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Abstract: The higher-order heat-type equation du/0t = £0™u/0z™ has been inves-
tigated by many authors. With this equation is associated a pseudo-process (X)¢>0
which is governed by a signed measure. In the even-order case, Krylov, [9], proved
that the classical arc-sine law of Paul Lévy for standard Brownian motion holds for
the pseudo-process (Xi):>0, that is, if T} is the sojourn time of (X;);> in the half

line (0, +o00) up to time ¢, then P(T; € ds) = %, 0 < s < t. Orsingher, [13],

and next Hochberg and Orsingher, [7], obtained a counterpart to that law in the odd
cases n = 3,5, 7. Actually Hochberg and Orsingher proposed a more or less explicit
expression for that new law in the odd-order general case and conjectured a quite
simple formula for it. The distribution of 7} subject to some conditioning has also
been studied by Nikitin & Orsingher, [11], in the cases n = 3,4. In this paper, we
prove that the conjecture of Hochberg and Orsingher is true and we extend the re-
sults of Nikitin & Orsingher for any integer n. We also investigate the distributions
of maximal and minimal functionals of (X;);>0, as well as the distribution of the
last time before becoming definitively negative up to time ¢.
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1 Introduction

Several authors have considered higher-order heat-type equations

ou o"u
ot~ g (1)

for integral n and &, = £1. More precisely, they choose k, = (—1)P*! for n = 2p
and k, = £1 for n = 2p+ 1. They associated with Eq. (1) a pseudo Markov process
(X¢)e=0 governed by a signed measure which is not a probability measure and studied

e some analytical properties of the sample paths of that pseudo-process;

e the distribution of the sojourn time spent by that pseudo-process on the pos-
itive half-line up to time t: T3 = meas{s € [0,¢] : X; > 0} = fg Lx, >0y ds;

e the distribution of the maximum M; = maxogs<: X5 together with that of the
minimum m; = minggsgt X5 with possible conditioning on some values of X;

e the joint distribution of M; and X;.

The first remarkable result is due to Krylov, [9], who showed that the well-known
arc-sine law of Paul Lévy for standard Brownian motion holds for 7} for all even
integers n:

]1(0,t)(3)

my/s(t — s)

which is also characterized by the double Laplace transform

P(T; € ds)/ds =

1
VA F 1)

Hochberg, [6], studied the pseudo-process (X¢):>0 and derived many analytical prop-
erties: especially, he defined a stochastic integral and proposed an It6 formula, he
obtained a formula for the distribution of M; in the case n = 4 with an extension to
the even-order case. Noteworthy, the sample paths do not seem to be continuous in
the case n = 4. Later, Orsingher, [13], obtained some explicit distributions for the
random variable T; as well as the random variables M; and m; in the case n = 3.
For example, when k,, = +1, he found for the double Laplace transform of T} the

simple expression
/+<>0 e ME(e Tt dt = ;
0 VA A+ )

Hochberg and Orsingher proposed a more or less explicit formula for the double
Laplace transform of 7} when n is an odd integer (Theorem 5.1 of [7]). They simpli-
fied their formula in the particular cases n = 5 and n = 7 and found the following
simple expressions when k, = 41 for instance:

+o0o
/ e ME(e ) dt =
0

1
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N for n =5,
/ e ME(e ) dt =
0 forn=717.



In view of these relations, Hochberg and Orsingher guessed that the following for-
mula should hold for any odd integer n = 2p + 1 when &,, = +1 (conjecture (5.17)
of [7]):
1
. 0 L if p is odd,
oo n _|_

/ e ME(e ) dt = 1 . (2)
0

if p is even.
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In this paper, we prove that their conjecture is true (see Theorem 7 and Corollary 9
below). The way we use consists of solving a partial differential equation coming
from the Feynman-Kac formula. This leads to a Vandermonde system for which
we produce an explicit solution. As a result, it is straightforward to invert (2) as
in [7] (formulae (3.13) to (3.16)) and to derive then the density of T} which is the
counterpart to the arc-sine law:

knT(0,)(s)
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Kn = (_1)p’
P(T; € ds)/ds =
if K, = (—1)PHL,

with
1 . »p 1 . p+1
k, = —sin=m = — sin
T n T n

Nikitin and Orsingher, [11], studied the law of T; conditioned on the events X; = 0,
X; > 0 or X; <0 in the cases n = 3 and n = 4 and obtained the uniform law for
first conditioning as well as some Beta distributions for the others. For instance,

.

33/2 2/3
4—7rt<t j s) lioy(s) forn=3and k, = +1,
P(T; € ds|X; > 0)/ds = , N
S
7= lon(s) for n = 4.

Through a way similar to that used in the unconditioned case, we have also found
the uniform law for conditioning on X; = 0 (see Theorem 13) and we have obtained
an extension to (3) (Theorem 14). Beghin et al., [1, 2], studied the laws of M; and
my conditioned on the event X; = 0 as well as coupling M; with X; in the same
cases. In particular, in the unconditioned case,

top ds

1
P(M; <a) = ]P’(tha)—]P’(Xt>a)+ﬁ%) ; a(s;a)m ifn=3, (4)
t
P(My;<a) = IP’(Xt<a)—[[”(Xt>a)—|—i @(s;a) ds ifn=4, (5)
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where p(t; z) is the fundamental solution of Eq. (1) in the cases n = 3,4 and k,, =
—1. Actually, formula (4) is due to Orsingher, [13]. Concerning formula (5), the
constant before the integral in [2] should be corrected into 2/+/m. We shall also
study the distributions of M; and m; in the general case by relying them on that of
T;. Specifically, the Laplace transform of M;, E(e”#Mt) say, may be acquired from
that of T} by letting u tend to 4o0.

Finally, let us mention that Eq. (1) has been studied especially in the case n = 4
(biharmonic operator) under other points of view by Funaki, [4], and next Hochberg



and Orsingher, [8], in relation with compound processes, Nishioka, [12], who adopts a
distributional approach for first hitting time and place of a half-line, Motoo, [10], who
study stochastic integration, Benachour et al., [3], who provide other probabilistic
interpretations. See also the references therein.

The paper is organized as follows: in Section 2, we write down the general
notations. In Section 3, we exhibit several properties for the fundamental solution
of Eq. 1 (heat-type kernel p(¢;z)) that will be useful. Section 4 is devoted to some
duality notion for the pseudo-process (X¢);>0. The subsequent sections 5 and 6 deal
with the distributions of T} subject to certain conditioning. Section 7 concerns the
distributions of the maximal and minimal functionals and Section 8 concerns the
distribution of the last time before becoming definitively negative up to time ¢:

O =sup{s € [0,t] : X; > 0}

with the convention sup(()) = 0.

2 Notations

We first introduce the dual operators

877/ . n a’l’b
T = Hn% and Dy = (*1) I"ina—yn.

D

Let p(t; z) be the fundamental solution of Eq. (1). The function p is characterized
by its Fourier transform

+oo | Con
/ e p(t; 2) dz = efnt=)", (6)

—0o0

Put
ptix,y) = p(tiz — y) = Pa(Xy € dy)/dy.
The foregoing relation defines a pseudo Markov process (X¢)¢>0 which is governed by

a signed measure, this one being of infinite total variation. The function (¢;z,y) —
p(t; x,y) is the fundamental solution to the backward and forward equations

. ou
Dyu = Dyu = e

Some properties of p are exhibited in the next section and we refer to [6] for several
analytical properties about the pseudo-process (X;);>0 in the even-order case.

Set now
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together with their Laplace transforms:

o0
U\, p;2) =/ e Mult, i x) dt,
0
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+o00
VI pz,y) = / e Mu(t, psx,y) dt,
0
+oo
Wy (A z,a) = / M (t;x,a) dt,
0
Win(\;zya) = / m(t; T, a) dt,
0
. _ —)\t
Z()\,/L,LE) - / (t,,U,, )dt
0

The functions u and v are solutions of some partial differential equations. We recall
that by the Feynman-Kac formula, see e.g. [6], if f and g are any suitable functions,
the function ¢ defined as

o(t; ) = Egle™ Jo /X g (x,)]
where the “expectation” must be understood as lim,,;, oo E; [e*% k=0 fXe/m) g(X,)]
solves the partial differential equation
o "y
— =K
ot " Oxn

together with the initial condition ¢(0;x) = ¢g(z) and then the Laplace transform ¢
of ¢,

— fo (7)

+oo
o) = [N gt
0
solves the ordinary differential equation

do

bl = (f + X6 - 5)

For solving Eq. (8) that will be of concern to us, the related solutions will be
linear combinations of exponential functions and we shall have to consider the n'®
roots of k,, (8 for 0 < j < n—1say) and distinguish the indices j such that #6; < 0
and RO; > 0 (one never has RO; = 0). So, let us introduce the following set of
indices

I = {j€{0,...,n—1}:RY; <0},
J = {je{0,...,n—1}:RG; > 0}.

We have
IyJj={0,....,n—1} and INJ=0.

If n = 2p, then w,, = (—1)P*!, §; = elZtptm/n]
I={0,...,p—1} and J={p,...,2p—1}.
The numbers of elements of the sets I and J are
#1 = 4J =p.
If n=2p+1, then

o for ri, = +1: 0; = 127/ and

_[P 3_p} _{ B} {3_19 } .
I—{2+17...,2 and J = 0,...72 U 24—1,...,2]) if p is even,
1 1 -1
I:{p; ;...,3p2+ }andJ:{O,...,p2 }U{Sp;3,...,2p} if p is odd.



The numbers of elements of the sets I and J are

#I1=0p and #J=p+1 if piseven,
#I=p+1 and #J=p if p is odd.

o for r, = —1: 0; = lITD7/n] and
I:{]—?... @} andJ:{O... B—l}u{3—p+1... Qp} if p is even
27 72 ) 72 2 ) ) b
yp+1 3p_1} _{ p—l} 3p+1 } e
I—{ 5 T o and J=40,..., 5 U{ 5 .., 2pyp if pis odd.

The numbers of elements of the sets I and J are

#I=p+1 and #J=p if p is even,
#1=0p and #J=p+1 if pisodd.

We finally set w; = etl2im/n] Tn all cases one has 0;/0r = wj_p.

3 Some properties of the heat-type kernel p(t; 2)

In this section, we write down some properties for the kernel p(¢; z) that will be used
further.

3.1 Integral representations

Inverting the Fourier transform (6), we obtain the following complex integral repre-
sentation for p:

I u)m 1 [T "
p(t;z):—/ e*’LZ'UA*Hnt(*’L’U,) du = ezqurnnt(w) du (9)

27 J_ o T om oo

from which we also deduce some real integral representations:

e if n=2p and K, = (—1)PH!,

1 [ree n
p(t; z) = —/ cos(zu)e™ ™" du;
T Jo

e ifn=2p+1 and k, = £1,

1 [+ oy g def
— cos(zu +tu")du = p™ (t;2) for Ky, = (—1)P,
T Jo

p(t;2) =

1 oo def
—/ cos(zu — tu™)du = p~(t;z) for k, = (—1)PFL.
T Jo

We obviouly have pT(t; 2) = pT(t; —2).



3.2 Value at z=0

Substituting z = 0 in the above expressions immediately gives the value of p(t;0)
below. This will be used in the evaluation of the distribution of the random variable
T; conditioned on X; = 0.

Proposition 1 We have

—_

L)

sty =4 "V (10)

I(+) cos 7=
(3) cos 3, if n is odd.

if n is even,

n

nm i/t

3.3 Asymptotics

It is possible to determine some asymptotics for p(t;z) as z/{/t — 4oo (which
include the cases 2 — +oo and t — 0T) by using the Laplace’s method (the steep-
est descent). Since the computations are rather intricate, we postpone them to
Appendix A and only report the results below.

Proposition 2 Set ( = z//nt. We have as z/{/t — +o0:

e when n = 2p:

— for even p:
- (p/2)-1 1 n
p(t; Z) 2C 2(n l)n Z e*(lfl)sln( :jf W)CRTI
2(n — Vm IUnt 1=
1 2k + 3 no 2k+3
X COS ((1 — —) cos( jf ) (T Q(n—i—_ i) T — %),
— for odd p:
—n=2 (p—3)/2 1 n
Pz~ 2 Y MG e
2(n — 1)m V/nt P
2k + 3 0o 2k+3
om0~ Doy 2tk
e_(l_%)cn_l ;
e whenn=2p+1:
— if kp = (_1);07
x for even p:
n—2 (p/2)-1
. 2( 21D p 7(171)Sln(2k+11 ) (T
p( 72) 2 n
(n—m ¥nt =
1 2k +1 n 2k +1
X €OS ((1— ;)COS( njl ) (T ﬁﬂ— %),



x for odd p:

__n—=2_ (p—3)/2

(2D _(1—l)sin(2k—+1ﬂ')4%
p(t, Z) ~ — 2 Z e n n—1
2(n — 1)m ¥nt k=0
1 2k +1 n 2k +1
X COS ((1— E)COS( nj—l ™)t Q(T——i_l)w_ %)

notice that the integral f0+oo p(t; z) dz is absolutely convergent;

- Zf Kn = (_1)p+1;

x for even p:

p(t;z) ~ A 2(p/22)_16‘(1‘%)51n(n2_fi”)4ﬁ
’ V20— ¥t |© =
1 2k _n_ k T
o8 <(1_ ﬁ)cos(n—lﬁ)cn_1 + n—1"_ Z)
e
x for odd p:
p(t;z) ~ 2077050 O 1ty et
V2(n—Dm Vnt i
1 2%k n k -
XCOS<(1_E)COS(n—1ﬂ)Cm+n—17r_z>;

notice that the integral f0+°° p(t; z) dz is semi-convergent; this is due to

the presence of the term cos((1 — %) C# — 1) corresponding to the index
k=0.

Asymptotics for the case z/{/t — —oo can be immediately deduced from the previ-
ous ones by reminding that

e if n is even, the function p is symmetric;
e if n is odd, we have p*(t;2) = pT(t; —2).
3.4 Value of the spatial integral

Conditioning on X; > 0 requires the evaluation of the integral f0+°° p(t; z) dz. Its
value is supplied by the following proposition.



Proposition 3 The value of the integral of the function z — p(t; z) on (0, +00)
s given by

if n is even,

400 1 _
/0 p(t)dz=¢ S(1==) ifn=2p+1 and Ky = (-1)7, (11)

N = N = N

1
<1 + E) ifn=2p+1 and k,, = (=1)P*L,

PROOF. 1. If n is even, the function z +— p(¢; z) is symmetric and then its integral
n (0, +00) is the half of the one on (—o0,400), that is to say 3

2. If nis odd (n =2p + 1), due to fj;o p(t; z2) dz = 1 we only have to evaluate

one of both integrals [;™° p(t; z) dz and ffoo p(t; 2) dz. Actually, as it has been said
in Proposition 2 one is absolutely convergent whereas the other is semi-convergent.
More precisely,

o if K, = (—1)P, 0+°O p(t; z) dz is absolutely convergent;
o if K, = (—1)PH! f p(t; z) dz is absolutely convergent.
So, as A — 07, the dominated convergence theorem applies to the integral f0+oo e Mp(t; 2) dz

in the case k, = (—1)? and to ono e?p(t; z) dz in the case k, = (—1)P*!. For in-
stance, in the first case,

+o0 +oo
/ e Mp(t;2)dz — p(t; 2) dz.
0

A—01 0

Now let us compute the integral f0+oo e Mp(t; z)dz for K, = (—=1)? and A > 0.
By (9) we have

+o0 1 +00 +oo n
/ e Mp(t;2)dz = R [—/ e M dz/ eilzuttu )du]
0 T Jo 0

Integrating over an angular contour, we see that the integral of the function u —
eizuttu™) on the half- line (O +00) coincides with the one on the half-line of polar
angle g-: putting @ = e 2,

+m . n +m . n
/ 6z(zu+tu )du _ w/ elwzu—tu™ g,
0 0
Therefore,

+o00 1 +oo " +oo )
/ e Mp(t;z)dz = R [—w/ et du/ e~ A—imw)z g
0 0 0

s

1 [t n
= —/ R (L> e du

™ Jo A —iwu
_ Acos g /+°° e~ tu" du
- u? + 2 usin 5~ + A2

COS T +oo f/\"tu
= du.
/ u? + 2usin - + 1




By dominated convergence,

too cos & [too du
/ e Mp(t; 2) dz = 2"/ T ousn E 1
0 - m 0 u® + 2usin 5. +

Finally, we use the elementary identity ([5, 2.172, p. 81]), for a € (=73, ),

/+oo du 1 [7‘( }
= — —a«
o u?+2usina+1 cosal2 ’

and the result follows by choosing a = 7. O

3.5 Value of the temporal Laplace transform

It will be seen that the distribution of the maximum and minimum functionals may
be expressible by means of the successive derivatives %(t; 2), 0 <j<n-—1. So,
we give below some expressions for their Laplace transform.

Proposition 4 1. The Laplace transform of the function t — p(t; z) is given by

1
— 5 Zerek‘sz if 2> 0,
def [Ty, AT g
(N 2) = / e Mp(t;z)dt = 1 (12)
0 T Z 0,e79%  if 2 <0,
nATTn Gy

where § = V.

2. The successive partial derivatives of ® are given, for j < n—1 and z # 0, by

1 .
— Z 9i+1€9k52 if 2> 0,

1 dt+1

i +00 j N
%()\; z) = / e M %(t; z)dt = 1 kel
z z i+1 0,62 ,
0 — T ZH?F 0 if 2 <0,
nAT e ke
(13)
and for j =mn, by
P o0 n
882" (A 2) = /0 e M %(t; z) dt = kp[AP(A; 2) — do(2)]. (14)
Moreover, the derivatives of ® up to order n — 2 are continuous at 0.
3. The Laplace transform of the function t — P(X; < z) — P(X; > x) is
def oo Mt
U(\z) = / eV [P(Xy <) —P(X; > x)|dt
0
1 2
5 [1 — E;e—"kh] if x>0,
= r © (15)
—0 0z .
X [526 k —1] if £ <0.
kel

PRrOOF. 1. Using (9), it is possible to show that

400 1 +o0 eizu 1 +i00 e
/ e Mp(t;z)dt = — ST e du= du;
0

o0 | oo A—rn(iu)® 2w J_iy A — Kpu”

1N



the details are recorded in Appendix B. Now, assume z > 0. Let us integrate on
a large half-circle lying in the half-plane Ru < 0, with center at 0 and diameter on
the imaginary axis. By residus, we get

+oo 1
=t Ordz
p(t;z)dt = R ( > 3
/0 ¢ ?) Z SN o w06 ];] nkp (Or0)" 1 c

kel

which proves (12) by remarking that mne;;*l = %. The case z < 0 can be treated
in a similar way.

2. Differentiating several times the right-hand side of (12) leads to the right-hand
sides of (13) and (14). Nevertheless, the proof of %(A; z) = 0+°° e N g;] (t;2)dt
for j < n—1 is very intricate, so we postpone it to the Appendix B. The continuity
of the derivatives of ® up to order n — 2 immediately comes from the equality

S0 =0for j <n—2.

3. Assume e.g. z > 0. Integrating (12) with respect to = gives now

+oo T
/ e MP(Xy <z)dt = / (N —2)dz
0

0 x
_ 1 —0,6% / 1 —0,52
= /_OO ngk‘se dz + ) MZM@ dz
kel ke
_ 95m
- | Zreme-e]
kel keJ
1 1 —0,67
= x{ O }
keJ

Similarly,

LSV 1 01,0
NP, > a)dt = — Y e
/0 e (X¢ > x) N2

keJ

which completes the proof of (15) in the case > 0. The other case is quite
analogous. O

4 A note on duality

In this part, we introduce the dual pseudo-process (X ):>o defined by its transition
functions as

P (tr,y) = PLX{ €dy)/dy
= P(X{ e dy| Xy =x)/dy
= p(t;y,x).

The duality seems to have been implicitly employed by Krylov, [9], in the even-
order case (for which the process (X¢)¢>0 is symmetric, see below). On the other
hand Nikitin & Orsingher, [11], have used a conditioned Feynman-Kac formula in
studying the sojourn time 7; subject to some conditioning in the cases n = 3,4.
Actually, duality may avoid its use and we shall make use of the ordinary Feynman-
Kac formula together with duality for studying conditioned T3. Due to the equality

11



p(t;x,y) = p(t;x — y) we plainly have p*(t;x,y) = p(t; —x, —y). This observation
allows us to view the pseudo-process (X/):>0 as (—X¢)¢>0. Notice that in the case
of even order the function z — p(t; z) is symmetric and then the pseudo-process
(X¢)e>0 is also symmetric which entails that (X;);>0 and (X¢);>0 may be seen as
the same processes.

In the odd-order case, we call (Xt+ )e>0 the process (X;);>o associated with the
constant k, = +1 and (X, );>o the one associated with x, = —1. We clearly have
the following connections between (X;");>0, (X; )i>0 and their dual processes.

Proposition 5 If n is odd, the dual pseudo-process of (X; )io0 (resp. (X; )i>0)
may be viewed as (X; )iso (resp. (X; )i>0)-

As in the classical theory of duality for Markov processes, it may be easily seen that
the following relationship between duality and time inversion holds:

[(Xs)0<5<t’X0 =, X = y] = [(X:—s)0<s<t‘X6k =Y, Xzzk = «T]
= [(—Xi—s)ogs<t| Xo = —y, Xy = —1]

which also implies
[(XS)Ogsgt,Xt € dy’XO = a:]/dy = [(_Xt—s)ogsgtth € —dl"X@ = —y]/d.%' (16)

For being quite rigourous, the first (for instance) of the foregoing identities should
be understood, for any suitable functionals F', as
Jim ELE((Xgy/m)1<h<m-1)[Xo = 2, Xo = y]

= im EF((=Xp/m)i<k<m—1)[Xo = =y, X¢ = —]

and this is sufficient for what we are doing in the present work.

5 The law of T;

The way we use for deriving the Laplace transform of the distribution of T} consists
of solving Eq. (7). This approach has already been adopted by Krylov, [9], for an
even integer n and by Hochberg and Orsingher, [7], for an odd integer n. Actually,
the approach of Krylov was slightly different. Indeed, he wrote

+oo
U\ piz) = / e M u(t, p; ) dt
0

“+oo “+oo
= / e dt/ o(t, w2, y) dy
0 —00

—+o00
= / V(A s 2, y) dy.

— o0
and subsumed that, in the case where n is even, V(\, u;z,y) = V(A p;y,2). In
fact, this is the consequence of self-duality for the pseudo-process (X¢)¢>o, that is
the latter coincides with its dual (see Section 4). Actually, we shall see in the
proof of Theorem 14 that V/(\, u; x,y) = V(A + p, —p; —y, —x). Next, he solved the
distributional differential equation

DyV = (A + plg 4o0))V — 0z, 1 fixed

10



in the case x = 0 and integrated the solution with respect to y. This finally leads
him to the classical arc-sine law.

Here, we imitate their arguments and unify their results for any integer n without
distinction. Ultimately, we achieve the computations carried out by Hochberg and
Orsingher, [7], for odd integers and prove their conjecture (5.17)—(5.18).

The function u solves Eq. (7) with the choices f = ul 1), g = 1 and is
bounded over the real line. Put v = /A + p and 6 = V.

According to Eq. (8), the corresponding ¢-function is U and has the form

1
cheek”—i—— if £>0,
. kel )\—I-,U,
U ) = S oo, 1 w0
e p—
k 2 i xr ’
keJ

(17)

where ¢ and dj are some constants that will be determined by using some regularity
conditions. Indeed, by integrating (8) several times on the interval [—¢, €] and letting
€ tend to 0, it is easily seen that the function U admits n — 1 derivatives at 0, that
is

U U

vie{0,...,n—1 0T = == (N0
6 { b ;n }7 81‘[ ( ) ) 8:L‘E ( 9 )
and then . 1
Z c,k +—— = de + -,
kel Atn keJ A
SO = > (6k0)'dy for1<L<n—1.
kel keJ
_Joe ifkel | Opy ifkel
Put z), = { —d, fkelJ and oy = { 0.6 ifkedJ The system takes the form

n—1 1%
Zaixk = { A+ )
k=0 0

This is a Vandermonde system, the solution of which being

if £ =0,

Hf1<é<n-1.

n—1
1 aj

)\()\ + ,u) o Q5 o
J#k

T =

The value of the foregoing product is given in the Lemma below.

Lemma 6 We have

(v/0) -1 H 0; — O(7/0) ifkel,

n— o) —1 0; — 0
SR DL ¥ .
Lloj—ar | 1-(5/9) 0; — 0L(5/7) .
j=0 ~J L SRS AR LA
ik 1= (6/7)" H 6, — 0 if ke J.

jeJ\{k}

19



PrOOF. By excising the set of indices {0, B 1} into I and J, we get

H ifkel
9, 9 H 0; 5 9 !
o eI\ {k} Y — Uk kY

o O — Qg .
o Il ; 5 eka HQ’y g5 ke
jen{ky 7 !

H (1 —wgk—; 1H1*wkjd_1 ifkel,

. ieI\{k} jeJ 5
I O-wep) '] —wr—s) ™" itk e
jeI\{k} iel v

Now, we decompose the polynomial 1 — z™ into elementary factors as follows:

— n—1

1—2" = Hl—w] H(l—wk,jw)
7=0 7=0
(1—2x) H (1 — wg—ix) H(l —wip—jzr) fkel
B iel\{k} jeg
(1 — (L‘) H (1 — wk,j:n) H(l — wk,im) ifkeJ
jeI\{k} i€l
and then
H(l—wk_jx)fl _ 1o H (1 —wp_z) ifkel,
—
jeg ieI\{k}
1—
H(l —wp_r) = — xn H (1 —wp—jzx) ifkel.
icl T jente
Putting © = /6 or x = §/~ yields the result. 0

Therefore, since (7/9)" — 1 = p/A, the constants ¢ and dj, in (17) are given by

+p i€\ {k} i — Uk
PR EIUEN ) QTS
jen{ky 4k

and we obtain

U\, p;x) = y (18)
1 A "
X [1 i (l at= )

< 11 9‘(’5;/7 w] it 2 < 0.

ked jeJ\{k}

1A



In particular, for x = 0, we get an intermediate expression for U (A, u;0):

1/n _
U 0) = 11 H((HTM) )Z m 99_,?;{/5) ()

kel icl\{k}

Formula (19) has been obtained by Hochberg & Orsingher, [7], in the odd-order
case. We now state the following theorem.

Theorem 7 The Laplace transform of Eq(e #1t) is given by

+00 1
/ e MEg(e Mty dt = (20)
0 YNFL(N + )
1
e if n is even,
AN+ )
1
= ifn=2p+1 and k, = (—1)P,
O T f p (-1)
1
ifn=2p+1 and k, = (—1)P+L.
O fn=2p (=1)

Rewriting formula (20) for U(\, ;0) as

1 7#1_1 0 #

we see that we have to prove the following identity.

Lemma 8 We have for any real number x # 1,

0,0 — 0 0, — 0 7 _q
SO Gehoy qp At L

kel zeI\{k} kel ze[\{k}

PROOF. First, observe that if the first and third terms coincide, then the second
one and the third one also coincide as it can be seen by replacing = by 1/z. Set now

#I_ 4 #I1-1
Q=7 =3
k=0

and

Oix — 0
=> ] Pul) with P(x)= 9,_9]6
kel iel\{k} Uk

The functions P and () are polynomials of degree not higher than #I. Therefore,
proving the identity P = @ is equivalent to checking the equalities between their
successive derivatives at 1 for instance:

vee{0,...,#1 -1}, PO1)=QY1). (21)

Plainly,
H#I-1

aron-e % (1)-e(24)

k=0

1



The evaluation of P()(1) is more intricate. We require Leibniz rule for a product of
functions P;:

q
!

NG _ " py . pla)
QL™= 2 g B
i—1 O+ Alg=2 q

£1,00tg>0

In the case where all the functions P; are polynomials of degree one, we get

q ' q P(fl) P(Zq)
(Hpj)() — g!Hpj Z }3 ]qjq

j=1 j=1 O 4 tlg=2 1
£ yeees Lq€e{0,1}

g P P
=/ Hp E : e
- J P; P;
i e J1 Je
J=1 1i<~<je<q

q / /
- J ) St

j=1 1<41,-00<a Pjy P,

J1seees jp differents

In the second equality, we have used

1 ifl =0,
p) P! o
I =¢ L oife =1,
P b
0 ifé>2

and introduced the ordered indices 1 < j1 < --- < jy < ¢ for which ¢;, = --- =
¢j, = 1. The last equality comes obv1ously from the fact that the £! permutations of

/ /

P! A

J1s- -+, Je yield the same result for the quantity - i e P—je. Thus, in our case, since
e

the polynomials P, have degree one and are such that P (1) = 1 and P (1) =

0;
oo e obtain

0; 0;
POy = > ) -—10;@"'9@—[%

. 0;
k€T i1,-ipel\{k} 1
D] eeey ip differents

- 2 He iy

D] 5eens ig, k€l k
D] 5enes ip,k dlﬂerents

- Z Hg

i0sees ip€l 7=0
B()yeens ip differents J#0

where we put k = i in the last equality. Next, observing that the last expression is
invariant by permutation,

14 ¢ )
POM) = =3 S Tl



Now, we remark that the family ( H >0< solves the Vandermonde sys-

l
tem Zﬁfjxj = Jpg, 0 < k < £. Hence, the sum within braces corresponds to the
=0
equation numbered by ¢ = 0, so it equals 1 and then
1

POm =55

#{(ig,... i) €I : iQg,...,ip are differents} = /! <Zf_11 ) .

O

By inverting the Laplace transform (20) as it is done in [7], one gets the density
of Tt.

Corollary 9 The distribution of Ty is a Beta law with parameters #I/n and

#J/n:
k1
Py(T; € ds)/ds = 0.0)(3)
\ S#[(t — S)#J

with

1 . .

o if n is even,

k; = l sin <—I 7'() — n

Zsin 2t ifn=2p+1.
T n

In particular, for any even integer n, #1 = #.J = 5 and then the distribution of
T; is the arc-sine law:

]l(o,t) (s)

/st —s)

REMARK. The distribution function of T} is expressible by means of hypergeometric
function by integrating its density. Indeed, by the change of variables o = s7 and
[5, formula 9.111, p. 1066], we get

S 1— 1
/ —da = <f) a/ T (1 — s T)O‘_l dr
0 O'a(t—O')lia t 0 t
1 1-
- (;) azFl(l—a,1—a;2—a;§).

Po(T}; € ds)/ds =

11—«
I
Hence, for a = 7=,
nky (s\#J/n #J #J H#J s
< = — — — . _
Po(Ti < s)/ds ny <t> 2F1( et s 1’75) (22)

6 Conditioned laws of T}

By choosing f = pl(g o) and g = 6, in Eq. (7), v solves the partial differential
equation

ov

Tl Dyv — pl(g,400)v

1™~



together with
U(07 w; z, y) - 53/(@

In the last equation, the symbol d, denotes the Dirac measure at y. It can be viewed
as the weak limit as € — 07 of the family of functions 9y : x +— (e — |z — y|)* /&>

which satisfy fyyj; Oye(x)dx = 1. This approach may be invoked for justifying the
computations related to ¢, that will be done in the sequel of the section. For the

sake of simplicity, we shall perform them formally.

According to (8), the Laplace transform V' of v solves the distributional differ-

ential equation
D,V =+ M]1(07+00))V — 0y.

Put

V(z) = V(A p;z,0).

We have ~
_ A+ w)V(z) ifz>0,
D,V (z) = -
AV (z) ifx <0.

The bounded solution of the previous system has the form

Zc},ce‘g’”:E it x>0,

D d e i x <0,

keJ

(23)

where ¢, and d). are some constants that will be determined by using some regularity

conditions at 0. Indeed, by integrating Eq. (23) on (—¢,¢) as in [11],

€ N 8”71‘7 81171‘7 € B
D,V (z)dr = Ky, €) — (—6)] = / A+ 11 100)) () V(2) dz — 1

a%nfl ( ) 61‘n71

—E& —E&

and letting € tend to zero (recall that k, = +1),

an—lv an—lf/ B
g 0) ~ gt (07) =~

Similarly, integrating several times on a neighbourhood of 0 yields

ov., . o'V

W(OJF)—W(()*) forOéEén—Z

Hence, we derive the following conditions for the constants ¢} and dj:

Zcz(ﬁkfy)ﬁ = Zd%(&ké)ﬁ for 0<l<n—
kel keJ

D)™ = D di(0k8)" " — ki

kel keJ

/ .
which, by putting z}, = { “k ifkel and ap = { Oy

—d, ifkelJ 010

Vandermonde system

s ¢ 0 for 0 <4< n—2,
> ajy =
k=0

—Kky for £=n-—1.

10

lead to the



Its solution is given by

n—1 n—1

1 Kn Ol (o7
T = —kKp H — = (- =" x : _J )
oo Mk T im0 =0 % — %
J#k J#k

We evidently have

n—1 n—1 n—1
H aj; = 7#15#‘] H 6; and H 0; = (—1)" 'kp
=0 =0 =0

and then

n—1
= —
7#15#‘] o aj — Qg
J#k

where the foregoing product is given by Lemma 6. Therefore, the constant c) for
instance can be evaluated as

Jo= Ok((v/6) — 1) H 0; — Ok(v/9)
C AP (/e - i — 6

iel\{k}
- () LIy R YGTL)
" VO gy PO
since n — #1 = #.J. Hence,
g = —Okv—_é‘ H W for ke I.
iel\{k}
Similarly,
4 = 910 0,0/ =0 g pe g
e 0

As a result, we have obtained the expression below for V(A u; x,0).

Proposition 10 The Laplace transform of Ey(e *1t, Xy € dy)/dy at y = 0 is
given by

+0o0
/ e M [Ep(e Mt Xy € dy)/dy],—o dt
0

1 0:(5/~) — 6 .
7(’%5)2"’@( 11 (ei/z)ek k)eem ifz >0,
B kel iel\{k} (20)

%(7_5)Zek( H 0j(7/5)_0k>69k5a2 if © < 0.

ked  je\{k} 05 = Or

In particular, for x = 0:

V0,00 = > = dp

kel keJ

. 7—9 0i(v/d) — bk
= —TZek I =

. 7 gk
kel eI\{k}

10



The above sum can be simplified. Its value is written out in the lemma below.

Lemma 11 We have for any real number x

€

kel iel\{k}

with
1 . )
- if n is even,
sinZ
0 = — 0, = .
> > —_—
kel keJ ———— if n is odd.
2sin o

PRrROOF. 1. The proof is similar to that of Lemma 8. Set

P)=> 6 [[ Pirl»

kel iel\{k}

where the polynomial P; ;, has been defined in the proof of Lemma 8. We first have

P(1)=> 6

kel

Second, we evaluate the successive derivatives at 1 of the polynomial P:
0.

~ 0; .
Vee{o,. .. . #I-1}, PO1) = Y6, > el
kel — ir.igel\{ky it Uk ie — Yk
LS ip differents
)4
0,
= 9 J
P> 31 ey
B peens ip,k€l j=1 J
8] yeees ip,k differents
l
0;.
= 0 J
_ Z " H 0;. — 04
B(seees ig€l =0 J
J#0

where we put k = i in the last equality. Next, observing that the last expression is

invariant by permutation,

1
+ k=0 iQsesip €T

ip differents

1 : Lo
= E E gik | | 15
+1 300 yigET k=0 =0 9,']. B eik
J#k

ip differents
As in the proof of Lemma 8, we invoke an argument related to a Vandermonde

system to assert that the sum within braces equals 0 and then
PO1)=0

which entails that B }
P(z)=P(1)=> b
kel

N



2. Now, we have to evaluate the sum Zek. For this, we use the elementary

kel
equality
b oty S0 (b—a+1)m
i a+b)w/n n ) 25
;wk c sin% (25)

For n = 2p we have 0y = wyy(py1)/2 = Wpt1)/2wk and by choosing a = 0 and
b=p—1 in formula (25) we get

p—1 s PT
_ ilp—1ym/m S0 _ 1
Zek Ypt1)/2 sin = sin T’
k=0 n n
Forn =2p+1,
e if K, = +1: 0, = wy and we choose
3
a= }2—) and b= Ep if p is even,
1 3p—1
a:}% and b= p2 if p is odd:
e if Ky, = —1: O = wy1/2 and we choose
_p _3dp e
a—§+1 and b—? if p is even,
1 3p+1
a:}% and b= Pt if p is odd.
In both cases, we have, noticing that sin pn—w = sin @ = cos 5 and that sin 7 =
2sin 5~ cos 5,
sin 22 1
O = L= )
20k = o = o Z
kel n n
The proof of Lemma 11 is complete. a

We can write out an explicit expression for the function V' (\, y;0,0).

Proposition 12 The Laplace transform of Eo(e #1t, Xy € dy)/dyl,—o is given by

400 1
/ e M [Eo(e "t X; € dy)/dyly=o dt = EW T (26)
0 n

with
. . .
sin — if n is even,
n

2 sin - if n is odd.
2n

REMARK. Nikitin & Orsingher obtained the previous formula in the cases n = 3 and
n = 4 by solving differential equations with respect to the variable y related to the
operator Dj. Actually, their equations are associated with the dual pseudo-process
(X{)t=0 and this connection has been explained in Section 4.



We now state the important consequence.

Theorem 13 We have
1
]P)()(Tt S dS|Xt = 0)/d5 = ; ]l(O,t) (S)a

that is, Ty is uniformly distributed on [0,t].

PRrOOF. Using the elementary identity (see e.g. [5, formula 3.434.1, p. 378)])

teo ds I'1-v)
— —b _ v v
| e et = A v )

it is easy to invert the Laplace transform (26) for deriving

1 1—ert
LnD(1—2) s

v(t, 11;0,0) =

Therefore, due to (10), we find

t, ;0,0 1—e Mt
]Eo(e_“Tt|Xt:0):v(7M’ 0) _ S

p(t;0)  pt
from which we immediately deduce through another inversion the uniform distribu-
tion. O
Theorem 14 We have
kt s \7#JI/n
Po(T; € ds|.X; > 0)/ds = == (t - S) Lo (5)
with
2
— if n is even,
77
. Hir 2sin 2T
b= = ot ifn=2p+ 1 and wy = (1),
™ f," ptsy) dy m(1=7)
2sin 22
—— " fn=2p+1 and K, = (—1)PTL.
Likewise,
k> st —s\#I/n
Po(Ti € ds| X < 0)/ds = == (=) 19, (5)
with
2
(2 if n is even,
™
o T 2sin B2
k, = ()Sln - = Lq ifn=2p+1 and k, = (_1);07
m[lonty)dy | T3
2sin B2
el nifn=2p+1 and k, = (—1)PT1.
m(1—-3)

12Y3)




ProoF. 1. We did not get any explicit expression for v(t, u;0,y) yet. Nevertheless,
we got someone for v(t, u; x,0). Actually, both quantities are closely linked through
duality. We refer to Section 4 and especially to (16) for obtaining
—p [y e d
o(t,x,y) = Ejle oty >0 S,X;‘ € dx|/dx
= E,y[e_“fot lixs<oyds X, € —da]/dzx.
As a result, observing that fg Iix,<oyds =t — fg i x, >0y ds,

o(t, pya,y) = e Mot —p; —y, —x)
and then
VN, y) = VA + p, —p; =y, —x). (27)

On the right-hand side of the last relation, the inherent parameters v and J must
be exchanged. Next, we have

(t 1:0,y) dy
2 p(tyy) dy

Invoking (27) together with (24), the Laplace transform of the numerator of the
fraction can be computed as follows:

Eo(e #t| X, > 0) = N (28)

~+oo 0
/0 V(A 10,y) dy =/ V(XN p, —1159,0) dy

B Zem o 6Z< 11 g/zek )

keJ wy ked jeJ\{k}
1 - (6/1)#*
Due to Lemma 8, the value of the sum in the right-hand side is T and so
- Y

too 1 A \FI/n
VA u0,y)dy=—1{1—(—— . 29
vy = - ()T (29)

Likewise,
0 e, L /A4 p\#i/n

V(N w0,y)dy = =—||—— —1]. 30
/_oo(“’ W) dy = geké u[(x) } (30)

2. Let us now invert the Laplace transform (29). Set
Pa(s) =s*Le ™ and 4p(s) = s> (1 — e ).

The Laplace transforms of ¢, and 13 are respectively given, for any positive real
numbers « and 3, by

+o0 a
Loa(N) = /0 e M pa(s)ds = %,

+o00
o) = [ et ds = TO)[55- )

Actually, we can observe that the second displayed equality is also valid for any real
number [ € (—1,0) as it can been easily checked by writing

Atp
e — o= (M tm)s — / se " du.
A

2]



Consequently, for o € (0,1),

1 1
C+me T
A+ =2 = ————Ly_o(\).

Thus, by convolution,

with

1 t e Hs e ut
(PaxP_a)(t) = _F(—a)r(a)/(; Sl—a(t_5)1+a ds

. ¢ ¢
asin am ds
T /0 sl_a(t—s)Ho‘/s pre “
. t
_ asmom/'ue_wdu/u( s )a ds '
T 0 o \t—s/ s(t—ys)
S [e3%
Using the change of variables v = (t—> , it comes
— s
/“(s>a ds _1(s>a
o \t—s/ s(t—s) at\t—s/

Finally, choosing oo = #.J/n yields

+o00 = #JW t #J/n
/ v(t, u;0,y)dy = Sl / e M ( 5 ) ds
0 0

7t t—s

and the result for positive conditioning is proved thanks to (11) and (28). Inverting
the Laplace transform (30) can be carried out in a similar way by replacing ¢, by
the function defined as @, (s) = s¥71. O

REMARK. As in the unconditioned case, the distribution function of (T3 X; > 0)
for instance is expressible by means of hypergeometric function by integrating its
density. In effect, by the change of variables ¢ = s7 and [5, formula 9.111, p. 1066],

we obtain
/81<L)ado = <§>a+1/170‘(1—§7')ad7'
o t\t—o t 0 t
= a—li—l <§>a+12F1(a,a+1;a+2;;).
Hence, for a = #,

Py (T} < 5| X; > 0) = b ( )H#J/ngF (#J # g # )

L7 LT L, 7 o,
1+ #J/n n'm g TH

In an analogous manner, we can show that

() (5 B )

Po(T, < s|X; < 0) = #J



As a check, we notice that
Po(Tt < S) = ]P)()(Xt > 0) ]P)o( S’Xt > 0) + ]Po(Xt < 0) Po( S|Xt < 0)
sin 277 [ 1 <3)1+#J/n (#J wIH#T )
" 2F1

T r |1+ #I/m e Ty T
() B )
nky s\ #J/n
T HIA+ #J/n) (’)
[#JQH(#J ﬂ%—l #4—2 )

+(1+ 22 L Rt S P
n n

e B (B B )

and we retrieve (22) by using [5, formula 9.137.11, p. 1071]. On the other hand, in
the case of even order, we notice by successively making use of formulae 9.121.1 on
p. 1067, 9.121.26 on p. 1068 and 9.137.4 on p. 1071 of [5] that

s 135 s 3 113 s 3 133 s
—2F1( ) = —2F1( ) —2F1(——7—;—;—>
t 2°2°2¢ 2 2’ 2 2 ¢ 2 2°2°2°¢
3 |arcsin/s/t 1.5
2 S/t t
and we retrieve formula (3.15) of Nikitin & Orsingher, [11]:
2 1
Po(T; < s| Xt >0) = — [arcsin ; —3 s(t — s)}
7r

7 The distributions of M; and m;

The functionals M; and T} are related according to the equality

M(t§xaa) = IPJ:l:(*]wt < a)
—  lim E,|e "o Uxi>ayds
pi—Fo0
= 1 t —
Jm u(t, u; r — a),
the quantity P,(M; < a) being understood as limy,—.co P(maxogk<m Xpt/m < a).
Indeed, decomposing on the events {M; < a} and {M; > a},

lim E, [e*ﬂf(f Lxsads| = lim K, [ll{M oy + Mg s qpe 00 Moxesar ds
,u—>+oo H‘_>+ X t
The first part of the “expectation” on the right-hand side of the previous equality
is P,(M; < a) and the second one tends to 0. Evidently, for > a, wy(¢t;x,a) =0
and for x < a the Laplace transform of w is given by

Wy (Nz,a) = lim U\ px —a).

H—=+00

Since we have /v — 0 as u — 400, e?s1(#=a) _, 0 for any k € I and it is then easy

to derive from (18) a simple expression for the Laplace transform of the function



t — P, (M; < a). It is provided by the proposition below where the distribution of
m; 1s considered as well.

Theorem 15 The Laplace transforms of the functions t — P,(M; < a) and
t — P.(my > a) are respectively given by

+oo
/ e MP(M; < a)dt = Wy(Xiz,a) = [1 - ZAk eoké(ﬂﬁ_a)} for x < a,
0

N i

keJ
+oo
/ e MNP (my > a)dt = Wp(A\jz,a) = 1— Z By, eek(s(x_“)} for x> a,
0 kel
with 0 9
. H 0; — Ok " . H 0; — Ok
jeJ\{k} JeI\{k}

REMARKS. 1. Since >, ; Ap = > .7 Br = 1 as it can be seen by using a Vander-
monde system, we observe that P,(M; < a) = Pg(my > a) =0.

2. The functions x — Wy (A\;z,a) and © — Wy, (A;z,a) are the bounded
solutions of the respective boundary value problems D,W = AW — 1 on (—00,a)
with CZGTV,E/()\; a,a)=0for 0 <k <#J—1,and D,W = AW —1 on (a,+0o0) with

d;xv,g()\;a’L,a) =0for 0 <k <#I-1.

The expressions for Wy, and W, given in Theorem 15 involve complex numbers
and we wish to convert them into real forms. So, we have to gather together the
conjugate terms therein. Since the computations are elementary but cumbersome,
we carry out them in the case n = 2p and we only report the results corresponding
to the case n = 2p + 1. We shall adopt the convention Hé’»:a =1if a > b. Set

k . k .
25 +1
ak:Hcos% and bk:Hc:os )+ .
j=0 j=0

2n
Since 1 — w; = Qei(%_%)w sin % and
I a-5-11
1--)=1101-wj)=lim =n,
§€{0,n—1}\{k} b7 o ol
we can rewrite A as
#1 , —
A= LT[0 - o) = 2 o h# e [T B 07,
" ier " iel "
e For n =2p:
k .
Ay = op il(2k—3p+1)m/4] H sin ﬂ‘
jmheptl

We notice that, under the action of the symmetry between indices k € J ——
3p — 1 —k € J, the numbers 0, and A are mapped into their conjugates,
namely 03, 1_j = 0} and Az, 1, = A, and then

YAl



— if p=2q:

T 3¢g—1 4g—1
Wy (A z,a) = X (Z Z)Akeek5$ a}
k=2q k=3q
) 4q9—1
_ % 1- % > R(Ay )]
k=3q
11 28] 1 a0 )
N

i k+3
where 013, = Wiy1/2 and Apyzq = 2P eil@k+1)m/4] IT;Z kqu smj . The
product in A3, may be symplified into

k+q . qg—1-k .
. J +p)m
H sin Hcos— H cos——aq+kaq 1—k-
j=k—q+1
Consequently,

-1
p+1 4
2 d(z—a) cos 2k+1 ™

gtk Ag—1-k €

1
Wy (\;z,a) = X[l_
k=0

oS (5(;10 —a)sin 2k7j— ! T+ 2k 1 w)]

4
—ifp=2¢+1:
Lr 4q+1
WM(A;CL" a) N X ( Z Z + Z )Ak 69k5($ a)}
k=2¢+1 ke{3¢+1} k=3q+2
4q+1
1T 9 )
) X '1 - E Z %(Ak eek&(x_a)) - % 693q+15(:c—a)]
k=3q+2
17 9 4
- X -1 B E Z §R<Al€+3q+1 eek+3q+15(ﬂc—a))
k=1
_M 6934+16(a:_a):|
n

where Ogi3,01 = wi and Agyzgq = 2P /2 Hf:ii:-lu sin ”. The

product in Ay 3,41 can be rewritten as

k+q

H sm Hcos— Hcos— = Qg4k Qg—k-

Jj=k—q

In particular, for k = 0 we obtain 03,41 =1 and Azgy1 = a . Thus,
op+1 471

1
Wy (Nz,a) = X [1 - Za‘frk ag—k €
k=0

d(x—a) cos % ™

2k k 2p
cos (5(30 —a)sin — 7w+ 3 7r> _ = ag (@ a):|
n n

e For n = 2p + 1, we shall use the notation Wﬂjff for Wy, the + signs referring
to the cases k, = %1.
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— If Kk, = +1, thanks to the symmetry k € J\ {0} — n —k € J\ {0} for
which 6,,_;, = 0 and A,,_, = A, we derive

x if p = 2q:
1 2P r—a
W]\'t[(/\,x,a) = X |:1 — E bczlfl 5( )
2p+1 q 2k
quJrk 1bq ke d(z—a)cos T* 7
k=1
2k k
X COS (5([6—(1)S1H—7T+—p71'>}
n n
x if p=2¢+ 1:
1 2p+1 é(z—a
2p+2 ! r—a) Ccos 2k71'
n qu+kbq keé( )
k=1
2 1
XCOS<5($—a)SiD—W+Mﬂ'>]
n n

—1, thanks to the symmetry k € J\ {0} —n—-1—Fke J\ {0}

— If k, =
for which Hn 1k =0, and A,,_1_ = A, we derive
x if p = 2¢:
1 9p+2 q—1
WA}()\;x, a) _ |:1 e« bq+k bqflfk 66(96—(1) cos 2krj1 x
A no o=
2k + 1 2k +1)(2 1
COS(é(aj—a)sin + 7r—|—( D@+ )77)];
n 2n
x if p=2¢q+ 1:
- 1 2p+1 ’ 6(x—a) cos 2k+1
WM()\,I',CL) = X[I—Tkzobq+kbq 1— ke( )
o 2k+1 (2k+ 1)p
cos (5(x—a)s1n - T+ o W)}

Concerning the minimum functional, since m; = — maxocs<t(—Xs) and (—X¢)e>0
is equivalent to the dual process (X;)¢>0, we can replace m; by the dual maximum
functional, M} say, and then

Py(m¢ = a) =Po(my = a —x) =Py(M; <z —a) =P (M < x).

So, reminding the results of Section 4,

o if n is even, Py(my > a) = Po(M; < x);

;r >a)=P,(M; <z)andPy(m;, >a)= IP’a(MtJr < x) where

e if nisodd, Py(m
correspond to the choices k,, = +1.

the plus and minus signs in m;® and M

EXAMPLES.

aYe)



e For n =2 (Brownian motion),

Wiz, a) = (1 - VA0

and
Wm(>\7 z, CL) = WM()‘a a, CL')

e For n = 3 (Orsingher, [13]),

Wi(\sz,a) = %[1—6%(‘%7@],
Wy (Asz,a) = %1—6%@‘1)/2(005?%@— )—%sn£ (x—a))}

and
WE(Nz,a) =Wy, (N a,z), W, (Ax,a) =W\ a, ).

e For n =4 (Hochberg, [6], and Beghin et al., [2]),

Wy (A z,a) = % 1- ew(xfa)/‘/i(cos %ﬁ(az —a) —sin %%(:c - a))]

and
Wm()\v z, a) = WM()‘a a, .ZU)

e For n =35,

Wit (\z,a) — %[1 12+f Yr(a—a)
_% o VA=) x5 cos (I3(x — a)sin 2 + 2]
W (Az,a) = %[1 e VA=) (/9 (cos (/3 (z — a)sin T ) -
S i (VA - wpsin )]
and

Wit (Xz,a) = Wi(Aa,z), Wo,(Az,a) = WX a,z).

REMARKS. 1. The problem we just studied can be treated in the case of even-order
through another approach based on Spitzer’s identity as it has been observed by
Hochberg, [6]. In effect, let (Y});>1 be a sequence of independent random variables
having the same distribution which is assumed to be symmetric, and let Sp = 0 and
S;=3>7_,Y, for j > 1. Put

@i(p) = Ele #maxo<k<i S¢] and by () = E[e #55V0),
Then
Z 90] = €exXp Z ¢j

and also

(1=2)) pj(n) 27 = exp Z 1 — ()=
j=0 J=1

270)Y



Actually, Spitzer’s identity remains valid also in the case of signed measures provided
the total measure is one, so it applies here. Put

= X
oskeine ~FN

)

Let us recall that an expectation of the form E[F(M;)] should be interpretated as
limy oo E[F(My)] along this work. The function ¢ —— My is piecewise constant
since for t € [%, Jil) Myt = My j/n. Therefore, applying Spitzer’s identity to

Y = Xj/n — Xj/n—1 successively gives

Foo > rU+H/N
/ 67)\1} EO(G*HMN,t) dt = Z/ ef)\t Eo(eju,MN’j/N) dt
0 =0 j/N

1— e—)\/N >

_ Z () e NIN

Letting N tend to infinity yields
+00 +oo
/ e M Wr(X;0,6)de = / e MEg(e M) dt
0 0

_ 1 +oo — At *,U,(Xt\/(]) dt
= Xexp[—/ e "1 —Eg(e )] 7]
1
2

/ s / T st [1 g (X0 at].

Approaching 1 — Eg(e #X:V0)) by Eg(e(XeV0)) — Eg(e~#XeV0)) | this term being

+o0 d
evaluated with the aid of (9), introducing the null integral / - i — for
e GG
avoiding some problems of divergence and letting ¢ — 0T, we get:
too 1 —tz"
1— Eo(e—u(xtw)) — ﬁ/ # dz

27 2(z +ip)

and then
400 400 d 400 "
/ e~ 5t [1 _Eo(efu(Xt\/O))] dt = s 42/ [efst o ef(z +s)t] dt
! 27 | e 2t i)

_ L/*‘” A
21ts J_oo (274 8)(z +ip)

By residus, if n = 2p,

+00 ,n—1 _ 1t 1
(z”—i—s)(z—l—z’,u,)dz_gzé st/n 4+
—o0 ke ¥ H

Therefore

oo dt do
Y u(X+V0) _ _ pac
A S 5

e )\ g 9k0+,Uz)

_ Zl ek\/_+M

7l
keJ 0, VX

N



which implies

/+ooe HEWr(A;0,€) d Hek TT(k+ 6x6)~
0

kEJ keJ

Decomposing the last product into partial fractions, we obtain

1 1
[T+ 00 = -
ked VA oy ILiengmy (b5 — Ok) 1+ 0id

and then

ALl

keJ kGJ

Finally, observing that

1 — /+OO e~ (ut0kd)¢ d¢

we can invert the Laplace transform and deduce

+oo
/ NPy (M, € dE)d Z Afrd e,
0 A e

This is in good accordance with Theorem 15 in the even-order case.

2. Let us introduce the first times 7,7 and 7, the pseudo-process (X;);>o becomes
greater or less than a:
=inf{s > 0: X;Za}

with the convention inf ) = +o0. Plainly, the variables 7.F are related to the maximal
and minimal functionals according as

7f <t<= max Xy >a and 7, <t<= min X; < a.
s€[0,t) s€[0,t)
On the other hand, it may be easily seen that the variables max¢cp ) Xs and
max,eo,] Xs have the same distributions and the same holds for the minimal func-
tionals. Hence,

P.(r}r <t) = P,(My>a) ifzx<a,
Py(r, <t) = Py(my<a) ifz>a,
and then
+ +oo
Ey(e ) = /\/ e MNP (1 <t)dt =1 — AWy(\;z,a)
0
that is
N Z Ay, P00 if 1 g,
E,(e™ @) ={ kes
1 if x> a.
Similarly,

- Z By, e?0@=a) if g > a,
Ex(e_)\Ta ) = kel

1 if x < a.

D1



3. We can provide a proof that the paths are not continuous. In fact, suppose for
the time being the paths of the pseudo-process (X¢):>0 are continuous. We would
then have XTOi = (. Since

’ To_—i_j-‘t—T(;oeT(; if x> 0and 7, <t,
t:

T, +00.+ if  <0and 7y <t

where (6;):>0 stands for the shift operators family defined as X; 0; = X, by the
strong Markov property we would get for x > 0:

—uT

Eo(e #7t) = By []1{7(; <y € M0 Eole 0 )] +e M Py(ry > t)

and then

. ftoo —uT  _ +o0o
UNpz) = Eg [e_‘”o / e MEg(e "0 )dt} +/ e_(’\+“)tIP’x(T(; > t)dt
Ty 0

0

_ 1 _
= B (e~ ATmT T~ Fo(e— AT
(T U, 50) + 5 (1= Egfe™ )]

_ % + [U(A 11;0) — ﬁ} Eq(e” )70 )
O ! g
kel

We would deduce in the same way, for x < O:
1 xX
U(A,u;m):x[l—( < > )ZAkee’”} (32)
keJ
Let us now rewrite (18) as follows:

. _ _ 1 9'yx f
>\+#{1 %gl wk_é k } if x >0,

[1—21‘[ (1—wpj— 9’@”] if 2 < 0.

keJ jeJ

U\ ps ) = (33)

Comparing (31) and (32) to (33), due to the linear independence of the families
(z +— %) cr and (z — %%7),c 7, we would have

Vk el, H(l —wp—x) =1— 27 and Yk € J, H(l —wp—jx) =1- Py
icl jed

The above identities are valid only in the Brownian case n = 2 (for which we know
that the paths are continuous!) and the discontinuity of the paths ensues whenever
n > 3.

We now inverse the Laplace transforms lying in Theorem 15; we obtain the

13



following representation.

Theorem 16 The distribution of the maximum functional My can be expressed
by means of the successive derivatives of the kernel p(t; z) as follows:
H#I-1 A
Qi t g ds
P {M; > a} = J —[p(s;z —a)] ———— (34)
EQF@%> ol (=)'~
where the &;’s are the solution of the Vandermonde system
H#J-1
; A
S #la;=""F ke (35)
; O
7=0
Moreover the &j’s are real numbers.
+oo d T
ProOF. Invoking Proposition 4 together with the identity / e M T = ig),
0
we see that the Laplace transform of the right-hand side of (34) is given by
#J_l ~ 8‘7 1 #J 1
] ) _ i+1 ~ 0,6(z—a)
> Shasee-a] = S>3 )
T 57 2N &
PPN LEA vy
1 _
— X ZAk’ 60k6(x a)
keJ

1
and, by virtue of Theorem 15, the last term equals I W (A; z,a) which is exactly
the Laplace transform of the left-hand side of (34).

Last, we have to check that the &;’s are real numbers. This is the result of
the fact (that we have already seen) that the 0y’s and the Ay’s, k € J, are either
real numbers or two by two conjugate complex numbers. More precisely, there is
a permutation s : J — J such that 0,3) = ), and Asey = Aj. Then, taking the
conjugate equations of system (35), we see that the ;s solve the system

#J-1

_ nA,
Z 0 pa =W ey
Osih)

which coincides with (35). By unicity of the solution, we conclude that d_j = qa; for
all j and hence &; € R. O

We can also provide a relationship between the quantities P,{M; < a} and
P.{X: < a} —P,{X; > a}. Indeed, the Laplace transform of the latter, ¥(\;a — z),
is displayed in Proposition 4 and, as in the foregoing proof, we can write

#J1

1 . 2 05:80,_ 3 j .
ywwwwa;%w< Z i g 2T - a)

where the Bj’s are the solution of the Vandermonde system

H#J-1
Z 0] 3; = i kel (36)

D)



It may be easily seen as previously that the Bj’s are real. Consequently, we obtain
the following result.

Theorem 17 The quantities P,{M; < a} and P, {X; < a} — P.{Xy > a} are
related together according to

Px{Mt < (I} = P, {Xt CL} — Px{Xt > CL}
H#J-1

Bj —a; ds
Z ]]"rl] %[ (s;x—a)]m. (37)

Corollary 18 The pseudo-process (X¢)i>o satisfies the reflection principle, i.e.
P {M; > a} = 2P,{X; > a}, only in the Brownian case n = 2.

PROOF. Since the exponentials e?+%(*=) L ¢ J are independent, taking the Laplace

transform of (37), for the reflection principle being sastisfied, we must have

H#J-1

29 —a;) =0, kel

which entails Ay = % for all k € J. This can occur in the sole case n = 2 since some
A} are not real for n > 2. O

EXAMPLES.

e For n = 3:

— if k3 = +1: J = {0}, Ag = 0y = 1. The solution of systems (35) and (36)
are g = 3 and [y = 2 and then

3 t ds
P {M; > a} = F(%)/ﬂp(sw—a)m

and

t
P < 0} = B S )= BulXi > 0} = s [ ol o)
—if kg =—1: J={0,2}, Ag = ﬁ (V3+1), 0p = 1 (1+iV/3) and Ay = A,
0 = 0y. Systems (35) and (36) are
do+0po1 = 5(3—1iV3) Bo+bofi = 1—iV3
{ ag+0ad1 = §(3+iV3) e { Po+6:61 = 1+iV3
whose solutions are

Gp=2,a1=-1 and [y=2, 0 =—

Thus,
2 t ds 1 to ds
P> o) = s [ plose—a) gy | gl g
and
P {M, < a} = Po{X, < a} Py {X; > a}— r(lz)/ b5 )]
3

which agrees with formula (4) of Orsingher.

DA




e Forn=4: J={2,3}, Ao =3 (1—1), 0 =
Systems (35) and (36) are
o+ 001 = 2V2 d Bo+0251 = V2(1+1)
an . .
ap+0sa1 = 22 Bo+0s61 = V2(1—1)

(1*2) andA3:A72, 93:0_2

at

whose solutions are
a0 =2v2, a1 =0 and fBy=2V2, B =—
Thus,

2v/2 ds
P {Mt>a} F(Z)/(; p(S,Q?*CL)m
and

P {M, < a} = P,{X; <a} — Po{X; > a} — \/27? O %[p(s;x—a)] tdi

V)

This is formula (5) of Beghin et al., [2], where the constant before the integral
therein should be corrected into 2//7.

8 The distribution of O;

The time O is related to the maximal functional as follows: for s < ¢,

O; € s <= max X, <0.
u€(s,t]

On the other hand, it may be easily seen that the functionals max,¢ s Xu and

max,c[s,s Xu have the same distributions. Then, for s <,

P,(Oy<s) = Py( max X,i5<0)
u€[0,t—s]

= ]Ex[]l{Xs<0}PXs (Mt—s < 0)]

0
= / p(s;z,y) wa(t — s39,0) dy,

—00

and for s > ¢, plainly P,(O; < s) = 1. Therefore, we have

2t mw) = Eg(e )
400
= ,u/ e P, (0Or < s5)ds
0
0 +00
= u/ e “SdS/ p(S;x,y)wM(t—S;y,O)deru/ e M ds
0 —00 t

0 t
= u/ dy/ e " p(s;z,y) war(t — s;9,0) ds + e .
—00 0

Observing that the integral with respect to the variable s is a convolution, we get
for the Laplace transform of the function z:

0 +o0 +o0
Z(A\p;x) = ,u/ dy [/ e_(/\+“)tp(t;x,y) dt x / e Mwy(t;y,0) dt]
0 0

/\

= / PN+ 2, y) War (A, )dy+—u-

oM



This becomes, by (12) and Theorem 15, for x > 0:

Z(A\ ) = )\‘f‘ﬂ/ 2076_9”(9 z)( ZAjeej5y>dy+%

jed

= )\ ” [ Z 917/ —0n(y=2) gy,

0 1
+ A.gi,ye@nz/ eWi0=0Myy gy | + ——
(m)ze;xJ ’ o0 } Atu
i 1
- )\+u [ZO_ZAJM 95) W}JFAJru (38)

i€l jeJ

and for z < 0:

Z(\pix) = W[/ 2976 bir(y—z (1—ZA efi 5y)

jeJ
_/ Zgﬂ e~ 0in(y—=) (1 — ZAj 69j5y> dy + %
T e jeJ
0
— —0iv(y—x) . —biv(y—z)
/\+u { Zm/ dy+%9ﬂ/$€ dy
Z Ajbive zw/ (9j5_9i7)y)dy
(4,5)EIxJ
1
Ajbive ms/ e(050=0i7)y Y)dy| +
(i J)EZJU } AT H
1 0;y 0,
X_n)\()\—l—,u[;( JEZJAJGN 95) !
_jGZJ (2% 0y — 0; 5)Aj eejéx]' (39)

Looking at formulae (38) and (39), we see that we have to evaluate the sums

n—1
0; A
ZAJ 917 0 5 and Z Gﬁf’y@é which are respectively of the form Z T
1<t IZ:O JjeJ
) -— 1
with @ = — and —— . The latter is easy to calculate, upon invoking
Oiy Z 1—wj—i(6/7)

an expansion into partlal fractions:

n—1 n—1

l_wj z6/7 l_wz 6/7 1_(5/7)71 1% .

=0 =0
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For computing the former, we state an intermediate result which will be useful.

Lemma 19 We have forn >r > 2

1 1
6, 0,
92 92 . .
! R | RS D /NS (40)
: : 1<k<lI<r i1,0neir 20
9;‘—2 0:72 i1+ tir=n—r
op ot
PROOF. Set
1 1
6, 0,
92 92
Apn=| . !
o o2
o7 op—t

Substracting the (i — 1)™ row multiplied by 6, to the i row for 2 < < r — 1, and
the first row multiplied by #7~! to the last row yields

01 - 97" 07'71 - 07’
(91 - er)el (97’—1 - 97‘)97’—1
A, = (_1)T+1 (61 — 97")9% (Or—1 — 9r)93_1
(61— 6,)677° (61— 0,)6, 7%
ot — ot or =07
1 . 1
r—1 61 Or—1
= H(ar - ek) : :
b=l 07 0,23
Y D DY A
|
r—1 n—2 (91 e 97"—1
= [I6.—60) > o> :
k=1 m=r—2 971"—3 6::11%
o ... 0y

In the last sum, we only retained the indices m > r — 2 since the determinants
therein corresponding to 0 < m < r — 3 vanish. So we just obtained the recursion

n—1

r—1
Ar,n = H<9T - ek) Z gg_m_lAr—l,m-
k=1

m=r—1

It is easily seen that (40) is valid for » = 2. Suppose now the result (40) is true for
Ay_1m, m =17 —1; here, the recursion hypothesis is related to the index r. We get

r—1
Ar,n = H(Qr - ek) H (91 - ek)
k=1 1<k<i<r—1

> Lod



n—1
n—m—1 i1 ir—1
< 3 o A

m=r—1 1] 5eesip_120
i1+t _p=m—r+1

1<k<I<r i15eeeyir =0
i1+ tip=n—r

Indeed, in the last sum, we put i, = n—m —1 and (40) is also valid for A, ,, n > r.

O
0
Lemma 20 Recall that Ay = H 7 k@. for ke J. We have
jeg kT
=1-—(-1 —_— 41
Zl—aﬁj ( ) Hl—aHj ( )
JE€J jeJ
1 . o
PROOF. Let us expand for |a] < min — as a Taylor series. This yields
1-— aej jeJ 0]‘
AN v
S = [ A (42)
jeJ J o n=0 jeJ

It is convenient for the sequel to relabelling J as the set {1,2,...,r} with r = #J.
Reminding that the A;’s are solutions of the Vandermonde system Z A;07 = don,

A j
0<n<r—1, werewrite A; as A; = — where et
A
1 1
0, ... 0,
Aan—| B o # T 0o
: : 1<k<I<r
ot oot
and
1 ... 1 1 1 ... 1
61 9]',1 0 9j+1 0,
A= | e, 0 e, L 6
U VI or—t
01 Hj—l 0j+1 07‘
2 2 2 2
_ (71)‘]_"_1 01 “ e 9]_1 0]+1 PP er
0 0 0 or—1
1 1 1 1
, 01 ... 0i—1 Oiy1 ... 0,
= (=" I 6 o .
keI : : : :
W e O e

> Ye)



Then, for n > r

ZA]Q;Z +10n 1

Jj€J

A He’fz
keJ  jeJ 9T;2
1

(#7122 T o

keJ

1 1 1
0j—1 0511 0y
03 9;+% 0,2

In the last equality we have used the expansion of the determinant A,.,, with respect

to its last row. By (40) we get for n >

3400 = (1) ] o

jeJ keJ

r

>

i1 T
oo

i15eenyir 20

i1+ tir=n—r

and then, by (42), since Z A;07 equals 1 for n = 0 and vanishes for 1 <

jedJ
A >
Zl_fw = 1+Z[ZAJ9§L]@”
jeJ J n=r jeJ
= 1= e X
jeJ nETi] e,

n<r—1,

nni1
a0y ..

ir20

%
N

i1+ tir=n—r

Replacing n by i1 + - - -

+ %, + 7 in the sum of the last equality, we obtain

A; i i
S = )0 Y (b)) ... (ab,)"
J€J J jeJ ih sir 20
- 1)#
H 1-— a9
jeJ
O
We can now pursue the calculation of Z(A, ;). We have by (41)
biy 1)#
D Aig—s = H
jed 01”7—9]‘(5 92’}/ (9 1)
1
= 1 — D ——
HJ T wy(079)
Since .
OOy (VM
0w ) (5) =N
7=0
this becomes
A =1 4
Zigﬂ, 0,6 T H WZJ(; (43)
Jje€J

As a result, putting (43) in (38) and (39), we obtain

—[ _ — wi_ 917:6}
20 | A+ ;]EII Jé
y 3 T) =
' ZHl_WJ z_ e’ +
/\+H jeJ el

N

ifz >0,

[1—ZA e“x] if £ <0.

jeJ



REMARK. Differentiating n times the foregoing relation, it may be easily seen that
Z (A, p; ) solves the differential equation

A+ 1) ZO ) — 1 — %[1 -3 4 6975“:} if >0,
Z(\ ) = jel
AN+ ) Z\ pwx)—1 itz <0.

Moreover, the function Z (A, ;) is C™ at 0. Indeed, we have

Z(N 15;0%) = Z(X, 11;07)

- /\iu [1_ZA] ,\1+ )%[H(l—wﬂ%)]

jGJ 7=0 el
= n— —Wi-iy
)\—l—,u { gzog 7= ]
and for 1 </<n—1,
0 /4
i) = S2 0 s07)
1 n—1
= 12400 - H Z[H —wi-i )| O
el il
1 n—¢
S UCIR S 071 (RN
n jeJ 7=0 i€l

We know that the value of Zje.] A]Hf islfor{=0and0for1 < ¢ < #J—1. On the
other hand, expanding the product [[;.;(1 —w;_; x), we obtain for the coefficient of
2™ within S2"—7 6 [Lic;(1 —wjx):

Jj=0 "7
n—1 n—1
m Y4 m 4 (i1++im)
(-1 E 9] E Wi—iy « - - Wj—ipy, (-1) E 0 E
G=0 i1, im€l j=0 i1 yeeyim €1
11< -<im i< <im
n—1
_ mpl (m+£)5 — (@14 +im)
= (-1 90§ 1 X E Wi
j=0 i1,eeyim €I
i1 <---<im

where in the last equality we used 6; = pw;. The sum Z?:_ol w§m+€)j equals 0 if
m#n—~Land nif m=n—4¥. So, for 0 <L < #J —1,

d'z d'z _
o7 A 07) = =2 (A 1:07) = 0.

It may be shown that the jump at 0 for the derivatives of order £ such that #J < £ <
n also vanish but we omit the intricate proof. We only point out that the following
formulae are needed: with the aid of (40),

. 14 — r—1 . kl k’r
Yo A= (-0 e DD 6.6l
JjeJ jed k1,....kr>0
k1+-tkr=L—1

where r = #J, J = {j1,...,Jjr} and, putting w1 = w,

Z Wtk s(s=1)/2 (Wt =) (Wt —1)... (Wit — 1).

_ -1 _ —
0<hy <+ <ks <t—1 (ws — 1) (w* ..(w=1)

AN



In the particular case x = 0, we obtain the following expression for Z(\, p;0).

Theorem 21 The Laplace transform of Eo(e™#©%) is given by

+o0
/O e MEg(e O dt = m[ ——ZH — wj j(s

i€l jel

REMARK. The discontinuity of the paths can be seen once more. If the paths were
continuous, we would have, as in the remark just before Theorem 16,

_ o,
E, []l{rggt} e o Eg(e Mg )} + e M Py(ry >t) ifz >0,

E, []I{TJ@} e hTT Ege " )} P (> t) if z < 0,
and then
1 a1
m[l—(l—(AJru (A, 12; 0) X;Beﬁ} if >0,
Z\ ) =4 1 <
A[1—214 696I}+Z)\,u, o4, ifx <.
jeJ JjeJ

This would entails

Vk € J, H(l —wp_x) = Ag ZH — wj_i),

el jeJ i€l
Vk el, H(l —wg—;x) = By Z H(l — Wj_ix).
icl jel iel

The above identities are valid only in the case n = 2.

EXAMPLES.

e For n =2,

1 1 1
Z0050) = 555 A(Hm].

e For n =3,
1r 1 1 1
Z+ )\, ,0 = — -+
(A 11:0) 3[>\ B eRamE \/A2x\+u)}
1r 2 1
Z=(\p;0) = = .
(A, 13 0) 3[/\+M+ 3/\(/\+u)2}
e For n =4,
17 1 1
Z(\p;0) = = .
(A, 13 0) 2[A+M+4)\(A+u)3}
e For n =25,
Z5m0) = [+ 34vh _,  1-v8 .
T S A+ 2/ AN+ )t 2/ NN+ p)?
Z-(Opi0) = 1[ 2 3+Vv6 1 L 1-V5 }
T 5 Hp 200+t /2O ) 23/ N3O+ w2
e For n =6,

3 4 1 }

1
200 =5 [ e v

A1



Appendix

A Asymptotics for p

Let us prove Proposition 2. Suppose for instance z > 0. We first rewrite (9) using
1
the change of variables u = (»-1 v as
1
¢r-1 _n_ Z

q(¢™=1), (=

21w /nt vnt

p(t;z) =

with

More precisely,

e if n =2p and K, = (—1)PT1,

o if n=2p+1,

0= [T =i ),

—0o0

the + sign in h referring to the respective cases x, = (—1)P and x,, = (—1)P+1.

We will apply to g the method of the steepest descent for describing its asymptotic
behaviour as ( — +o0o. The principle of that method consists of deforming the
integration path into another one passing trough some critical points, 9, k € K
say, for the function A, at which the real part of h is maximal. For this, we must
consider the level curves J(h(u)) = I(h(Vy)), k € K. For a fixed k, these curves
are made of several branches and two branches pass through the critical points 9
(saddle points). One of the latter is included in the region R(h(u)) < R(h(Vg)) (it
has the steepest descent) and the other is included in the region R(h(u)) = R(h(Iy))
(it has the steepest ascent). We shall only retain the branch of steepest descent
which we call Ly, since the function R(h) attains its maximum on it at the sole point
Ug. Finally, we deform the real line (—oo, +00) into the union of the lines of steepest
descent Ly, k € K with the aid of Cauchy’s theorem, and we replace the function
h within the integral on Lj by its Taylor expansion of order two at ¥, as well as
the path Ly by a small arc li, or the tangent, Dy, say, to I at ¥ (the integral along
Ly and Dy, are then asymptotically equivalent), the evaluation of the integral of the
Taylor expansion on D being now easy to carry out.

e Critical points: they are solutions to the equation h'(u) = 0, that is to say

u" ! = —g,(—i)""!. They are given by
. 2k+1/2
e n-1 T ifn=2p,
-2k+1
ﬁk = elnfjlﬂ ifn= 2p + 1 and Rnp = (_1)p7

i2k

e'n1"  ifn=2p+1and K, = (—1)PTL

A



We plainly have h(d)) = (1 — 1)), and K’ (d)) = —ngklz’. Notice that for
n=2p+1and k, = (—1)P*!, there are real critical points. These latter will
make divergent the integral of |g| on (0,+00) whereas in the other cases the
integral of ¢ on (0, 4+00) turns out to be absolutely convergent.

e Taylor expansion of order two: it is given by

h(u) = h(9g) + k' (%) (u —9) + %h”(ﬁk)(u —9)% 4 o((u — ¥)?)

1 n —
p— 1 —_— — y —
( )0k = 5

- kl i(u— V%)% + o((u — 9p)?).

Setting u = V), + pe¥ and h'(9y) = pre'*, where pp = |h"(9},)| and ¢}, =
arg(h”(9y)), this can be rewritten as

1. . 1 .
h(u) = (1 = )iy — §Pkp261(2“’+‘%) + o(p?).

e Level curves: it is easy to see that the curve S(h(u)) = S(h(Jy)) admits the
asymptotes whose equation is J((iu)™) = 0, which are the lines of polar angles
%77, ke€{0,...,2n—1} if n is even and 2’;:;1 m, k€ {0,...,2n—1} if n is odd.
On the other hand, this curve has n branches, and both tangents at the saddle
point ¥x admit —3¢y (steepest ascent) and 3(m — ) (steepest descent) as
polar angles. We used MAPLE to draw the level curves in some particular
cases; they are represented in Figures 1, 3, 5 below. We call L; the branch
passing through ¥, and having the steepest descent. We have also represented

both perpendicular tangents at the critical point on the figures.

e Choice of a new path of integration: the modulus of the function u — "
over a circle of large radius is given by
‘eCh(R619)’ — efRCSin9+I€nRTn<COS(n9+n%)
e—RC sin 9—%((:05(71(9) ifn = 2p
)
= efRCSinef%CSin("G) ifn=2p+1and k, = (—1)?,
e—RCsin9+RT:LCsin(n9) ifn=2p+1and k, = (_1)p+1’

which is of order 0(%) in the respective angular sectors

n—1 . 1 . 1
2j— =  2j+4 =
U( J 2, J 271') if n = 2p,
. n n
Jj=0
n—1 . .
2 2 1
0 e U(—Jﬂ', J+ 7r> ifn=2p+1and k, = (—1)P,
. n n
Jj=0
n—1 . .
27—1 2
< J 7r,—‘]7r> if n=2p+1and k, = (—1)P+L.
P n n

For each k& we must choose the branch Lj lying in one of the above unions of
asymptotical sectors:

— if n = 2p: both extremities (near infinity) of Ly (0 < k < p — 1) lie at
infinity on the asymptotes of polar angles % 7w and 2kn—+2 7w and both tails
Ak o AkEL 5y o (413:3 7, Yhtd

lie within the respective sectors (5, 7, %5 S )5

—ifn=2p+1:

A



* when k,, = (—1)P, both extremities of Ly (0 < k < p—1) lie at infinity
on the asymptotes of polar angles ﬂ s and 4k+5 7 and both tails

lie within the sectors (&L 7 4k+2 7r) and (4];—;”;4 7, 455 1y

* when k, = (—1)PT1, both extremities of Lj, (0 < k < p) lie at infinity

on the asymptotes of polar angles 4’; L7 and 4’”3 7w and both tails

4k—1 4k 4k+2 4k+3
2n e 2n 7'(') and( 2n e 2n

lie within the sectors ( ).
The deformation of the real line is now possible by using Cauchy’s theorem:
we set L = (e i Li where

{0,...,p—1} ifn=2p,
K=<¢ {0,...,p—1} ifn=2p+1andk, =(—1)P,
{0,...,p} if n =2p+1and , = (—1)P*

The integration paths are represented in Figures 2, 4, 6 below; the forbidden
sectors are shaded therein. More precisely, the path L goes

— if n = 2p: from —oo to +oo passing successively through 4,_1, ei%”oo,

in—4 4 2 .
Up_o, € n Too, ..., €'nT00, U9, e'nToo, U1 (see Fig. 4);
—ifn=2p+1:
4p+1
x when k, = (—=1)?, from e’ 2n "00 to €' 25 T o0 passing successwely
4p— -4p—7 -9
through J,_1, €' 2n "00, ¥p_2, €20 Too, ..., €'2n"00, VU2, €' n oo,

Y1 (see Fig. 6);

-4p+3 .
* when k, = (—1)P*1, from e’ 2n "oo to e~*

1 . .

2n Too passing successively
jde=l o i4e=5 isl i

through 9, e'"2n "oo, ¥)_1, €' "2n Too, ..., e'2n Too, ¥y, e"2n Too, Uy

(see Fig. 2).

We have

0O = [ =y / (44)

keK

e Asymptotic expansion: we have

/ ) gy e(li)mkgfe’;ﬁ,jiC(uﬂk)Q du
Ly Uk

U )zﬂkg‘/ o By w=0k)? g
Dy

where [ is a small arc included in Lj containing 9 and Dy is the tangent of
Li (and l) at J; the polar angle of Dy is ?jf + %arg ¥k. Finally, we plainly

have
/ e_gT_kliC(u_ﬂk)Q du = —1i 2r_ 1 (zﬁk)l/Q
Dy,

n—1+C
where (iz?k)l/ 2 is the square root whose argument lies in the angular sector
(5 °0)-

As a result, we have obtained an asymptotical expansion for ¢ which is displayed in
the following Proposition.

A A



Proposition 22 As ( — +o0,

L 0 \1/2 (1-L)ivgc

Proposition 2 immediately ensues.

B The derivatives of p and ¢

Proposition 23 We have

o7 1 +oo o .
a—z];(t;z) = ) (iu)d et gy if j<n—2,  (45)
8n71p P

PROOF. Performing an integration by parts gives

too )
2w p(t;z) = / iRt gy,
—0o0

12U

1
; o\ K €
— / ezqurnnt(zu) du + n
-1

/ : d ennt(iu)"
nit o Gt T
1

1 —
_ eizu—i—nnt(iu)" du — kn |: eizu+nnt(iu)"i| u=1
1 nit | L(iu)n—1 u=—1

. z n—1 i Zu4- t(‘ )n
_ wzutrnt(iu)” g .
“ /. (uu)n—l <w>n> ‘ !

We can now calculate the j*" derivative without difficulty:

: 1 _
2Py = [ i ([ o]
0297 1 nit | L(iu)n—i—1 u=—1

o /|u|>1 <(iu)’f_j_1 a (n(l_u)j"jﬂl)> ezt du} (47)

which is clearly valid for j < n — 3 since the last integral is absolutely convergent.
Next, a backward integration by parts yields

j 1
2T @(t z) = / (iu)’ etFutrnt )™ gy 4 Fn _ __ iU d(e””t(m)n)
023" _1 nit Jjys1 (iu)r=i-1
+
= / OO(iu)j iRt hnt ()" gy,
—00

This proves (45) for j < n — 3. For j =n — 3 formula (47) reads

n_3 1 . . n
21 gzng(t; z) = /1(iu)"3 eiruthnt )™ g,

A



_ En {|: 1 eizu—l—lint(iu)”]u:l

u=-—1

. £ 2 izutrnt(iu)”
o /| <<w>2 <z’u>3) ‘ dup

The last integral can not directly be differentiated, so it needs to be transformed
through another integration by parts:

£ 2 izu+kKnt(iu)"
/u.>1 (e ~ @) © du

_ _kn ? o 2 izutKnt(iu)™ u=l
= -2 (e~ ) ]
. 22 z 2 izutrnt(iu)™

The new integral can be differentiated without problem and (47) holds also for
j = n — 2. Next, a backward integration by parts proves that (45) is valid for
j=n-—2.

Applying (47) to j = n — 2 gives

—1 nat u u=-—1

: ? 1 izutrnt(iu)™
— - n du p . 48
+ /u>1 (zu (zu)z) € Y (48)

an72p 1. L9 isutrnt(iu)” Kn 1’+t'"u:1
2 azn—2(t§z) — / (i)™ 2 ei#utn ()™ gy — 21 [2_ pizuts (w)}

But
/u|>1 (i _ ﬁ) st rnt(in)" g,
- _% { K(i;)" - (m)lnﬂ) emwt(w)n}f_l

. 2 Z 1 izutrKnt(iu)™ d
£ o (e~ ) g + 004 D) ) ‘o

the derivative of this integral is then

2

__En Z izutKnt(iu)™ u=1 / Z - o Z izutknt(iu)™
nit {[(iu)”—l ¢ L:_lﬂ af>1 ((iu)”—l (n—1) (m)n)e du

T { e [ af )}

_ 2 C (et
nit Ju|>1 (iu)”_l

. \n
= 2 / ezzu—i-nnt(zu) du.
Ju|>1

Hence, the derivative of (48) is

_ 1 —
o a" 1]9 (t' Z) _ / (iu)n—l eizu—i—nnt(iu)” du — Kn |:eizu+nnt(iu)"]u_1
Ozn—1Y7 1 nit u=—1

A



-l-iz/ erFuthnt ()™ g, 4
|u|>1

We finally observe that

1 ) Con K . Cau=l1 1 .
/ (,L-u)nfl ezzu+nnt(zu) du = _n{ |:€’LZ’U,+KZnt(’L’U,) } . iZ/ ezqurnnt(zu) du}

-1 nit u=-—1 -1

and therefore

8n—1p > +oo rnt(i)" >
2 5on1 (t;2) = —kn N T T duy, = — Ky, Ep(t; z)
which ends up the proof of Proposition 23. a

Lemma 24 We have

+0o0 eizu
D(N;2) = ! / Ai,du. (49)

2 — Ky (iu)™

ProOOF. We should have, at least formally,

1 oo
D(X;z) = o J, TN gt / elFutrnt ()™ gy,
s
1 oo
— pREL du/ —(A—Kn (tu)™)t dt
27T 0

1 +oo
= — 7d.
27 /_OO A — K (tu)™ "

However the double integral is not absolutely convergent and Fubini’s theorem can
not directly apply. So we rewrite p as follows:

too ,
2mp(t;z) = / grFutrnt ()™ g,

—00

_ / ) eizu—&-ﬁnt(iu)" du+/ ) eizu—l—nnt(iu)” du.
lul<(z/t) =T ul>(z/t)n=T

Performing an integration by parts on the second integral of the last equality yields

elruthnt()" go, @ 'elzu d(emnt ™)
/|u|>(z/1t)”11 nit Jju)s ot (iu)*=

nat

Con eizu
+ / ennt(zu) d( —
lul>(2/t) =T ((W)”*J

1
u=(z/t)n—1
Kn |: 1 izu+nnt(iu)":| /0

. e
() (T

Therefore .
2nd(\;2) =1 — n_z (I2+ I3) (50)
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where we put

+oo ) N
Il — / ef)\t dt/ ) e'Lqurnnt(zu) du,
0 [ul<(2/t) =T

1
o u= t)n—1
I, = /+ |: 1 izu—l—nnt(iu)"] =) —At @
2 = -1 ¢ € ’
0 (iu) u=—(z/t)7—T t

+o00 12U
I3 = / e_At@/ ; e“"t(i“)nd( < _1>.
0 t Juf>(z/t)7T (iu)™

Now, Fubini’s theorem applies to both double integrals I; and I3 and then

+oo z/|u|?1 .
I = / pREL du/ 6—(>\—ﬁn(zu) )t dt,
0

—00
Iy = /+Ood< - )/+OO e_()‘_“"(i“)n)t@.
—00 (iu)”_l z/|uln—1 t
Another integration by parts leads to
. u=-+00
L o= |9 / T Okt A
(Zu)nfl z/|u|n—1 t oo

+oo 400 N
- / e | ki / e—()\—/in(zu) )t dt
— 00 z/|uln—1

(n—1)i e()\nn(iu)”)z/|u|”_1:| du

(bu)™

= —(nkpi) Iy — I (51)
where
+oo +oo .
I, = / ezzu/ e~ (A—rin (i)™t dt,
—0 z/|uln =t
+oo , -1 du
I _ — 1) izu—(A—kn (fu)") 2/|u|? "1 i
5 (n—1)i /OO € (tu)™

Using the change of variables ¢t = z/|u|""! it is easily seen that I5 = I and then,
by (50) and (51),

+o00 eizu
2n (N 2) =1 + 1, = — du.
Q ( 72) 1+ 14 /_OO )\—Kzn(iu)” u
O
Lemma 25 We have
P L[t (iu)l e
(M) = — —_ 52
821( %) 27 /_oo A — Ky (fu)™ (52)
forgj<n—2or[j=n—1andz#0].

Proor. Differentiating (49) leads plainly to (52) for j < n — 2 since the integral
therein is absolutely convergent. The (n — 1) derivative is more difficult to obtain.
We invoke once again some integrations by parts. For z # 0,

" P

2 ) (

A; z)
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/Jroo (,L'u)n—Q eizu J
= —du

o A — Kp(iu)®

1 ee (iu)n_Q izu
T iz ) A — Rp(iu)" d(e™)
1 +oo (iu)”_z
_ _ 12U d I N
iz ) o € <)\— /fn(iu)")

_ _1 /—i-oo iz ((n —2) M + Nk %) du.

2 oo A — Kp(fu)”

That last integral can now be differentiated according as

o 1o
2w W()\, Z)
1 +o00 (z’u)”_?’ ( u)2n—3
- izu _9 "
22 /_OO ¢ ((n ) A — Ky (fu)™ + A — mn(zu)"]Q) du
1 [T (iu)n_2 ( u)2n—2
_ - 1zZU _ 2
z /_oo ¢ <(n ) A — Ky (iu)™ ki A — /in(z'u)"P) du
_ L/*O" md< (iu)"—> )
a2 A — Ky (fu)™
1 ee 12U (Zu)n_Q (iu)2n_2
_Z/OO ¢ <(”_2) N— (i) [A—ﬁn(m)nP)d“
+o0 s \n—2
— _1 / eizu (Zu) : du
z ) oo A — Ky (iu)™
1 ee 12U (iu)n_Q (iu)Qn_Q
_E/OO ¢ <(”_2) N— (i) [)\—/{n(iu)"P) du
1 ee 12U (iu)n_Q (iu)Qn_Q
Tz /OO c ((n -1 A — Ky (fu)™ ki A — /{n(iu)"]Q) du
1 oo 12U (iu)n_l
B _E/_oo c d()\—ﬁn(iu)”)
_ oo eizu (iu)n_l du
I . A — kp(iu)r
Hence formula (52) is also valid in the case j =n — 1 for z # 0. O

Proposition 26 For j < n:

' d oo L 9Ip

PrOOF. By (52), for j < n —2,
P 1 [t .y +oo .
— (N 2) = —/ (tu)? e du/ e~ Arn(W)™)t gy
027 21 J_o 0
It may be shown using a method similar to that of deriving (49) that, for j < n — 2,

e Y Yoo
w()\; Z) = 2_/ e—>\t dt/ (zu)] ezzu-{-nnt(zu) du
T Jo

—00

A



which proves (53) thanks to (45). Actually, formula holds for j < n as it may be

seen by using several integrations by parts. a
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Figure 2: Path of integration for n = 7 and &, = +1
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Figure 3: The level curves S(h(u)) = S(h(Vy)) for n =8

Figure 4: Path of integration for n = 8
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Figure 6: Path of integration for n =9 and «,, = +1
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