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Abstract

We consider a model of Brownian motion on a bounded open interval with instan-
taneous jumps. The jumps occur at a spatially dependent rate given by a positive
parameter times a continuous function positive on the interval and vanishing on its
boundary. At each jump event the process is redistributed uniformly in the interval.
We obtain sharp asymptotic bounds on the principal eigenvalue for the generator of
the process as the parameter tends to infinity. Our work answers a question posed
by Arcusin and Pinsky.
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1 Introduction and Statement of Results

In a sequence of recent papers Pinsky [3] [2] and Arcusin and Pinsky [1] considered
the following model of a Brownian motion (elliptic diffusion in [2]) with instantaneous
jumps. Let D ⊂ Rd be a bounded domain, and let µ be a Borel probability measure on
D and V ∈ C(D) a nonnegative function. Let Cµ,V u := V (x)

(∫
udµ− u

)
, u ∈ Cb(D),

denote the generator of the pure-jump process on D with jump intensity V and a jump
(or more precisely, redistribution) measure µ. For γ > 0, the diffusion with jumps
process is generated by the non-local operator −Lγ,µ,V , where

Lγ,µ,V := −1

2
∆− γCµ,V , (1.1)

with the Dirichlet boundary condition on ∂D. In words, the process considered is Brow-
nian motion killed when exiting D, and while in D, is redistributed at a spatially depen-
dent rate γV according to measure µ. The main object of study in the papers above
was the asymptotic behavior of λ0(γ), the principal eigenvalue for Lγ,µ,V , as γ → ∞.
The first paper, [3], studies the model when V ≡ 1. The second paper [1] provides the

∗Supported by NSA grant H98230-12-1-0225, and Simons Foundation grant #208728.
†University of Connecticut, USA. E-mail: iddo.ben-ari@uconn.edu

http://ejp.ejpecp.org/
http://dx.doi.org/10.1214/EJP.v17-1791
mailto:iddo.ben-ari@uconn.edu


Principal eigenvalue for BM with instantaneous jumps

nontrivial extension to the case where V is strictly positive on D. In what follows, we
will refer to this positivity assumption as the “nondegeneracy" condition. When V is
constant, redistribution occurs at the jump times of Poisson of rate γV , while for spa-
tially dependent V the jumps occur according to events of a a time-changed Poisson
processes with constant rate 1, time being sped up when γV is lager than 1 and slowed
down when γV < 1. The most recent paper [2] studies the model under the nondegen-
eracy condition in the general setting of elliptic diffusions.

Let X := (X(t) : t ≥ 0) denote the process generated by −Lγ,µ,V , and let P γx , E
γ
x

denote the corresponding probability and expectation conditioned on X(0) = x ∈ D.
When γ = 0, we abbreviate and write Px and Ex. That is, Px and Ex correspond to
Brownian motion (no jumps). Let

τ := inf{t > 0 : X(t) 6∈ D}

denote the exit time of X from D. Then λ0(γ) has the following probabilistic interpre-
tation [1]. For any x ∈ D,

λ0(γ) = − lim
t→∞

1

t
lnP γx (τ > t). (1.2)

Observe that (1.2) implies that given any x ∈ D, we have

λ0(γ) = sup{λ ∈ R : Eγx
(
eλτ
)
<∞}. (1.3)

In fact, the limits and equalities in (1.2) and (1.3) remain to hold when replacing the
probability P γx and expectation Eγx with supx∈D P

γ
x and supx∈D E

γ
x , respectively.

The above cited papers provide sharp asymptotic behavior for λ0(γ) as γ →∞, under
the nondegeneracy condition and smoothness assumptions on ∂D and µ. In particular,
the following result was obtained.

Theorem A ([1], Theorem 1-i). Assume that D has C2,β-boundary for some β ∈ (0, 1),
minx∈D V (x) > 0, and for some ε > 0, µ possesses a density in C1(D

ε
), where Dε := {x ∈

D : d(x, ∂D) < ε}, then

lim
γ→∞

λ0(γ)
√
γ

=

∫
∂D

µ√
V
dσ

√
2
∫
D

1
V dµ

, (1.4)

where σ is the Lebesgue measure on ∂D.

We comment that [1, Theorem 1] includes an additional statement generalizing the
result to µ with smooth density near ∂D, vanishing up to the `-th order for some ` ∈ Z+.

The nondegeneracy condition could be viewed as one extreme, the other extreme
being the case where V is compactly supported. It was noted in [1] that when the sup-
port K of V is compact, then for x ∈ D\K, and for any γ > 0, the distribution of τ under
P γx dominates the exit time for the Brownian Motion (no jumps) from D\K, and hence
it follows from (1.2) that λ0 is bounded above by the principal eigenvalue for − 1

2∆ on
D\K, a positive constant independent of γ.

In light of the above, is it reasonable to expect some transition in the behavior of λ0
from the nondegenerate case to the compactly supported case to occur when V is posi-
tive on D and vanishes on ∂D. The behavior in this regime was left as an open problem
in [1]. In this paper we answer it in one dimension. Our method is based on analysis of
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the moment generating function in (1.3), obtained through probabilistic arguments.

In what follows, for real-valued functions f, g with domain D, and a ∈ ∂D or a taken
as ∂D, we write f(x) �

x→a
g(x) meaning 0 < lim infx→a f(x)/g(x) ≤ lim supx→a f(x)/g(x) <

∞, whenever the limits make sense. This notation will be also used when f, g are real-
valued functions on (0,∞), and a taken as 0 or∞.

Before stating our main result, we present some heuristics derived from Theorem A,
which provide some indication on the behavior when V vanishes on ∂D. Assume that µ
is uniform on D and that V (x) �

x→∂D
d(x, ∂D)α for some α > 0. Observe that (1.4) is not

well-defined also because the surface integral in the numerator of the right-hand side
blows up. We can approximate it through volume integrals of the form∫

Dε
dµ√
V∫

Dε
dµ

�
ε→0

ε−α/2, α 6= 2,

where Dε is as in Theorem A (note that the ratio approximates the integral with respect
to the normalized Lebesgue measure, therefore a positive multiplicative constant is
missing. Since this constant has no effect on the argument, we will ignore it). When
α < 1, the volume integral in the denominator of (1.4) converges, therefore letting ε→ 0

in the approximation above, the ratio blows up, giving the prediction
√
γ = o(λ0(γ)).

When α ≥ 1, the denominator also blows up, suggesting a possible phase transition
at α = 1. For α > 1, we can approximate the volume integral in the denominator by
integrating over D −Dε instead of D. Then,∫

D−Dε

dµ

V
�
ε→0

ε1−α.

Combining both approximations (with same ε, this is not a rigorous treatment), we ob-
tain an approximation to the ratio, proportional to ε−

α
2 /ε1−α = ε

α
2−1, as ε → 0. This

blows up as ε→ 0 when α ∈ (1, 2), converges to 1 when α = 2 and converges to 0 when
α > 2. Summarizing, the heuristics suggest that

√
γ = o(λ0(γ)) for α ∈ (1, 2), while

λ0(γ) � √γ for α = 0, 2, and λ0(γ) = o(
√
γ) for α > 2.

Here is our main result.

Theorem 1.1. Let D = (0, 1) and µ denote the Lebesgue measure on D. Assume that
V ∈ C(D) satisfies V > 0 on D, and for some 0 ≤ α′ ≤ α < ∞, V (x) �

x→0+
xα, and

V (x) �
x→1−

(1− x)α
′
. Let δ = δ(α) = α∧1+1

α+2 . Then

λ0(γ) �
γ→∞

γδ(α) ×

{
1

ln γ α = 1;

1 otherwise.
(1.5)

We would like to note the following.

1. Observe that δ(α′) may be larger or smaller than δ(α), yet the asymptotic behav-
ior is determined by the larger parameter α. This is a result of the fact that in
the formula for the moment generating function for τ , expressed in terms of the
Brownian motion, the function V appears as a penalizing potential, discounting
paths which spend more time at sets where V is larger.

2. The nondegeneracy condition is covered by the case α = 0.
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Figure 1: Graph of δ

3. The graph of δ is shown in Figure 1. Note the phase transition at α = 1. The
Theorem corroborates the heuristic derivation preceding it.

The remainder of the paper is organized as follows. In Section 2 we prove some
identities and a lower bound on the moment generating function of τ . In Section 3 we
obtain the main estimates on functions of Brownian motion, which when combined with
the results of Section 2 yield the proof of Theorem 1.1. This proof is given in Section 4.
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2 The Moment Generating Function

We define a family of stopping times for X. For y ∈ D, we let

τy := inf{t ≥ 0 : X(t) = y}. (2.1)

We begin by recalling a well-known classical result about the moment generating func-
tion of the exit time of Brownian motion from an interval (see e.g. [4, pp. 71-73]).

Proposition 1. Let 0 ≤ a < y < b ≤ 1 and let ρ > 0. For i = a, b, let Ai := {τa ∧ τb = τi},
and let j := a if i = b and j := b otherwise. Then we have :

1.

Ey
(
e−ρτi1Ai

)
=

sinh(
√

2ρ|y − j|)
sinh(

√
2ρ(b− a))

, and Ey
(
e−ρ(τa∧τb)

)
=

cosh(
√

2ρ(y − a+b
2 ))

cosh(
√

2ρ b−a2 )
.

2. If
√

2ρ(b− a) < π, then

Ey (eρτi1Ai) =
sin(
√

2ρ|y − j|)
sin(
√

2ρ(b− a))

If
√

2ρ(b− a) ≥ π, then the expectation above is infinite.
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Proposition 2. There exists a constant θ0 ∈ (0,∞) depending only on V such that if

λ ≥ θ0γ
2

α+2 , then
Eγµ(eλτ ) =∞.

Proof. Fix x ∈ (0, 14 ). Let σx := τ ∧ τ2x denote the exit time of the diffusion from the
interval (0, 2x). Under P γx , τ ≥ σx ∧ J , where J is the time of the first jump. Since
the jump rate on the interval (0, 2x) is bounded above by ρ := c1γx

α, it follows that τ
stochastically dominates σx ∧ J ′ where J ′ is exponential with rate ρ, independent of σx.
Let λ > ρ. Conditioning on J ′x, we obtain

Eγx
(
eλτ
)
≥ Eγx

(
eλ(σx∧J

′
x)
)

= Ex

(
ρ

∫ ∞
0

eλ(σx∧y)e−ρydy

)
= Ex

(
ρ

∫ σx

0

e(λ−ρ)ydy + e(λ−ρ)σx
)

=
ρ

λ− ρ

(
Exe

(λ−ρ)σx − 1
)

+ Ex

(
e(λ−ρ)σx

)
.

=
λ

λ− ρ
Ex

(
e(λ−ρ)σx

)
− ρ

λ− ρ
.

From Proposition 1-(2) we conclude that Ex
(
e(λ−ρ)σx

)
< ∞ if and only if λ − ρ < π2

8x2 .
Thus, whenever λ ≥ ρ + c2x

−2 = c1γx
α + c2x

−2, one has Eγx
(
eλτ
)

= ∞. Suppose now

that x = cγ−
1

α+2 for some c > 0. Then Eγx
(
eλτ
)

=∞, provided that

λ ≥ c1γcαγ−
α
α+2 + c2c

−2γ
2

α+2 =
(
c1c

α + c2c
−2) γ 2

α+2 .

Let θ0 := minc∈[1,2]
(
c1c

α + c2c
−2). If λ ≥ θ0γ

2
α+2 , then

Eγµ
(
eλτ
)
≥
∫
x∈[1,2]γ−

1
α+2

Eγx
(
eλτ
)
dx =∞.

For λ ∈ R and t ≥ 0, let

Rλ(t) := λt− γ
∫ t

0

V (X(s))ds.

We have the following proposition, expressing the moment generating function purely
in terms of Brownian expectations.

Proposition 3. Let x ∈ D. Then

1. Eγx
(
eλτ
)

= Eγx
(
eλJ1{J<τ}

)
Eγµ
(
eλτ
)

+ Eγx
(
eλτ1{τ<J}

)
.

2. Eγx
(
eλτ1{τ<J}

)
= Ex

(
eRλ(τ)

)
.

3. Eγx
(
eλJ1{J<τ}

)
= λEx

(∫ τ

0

eRλ(t)
)

+ 1− Ex
(
eRλ(τ)

)
.

4. Eγµ(eλτ ) =
1

1− λEµ(
∫ τ
0
eRλ(t)dt)

Eµ(eRλ(τ))

.

This result essentially allows to reduce the problem to estimating the asymptotic
behavior of the Brownian expectations appearing on the right-hand side of each of the
identities. This is carried out in Section 3 below. Since these expectations are also
solutions to some related ordinary differential equations, it is interesting to ask for
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independent analysis not based on the probabilistic analysis. Specifically, let A denote
the differential operator Au := 1

2u
′′+(λ−γV )u. Then Ex

(
eRλ(τ)

)
is known as the gauge

associated to A on D, that is, the solution to{
Au = 0 on D

u|∂D = 1,

and Ex
(∫ τ

0
eRλ(t)dt

)
is a potential for A on D, or total mass of Green’s measure, solving

: {
Au = −1 on D

u|∂D = 0.

Proof. The first identity follows directly from the strong Markov property. Integrating
both sides of the first identity with respect to µ we obtain

Eγµ
(
eλτ
)

= Eγµ
(
eλJ1{J<τ}

)
Eγµ
(
eλτ
)

+ Eγµ
(
eλτ1{τ<J}

)
. (2.2)

In what follows we assume λ is less than the principal eigenvalue for − 1
2∆ on D.

In particular, supxEx
(
eλτ
)
< ∞. The identities (2)-(4) extend beyond this domain by

analyticity. To prove the second identity, observe that

eλτ1{τ<J} =

(
λ

∫ ∞
0

eλt1{τ>t}dt+ 1

)
1{τ<J}.

Write I(t) :=
∫ t
0
V (X(s))ds. Thus,

Eγx
(
eλτ1{τ<J}

)
= λ

∫ ∞
0

eλtP γx (τ > t; τ < J)dt+ P γx (τ < J)

= λEx

(∫ ∞
0

eλt1{τ>t}e
−γI(τ)dt

)
+ Ex

(
e−γI(τ)

)
= Ex

(
(eλτ − 1)e−γI(τ)

)
+ Ex

(
e−γI(τ)

)
= Ex

(
eRλ(τ)

)
. (2.3)

This proves the second identity. We turn to the third identity.

eλJ1{J<τ} =

(
λ

∫ ∞
0

eλt1{J>t} + 1

)
1{J<τ}

= λ

∫ ∞
0

eλt1{τ>t}(1{J>t} − 1{τ<J})dt+ 1{J<τ}.

Thus,

Eγx
(
eλJ1{J<τ}

)
= λ

∫ ∞
0

eλtP γx (τ ∧ J > t)dt− λ
∫ ∞
0

eλtP γx (τ > t; τ < J)dt+ P γx (J < τ)

(2.3)
= λEx

(∫ τ

0

eRλ(t)dt

)
−
(
Eγx
(
eλτ1{τ<J}

)
− P γx (τ < J)

)
+ 1− P γx (τ < J)

(2.3)
= λEx

(∫ τ

0

eRλ(t)dt

)
+ 1− Ex

(
eRλ(τ)

)
. (2.4)

It remains to prove the last identity. Observe that λ
∫ τ
0
eRλ(t)dt + 1 ≤ eλτ , and that

eRλ(τ) ≤ eλτ . Therefore since supxEx
(
eλτ
)
< ∞ by assumption, it follows from domi-

nated convergence applied to the right-hand side of (2.4) that

lim
λ→0

Eγµ
(
eλJ1{J<τ}

)
= 1− Eµ

(
e−γ

∫ τ
0
V (X(t))dt

)
= P γµ (J < τ) < 1.
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Consequently, we obtain from (2.2) that

Eγµ
(
eλτ
)

=
Eγµ
(
eλτ1{τ<J}

)
1− Eγµ

(
eλJ1{J<τ}

) ,
and the right-hand side is finite. Plugging the second and third identities into this we
obtain

Eγµ
(
eλτ
)

=
Eµ
(
eRλ(τ)

)
Eµ
(
eRλ(τ)

)
− λEµ

(∫ τ
0
eRλ(t)dt

) ,
and the result follows.

3 Brownian Computations

In this section we obtain the main estimates needed to prove Theorem 1.1. We need
some definitions. Below we let r = r(γ) = r(γ, α) := γ−

1
α+2 , and

h = h(γ) = h(γ, α) :=


r(γ) α < 1;

r(γ)/ ln γ α = 1;

r(γ)α α > 1.

The function h was chosen to satisfy that γh(γ) is equal to the right-hand side of (1.5).
We also define a function λ = λ(θ, γ, α) by letting

λ(θ, γ, α) := θγh(γ) = θ


γ
α+1
α+2 α < 1;

γ
2
3

ln γ α = 1;

γ
2

α+2 α > 1.

(3.1)

In what follows, in order to simplify notation, we sometimes omit the dependence of the
functions r, h and λ on some of their arguments.

We begin with following simple lemma needed for our estimates and whose proof
will be omitted.

Lemma 3.1.

1. For γ ≥ e, h(γ) ≤ r(γ)α, and when α ≤ 1, one has h(γ) = o(rα(γ)) as γ →∞.

2. For c > 0, h(γ)
∫
r(γ)<x<c

1
xα dx �

γ→∞
r(γ)

Lemma 3.2. There exists a constant θ1 ∈ (0,∞] and positive constants C1, C2 depend-
ing only on V , such that if θ < θ1 then there exists a positive constant γ1 := γ1(α, θ) and
γ > γ1 implies

Eµ

(
eRλ(τ)

)
≤ C1r(γ),

and

|λ|Eµ
(∫ τ

0

eRλ(t)dt

)
≤ C2|θ|r(γ),

Furthermore

1. For fixed α, the function θ → γ1(α, θ) is nondecreasing.

2. If α ≤ 1 then θ1 =∞.
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Proof. We first need some preparation before getting into the main argument. The
preparation consists of several steps. The first is a reduction to symmetric V . Since
α > α′ ≥ 0, we have that V (x) �

x→0+
xα ≤ xα

′ �
x→0+

V (1 − x). Since in addition V is

strictly positive and continuous on D, we can find V̂ ∈ C(D) such that V > V̂ > 0 in D,
V̂ (x) �

x→∂D
d(x, ∂D)α, and V̂ is symmetric. That is V̂ (1 − x) = V̂ (x). Letting R̂λ denote

the analog of Rλ with V̂ in place of V . Then Rλ ≤ R̂λ. Therefore to prove the lemma,
there is no loss of generality assuming that V is symmetric and V (x) �

x→∂D
d(x, ∂D)α.

The next step in the preparation is to obtain the constants θ1, γ1 in the Lemma. We
need to define a family of stopping times for the Brownian motion. For l ∈ (0, 12 ], let

σl := inf{t ≥ 0 : d(Xt, ∂D) = l}.

Therefore σl = τl ∧ τ1−l, where τl was defined in (2.1). Let δ > 0 be such that V (x) ≥
δd(x, ∂D)α for all x ∈ D. Choose κ > 1 such that δκα ≥ 2, and let rj(γ) = κjr(γ) for

j = 1, 2, 3. Below we will omit the dependence of rj on γ. When α > 1, let θ1 := π2

32κ6 < 1,
and otherwise let θ1 := ∞. Assume that θ < θ1. Since we are looking for upper bound,
there is no loss of generality assuming θ > 0. Assume first that α ≤ 1. Since by Lemma
3.1-(1), h = o(rα), we can find γ1 := γ1(α, θ) <∞ such that for all γ > γ1, h/rα satisfies

h/rα < π2

32κ6θ <
1
θ . In addition, for fixed α, the function θ → γ1(α, θ) could be chosen as

nondecreasing. We have λ = θγh < γrα, as well as

√
2λr3 =

√
2θγ1/2h1/2κ3r =

√
2θκ3r−

α+2
2 +1h1/2 =

√
2θκ3(h/rα)1/2 <

π

4
.

If α > 1, then h = rα and since θ < θ1, and θ1 < 1, we obtain

λ < γrα and
√

2λr3 <
√

2θ1γr
α/2+1κ3 =

π

4

for all γ > 0. In this case we set γ1(α, θ) := 0. Summarizing both cases, we proved that
there exists θ1 ∈ (0,∞] and γ1(α, θ), nondecreasing in θ such that for θ < θ1 and γ ≥ γ1
we have

λ < γrα and
√

2λr3 <
π

4
, (3.2)

For the remainder of the proof we assume that θ ∈ (0, θ1) and γ ≥ γ1.

The next and the final step in the preparation consists of several estimates to be
later used. Let ρ := λ, a = 0 and b := r3. Then

√
2ρ(b − a) =

√
2λr3 <

π
4 , and it follows

from Proposition 1-(2) that for 0 < y < r3

Ey

(
eλτ1{τ<σr3}

)
=

sin(
√

2λ(r3 − y))

sin(
√

2λr3)
, and Ey

(
eλσr31{σr3<τ}

)
=

sin(
√

2λy)

sin(
√

2λr3)
.

Since t→ sin(t) is increasing on [0, π4 ], we obtain

Ex

(
eλτ1{τ<σr3}

)
≤ 1, and Ex

(
eλσr31{σr3<τ}

)
≤ sin(

√
2λr2)

sin(
√

2λr3)
≤ c1

1 + c1
< 1, (3.3)

where c1 is the universal constant satisfying c1
1+c1

= supt∈(0,π4 )
sin(κ−1t)

sin(t) ∈ (0, 1).

Suppose that x ∈ D satisfies d(x, ∂D) ≥ r1, and assume 0 ≤ s ≤ t ≤ σr1 . Clearly,

V (X(s)) ≥ δd(X(s), ∂D)α ≥ δrα1 = δ(κr)α ≥ 2rα.
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Combining this with the first inequality in (3.2), we obtain λ < γ
2V (X(s)). Summarizing,

Rλ(t) ≤ −γ
2

∫ t

0

V (X(s))ds ≤ −γrαt, Px a.s., (3.4)

when d(x, ∂D) ≥ r1 and t ∈ [0, σr1 ]. We now obtain a similar upper bound in terms of x.
Suppose d(x, ∂D) ≥ r2. Without loss of generality, let x ∈ [r2,

1
2 ]. Next, if y ∈ D is such

that d(y, ∂D) ≥ κ−1x, then V (y) ≥ δd(y, ∂D)α ≥ δ(κ−1x)α. As a result, if t ∈ [0, σκ−1x],
we have

Rλ(t) ≤ λt− δγ(κ−1x)αt, Px a.s.

But by (3.2) and the fact that δκα ≥ 2, we have

λ < γrα = γ(r2κ
−2)α < γκ−α(xκ−1)α < γ

δ

2
(xκ−1)α.

Therefore, letting c2 := δκ−α/2, we obtain

Rλ(t) ≤ −c2γxαt, Px a.s., (3.5)

provided d(x, ∂D) ≥ r2 and t ∈ [0, σκ−1x].

We turn to the main proof, beginning with the first bound. Fix K ∈ N and let x ∈ ∂D
satisfy d(x, ∂D) ≤ r2. By the Strong Markov property,

Ex

(
eRλ(τ)∧K

)
≤ Ex

(
eλτ1{τ<σr3}

)
+ Ex

(
eλσr31{σr3<τ}

)
Er3

(
eRλ(τ)∧K

)
,

and
Er3

(
eRλ(τ)∧K

)
≤ Er3

(
eRλ(σr1 )

)
Er1

(
eRλ(τ)∧K

)
.

It follows from (3.4) that Er3
(
eRλ(σr1 )

)
< 1. Therefore

Ex

(
eRλ(τ)∧K

)
≤ Ex

(
eλτ1{τ<σr3}

)
+ Ex

(
eλσr31{σr3<τ}

)
Er1

(
eRλ(τ)∧K

)
(3.3)
≤ 1 +

c1
1 + c1

Er1

(
eRλ(τ)∧K

)
. (3.6)

Letting x = r1, we obtain Er1
(
eRλ(τ)∧K

)
≤ 1 + c1, and plugging the latter inequality

back into (3.6), we obtain Ex
(
eRλ(τ)∧K

)
≤ 1 + c1. Finally, letting K → ∞, monotone

convergence gives

Ex

(
eRλ(τ)

)
≤ 1 + c1, (3.7)

when d(x, ∂D) ≤ r2.

Next we find an upper bound on Ex
(
eRλ(τ)

)
when d(x, ∂D) ≥ r2. Assume then that

x ∈ [r2,
1
2 ]. By the Strong Markov property,

Ex

(
eRλ(τ)

)
= Ex

(
eRλ(σκ−1x)

)
Eκ−1x

(
eRλ(σr1 )

)
Er1

(
eRλ(τ)

)
(3.4)
≤ Ex

(
eRλ(σκ−1x)

)
Er1

(
eRλ(τ)

)
(3.7)
≤ Ex

(
eRλ(σκ−1x)

)
(1 + c1)

(3.5)
≤ Ex

(
e−c2γx

ασκ−1x

)
(1 + c1).
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Letting ρ := c2γx
α, a := κ−1x and b := 1− a in Proposition 1-(1), we obtain

Ex

(
e−c2γx

ασκ−1x

)
=

cosh(
√

2ρ(x− 1
2 ))

cosh(
√

2ρ( 1
2 −

x
κ ))
≤ 2

e
√
2ρ( 1

2−x)

e
√
2ρ( 1

2−
x
κ )

= 2e−
√
2ρ(1−κ−1)x = 2e−c3γ

1/2xα/2+1

= 2e−c4(x/r2)
α/2+1

. (3.8)

Summarizing, we proved that for x ∈ [r2,
1
2 ],

Ex

(
eRλ(τ)

)
≤ 2(1 + c1)e−c4(x/r2)

α/2+1

. (3.9)

We are ready to complete the proof of the first bound in the lemma. We have

Eµ

(
eRλ(τ)

)
≤
∫
d(x,∂D)≤r2

Ex

(
eRλ(τ)

)
dx+

∫
d(x,∂D)≥r2

Ex

(
eRλ(τ)

)
dx

(3.7),(3.9)
≤ 2r2(1 + c1) + 4(1 + c1)

∫
r2<x<

1
2

e−c4(x/r2)
α/2+1

dx

≤ 4(1 + c1)r2

(
1 +

∫ ∞
1

e−c4u
α/2+1

du

)
= c5r.

We turn the the second bound. The argument is similar. If d(x, ∂D) ≥ r1, we have

Ex

(∫ σr1

0

eRλ(t)dt

)
(3.4)
≤ Ex

(∫ σr1

0

e−γr
αtdt

)
≤ 1

γrα
(3.2)
≤ 1

λ
. (3.10)

Assume that d(x, ∂D) ≤ r2. From Proposition 1-(2) we have

Ex

(
eλ(τ∧σr3)

)
=

sin(
√

2λx) + sin(
√

2λ(r3 − x))

sin(
√

2λr3)

(3.2)
≤ 2.

Let K ∈ N. From the strong Markov property we obtain

Ex

(∫ τ

0

eRλ(t)∧Kdt

)
≤ Ex

(∫ τ∧σr3

0

eλtdt

)
+ Ex

(
eRλ(σr3 )1{σr3<τ}

)
Er3

(∫ τ

0

eRλ(t)∧Kdt

)
.

(3.3)
≤

Ex
(
eλ(τ∧σ3)

)
− 1

λ
+

c1
1 + c1

Er3

(∫ τ

0

eRλ(t)∧Kdt

)
≤ 1

λ
+

c1
1 + c1

Er3

(∫ τ

0

eRλ(t)∧Kdt

)
.

But,

Er3

(∫ τ

0

eRλ(t)∧Kdt

)
≤ Er3

(∫ σr1

0

eRλ(t)dt

)
+ Er3

(
eRλ(σr1 )

)
Er1

(∫ τ

0

eRλ(t)∧Kdt

)
(3.10),(3.4)
≤ 1

λ
+ Er1

(∫ τ

0

eRλ(t)∧Kdt

)
.

Combining the two upper bounds, we obtain

Ex

(∫ τ

0

eRλ(t)∧Kdt

)
≤ 1 + 2c1

1 + c1

1

λ
+

c1
1 + c1

Er1

(∫ τ

0

eRλ(t)∧Kdt

)
(3.11)

Letting x = r1, we obtain

Er1

(∫ τ

0

eRλ(t)∧Kdt

)
≤ 1 + 2c1

λ
,
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which in turn implies

Ex

(∫ τ

0

eRλ(t)∧Kdt

)
≤ 1

λ

(
1 + 2c1
1 + c1

+
c1

1 + c1

1 + 2c1
1 + c1

)
=

1 + 2c1
λ

.

By letting K →∞, and using the monotone convergence theorem, we have proved that

Ex

(∫ τ

0

eRλ(t)dt

)
≤ 1 + 2c1

λ
, (3.12)

whenever d(x, ∂D) ≤ r2.

Next we obtain an upper bound when d(x, ∂D) ≥ r2. We begin with an auxiliary
bound. Let x ∈ [r1,

1
2 ]. Then

Ex

(∫ τ

0

eRλ(t)dt

)
= Ex

(∫ σr1

0

eRλ(t)dt

)
+ Ex

(
eRλ(σr1 )

)
Er1

(∫ τ

0

eRλ(t)dt

)
.

(3.10),(3.4)
≤ 1

λ
+

1 + 2c1
λ

≤ 2(1 + c1)

λ
. (3.13)

We now obtain the main bound. Assume that x ∈ [r2,
1
2 ]. We obtain

Ex

(∫ τ

0

eRλ(t)dt

)
= Ex

(∫ σκ−1x

0

eRλ(t)dt

)
+ Ex

(
eRλ(σκ−1x)

)
Eκ−1x

(∫ τ

0

eRλ(t)dt

)
.

(3.5),(3.8)
≤ Ex

(∫ σκ−1x

0

e−c2γx
αsds

)
+ 2e−c4(x/r2(γ))

α/2+1

Eκ−1x

(∫ τ

0

eRλ(t)dt

)
(3.13)
≤ 1

c2γxα
+

4(1 + c1)e−c4(x/r2(γ))
α/2+1

λ
.

Therefore

λ

∫
d(x,∂D)≥r2

Ex

(∫ τ

0

eRλ(t)dt

)
dx ≤ 2θh

∫
r2≤x< 1

2

1

c2xα
dx+ 4(1 + c1)r2

∫ ∞
1

e−c4u
α/2+1

du.

Lemma 3.1−(2)
≤ c6(θ + 1)r.

Along with (3.12) we obtain

λEµ

(∫ τ

0

eRλ(t)dt

)
≤ 2(1 + 2c1)r2 + c6(θ + 1)r = (θ + 1)c7r.

Let θ0 := min( θ12 , 1). If θ > θ0, then (1 + θ) < 2θ. When θ ≤ θ0 we have

λEµ

(∫ τ

0

eRλ(t)dt

)
≤ λ

λ(θ0)
λ(θ0)Eµ

(∫ τ

0

eRλ(θ0)(t)dt

)
≤ θ (1 + θ0)

θ0
c7r,

and the result follows.

For real θ, let vθ := 1 + θ−, where θ− := max(−θ, 0).

Lemma 3.3. There exist positive constants C3, C4, γ1 depending only on V , such that
for γ > γ1 and θ ∈ R

Eµ

(
eRλ(τ)

)
≥ C3

r(γ)
√
vθ
,

and

|λ|Eµ
(∫ τ

0

eRλ(t)dt

)
≥ C4

|θ|
vθ
r(γ).
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Proof. We begin with some preparation. Let η be a positive constant satisfying V (x) ≤
ηxα for all x ∈ D. By definition of λ and Lemma 3.1-(1), λ = θγh ≥ −θ−γrα. Now let
x ∈ [0, r], and let 0 ≤ s ≤ t ≤ τ2x. Then Px a.s. we have V (X(s)) ≤ ηX(s)α ≤ η2αrα.
Therefore

Rλ(t) ≥ −θ−γrαt− γc1rαt ≥ −c1vθγrαt.
Then,

Ex

(
eRλ(τ)

)
≥ Ex

(
eRλ(τ)1{τ<τ2x}

)
≥ Ex

(
e−c1vθγr

ατ1{τ<τ2x}

)
.

Letting ρ := c1vθγr
α, a := 0, b = 2x and y := x in Proposition 1-(1) we obtain

Ex

(
e−c1γr

ατ1{τ<τ2x}

)
=

sinh(
√

2ρx)

sinh(
√

2ρ2x)
=

1

2 cosh(
√

2ρx)
≥ 1

2e
√
2ρx

.

Since
√

2ρ =
√

2c1vθγ
1/2rα/2 =

√
2c1vθr

−1, we conclude that

Eµ

(
eRλ(τ)

)
≥
∫
0<x<r

Ex

(
eRλ(τ)1{τ<τ2x}

)
dx

≥ 1

2

∫
0<x<r

e−
√
2c1vθr

−1xdx

=
r

2

∫ 1

0

e−
√
2c1vθydy

=
1− e−

√
2c1vθ

2
√

2c1vθ
r ≥ 1− e−

√
2c1

2
√

2c1vθ
r =

c2r√
vθ
,

and c2 is a positive constant independent of θ. This completes the proof of the first
bound.

We turn to the second bound. Fix x ∈ [2r, 13 ]. We have

Ex

(∫ τ

0

eRλ(t)dt

)
≥ Ex

(∫ τ0.5x∧τ1.5x

0

eRλ(t)dt

)
.

Let 0 ≤ s ≤ t ≤ τ0.5x ∧ τ1.5x. Then V (X(s)) ≤ η(1.5x)α, and since λ = θγh ≥ −γθ−rα ≥
−γθ−(0.5x)α, we conclude with

Rλ(t) ≥ −γ(θ−0.5α + η1.5α)xαt = −c3vθγxαt.

We then have

Ex

(∫ τ0.5x∧τ1.5x

0

eRλ(t)dt

)
≥

1− Ex
(
e−c3vθγx

ατ0.5x∧τ1.5x
)

c3vθγxα
.

From Proposition 1-(1) with ρ := c3vθγx
α, y := x, a := 0.5x and b := 1.5x to obtain

Ex(e−ρ(τ0.5x∧τ1.5x)) =
1

cosh(
√

2ρ0.5x)
.

Observe that
√

2ρ0.5x ≥ 0.5
√

2c3γ
1/2rα/2+1 = 0.5

√
2c3. Therefore

Ex

(∫ τ0.5x∧τ1.5x

0

eRλ(t)dt

)
≥

1− 1
cosh(

√
2ρ0.5x)

ρ
≥ c4
vθγxα

,

where the positive constant c4 is independent of θ. Integrating this inequality we obtain

Eµ

(∫ τ

0

eRλ(t)dt

)
≥ c4
γvθ

∫
2r<x< 1

3

1

xα
dx,

The result now follows from Lemma 3.1-(2).
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4 Proof of Theorem 1.1

In this section we use the results of the preceding sections to prove Theorem 1.1.

Proof of Theorem 1.1. Let λ = λ(θ, γ, α) be the function defined in (3.1). We first obtain
a lower bound on λ0(γ). It follows from Proposition 3-(4) and Lemmas 3.2 and 3.3, that

Eγµ
(
eλτ
)
≤ 1

1− C2θ
C3

,

for θ ∈ (0, θ1) and all γ sufficiently large. In particular letting θ = 1
2 min(C3

C2
, θ1), we

obtain that Eγx
(
eλτ
)

is finite for some x ∈ D. We conclude from (1.3) that λ ≤ λ0(γ),
completing the proof of the lower bound on λ0(γ).

We turn to the upper bound. In light of (1.3), in order to show that λ ≥ λ0(γ), it is
sufficient to show that Eγx

(
eλτ
)

= ∞ for some x ∈ D. However, by Proposition 3-(1)
this condition holds if Eγµ(eλτ ) =∞. This is what we will prove. We split the discussion
according to the value of α.

Assume first that α ≤ 1. From Lemmas 3.3 and 3.2 we conclude that there exist
positive constants depending only on V such that for every θ > 0, there exists γ1 :=

γ1(α, θ) ∈ (0,∞) and

|λ|Eµ
(∫ τ

0

eRλ(t)dt

)
≥ C4θr, and Eµ

(
eRλ(τ)

)
≤ C1r,

provided γ > γ1. Furthermore, θ → γ1(α, θ) is nondecreasing, hence the above inequal-
ities hold for all 0 < θ < 2C1

C4
, if γ ≥ γ1(α, 2C1

C4
). But then, Proposition 3-(4) gives

lim inf
θ↗C1

C4

Eγµ
(
eλτ
)
≥ lim
θ↗C1

C4

1

1− C4θ
C1

=∞.

In particular, for θ := C1

C4
, we have Eγµ

(
eλτ
)

=∞.

Finally, assume that α > 1. Note that the upper bounds of Lemma 3.2 may not hold
for all θ, so the argument in the last paragraph may not work. Recalling from (3.1) that
λ = θγ

2
α+2 , it follows from Proposition 2 that there exists a constant θ0 ∈ (0,∞) such

that for θ > θ0, we have Eγµ
(
eλτ
)

=∞.
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