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Abstract

By a classical result of [10] the %̄ distance between stationary processes is iden-
tified with an optimal stationary coupling problem of the corresponding stationary
measures on the infinite product spaces. This is a modification of the optimal cou-
pling problem from Monge–Kantorovich theory. In this paper we derive some general
classes of examples of optimal stationary couplings which allow to calculate the %̄ dis-
tance in these cases in explicit form. We also extend the %̄ distance to random fields
and to general nonmetric distance functions and give a construction method for op-
timal stationary c̄-couplings. Our assumptions need in this case a geometric positive
curvature condition.
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1 Introduction

[10] introduced the %̄ distance between two stationary probability measures µ, ν on
EZ, where (E, %) is a separable, complete metric space (Polish space).

The %̄ distance extends Ornstein’s d̄ distance ([14]) and is applied to the information
theoretic problem of source coding with a fidelity criterion, when the source statistics
are incompletely known. The distance %̄ is defined via the following steps. Let %n :

En × En → R denote the average distance per component on En

%n(x, y) :=
1

n

n−1∑
i=0

%(xi, yi), x = (x0, . . . , xn−1), y = (y0, . . . , yn−1). (1.1)
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On optimal stationary couplings between stationary processes

Let %̄n denote the corresponding minimal `1-metric also called Wasserstein distance
or Kantorovich distance of the restrictions of µ, ν on En, i.e.

%̄n(µ, ν) = inf

{∫
%n(x, y)dβ(x, y) | β ∈M(µn, νn)

}
, (1.2)

where µn, νn are the restrictions of µ, ν on En, i.e. on the coordinates (x0, . . . , xn−1)

and M(µn, νn) is the Fréchet class of all measures on En × En with marginals µn, νn.
Then the %̄ distance between µ, ν is defined as

%̄(µ, ν) = sup
n∈N

%̄n(µ, ν). (1.3)

In the original Ornstein version % was taken as discrete metric on a finite alphabet. It
is known that %̄(µ, ν) = limn→∞ %̄n(µ, ν) by Fekete’s lemma on superadditive sequences.

The %̄-distance has a natural interpretation as average distance per coordinate be-
tween two stationary sources in an optimal coupling. This interpretation is further
justified by the basic representation result (cp. [10, Theorem 1])

%̄(µ, ν) = %̄s(µ, ν) := inf
Γ∈Ms(µ,ν)

∫
%(x0, y0)dΓ(x, y) (1.4)

= inf{E[%(X0, Y0)] | (X,Y ) ∼ Γ ∈Ms(µ, ν)}. (1.5)

Here Ms(µ, ν) is the set of all jointly stationary (i.e. jointly shift invariant) measures on
EZ × EZ with marginals µ, ν and (X,Y ) ∼ Γ means that Γ is the distribution of (X,Y ).
Thus %̄(µ, ν) can be seen as a Monge–Kantorovich problem on EZ with however a modi-
fied Fréchet class Ms(µ, ν) ⊂ M(µ, ν). (1.5) states this as an optimal coupling problem
between jointly stationary processes X, Y with marginals µ, ν. A pair of jointly station-
ary processes (X,Y ) with distribution Γ ∈Ms(µ, ν) is called optimal stationary coupling
of µ, ν if it solves problem (1.5), i.e. it minimizes the stationary coupling distance %̄s.

By definition it is obvious (see [10]) that

%̄1(µ, ν) ≤ %̄(µ, ν) ≤
∫
%(x0, y0)dµ0(x0)dν0(y0), (1.6)

the left hand side being the usual minimal `1-distance (Kantorovich distance) between
the single components µ0, ν0.

As remarked in [10, Example 2] the main representation result in (1.4), (1.5) does
not use the metric structure of % and % can be replaced by a general cost function c on
E × E implying then the generalized optimal stationary coupling problem

c̄s(µ, ν) = inf{E[c(X0, Y0)] | (X,Y ) ∼ Γ ∈Ms(µ, ν)}. (1.7)

Only in few cases information on this optimal coupling problem for %̄ resp. c̄ is
given in the literature. [10] determine %̄ for two i.i.d. binary sequences with success
probabilities p1, p2. They also derive for quadratic cost c(x0, y0) = (x0 − y0)2 upper and
lower bounds for two stationary Gaussian time series in terms of their spectral densities.
We do not know of further explicit examples in the literature for the %̄ distance. The aim
of our paper is to derive optimal couplings and solutions for the %̄ metric resp. the
generalized c̄ distance.

The %̄ resp. c̄ distance is particularly adapted to stationary processes. One should
note that from the general Monge–Kantorovich theory characterizations of optimal cou-
plings for some classes of distances c are available and have been determined for time
series and stochastic processes in some cases. For processes with values in a Hilbert
space (like the weighted `2 or the weighted L2 space) and for general cost functions
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On optimal stationary couplings between stationary processes

c, general criteria for optimal couplings have been given in [18] and [16]. For some
examples and extensions to Banach spaces see also [2] and [17]. Some of these criteria
have been further extended to measures µ, ν in the Wiener space (W,H, µ) w.r.t. the
squared distance c(x, y) = |x−y|2H by Feyel and Üstünel (2002, 2004) and [23]. All these
results are also applicable to stationary measures and characterize optimal couplings
between them. But they do not respect the special stationary structure as described in
the representation result in (1.5), (1.7). In the following sections we want to determine
optimal stationary couplings between stationary processes.

In Section 2 we consider the optimal stationary coupling of stationary processes on
R and on Rm with respect to squared distance. In Section 3 we give an extension to
the case of random fields. Finally we consider in Section 4 an extension to general
cost functions. We interpret an optimal coupling condition by a geometric curvature
condition.

2 Optimal couplings of stationary processes w.r.t. squared dis-
tance

In this section we consider the optimal stationary coupling of stationary processes
on the Euclidean space with respect to squared distance.

We first recall the classical result for optimal couplings on Rn. For two probability
distributions µ and ν on Rn let Mn(µ, ν) be the set of joint distributions Γ of random
variables X ∼ µ and Y ∼ ν. Denote the Euclidean norm on Rn by ‖ · ‖2. We call a
joint distribution Γ in Mn(µ, ν) an optimal coupling if Γ attains the minimum of

∫
‖x −

y‖22Γ(dx, dy) over Mn(µ, ν).

Theorem 2.1 ([18] and [1]). For given measures µ and ν on Rn with existing second
moments, there is an optimal coupling Γ ∈Mn(µ, ν) and it is characterized by

Y ∈ ∂h(X) Γ-a.s. (2.1)

for some convex function h, where the subgradient ∂h(x) at x is defined by

∂h(x) = {y ∈ Rn | h(z)− h(x) ≥ y · (z − x), ∀z ∈ Rn}. (2.2)

Furthermore, if µ is absolutely continuous with respect to the Lebesgue measure on
Rn, then the gradient of h is essentially unique.

In the above theorem let µ be absolutely continuous and assume that µ and ν are
invariant under the map x = (x1, . . . , xn) 7→ Lnx = (xn, x1, . . . , xn−1). Then, by the
uniqueness result, the convex function h in (2.1) must be invariant under Ln. In addi-
tion, if h is differentiable, then the gradient ∇h satisfies (∇h) ◦ Ln = Ln ◦ (∇h). This
identity motivates the following construction of optimal stationary coupling (see (2.3)).

Now we consider stationary processes. For simplicity, we first consider the one-
dimensional case E = R. The multi-dimensional case E = Rm is discussed later. Let
Ω = EZ = RZ and c(x0, y0) = (x0−y0)2. Let L : Ω→ Ω denote the left shift, (Lx)t = xt−1.

Then a pair of processes (X,Y ) with values in Ω×Ω is jointly stationary when (X,Y )
d
=

(LX,LY ) (
d
= denotes equality in distribution). A Borel measurable map S : Ω → Ω is

called equivariant if
L ◦ S = S ◦ L. (2.3)

This notion is borrowed from the corresponding notion in statistics, where it is used in
connection with statistical group models. The following lemma concerns some elemen-
tary properties.
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Lemma 2.2. a) A map S : Ω → Ω is equivariant if and only if St(x) = S0(L−tx) for any
t, x.

b) If X is a stationary process and S is equivariant then (X,S(X)) is jointly stationary.

Proof. a) If L◦S = S ◦L then by induction S = Lt ◦S ◦L−t for all t ∈ Z, and thus St(x) =

S0(L−tx). Conversely, if St(x) = S0(L−tx), then St−1(x) = S0(L−t+1x) = St(Lx). This
implies L(S(x)) = S(Lx).

b) Since LX has the same law as X, it follows that (LX,L(S(X))) = (LX,S(LX)) =

(I, S)(LX)
d
= (I, S)(X) = (X,S(X)), I denoting the identity.

For X ∼ µ and S : Ω → Ω the pair (X,S(X)) is called optimal stationary coupling
if it is an optimal stationary coupling w.r.t. µ and ν := µS = S#µ, i.e., when ν is the
corresponding image (push-forward) measure.

To construct a class of optimal stationary couplings we define for a convex function
f : Rn → R an equivariant map S : Ω→ Ω. For x ∈ Ω let

∂f(x) = {y ∈ Rn | f(z)− f(x) ≥ y · (z − x), ∀z ∈ R} (2.4)

denote the subgradient of f at x, where a · b denotes the standard inner product of
vectors a and b. By convexity ∂f(x) 6= ∅. Let F (x) = (Fk(x))0≤k≤n−1 be measurable and
F (x) ∈ ∂f(x), x ∈ Rn. The equivariant map S is defined via Lemma 2.2 by

S0(x) =

n−1∑
k=0

Fk(x−k, . . . , x−k+n−1), St(x) = S0(L−tx), x ∈ Ω. (2.5)

For terminological reasons we write any map of the form (2.5) as

S0(x) =

n−1∑
k=0

∂kf(x−k, . . . , x−k+n−1), St(x) = S0(L−tx), x ∈ Ω. (2.6)

In particular for differentiable convex f the subgradient set coincides with the deriva-
tive of f , ∂f(x) = {∇f(x)} and ∂tf(x) = ∂

∂xt
f(x).

Remark 2.3. a) In information theory a map of the form St(x) = F (xt−n+1, . . . , xt+n−1)

is called a sliding block code (see [10]). Thus our class of maps S defined in (2.6)
are particular sliding block codes.

b) [19, 20, 21] introduced so-called structural gradient models (SGM) for stationary
time series, which are defined as {(Sϑ)#Q | ϑ ∈ Θ}, where Q is the infinite product
of the uniform distribution on [0, 1], on [0, 1]Z, {Sϑ | ϑ ∈ Θ} is a parametric family of
transformations of the form given in (2.6) and S#

ϑ Q denotes the pullback measure
of Q by Sϑ. It turns out that these models have nice statistical properties, e.g. they
allow for simple likelihoods and allow the construction of flexible dependencies. The
restriction to functions of the form (2.6) is well founded by an extended Poincaré
lemma (see [21, Lemma 3]) saying in the case of differentiable f that these func-
tions are the only ones with (the usual) symmetry and with an additional stationarity
property St−1(x) = St(Lx) for x ∈ RZ, which is related to our notion of equivariant
mappings.

c) Even if a map S has a representation of the form (2.6), the inverse map S−1 does
not have the same form in general. We give an example. Let X = (Xt)t∈Z be a
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real-valued stationary process with a spectral representation Xt =
∫ 1

0
e2πiλtM(dλ),

where M(dλ) is an L2-random measure. Define a process Y = (Yt) by

Yt = St(X) := Xt + ε(Xt−1 +Xt+1), ε 6= 0.

This is of the form (2.6) with a function f(x0, x1) = x2
0/4 + εx0x1 + x2

1/4 which is
convex if |ε| < 1/2. Under this condition, the map X 7→ Y is shown to be invertible
as follows. The spectral representation of Y is N(dλ) := (1 + ε(e2πiλ+ e−2πiλ))M(dλ).
Then we have the following inverse representation

Xt =

∫ 1

0

e2πiλt

1 + ε(e2πiλ + e−2πiλ)
N(dλ) =

∑
s∈Z

bsYt−s,

where (bs)s∈Z is defined by {1 + ε(e2πiλ + e−2πiλ)}−1 =
∑
s∈Z bse

−2πiλs. By standard
complex analysis, the coefficients (bs) are explicitly obtained:

bs =
z
|s|
+

ε(z+ − z−)
, z± :=

−1±
√

1− 4ε2

2ε
.

Note that |z+| < 1 and |z−| > 1 since |2ε| < 1. Hence bs 6= 0 for all s ∈ Z and the
inverse map S−1(Y ) =

∑
s bsYs does not have a representation as in (2.6).

The following theorem implies that the class of equivariant maps defined in (2.6)
gives a class of examples of optimal stationary couplings between stationary processes.

Theorem 2.4 (Optimal stationary couplings of stationary processes on R). Let f be a
convex function on Rn, let S be the equivariant map defined in (2.6) and let X be a
stationary process with law µ. Assume that X0 and ∂kf(Xn) (k = 0, . . . , n − 1) are in
L2(µ). Then (X,S(X)) is an optimal stationary coupling w.r.t. squared distance between
µ and µS , i.e.

E[(X0 − S0(X))2] = min
(X,Y )∼Γ∈Ms(µ,µS)

E[(X0 − Y0)2] = c̄s(µ, µ
S),

Proof. Fix any Γ ∈ Ms(µ, µ
S). By the gluing lemma (see Appendix A), we can construct

a jointly stationary process (X,Y, X̃) on a common probability space such that X ∼ µ,
Y = S(X) and (X̃, Y ) ∼ Γ. From the definition of Y0 = S0(X), we have Y0 ∈ L2(µ). Then
by the assumption of identical marginals

A :=
1

2
E[(X0 − Y0)2 − (X̃0 − Y0)2]

= E[−X0Y0 + X̃0Y0]

= E[(X̃0 −X0)S0(X)]

= E

[
(X̃0 −X0)

n−1∑
k=0

(∂kf)(X−k, . . . , X−k+n−1)

]
.

Using the joint stationarity of (X, X̃) we get withXn = (X0, . . . Xn−1), X̃n = (X̃0, . . . , X̃n−1)

that

A = E

[
n−1∑
k=0

(X̃k −Xk)(∂kf)(X0, . . . , Xn−1)

]
≤ E[f(X̃n)− f(Xn)]

= 0,

the inequality is a consequence of convexity of f . This implies optimality of (X,Y ). We
note that the last equality uses integrability of f(Xn), which comes from convexity of f
and the L2-assumptions. This completes the proof.
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Theorem 2.4 allows to determine explicit optimal stationary couplings for a large
class of examples. Note that – at least in principle – the c̄ distance can be calculated in
explicit form for this class of examples.

The construction of Theorem 2.4 can be extended to multivariate stationary se-
quences in the following way. Let (Xt)t∈Z be a stationary process, Xt ∈ Rm and let
f : (Rm)n → R be a convex function on (Rm)n. Define an equivariant map S : (Rm)Z →
(Rm)Z by

S0(x) =

n−1∑
k=0

∂kf(x−k, . . . , x−k+n−1)

St(x) = S0(L−tx), x ∈ Ω = (Rm)Z

(2.7)

where L−t operates on each component of x and ∂`f is (a representative of) the subgra-
dient of f w.r.t. the `-th component. Thus for differentiable f we obtain

S0(x) =

n−1∑
k=0

∇kf(x−k, . . . , x−k+n−1) (2.8)

where ∇`f is the gradient of f w.r.t. the `-th component.
Then the following theorem is proved similarly to Theorem 2.4.

Theorem 2.5 (Optimal stationary couplings of stationary processes on Rm). Let f be
a convex function on (Rm)n and let S be the equivariant map on Ω = (Rm)Z defined in
(2.7). Let X be a stationary process on Rm with distribution µ and assume that X0 and
∂kf(Xn), 0 ≤ k ≤ n− 1, are square integrable. Then (X,S(X)) is an optimal stationary
coupling between µ and µS = S#µ w.r.t. squared distance, i.e.

E[‖X0 − S0(X)‖22] = inf{E[‖X0 − Y0‖22] | (X,Y ) ∼ Γ ∈Ms(µ, µ
S)} = c̄s(µ, µ

S). (2.9)

Remark 2.6. Multivariate optimal coupling results as in Theorem 2.5 for the squared
distance or later in Theorem 4.1 for general distance allow to compare higher dimen-
sional marginals of two real stationary processes. For this purpose we consider a lifting
of one-dimensional processes to multi-dimensional processes as follows. For fixed m we
define an injective map q fromRZ to (Rm)Z by q(x) = (qk(x))k∈Z = ((xk, . . . , xk+m−1))k∈Z.
Note that q satisfies the equivariant condition (2.3). For one-dimensional processes
X = (Xk) ∼ µ and Y = (Yk) ∼ ν define m-dimensional processes X̃ = q(X) and
Ỹ = q(Y ) and denote their distributions by µ̃ and ν̃, respectively. Let c(m) be a cost
function on Rm×Rm. Then we have the optimal coupling problems between µ̃ and ν̃ as

c̄(m)
s (µ̃, ν̃) = inf{E[c(m)(X̃0, Ỹ0)] | (X̃, Ỹ ) ∼ Γ̃ ∈Ms(µ̃, ν̃)}

= inf{E[c(m)(q0(X), q0(Y ))] | (X,Y ) ∼ Γ ∈Ms(µ, ν)},

where the second equality follows from the fact that any (X̃, Ỹ ) ∼ Γ̃ ∈ Ms(µ̃, ν̃) is
supported on q(RZ)× q(RZ), and q−1(X̃) ∼ µ, q−1(Ỹ ) ∼ ν. If the cost function c(m) is the
squared distance as in Theorem 2.5, then we can solve the lifted problem immediately
when we solve the case m = 1 since

c̄(m)
s (µ̃, ν̃) = inf{E‖X̃0 − Ỹ0‖22 | (X̃, Ỹ ) ∼ Γ̃ ∈Ms(µ̃, ν̃)}

= inf{E[m(X0 − Y0)2] | (X,Y ) ∼ Γ ∈Ms(µ, ν)} = mc̄(1)
s (µ, ν).

For general c not written as sum of one-dimensional cost functions the quantity c̄(m)
s (µ̃, ν̃)

has a meaning different from one-dimensional ones.
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3 Optimal stationary couplings of random fields

In the first part of this section we introduce the %̄ distance defined on a product space
in the case of countable groups and establish an extension of the [10] representation
result to random fields. In a second step we extend this result to amenable groups
on a Polish function space. This motivates the consideration of the optimal stationary
coupling result as in Section 2.

We consider stationary real random fields on an abstract group G. Section 2 was
concerned with the case of stationary discrete time processes, where G = Z. Interest-
ing extensions concern the case of stationary random fields on lattices G = Zd or the
case of stationary continuous time stochastic processes with G = R or G = Rd.

To state the most general version of the representation result, we prepare some
notations and definitions. Let (G,G) be a topological group with the neutral element
e. Let B be a Polish space equipped with a continuous and non-negative cost function
c(x, y), x, y ∈ B. We assume that the group G continuously acts on B on the left:
(gh).x = g.(h.x), e.x = x and the map x 7→ g.x is continuous. A Borel probability
measure µ on B is called stationary if µg = µ for every g ∈ G, where µg is the push-
forward measure of µ by g.

Example 3.1. If G is countable, an example of B is the product space Ω = EG of a
Polish space E (e.g. E = R) equipped with the product topology. The left group action
of G on Ω is defined by (g.x)h = xg−1h. Indeed,

((gh).x)k = x(gh)−1k = xh−1g−1k = (h.x)g−1k = (g.(h.x))k.

It is easy to see that e.x = x and the function x 7→ g.x is continuous.
If G is not countable, then Ω = EG is not Polish. One can consider a Polish space

B ⊂ Ω such that the projection B → E, x 7→ xe, is measurable and g.B = B. For
example, let G = R, E = R and B be the set of all continuous functions on G = R with
the compact-open topology, that is, define fn → f in B if supx∈K |fn(x) − f(x)| → 0 for
each compact K. Then all the requirements are satisfied.

We assume that G is an amenable group, i.e. there exists a sequence λn of asymp-
totically right invariant probability measures on G such that

sup
A∈G
|λn(Ag)− λn(A)| → 0 when n→∞. (3.1)

The hypothesis of amenability is central for example in the theory of invariant tests.
Many of the standard transformation groups are amenable. A typical exception is the
free group of two generators. The Ornstein distance can be extended to this class of
stationary random fields as follows. Define the average distance w.r.t. λn by

cn(x, y) :=

∫
c(g−1.x, g−1.y)λn(dg). (3.2)

For example, if B = EG and c(x, y) depends only on (xe, ye), say c(xe, ye), then cn is
given by

cn(x, y) =

∫
c(xg, yg)λn(dg). (3.3)

Let µ and ν be stationary probability measures on B. The induced minimal probabil-
ity metric is given by

c̄n(µ, ν) = inf{E[cn(X,Y )] | (X,Y ) ∼ Γ ∈M(µ, ν)}. (3.4)
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Finally, the natural extension of the c̄ metric of [10] is defined as

c̄(µ, ν) = sup
n
c̄n(µ, ν). (3.5)

The optimal stationary coupling problem is introduced similarly as in Section 2 by

c̄s(µ, ν) = inf{E[c(X,Y )] | (X,Y ) ∼ Γ ∈Ms(µ, ν)} (3.6)

where Ms(µ, ν) = {Γ ∈ M(µ, ν) | Γ(g,g) = Γ, ∀g ∈ G} is the class of jointly stationary
measures with marginals µ and ν. We use the notation Γ(c) = E[c(X,Y )] and Γ(cn) =

E[cn(X,Y )] for Γ ∈M(µ, ν).
We now can state an extension of the Gray–Neuhoff–Shields representation result

for the c̄ distance of stationary random fields to amenable groups.

Theorem 3.2 (General representation result for c̄ distance). Let G be an amenable
group acting on a Polish space B and c be a non-negative continuous cost function on
B ×B. Let µ, ν be stationary probability measures on B. Assume that for X ∼ µ (resp.
ν), Ec(X, y) < ∞ for y ∈ B. Then the extended Ornstein distance c̄ defined in (3.5)
coincides with the optimal stationary coupling distance c̄s,

c̄(µ, ν) = c̄s(µ, ν).

In particular, c̄ does not depend on choice of λn.

Proof. To prove that c̄(µ, ν) ≤ c̄s(µ, ν) let for ε > 0 given Γ ∈ Ms(µ, ν) be such that
Γ(c) ≤ c̄s(µ, ν) + ε. Then using the integrability assumption and stationary of Γ we
obtain for all n ∈ N

c̄n(µ, ν) ≤ Γ(cn) = E[

∫
c(g−1.X, g−1.Y )λn(dg)]

=

∫
E[c(g−1.X, g−1.Y )]λn(dg) = Γ(c) ≤ c̄s(µ, ν) + ε.

This implies that c̄(µ, ν) ≤ c̄s(µ, ν).
For the converse direction we choose for fixed ε > 0 and n ≥ 0 an element Γn ∈

M(µ, ν) such that Γn(cn) ≤ c̄n(µ, ν) + ε. We define probability measures {Γ̄n} by

Γ̄n(A) :=

∫
G

Γn(g.A)λn(dg). (3.7)

Note that Γ̄n(c) = Γn(cn). Indeed,

Γ̄n(c) =

∫
c(x, y)Γ̄n(dx, dy) =

∫∫
c(x, y)Γn(g.dx, g.dy)λn(dg)

=

∫∫
c(g−1.x, g−1.y)Γn(dx, dy)λn(dg) =

∫
cn(x, y)Γn(dx, dy) = Γn(cn).

Using Fubini’s theorem we obtain that

Γ̄n(h.A)− Γ̄n(A) =

∫
G

(Γn(gh.A)− Γn(g.A))λn(dg)

=

∫
B×B

(λn(Cx,yh
−1)− λn(Cx,y))Γn(dxdy), (3.8)

where Cx,y = {g ∈ G|(x, y) ∈ g.A}. By amenability (3.1) of G we have

|Γ̄n(h.A)− Γ̄n(A)| ≤
∫
B×B

|λn(Cx,yh
−1)− λn(Cx,y)|Γn(dxdy)→ 0 (3.9)

EJP 17 (2012), paper 17.
Page 8/20

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1797
http://ejp.ejpecp.org/


On optimal stationary couplings between stationary processes

as n→∞, i.e. Γ̄n is asymptotically left invariant on B ×B.
We have Γ̄n ∈M(µ, ν) since projections on finite components of Γ̄n are

Γ̄n(A1 × Ω) =

∫
G

Γn(g.A1 × Ω)λn(dg)

=

∫
G

µ(g.A1)λn(dg) = µ(A1)

since µ is stationary. Using tightness of {Γ̄n} we get a weakly converging subsequence
of {Γ̄n}. Without loss of generality we assume that {Γ̄n} converges weakly to some
probability measure Γ̄ on B ×B. In consequence by (3.9) we get Γ̄ ∈Ms(µ, ν). Finally,

c̄s(µ, ν) ≤ Γ̄(c) ≤ lim sup Γ̄n(c) = lim sup Γn(cn)

≤ lim sup c̄n(µ, ν) + ε ≤ c̄(µ, ν) + ε

for all ε > 0 which concludes the proof.

Example 3.3. Let G be countable and λn = 1
|Fn|

∑
g∈Fn

εg for some increasing class
of finite sets Fn ⊂ G with G = ∪nFn, where εg denotes the point-mass measure at g.
Amenability of G corresponds to the condition that Fn is asymptotically right invariant
in the sense that

|Fn ∩ (Fnh)|/|Fn| → 1, ∀h ∈ G. (3.10)

For example, the group G = Z is amenable because Fn = {b−n/2c, . . . , bn/2c − 1}
satisfies the above conditions. In the optimal coupling problem, we can take F ′n =

{0, . . . , n− 1} instead of Fn because µ and ν are stationary, although F ′n does not cover
Z.

Now take the product space B = EG and assume that c(x, y) depends only on (xe, ye)

and is denoted as c(x, y) = c(xe, ye). Then we obtain cn(x, y) = 1
|Fn|

∑
g∈Fn

c(xg, yg) =:

cn(xFn
, yFn

), where xFn
= (xg)g∈Fn

. We now show that c̄n(µ, ν) in (3.4) is equal to

inf{E[cn(XFn
, YFn

)] | (XFn
, YFn

) ∼ ΓFn
∈M(µFn

, νFn
)} (3.11)

with XFn = πFn(X), YFn = πFn(Y ), µFn = µπFn and νFn = νπFn , where πFn is defined
by πFn(x) = xFn . The equation (3.11) follows from the general extension property of
probability measures with given marginals, that is, we can construct

Γ(dx, dy) = ΓFn
(dxFn

, dyFn
)µG\Fn

(dxG\Fn
|xFn

)νG\Fn
(dyG\Fn

|yFn
)

from any ΓFn
∈ M(µFn

, νFn
) (see also Appendix A). Finally, the original representation

result (1.4) follows from Theorem 3.2 with G = Z since (3.11) is consistent with (1.2).

Motivated by the representation results in Theorem 3.2 we now consider the op-
timal stationary coupling problem for general groups G acting on Ω = RG and the
squared distance c(x, y) = (x0 − y0)2. Let F be a finite subset of G and let f : RF → R

be a convex function. The function f is naturally identified with a function on Ω by
f(x) = f((xg)g∈F ). As in Section 2 any choice of the subgradient of f is denoted by
((∂gf)(x))g∈F . Define an equivariant Borel measurable function S : Ω → Ω by the
shifted sum of gradients

Se(x) =
∑
g∈F

(∂gf)(gx) and Sh(x) = Se(h
−1x), h ∈ G. (3.12)

Note that Se(x) depends only on (xg)g∈G(F ), where G(F ) is the subgroup generated by
F in G. We have S ◦ g = g ◦ S for any g ∈ G because

Sh(gx) = Se(h
−1gx) = Sg−1h(x) = (gS(x))h.
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Hence if X is a stationary random field, then (X,S(X)) is a jointly stationary random
field.

We obtain the following theorem.

Theorem 3.4. Let µ be a stationary probability measure on Ω = RG with respect to
a general group of measurable transformations G. Let S be an equivariant map as
defined in (3.12) with a convex function f . Let X be a real stationary random field with
law µ and assume that Xe and (∂gf(X))g∈F are in L2(µ). Then (X,S(X)) is an optimal
stationary coupling w.r.t. squared distance between µ and µS , i.e.

E[(Xe − Se(X))2] = min
(X,Y )∼Γ∈Ms(µ,µS)

E[(Xe − Ye)2] = c̄s(µ, µ
S).

Proof. The construction of the equivariant mapping in (3.12) and the following remark
allow us to transfer the proof of Theorem 2.5 to the class of random field models. Fix
Γ ∈Ms(µ, µ

S). Let G(F ) be the subgroup generated by F in G. Then G(F ) is countable
(or finite). We denote the restricted measure of µ on RG(F ) by µ|G(F ). By the gluing

lemma, we can consider a jointly stationary random field (Xg, Yg, X̃g)g∈G(F ) on a com-

mon probability space such that (Xg)g∈G(F ) ∼ µ|G(F ), Yg = Sg(X) and (X̃g, Yg)g∈G(F ) ∼
Γ|G(F ). Then we have

1

2
E[(Xe − Se(X))2 − (X̃e − Se(X))2] = E[Se(X)(X̃e −Xe)]

=
∑
g∈F

E
[(

(∂gf)(gX)
)
(X̃e −Xe)

]
=
∑
g∈F

E
[(

(∂gf)(X)
)
(X̃g −Xg)

]
≤ E[f(X̃)− f(X)]

= 0.

This implies that (X,S(X)) is an optimal stationary coupling w.r.t. squared distance
between the random fields µ and µS = S#µ.

The generalization to the multi-dimensional case E = Rm is now obvious and omit-
ted.

4 Optimal stationary couplings for general cost functions

We consider general cost functions c on general spaces other than the squared dis-
tance on Rm. The Monge–Kantorovich problem and the related characterization of
optimal couplings have been generalized to general cost functions c(x, y) in [16, 17],
while [13] extended the squared loss case to manifolds; see also the surveys in [15]
and [24, 25]. Based on these developments we will extend the optimal stationary cou-
pling results in Sections 2, 3 to more general classes of distance functions. Some of
the relevant notions from transportation theory are collected in the Appendix B. We will
restrict to the case of time parameter Z. As in Section 3 an extension to random fields
with general time parameter is straightforward.

Let E1, E2 be Polish spaces. and let c : E1 × E2 → R be a measurable cost function.
For f : E1 → R and x0 ∈ E1 let

∂cf(x0) =
{
y0 ∈ E2 | c(x0, y0)− f(x0) = inf

z0∈E1

{c(z0, y0)− f(z0)}
}

(4.1)

denote the set of c-supergradients of f in x0.
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A function ϕ : E1 → R ∪ {−∞} is called c-concave if there exists a function
ψ : E2 → R ∪ {−∞} such that

ϕ(x) = inf
y∈E2

(c(x, y)− ψ(y)), ∀x ∈ E1. (4.2)

If ϕ(x) = c(x, y0) − ψ(y0), then y0 is a c-supergradient of ϕ at x. For squared distance
c(x, y) = ‖x − y‖22 in Rm = E1 = E2 c-concavity of ϕ is equivalent to the concavity of
x 7→ ϕ(x)− ‖x‖22/2.

Consider E1 = E2 = Rm. The characterization of optimal couplings T (x) ∈ ∂cϕ(x)

for some c-concave function ϕ leads for regular ϕ to a differential characterization of
c-optimal coupling functions T

(∇xc)(x, T (x)) = ∇ϕ(x). (4.3)

In case (4.3) has a unique solution in T (x) this equation describes optimal c-coupling
functions T in terms of differentials of c-concave functions ϕ and the set of c-supergradients
∂cϕ(x) reduces to just one element

∂cϕ(x) = {∇xc∗(x, ϕ(x))}. (4.4)

Here c∗ is the Legendre transform of c(x, ·) and∇xc(x, ·) is invertible and (∇xc)−1(x, ϕ(x))

= ∇xc∗(x, ϕ(x)) (see [16, 15] and [24, 25]). For functions ϕ which are not c-concave, the
supergradient ∂cϕ(x) is empty at some point x. Even if ϕ is c-concave, the supergradi-
ent may be empty. If c(x, y) = h(x − y) with a superlinear strictly convex function h on
Rm, the existence of supergradients and regularity of c-concave functions are proved in
the appendix of [9].

The construction of optimal stationary c-couplings of stationary processes can be
pursued in the following way. Define the average distance per component cn : En1 ×
En2 → R by

cn(x, y) =
1

n

n−1∑
t=0

c(xt, yt) (4.5)

and assume that for some function f : En1 → R, there exists a function Fn : En1 → En2
such that

Fn(x) = (Fk(x))0≤k≤n−1 ∈ ∂cnf(x), x ∈ En1 . (4.6)

Note that (4.6) needs to be satisfied only on the support of (the projection of) the station-
ary measure µ. In general we can expect ∂cnf(x) 6= ∅, ∀x ∈ En1 only if f is cn-concave.
For fixed y0, . . . , yn−1 ∈ E2 we introduce the function hc(x0) = 1

n

∑n−1
k=0 c(x0, yk), x0 ∈ E1.

hc(x) describes the average distance of x0 to the n points y0, . . . , yn−1 in E2. We define
an equivariant map S : EZ1 → EZ2 by

S0(x) ∈ ∂c(hc(x0)) |yk=Fk(x−k,...,x−k+n−1),0≤k≤n−1

St(x) = S0(L−tx), S(x) = (St(x))t∈Z.
(4.7)

Here the c-supergradient is taken for the function hc(x0) and the formula is evaluated
at yk = Fk(x−k, . . . , x−k+n−1), 0 ≤ k ≤ n − 1. After these preparations we can state the
following theorem.

Theorem 4.1 (Optimal stationary c-couplings of stationary processes). Let X =

(Xt)t∈Z be a stationary process with values in E1 and with distribution µ, let c : E1 ×
E2 → R be a measurable distance function on E1 × E2 and let f : En1 → R be measur-
able cn-concave. If S is the equivariant map induced by f in (4.7) and if c(X0, S0(X)),
{c(Xk, Fk(Xn))}n−1

k=0 and f(Xn) are integrable, then (X,S(X)) is an optimal stationary
c-coupling of the stationary measures µ, µS i.e.

E[c(X0, S0(X))] = inf{E[c(Y0, Z0)] | (Y,Z) ∼ Γ ∈Ms(µ, µ
S)} = c̄s(µ, µ

S). (4.8)
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Proof. The construction of the equivariant function in (4.7) allows us to extend the
basic idea of the proof of Theorem 2.4 to the case of general cost function. Fix any Γ ∈
Ms(µ, µ

S). By the gluing lemma, we can consider a jointly stationary process (X,Y, X̃)

on a common probability space with properties X ∼ µ, Y = S(X) and (X̃, Y ) ∼ Γ. Then
we have by construction in (4.7) and using joint stationarity of (X, X̃)

E[c(X0, S0(X))− c(X̃0, S0(X))]

≤ E

[
n−1

n−1∑
k=0

{c(X0, yk)− c(X̃0, yk)}
∣∣∣
yk=Fk(X−k,...,X−k+n−1)

]

= E

[
n−1

n−1∑
k=0

{c(Xk, yk)− c(X̃k, yk)}
∣∣∣
yk=Fk(X0,...,Xn−1)

]
= E

[
cn(Xn, Fn(Xn))− cn(X̃n, Fn(Xn))

]
≤ E[f(Xn)− f(X̃n)]

= 0.

The first inequality is a consequence of S0 ∈ ∂c(hc)(x0). The last inequality follows from

cn-concavity of f while the last equality is a consequence of the assumption that X
d
= X̃.

As consequence we obtain that (X,S(X)) is an optimal stationary c-coupling.

The conditions in the construction (4.7) of optimal stationary couplings in Theorem
4.1 (conditions (4.6), (4.7)) simplify essentially in the case n = 1. In this case we get as
corollary of Theorem 4.1

Corollary 4.2. Let X = (Xt)t∈U be a stationary process with values in E1 and distribu-
tion µ and let c : E1 × E2 → R be a cost function as in Theorem 4.1. Let f : E1 → R be
measurable c-concave and define

S0(x) ∈ ∂cf(x0), St(x) = S0(L−tx) ∈ ∂cf(xt), S(x) = (St(x))t∈Z. (4.9)

Then (X,S(X)) is an optimal stationary c-coupling of the stationary measures µ, µS .

Thus the equivariant componentwise transformation of a stationary process by su-
pergradients of a c-concave function is an optimal stationary coupling. In particular in
the case that E1 = Rk several examples of c-optimal transformations are given in [17]
resp. [15] which can be used to apply Corollary 4.2.

In case n ≥ 1 conditions (4.6), (4.7) are in general not obvious. In some cases
cn-convexity of a function f : En1 → R is however easy to see.

Lemma 4.3. Let f(x) =
∑n−1
k=0 fk(xk), fk : E1 → R, 0 ≤ k ≤ n − 1. If the fk’s are

c-concave, 0 ≤ k ≤ n− 1, then f is cn-concave and

∂cnf(x) =

n−1∑
k=0

∂cf(xk). (4.10)

Proof. Let yk ∈ ∂cfk(xk), 0 ≤ k ≤ n − 1, then with y = (yk)0≤k≤n−1 by definition of
c-supergradients

cn(x, y)− f(x) =
1

n

∑
k

(c(xk, yk)− fk(xk)) = inf{cn(z, y)− f(z); z ∈ En1 }

and thus y ∈ ∂cnf(x). The converse inclusion is obvious.
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Lemma 4.3 allows to construct some examples of functions Fn satisfying condition
(4.5). For n > 1 non-emptiness of the c-supergradient of hc(x0) = 1

n

∑n−1
k=0 c(x0, yk) has

to be established. The condition u0 ∈ ∂chc(x0) is equivalent to

c(x0, u0)− hc(x0) = inf
z

(c(z, u0)− hc(z)). (4.11)

In the differentiable case (4.11) implies the necessary condition

∇xc(x0, u0) = ∇xhc(x0) =
1

n

n−1∑
k=0

∇xc(x0, yk). (4.12)

If the map u→ ∇xc(x0, u) is invertible then equation (4.12) implies

u0 = (∇xc)−1(x0, ·)

(
1

n

n−1∑
k=0

∇xc(x0, yk)

)
(4.13)

(see (4.4)). Thus in case that (4.11) has a solution, it is given by (4.13).

Lemma 4.4. Suppose that for some x0 ∈ E1, ∂chc(x0) 6= ∅, and that the map E2 → E2 :

u 7→ ∇xc(x0, u) is one to one, then ∂chc(x0) is reduced to the single point u0 defined by

u0 = (∇xc)−1(x0, ·)

(
1

n

n−1∑
k=0

∇xc(x0, yk)

)
. (4.14)

Example 4.5. If c(x, y) = H(x − y) for a superlinear strictly convex function H, then
∇xc(x, ·) is invertible and we can construct the necessary c-supergradients of hc. The
c-concavity of hc is not discussed here. If for example c(x, y) = ‖x− y‖22, where ‖ · ‖2 is
the Euclidean norm, then we get for any x0 ∈ Rm,

u0 = u0(x0) =
1

n

n−1∑
k=0

yk = y (4.15)

is independent of x0 and
y ∈ ∂chc(x0), ∀x0 ∈ Rm. (4.16)

If c(x, y) = ‖x− y‖p2, p > 1, then we get for x0 ∈ Rm

u0 = u0(x0) = x0 + ‖a(x0)‖
1

p−1

2

a(x0)

‖a(x0)‖2
, (4.17)

where a(x0) = 1
n

∑n−1
k=0 ‖x0 − yk‖p−1

2
x0−yk
‖x0−yk‖2 . For this and related further examples see

[17] and [9].

The c-concavity of hc has a geometrical interpretation. u0 ∈ ∂chc(x0) if the difference
of the distance of z0 in E1 to u0 in E2 and the average distance of z0 to the given points
y0, . . . , yn−1 in E2 is minimized in x0. The c-concavity of hc can be interpreted as a
positive curvature condition for the distance c. To handle this condition we introduce
the notion of convex stability.

Definition 4.6. The cost function c is called convex stable of index n ≥ 1 if ∂chc(x0) 6= ∅
for any x0 ∈ E1 and y ∈ En2 , where

hc(x0) =
1

n

n−1∑
k=0

c(x0, yk), x0 ∈ E1. (4.18)

The cost c is called convex stable if it is convex stable of index n for all n ≥ 1.
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Example 4.7. Let E1 = E2 = H be a Hilbert space, as for example H = Rm, let
c(x, y) = ‖x− y‖22/2 and fix y ∈ Hn, then

hc(x0) =
1

n

n−1∑
k=0

c(x0, yk)

= c(x0, ȳ) +
1

n

n−1∑
k=0

c(ȳ, yk), (4.19)

where ȳ = 1
n

∑n−1
k=0 yk Thus by definition (4.2) hc is c-concave and a c-supergradient of

hc is given by ȳ independent of x0, i.e.

ȳ ∈ ∂chc(x0), ∀x0 ∈ H. (4.20)

Thus the squared distance c is convex stable.

The property of a cost function to be convex stable is closely connected with the
geometric property of non-negative cross curvature. Let E1 and E2 be open connected
subsets in Rm (m ≥ 1) with coordinates x = (xi)mi=1 and y = (yj)mj=1. Let c : E1×E2 → R

be C2,2, i.e. c is two times differentiable in each variable. Denote the cross derivatives
by cij,k = ∂3c/∂xi∂xj∂yk and so on. Define cx(x, y) = (∂c/∂xi)mi=1, cy(x, y) = (∂c/∂yj)mj=1,
Ux = {cx(x, y) | y ∈ E2} ⊂ Rm, Vy = {cy(x, y) | x ∈ E1} ⊂ Rm. Assume the following two
conditions.

[B1] The maps cx(x, ·) : E2 → Ux and cy(·, y) : E1 → Vy are diffeomorphic, i.e., they are
injective and the matrix (ci,j(x, y)) is invertible everywhere.

[B2] The sets U and V are convex.

The conditions [B1] and [B2] are called bi-twist and bi-convex conditions, respectively.
Now we define the cross curvature σ(x, y;u, v) in x ∈ E1, y ∈ E2, u ∈ Rm and v ∈ Rm by

σ(x, y;u, v) :=
∑
i,j,k,l

(
−cij,kl +

∑
p,q

cij,qc
p,qcp,kl

)
uiujvkvl (4.21)

where (ci,j) denotes the inverse matrix of (ci,j).
The following result is given by [11]. Note that these authors use the terminology

time-convex sliding-mountain instead of the notion convex-stability as used in this pa-
per.

Proposition 4.8. Assume the conditions [B1] and [B2]. Then c is convex stable if and
only if the cross curvature is non-negative, i.e.,

σ(x, y;u, v) ≥ 0, ∀x, y, u, v. (4.22)

The cross-curvature is related to the Ma-Trudinger-Wang tensor ([12]), which is the
restriction of σ(x, y;u, v) to

∑
i,j u

ivjci,j = 0. Known examples that have non-negative
cross-curvature are the n-sphere with the squared Riemannian distance ([11], [7]), its
perturbation ([3], [8]), their tensorial product and their Riemannian submersion.

If E1, E2 ⊂ R, then the conditions [B1] and [B2] are implied from a single condition
in case cx,y = ∂2c(x, y)/∂x∂y 6= 0. Hence we have the following result as a corollary. A
selfcontained simplified proof of this result is given in Appendix C.

Proposition 4.9. Let E1, E2 be open intervals in R and let c ∈ C2,2, c : E1 × E2 → R.
Assume that cx,y 6= 0 for all x, y. Then c is convex stable if and only if σ(x, y) := −cxx,yy+

cxx,ycx,yy/cx,y ≥ 0.
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Example 4.10. Let E1, E2 ⊂ R be open intervals and let E1∩E2 = ∅. Consider c(x, y) =
1
p |x−y|

p with p ≥ 2 or p < 1. Then c is convex stable. In fact cx,y = −(p−1)|x−y|p−2 6= 0

for all x, y and σ(x, y) = (p− 1)(p− 2)|x− y|p−4 ≥ 0 for all x, y. As p→ 0, we also have a
convex stable cost c(x, y) = log |x− y|.

If the cost function c is a metric then the optimal coupling in the case E1 = E2 = R

can be reduced to the case of E1 ∩ E2 = ∅ as in the classical Kantorovich–Rubinstein
theorem. This is done by subtracting (and renormalizing) from the marginals µ0, ν0 the
lattice infimum, i.e. defining

µ′0 :=
1

a
(µ0 − µ0 ∧ ν0), ν′0 :=

1

a
(ν0 − µ0 ∧ ν0). (4.23)

The new probability measures live on disjoint subsets to which the previous proposition
can be applied.

Some classes of optimal c-couplings for various distance functions c have been dis-
cussed in [17], see also [15]. The examples discussed in these papers can be used to
establish cn-concavity of f in some cases. This is an assumption used in Theorem 4.1
for the construction of the optimal stationary couplings. Note that cn is convex-stable if
c is convex-stable. Therefore the following proposition due to [6] (partially [22]) is also
useful to construct a cn-concave function f .

Proposition 4.11. Assume [B1] and [B2]. Then c satisfies the non-negative cross
curvature condition if and only if the space of c-concave functions is convex, that is,
(1− λ)f + λg is c-concave as long as f and g are c-concave and λ ∈ [0, 1].

Example 4.12. Consider Example 4.10 again. Let E1 = (0, 1), E2 = (−∞, 0), c(x1, y1) =

p−1(x1 − y1)p (p ≥ 2) and cn(x, y) = (np)−1
∑n−1
k=0(xk − yk)p. An example of cn-concave

functions of the form f(x) =
∑n−1
k=0 fk(xk) with suitable real functions fk is given in [17]

Example 1 (b). We add a further example here. Put x̄ = n−1
∑n−1
k=0 xk and let f(x) = A(x̄)

with a real function A. We prove f(x) is cn-concave if A′ ≥ 1 and A′′ ≤ 0. For example,
A(ξ) = ξ +

√
ξ satisfies this condition. Equation (4.3) becomes

n−1(xi − yi)p−1 = n−1A′(x̄) (4.24)

which uniquely determines yi ∈ E2 since A′ ≥ 1 and xi ∈ E1. To prove cn-concavity of f ,
it is sufficient to show convexity of x 7→ cn(x, y) − f(x) for each y. Indeed, the Hessian
is

δijn
−1(p− 1)(xi − yi)p−2 − n−2A′′(x̄) � −n−2A′′(x̄) � 0

in matrix sense. Note that the set of functions A satisfying A′ ≥ 1 and A′′ ≤ 0 is
convex, which is consistent with Proposition 4.11. Therefore, any convex combination
of A(x̄) and the cn-concave function

∑
k fk(xk) discussed above is also cn-concave by

Proposition 4.11.

Appendix

A Gluing lemma for stationary measures

The gluing lemma is a well known construction of joint distributions. We repeat this
construction in order to derive an extension to the gluing of jointly stationary processes.
For given probability measures P and Q on some measurable spaces E1 and E2, we
denote the set of joint probability measures on E1 × E2 with marginals P and Q by
M(P,Q).
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Lemma A.1 (Gluing lemma). Let P1, P2, P3 be Borel probability measures on Polish
spaces E1, E2, E3, respectively. Let P12 ∈ M(P1, P2) and P23 ∈ M(P2, P3). Then there
exists a probability measure P123 on E1 × E2 × E3 with marginals P12 on E1 × E2 and
P23 on E2 × E3.

Proof. Let P1|2(·|·) be the regular conditional probability measure such that

P12(A1 ×A2) =

∫
A2

P1|2(A1|x)P2(dx)

and P3|2(·|·) be the regular conditional probability measure such that

P23(A2 ×A3) =

∫
A2

P3|2(A3|x)P2(dx).

Then a measure P123 uniquely defined by

P123(A1 ×A2 ×A3) :=

∫
A2

P1|2(A1|x)P3|2(A3|x)P2(dx) (A.1)

satisfies the required condition.

Next we consider an extension of the gluing lemma to stationary processes. We note
that even if a measure P123 on EZ1 ×EZ2 ×EZ3 has stationary marginals P12 on EZ1 ×EZ2 and
P23 on EZ2 × EZ3 , it is not necessarily true that P is stationary. For example, consider
the {−1, 1}-valued fair coin processes X = (Xt)t∈Z and Y = (Yt)t∈Z independently,
and let Zt = (−1)tXtYt. Then (X,Y ) and (Y,Z) have stationary marginal distributions
respectively, but (X,Y, Z) is not jointly stationary because XtYtZt = (−1)t.

For given stationary measures P and Q on some product spaces, let Ms(P,Q) be the
jointly stationary measures with marginal distributions P and Q on the corresponding
product spaces.

Lemma A.2. Let E1, E2, E3 be Polish spaces. Let P1, P2, P3 be stationary measures on
EZ1 , E

Z
2 , E

Z
3 , respectively. Let P12 ∈ Ms(P1, P2) and P23 ∈ Ms(P2, P3). Then there exists

a jointly stationary measure P123 on EZ1 × EZ2 × EZ3 with marginals P12 and P23.

Proof. We define P123 by (A.1) and check joint stationarity of P123. First, since P12 is
stationary, the conditional probability P1|2 is stationary in the sense that P1|2(LA1|Lx) =

P1|2(A1|x) for any A1 and x (P2-a.s.). Indeed, for any A1 and A2,∫
A2

P1|2(A1|x)P2(dx) = P12(A1 ×A2)

= P12(LA1 × LA2)

=

∫
LA2

P1|2(LA1|x)P2(dx)

=

∫
A2

P1|2(LA1|Lx)P2(dx),

where the second and last equality is due to stationarity of P12 and P2, respectively.
Now joint stationarity of P123 follows from (A.1) and stationarity of P1|2, P3|2 and P2.

B c-concave function

We review some basic results on c-concavity. See [16, 17, 15, 24, 25] for details.
Let E1 and E2 be two Polish spaces and c : E1 × E2 → R be a measurable function.
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Definition B.1. We define the c-transforms of functions f on E1 and g on E2 by

f c(y) := inf
x∈E1

{c(x, y)− f(x)} and gc(x) := inf
y∈E2

{c(x, y)− g(y)}.

A function f on E1 is called c-concave if there exists some function g on E2 such that
f(x) = gc(x).

In general, f cc ≥ f holds. Indeed, for any x and y, we have c(x, y) − f c(y) ≥ f(x).
Then f cc(x) = infy{c(x, y)− f c(y)} ≥ f(x).

Lemma B.2. Let f be a function of E1. Then f is c-concave if and only if f cc = f .

Proof. The “if” part is obvious. We prove the “only if” part. Assume f = gc. Then
f c = gcc ≥ g, and therefore

f cc(x) = inf
y
{c(x, y)− f c(y)} ≤ inf

y
{c(x, y)− g(y)} = gc(x) = f(x).

Since f cc ≥ f always holds, we have f cc = f .

Define the c-supergradient of any function f : E1 → R by

∂cf(x) = {y ∈ E2 | c(x, y)− f(x) = f c(y)} .

Lemma B.3. Assume that ∂cf(x) 6= ∅ for any x ∈ E1. Then f is c-concave.

Proof. Fix x ∈ E1 and let y ∈ ∂cf(x). Then we have

f(x) = c(x, y)− f c(y) ≥ f cc(x) ≥ f(x).

Hence f cc = f and thus f is c-concave.

The converse of Lemma B.3 does not hold in general. For example, consider E1 =

[0,∞), E2 = R and c(x, y) = −xy. Then c-concavity is equivalent to usual concavity. The
function f(x) =

√
x is concave but the supergradient at x = 0 is empty.

C Proof of Proposition 4.9

Consider the cost function c(x, y) on E1 × E2 with the assumptions in Proposition
4.9. Since cx,y 6= 0, the map y 7→ cx(x, y) is injective. Denote its image and inverse
function by Ux = {cx(x, y) | y ∈ E2} and ηx = (cx(x, ·))−1 : Ux 7→ E2, respectively. Hence
cx(x, ηx(u)) = u for all u ∈ Ux and ηx(cx(x, y)) = y for all y ∈ E2. Note that Ux is an
interval and therefore convex. Also note that the subscript x of ηx does not mean the
derivative. By symmetry, we can define Vy = {cy(x, y) | x ∈ E1} and ξy = (cy(·, y))−1 :

Vy 7→ E1.
We first characterize the c-gradient of a differentiable c-concave function f . Let

x ∈ E1 and y ∈ ∂cf(x). Then c(x, y)− f(x) ≤ c(z, y)− f(z) for any z ∈ E1. By the tangent
condition at z = x, we have cx(x, y)− f ′(x) = 0, or equivalently, y = ηx(f ′(x)). Hence we
have ∂cf(x) = {ηx(f ′(x))}. We denote the unique element also by ∂cf(x) = ηx(f ′(x)).

To prove Proposition 4.9, it is sufficient to show that the following conditions are
equivalent:

(i) c is convex stable for any index n

(ii) The map u 7→ c(x, ηx(u))− c(z, ηx(u)) is convex for all x, z ∈ E1.

(iii) −cxx,yy + cxx,ycx,yy/cx,y ≥ 0.
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We first prove (i) ⇔ (ii). Assume (i). Let Q be the set of rational numbers. By the
definition of convex stability, for any u0, u1 ∈ Ux and λ ∈ [0, 1] ∩Q, the function

φ(z) := (1− λ)c(z, ηx(u0)) + λc(z, ηx(u1))

is c-concave. The c-gradient of φ is given by

∂cφ(x) = ηx((1− λ)cx(x, ηx(u0)) + λcx(x, ηx(u1))) = ηx((1− λ)u0 + λu1).

Then c-concavity, c(x, ∂cφ(x))− φ(x) ≤ c(z, ∂cφ(x))− φ(z) for any z, is equivalent to

c(x, ηx((1− λ)u0 + λu1))− c(z, ηx((1− λ)u0 + λu1))

≤ (1− λ){c(x, ηx(u0))− c(z, ηx(u0))}+ λ{c(x, ηx(u1))− c(z, ηx(u1))}.

Since both hand side is continuous with respect to λ, (ii) is obtained. The converse is
similar.

Next we prove (ii) ⇔ (iii). Assume (ii). Fix x, z ∈ E1 and u0 ∈ Ux. Let y0 = ηx(u0)

and therefore u0 = cx(x, y0). Since u 7→ c(x, ηx(u)) − c(z, ηx(u)) is convex for any z, its
second derivative at u = u0 is non-negative:

∂2
u{c(x, ηx(u))− c(z, ηx(u))}

∣∣
u=u0

= {cyy(x, y0)− cyy(z, y0)}(η(1)
x (u0))2 + {cy(x, y0)− cy(z, y0)}η(2)

x (u0)

≥ 0. (C.1)

On the other hand, by differentiating the identity cx(x, ηx(u)) = u twice at u = u0, we
have

cx,yy(x, y0)(η(1)
x (u0))2 + cx,y(x, y0)η(2)

x (u0) = 0.

Combining the two relations, we have[
{cyy(x, y0)− cyy(z, y0)} − cx,yy(x, y0)

cx,y(x, y0)
{cy(x, y0)− cy(z, y0)}

]
(η(1)
x (u0))2 ≥ 0.

Since η(1)
x (u0) = 1/cx,y(x, y0) 6= 0, we obtain

{cyy(x, y0)− cyy(z, y0)} − cx,yy(x, y0)

cx,y(x, y0)
{cy(x, y0)− cy(z, y0)} ≥ 0.

Now let v0 = cy(x, y0) and v = cy(z, y0). Then x = ξy0(v0) and z = ξy0(v) from the
definition of ξy. We have

{cyy(ξy0(v0), y0)− cyy(ξy0(v), y0)} − cx,yy(ξy0(v0), y0)

cx,y(ξy0(v0), y0)
(v0 − v) ≥ 0. (C.2)

This means convexity of the map v 7→ −cyy(ξy0(v), y0). Hence its second derivative is
non-negative. Therefore

−cxx,yy(z, y0)(ξ(1)
y0 (v))2 − cx,yy(z, y0)ξ(2)

y0 (v) ≥ 0.

On the other hand, by differentiating the identity cy(ξy0(v), y0) = v twice, we have

cxx,y(z, y0)(ξ(1)
y0 (v))2 + cx,y(z, y0)ξ(2)

y0 (v) = 0.

Combining the two relations, we have[
−cxx,yy(z, y0) +

cxx,y(z, y0)

cx,y(z, y0)
cx,yy(z, y0)

]
(ξ(1)
y0 (v))2 ≥ 0. (C.3)
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Since ξ(1)
y0 (v) = 1/cx,y(z, y0) 6= 0, we conclude

−cxx,yy(z, y0) + cx,yy(z, y0)
cxx,y(z, y0)

cx,y(z, y0)
≥ 0.

Since z and y0(= ηx(u0)) are arbitrary, we obtain (iii).
The proof of (iii) ⇒ (ii) is just the converse. First, (C.3) follows from (iii). Since

(C.3) is the second derivative of the left hand side of (C.2), the convexity condition (C.2)
follows. The condition (C.2) is equivalent to (C.1), and (C.1) is also equivalent to (ii).
This completes the proof.
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