) and
∑n
i=1(n i)−1/2 → 2, one obtains Bn(t) − Rn(t)

a.s.−→ 0 for almost all
t ∈ R. Letting A = {(t, ω) : Bn(t, ω)−Rn(t, ω) does not converge to 0}, it follows that∫

Ω

m{t : (t, ω) ∈ A}P (dω) =

∫ ∞
−∞

P{ω : (t, ω) ∈ A} dt = 0.

Hence Bn(·, ω)−Rn(·, ω) −→ 0, m-a.s., for each ω in a set of P -probability 1. This implies
ρ(Bn, Rn)

a.s.−→ 0. Finally, ρ(Cn, Rn)
a.s.−→ 0 follows from exactly the same argument.
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Theorem 5.6. Suppose X1 discrete or

inf
ε>0

lim inf
n

P
(
|Xn −Xn+1| < ε

)
= 0.

Let qi(t) = I{Xi≤t} − i P
(
Xi+1 ≤ t | Gi

)
+ (i− 1)P

(
Xi ≤ t | Gi−1

)
. If

√
nE
∣∣∣Fn(t)− F ∗n(t)

∣∣∣ −→ 0 for almost all t ∈ R, (5.6)

then Bn
d−→ GF under ρ. If, in addition,

1√
n
E
{

max
1≤i≤n

|qi(t)|
}
−→ 0 and

1

n

n∑
i=1

qi(s) qi(t)
P−→ σ(s, t) for almost all (s, t) ∈ R2,

then Cn
d−→ G under ρ. Here,G is a process satisfying equation (4.1) with Σ(t1, . . . , tk) =(

σ(ti, tj) : 1 ≤ i, j ≤ k
)

for all k ≥ 1 and almost all (t1, . . . , tk) ∈ Rk.

Proof. Since (Xn) is G-c.i.d., the finite dimensional distributions of Bn converge weakly
to those of GF ; see Theorem 4.2 of [4] and its proof. Similarly, arguing as in the proof
of Theorem 5.4 and using the conditions on qi(t), one obtains(

Cn(t1), . . . , Cn(tk)
) d−→

(
G(t1), . . . ,G(tk)

)
for all k ≥ 1 and almost all (t1, . . . , tk) ∈ Rk. Therefore, it is enough to prove tightness
of (Bn) and (Cn) under ρ.

By Theorem 2.5 of [4], (Xn, Xn+1)
d−→ (Z1, Z2). Thus, Z1 is discrete if X1 is discrete.

Otherwise, if X1 is not discrete,

P (Z1 = Z2) = inf
ε>0

P
(
|Z1 − Z2| < ε

)
≤ inf
ε>0

lim inf
n

P
(
|Xn −Xn+1| < ε

)
= 0.

Let Rn =
√
n
{
F ∗n − F

}
. Since (Zn) is exchangeable and Z1 is discrete or

P (Z1 = Z2) = 0, then Rn
d−→ GF under uniform distance; see Subsection 4.2. Given

t ∈ R, recall E
{
F (t) | Gn

}
= P

(
Xn+1 ≤ t | Gn

)
a.s. and define

Yn(t) = E
{
Rn(t) | Gn

}
=
√
n
{
E
{
F ∗n(t) | Gn

}
− P

(
Xn+1 ≤ t | Gn

)}
.

Since Rn satisfies condition (4.2), Yn meets (4.2) as well; see Remark 4.4 of [4]. Hence,
(Yn) is tight under ρ (for uniform distance is stronger than ρ). Further,

E
{
ρ(Cn, Yn)

}
=

∫ ∞
−∞

E
{

1 ∧
∣∣∣√nE{Fn(t)− F ∗n(t) | Gn

}∣∣∣} e−|t| dt
≤
∫ ∞
−∞

1 ∧
{√

nE
∣∣∣Fn(t)− F ∗n(t)

∣∣∣} e−|t| dt −→ 0 by condition (5.6).

Thus, (Cn) is tight under ρ, because (Yn) is tight under ρ and ρ(Cn, Yn)
P−→ 0.

We finally prove (Bn) tight under ρ. Let

Dn(t) = Rn(t) +
E(F (t) | Gn)− E(F (t) | G0)√

n
+

n∑
i=1

(n i)−1/2
{
Yi(t)−Ri(t)

}
.

Since (Dn) is tight under ρ, it suffices to show that E
{
ρ(Bn, Dn)

}
−→ 0. Write Bn as

Bn(t) = Wn(t) +
E(F (t) | Gn)− E(F (t) | G0)√

n
+

n∑
i=1

(n i)−1/2
{
Ci(t)−Wi(t)

}
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where Wn =
√
n
{
Fn − F

}
. Then, condition (5.6) implies E

∣∣∣Bn(t) − Dn(t)
∣∣∣ −→ 0 for

almost all t ∈ R, which in turn implies E
{
ρ(Bn, Dn)

}
−→ 0.

The idea underlying Theorems 5.5-5.6 is straightforward: Bn and Cn behave nicely
under ρ provided (Xn) is close enough to a suitable exchangeable sequence (Zn). In
the spirit of [1], we note that (Xnj

) is actually close to (Znj
) for some subsequence (nj).

Finally, we give a (technical) remark and an example.

Remark 5.7. Under the assumptions of Theorem 5.6, one obtains

Bn = Dn +D∗n and Cn = Yn + Y ∗n

with Dn and Yn satisfying (4.2) and D∗n
P−→ 0, Y ∗n

P−→ 0 under ρ. Moreover, if the
conditions on qi(t) hold for every (s, t) ∈ R2 and

√
nE‖Fn − F ∗n‖ −→ 0,

then Bn
d−→ GF and Cn

d−→ G under uniform distance.

Example 5.8 (Example 4.4 continued). Let the notation of Example 4.4 prevail. Since
F = I[X,∞), the exchangeable sequence (Zn) can be taken to be Zn = X for all n. In

particular, GF = 0 and F ∗n = F for all n. Since Xn
a.s.−→ X, Sn

a.s.−→ X, and P (X = t) = 0

for fixed t, condition (5.5) is trivially true. Thus, Theorem 5.5 yields Bn
d−→ 0 and

Cn
d−→ 0 under ρ.
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