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Abstract

We derive an annealed large deviation principle for the normalised local times of a
continuous-time random walk among random conductances in a finite domain in Zd

in the spirit of Donsker-Varadhan [6]. We work in the interesting case that the con-
ductances may assume arbitrarily small values. Thus, the underlying picture of the
principle is a joint strategy of small values of the conductances and large holding
times of the walk. The speed and the rate function of our principle are explicit in
terms of the lower tails of the conductance distribution. As an application, we iden-
tify the logarithmic asymptotics of the lower tails of the principal eigenvalue of the
randomized negative Laplace operator in the domain.
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1 Introduction

We introduce the main object of our study in Section 1.1, present our main results
in Section 1.2 and give a heuristic explanation in Section 1.3. The proof of the main
theorem is carried out in Sections 2.1 and 2.2.

1.1 Continuous-time random walk among random conductances

Consider the lattice Zd with E = {{x, y} : x, y ∈ Zd, x ∼ y} the set of nearest-neighbour
bonds. Assign to any edge {x, y} ∈ E a random weight ω{x,y} ∈ [0,∞). We will use the
notation ω{x,y} = ωxy = ωyx for convenience. Assume that ω = (ωxy){x,y}∈E is a family
of nonnegative i.i.d. random variables. We refer to them as random conductances. One
of the main objects of the present paper is the randomized Laplacian ∆ω defined by

∆ωf(x) :=
∑

y∈Zd : y∼x

ωxy(f(y)− f(x)), f : Zd → R, x ∈ Zd. (1.1)

This operator is symmetric and generates the continuous-time random walk (Xt)t∈[0,∞)

in Zd, the random walk among random conductances (RWRC) or, as many authors call
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Large deviations for RWRC

it, random conductance model (RCM). This process starts at x ∈ Zd under Pωx and
evolves as follows. When located at y, it waits an exponential random time with param-
eter

∑
z∼y ωyz (i.e., with expectation 1/

∑
z∼y ωyz) and then jumps to a neighbouring

site z′ with probability ωyz′/
∑
z∼y ωyz. We write Pr for the probability and 〈·〉 for the

expectation with respect to ω. In some recent publications (see, e.g., [3]), the above
walk is called variable-speed random walk (VSRW) in contrast to the constant-speed
random walk (CSRW), where the holding times have parameter one, and in contrast
to the discrete-time version of the RWRC, where the jumps occur at integer times.
Substantial differences between these two variants appear, for example, in slow-down
phenomena. These are typically due to extremely large holding times in the former
case, but to so-called traps (regions in which the path loses much time due to the local
structure of the transition probabilities) in the two latter cases. A further aspect is that
continuous-time random walks may reach any point in finite time with positive prob-
ability, in contrast to discrete-time walks. All these processes are versions of RWRC.
Let us mention some earlier work on RWRC. For the discrete-time setting, a quenched
functional CLT is derived in [5], assuming that the conductances take values in [0, 1].
In [1] and [8], the authors examine the probability for the random walk to return to
the origin in the quenched and annealed case, respectively. Here, the lower tails of the
distribution of the conductances have polynomial decay. The quenched functional CLT
has been addressed for the CSRW in [10] and for both the CSRW and VSRW in [3], the
former considering conductances in [0, 1], the latter requiring the conductances to be
bounded away from zero. Weak convergence to some Lévy process after proper rescal-
ing is established in [2] for conductances bounded away from zero. The main purpose
of this paper is the description of the long-time behaviour of the walk in a given finite
connected set B ⊂ Zd containing the starting point. More precisely, we derive a large
deviation principle (LDP) for the local times of the walk, which are defined by

`t(z) =

∫ t

0

δXs(z) ds, z ∈ Zd, t > 0. (1.2)

In words, `t(z) is the amount of time that the walker spends in z by time t. The speed and
the rate function of this LDP are explicit. One application is a characterization of the
logarithmic asymptotics of the non-exit probability from B. As this is standard and well-
known under the quenched lawPω0 , we will work under the annealed law 〈Pω0 (·)〉 instead.
Our investigation is motivated by the seminal works [6] and [9] on large deviations for
the occupation time measures of various types of Markov processes. Another motivation
is the question of the extremal behaviour of the principal eigenvalue of the random
operator ∆ω in B. We concentrate on the interesting case where the conductances are
positive, but can assume arbitrarily small values. Here the annealed behaviour comes
from a combined strategy of the conductances and the walk, and the description of their
interplay is the focus of our study. Loosely speaking, the optimal joint strategy of the
conductances and the walk to meet the non-exit condition X[0,t] ⊂ B for large t is that
the conductances assume extremely small t-dependent values and the walker realizes
very large t-dependent holding times and/or trajectories that do not leave B. We will
informally describe this picture in greater detail.

1.2 Main result

Our main assumption on the i.i.d. field ω of conductances is that, for any {x, y} ∈ E,

ωxy ∈ (0,∞) and essinf (ωxy) = 0. (1.3)
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Large deviations for RWRC

More specifically, we require some regularity of the lower tails, namely the existence of
two parameters η,D ∈ (0,∞) such that

log Pr(ωxy ≤ ε) ∼ −Dε−η, ε ↓ 0. (1.4)

That is, the edge weights can attain arbitrarily small values with prescribed probabili-
ties. Our main theorem is the following large deviation principle for the normalised local
times before exiting B. That is, we restrict to the event {X[0,t] ⊂ B} = {supp(`t) ⊂ B}.
By

EB := {{x, y} : x ∈ B, y ∈ Zd, y ∼ x} (1.5)

we denote the set of edges connecting the sites of B with their neighbours both in B

and outside.

Theorem 1.1 (Annealed LDP for 1
t `t). Assume that ω satisfies (1.3) and (1.4). Fix a

finite connected set B ⊂ Zd containing the origin. Then the process of normalized local
times, ( 1

t `t)t>0, under the annealed sub-probability law 〈Pω0 ( · ∩ {X[0,t] ⊂ B})〉 satisfies

an LDP on M1(B), the space of probability measures on B, with speed t
η
η+1 and rate

function J given by

J(g2) := Kη,D

∑
{x,y}∈EB

|g(y)− g(x)|
2η
η+1 , g ∈ `2(Zd), supp(g) ⊂ B, ‖g‖2 = 1, (1.6)

where Kη,D =
(
1 + 1

η

)
(Dη)

1
η+1 .

The proof of Theorem 1.1 is given in Section 2. More explicitly, it says

lim inf
t→∞

t−
η
η+1 log

〈
Pω0

(
1
t `t ∈ O,X[0,t] ⊂ B

)〉
≥ − inf

g2∈O
J(g2)

for O ⊂M1(B) open, (1.7)

lim sup
t→∞

t−
η
η+1 log

〈
Pω0

(
1
t `t ∈ C,X[0,t] ⊂ B

)〉
≤ − inf

g2∈C
J(g2)

for C ⊂M1(B) closed, (1.8)

and that the rate function J has compact level sets. Our convention is to extend any
probability measure on B trivially to a probability measure on Zd; note the zero bound-
ary condition in B that is induced in this way. A heuristic explanation of the speed and
the rate function is given in Section 1.3. It turns out there that the conductances that
give the most contribution to the LDP are of order t−1/(1+η) and assume a certain de-
terministic shape. With the special choice O = C = M1(B), we obtain the following
corollary.

Corollary 1.2 (Non-exit probability from B). Under the assumptions of Theorem 1.1,

lim
t→∞

t−
η
η+1 log

〈
Pω0
(
X[0,t] ⊂ B

)〉
= −Kη,DLη(B), (1.9)

where
Lη(B) = inf

g2∈M1(B)

∑
{x,y}∈EB

|g(y)− g(x)|
2η
η+1 . (1.10)

From Theorem 1.1, we also derive the precise logarithmic lower tails of the principal
(i.e., smallest) eigenvalue λω(B) of −∆ω in B with zero boundary condition.

Corollary 1.3 (Lower tails for the bottom of the spectrum of −∆ω). Under the assump-
tions of Theorem 1.1,

lim
ε↓0

εη log Pr(λω(B) ≤ ε) = −DLη(B)η+1.
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Large deviations for RWRC

Proof. A Fourier expansion shows that, Pr -almost surely,

Pω0 (X[0,t] ⊂ B) =

|B|∑
i=1

e−tλ
ω
i vωi (0)(vωi , 1l) ≤

|B|∑
i=1

e−tλ
ω
i |B| ≤ |B|2e−tλ

ω(B),

where 0 < λω(B) = λω1 ≤ · · · ≤ λω|B| are the eigenvalues of −∆ω with zero boundary
condition in B and (vωi )i=1,...,|B| a corresponding orthonormal base of eigenvectors. We
also have, Pr -almost surely,

e−tλ
ω(B) ≤

|B|∑
i=1

e−tλ
ω
i (vωi , 1l)

2 =
∑
z∈B

Pωz (X[0,t] ⊂ B).

Applying Theorem 1.1 to B − z and using the shift-invariance of ω, we see that the
expectation of the right-hand side has the same logarithmic asymptotics as 〈Pω0 (X[0,t] ⊂
B)〉. Therefore, the two inequalities above show that

log
〈

e−tλ
ω(B)

〉
∼ log

〈
Pω0 (X[0,t] ⊂ B)

〉
, t→∞. (1.11)

Now de Bruijn’s exponential Tauberian theorem [4, Theorem 4.12.9], together with (1.9)
yields the desired asymptotics.

Theorem 1.1 holds true verbatim if Zd is replaced by an (infinite or finite) graph
and B by some finite subgraph. In future work we will be interested in extensions of
Theorem 1.1 to B ⊂ Zd a t-dependent centred box and ∆ω replaced by ∆ω + ξ with
ξ = (ξ(z))z∈Zd an i.i.d. random potential, independent of ω.

1.3 Heuristic derivation

We now give a formal derivation of the LDP in Theorem 1.1. Given a fixed realisa-
tion ϕ = {ϕxy : {x, y} ∈ EB} ∈ (0,∞)EB of the conductances, the probability that the
normalised local time resembles some realisation g2 ∈M1(B) is roughly

P
ϕ
0

(
1
t `t ≈ g

2
)
≈ exp

{
− tIϕ(g2)

}
, (1.12)

where the corresponding Donsker-Varadhan rate function is given by

Iϕ(g2) =
(
−∆ϕg, g

)
=

∑
{x,y}∈EB

ϕxy|g(x)− g(y)|2. (1.13)

This is a formal application of the LDP for the normalized occupation times of a Markov
process with symmetric generator ∆ϕ as in [6] and [9]; by (·, ·) we denote the standard
inner product on `2(Zd). Note that the event {X[0,t] ⊂ B} is contained in { 1

t `t ≈ g2},
therefore we drop it from the notation. Taking random conductances into account, we
expect an LDP on a slower scale than t, as small t-dependent values of the conductances
lead to a slower decay of the annealed probability of the event { 1

t `t ≈ g2}. Therefore,
we rescale ω by a factor tr with some r > 0 to be determined later, and approximate

Pr
(
trω ≈ ϕ

)
= Pr

(
∀{x, y} ∈ EB : ωxy ≈ t−rϕxy

)
=

∏
{x,y}∈EB

Pr
(
ωxy ≈ t−rϕxy

)
≈ exp

{
− trηH(ϕ)

}
, (1.14)

where the rate function for the conductances is given by

H(ϕ) := D
∑

{x,y}∈EB

ϕ−ηxy . (1.15)
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Here we made use of the tail assumptions in (1.4). Hence, combining (1.12) and (1.14),〈
Pω0
(

1
t `t ≈ g

2
)
1l{trω≈ϕ}

〉
≈ Pt

−rϕ
0

(
1
t `t ≈ g

2
)

Pr
(
ω ≈ t−rϕ

)
≈ exp

{
− tIt−rϕ(g2)− trηH(ϕ)

}
≈ exp

{
−

∑
{x,y}∈EB

(
t1−rϕxy

(
g(x)− g(y)

)2
+ trηDϕ−ηxy

)}
.

(1.16)

We obtain the slowest decay by choosing r such that t1−r = trη, which means r =

(1 +η)−1. Then the right-hand side has scale t
η
η+1 , which is the scale of the desired LDP.

In order to find the rate function, we optimize over ϕ and obtain that the choice ϕ = ϕ(g)

with
ϕ(g)

xy = (Dη)
1
η+1 |g(y)− g(x)|−

2
η+1 , {x, y} ∈ EB , (1.17)

contributes most to the joint probability. Therefore, we have the result〈
Pω0
(

1
t `t ≈ g

2
)〉
≈ exp

{
− t

η
η+1 J(g2)

}
,

where the rate function is identified as

J(g2) = inf
ϕ

[
Iϕ(g2)+H(ϕ)

]
= Iϕ(g)(g2)+H(ϕ(g)) = Kη,D

∑
{x,y}∈EB

|g(y)−g(x)|
2η
η+1 . (1.18)

The tail assumptions we have made on the environment distribution lead to a fairly
remarkable interaction between the random influences of the environment on the one
hand and the random walk on the other. Under more general assumptions, e.g.,

log Pr(ωxy ≤ ε) ∼ −α(ε), ε→ 0

for some sufficiently regular nonincreasing function α : R+ → R+, we would expect an
analogous result to hold. However, if the leading-order term of α(ε) as ε → 0 is not a
power of ε, the scale and rate function of a corresponding LDP certainly would not have
such an explicit form.

2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. This amounts to showing the two inequalities
in (1.7) and (1.8), since the compactness of the level sets follows immediately from the
continuity of J and compactness of the spaceM1(B). The two inequalities are proven
in the next two sections.

2.1 Proof of the lower bound

In order to prove (1.7), we need to control the transition from one realization of the
environment to another. To this end, we first identify the density of this transition on
process level. We feel that this should be generally known, but could not find a suitable
reference. For ϕ : E → (0,∞) we abbreviate ϕ̄(x) :=

∑
y∼x ϕ(x, y). We also write ϕxy

instead of ϕ(x, y).

Lemma 2.1. Assume that ϕ,ψ : E → (0,∞) are bounded both from above and away
from zero. Denote by S(t) the number of jumps the process X = (Xs)s∈[0,t] makes up to
time t and by 0 < τ1 < . . . < τS(t) the corresponding jump times. Fix some starting point
x ∈ Zd and put τ0 = 0. Then, for all t ∈ [0,∞),

Φt(X) :=

S(t)∏
i=1

(
ϕ(Xτi−1 , Xτi)

ψ(Xτi−1 , Xτi)
e−(τi−τi−1)[ϕ̄(Xτi−1

)−ψ̄(Xτi−1
)]
)

e−(t−τS(t))[ϕ̄(Xt)−ψ̄(Xt)]
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is the Radon-Nikodym density of Pϕx with respect to Pψx with time horizon t.

Proof. We will write Φt instead of Φt(X). Obviously, Φt > 0 almost surely. We start show-
ing that, for all t ≥ 0, the expectation of Φt under Pψx is one. Then, we use Kolmogorov’s
extension theorem to show the existence of a measure Px such that Px(A) = Eψx (Φt1lA)

for all A ∈ Ft, where (Ft)t∈[0,∞) is the natural filtration generated by X. It remains to
show that the process X under Px is a Markov process and that it is generated by ∆ϕ,
which implies Px = Pϕx . Let us start by showing that the expectation of Φt under Pψx is
one. Consider the discrete-time process

Zn :=

n∏
i=1

(
ϕ(Xτi−1 , Xτi)

ψ(Xτi−1 , Xτi)
e−(τi−τi−1)[ϕ̄(Xτi−1

)−ψ̄(Xτi−1
)]
)
.

We have, for x ∈ Zd,

Eψx [Z1] =
∑
y∼x

ψxy
ψ̄(x)

ϕxy
ψxy

∫ ∞
0

ψ̄(x)e−ψ̄(x)s−(ϕ̄(x)−ψ̄(x))s ds =
∑
y∼x

ϕxy
ϕ̄(x)

= 1.

Combining this equation with the strong Markov property, we see that (Zn)n is a mar-
tingale with respect to the filtration (Fτn)n∈N generated by the jumping times and that

Eψx

[
ϕ(Xt, XτS(t)+1

)

ψ(Xt, XτS(t)+1
)
e−(τS(t)+1−t)[ϕ̄(Xt)−ψ̄(Xt)]

∣∣∣Ft] = E
ψ
Xt

[Z1] = 1 (2.1)

Pψx -almost surely for all x ∈ Zd. Then, we obtain

Eψx [Φt] = Eψx [ZS(t)+1], x ∈ Zd,

by inserting the first term of (2.1) under the expectation and using that Φt is Ft-
measurable. Consequently, it remains to show that Eψx [ZS(t)+1] = 1. As S(t) + 1 is an un-
bounded, but almost surely finite stopping time with respect to the filtration (Fτn)n∈N,
the optional sampling theorem yields that Eψx [ZS(t)+1] ≤ 1. On the other hand, for all
integers k > 0,

Eψx [ZS(t)+1] ≥ Eψx [ZS(t)+11lS(t)+1≤k] = Eψx [ZS(t)+1∧k]−Eψx [Zk1lS(t)≥k] = 1−Eψx [Zk1lS(t)≥k].

(2.2)
To show that the last term is arbitrarily close to one for large k, we recall that on
{S(t) ≥ k}

Zk ≤
(

maxx∈Zd, y∼x ϕxy

minx∈Zd, y∼x ψxy

)k
etmax{|ϕ̄(x)−ψ̄(x)| : x∈Zd} =: αk,

so Eψx [Zk1lS(t)≥k] is bounded from above by αkPψx (S(t) ≥ k). As all jumping times are
exponentially distributed with a parameter smaller than γ := maxx∈Zd ψ̄(x), we may
estimate

Pψx (S(t) ≥ k) ≤ eγt
∞∑
n=k

(γt)n

n!
.

The tail of an exponential series is super-exponentially small, which means αkPψx (S(t) ≥
k) → 0 as k → ∞. Since (2.2) was true for all k, we see that Eψx [ZS(t)+1] = 1. For
arbitrary k ∈ N and t1, . . . , tk ≥ 0 define t̂ = maxi∈{1,...,k} ti and a measure Qt1,...,tk on

(Zd)
k

by

Qt1,...,tk(x1, . . . , xk) = Eψx [Φt̂1l{Xt1=x1,...,Xtk=xk}], x1, . . . , xk ∈ Zd.
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We verify without much effort that Eψx [Φt+s1lA] = Eψx [Φt1lA] for all A ∈ Ft and t, s > 0,
which implies consistency of the family of measures above. Thus, by Kolmogorov’s
extension theorem, there exists a measure Px with finite-dimensional distributions as
above, and we have Px(A) = Eψx [Φt1lA] for all t > 0 and A ∈ Ft. We show that the
process X under Px satisfies the Markov property, i.e.,

Ex[1l{Xt+s=y}|Ft] = PXt(Xs = y) Px-a.s. for all y ∈ Zd, s, t > 0 (2.3)

where Ex denotes expectation with regard to Px. Note that PXt is defined as we have
considered an arbitrary starting point x in what we have shown so far. Indeed, for all
A ∈ Ft

Ex
[
Ex[1l{Xt+s=y}|Ft]1lA

]
= Ex[1l{Xt+s=y}1lA] = Eψx [Φt+s1l{Xt+s=y}1lA]

= Eψx
[
Eψx [Φt+s1l{Xt+s=y}|Ft]1lA

]
(∗)
= Eψx

[
ΦtE

ψ
Xt

[Φs1l{Xs=y}]1lA
]

= Ex
[
EXt [1l{Xs=y}]1lA

]
,

where equation (∗) is due to the fact that X satisfies the Markov property under Pψx
and Φt+sΦ

−1
t 1l{Xt+s=y} depends only on X[t,t+s]. Consequently, we have shown (2.3) and

X is a Markov process under Px with a unique infinitesimal generator. Elementary
calculations show that

1

t

(
Eψx [f(Xt)Φt]− f(x)

)
t→0−−−→ ∆ϕf(x)

for arbitrary x ∈ Zd and f : Zd → R. This implies Px = Pϕx and the proof is complete.

Now we use Lemma 2.1 to compare probabilities for two environments that are close
to each other.

Corollary 2.2. Let ϕ,ψ : E → (0,∞) with 0 < ψxy−ε ≤ ϕxy ≤ ψxy+ε for some ε > 0 and
all {x, y} ∈ E. Moreover, let F be some event that depends on the process (Xs)s∈[0,t] up
to time t only. Then

P
ϕ
0

(
F
)
≥ e−4dεtP

ψ−ε
0

(
F
)
.

Proof. Let Φt denote the Radon-Nikodym density of Pϕ0 with respect to Pψ−ε0 up to time
t. Employing the representation given in Lemma 2.1, we have

Φt ≥
S(t)∏
i=1

(
e−(τi−τi−1)[ϕ̄(Xτi−1

)−ψ̄(Xτi−1
)+2dε]

)
e−(t−τS(t))[ϕ̄(Xt)−ψ̄(Xt)+2dε]

≥
S(t)∏
i=1

(
e−(τi−τi−1)4dε

)
e−(t−τS(t))4dε ≥ e−4dεt.

The desired inequality follows immediately.

Remark 2.3. If the event F is contained in {supp(`t) ⊂ B}, it suffices to require 0 <

ψxy − ε ≤ ϕxy ≤ ψxy + ε for some ε > 0 and all {x, y} ∈ EB.

Let us now show (1.7). Fix an open set O ⊂ M1(B). As the event {X[0,t] ⊂ B}
is contained in { 1

t `t ∈ O}, we omit it in the notation. Observe that the distributions
of 1

t `t under Pω0 and 1
t1−r `t1−r under Pt

rω
0 coincide for all 0 < r < 1. Hence, choosing

r = (1 + η)−1,

lim inf
t→∞

1

t
η
η+1

log
〈
Pω0

(
1
t `t ∈ O

)〉
= lim inf

t→∞

1

t
log
〈
Pt

1
η ω

0

(
1
t `t ∈ O

)〉
,
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which will simplify the application of a classical Donsker-Varadhan LDP for random
walks in fixed environment later. Choose an element g2 ∈ O arbitrarily. For M > 0

define ϕ(g)

M : EB → (0,∞) by

ϕ(g)

M (x, y) =

{
(Dη)

1
η+1 |g(y)− g(x)|−

2
η+1 if |g(y)− g(x)| > 0,

M otherwise.

Next, we introduce the set

A =
{
ϕ : EB → (0,∞)

∣∣ϕ(g)

M − ε ≤ ϕ ≤ ϕ
(g)

M

}
, (2.4)

where ε > 0 is picked smaller than 1
2 minEB ϕ

(g)

M . By dint of Corollary 2.2,〈
Pt

1
η ω

0

(
1
t `t ∈ O

)〉
≥
〈
Pt

1
η ω

0

(
1
t `t ∈ O

)
1l{

t
1
η ω∈A

}〉
≥ inf
ϕ∈A

P
ϕ
0

(
1
t `t ∈ O

)
Pr
(
t

1
η ω ∈ A)

≥ e−4dεtP
ϕ

(g)
M −ε

0

(
1
t `t ∈ O

)
Pr
(
t

1
η ω ∈ A). (2.5)

Using the tail assumption in (1.4), we see that

lim
t→∞

1

t
log Pr

(
t

1
η ω ∈ A) = −H(ϕ(g)

M ),

where H is given in (1.15). Furthermore, we apply the lower bound of the classical
Donsker-Varadhan LDP (see [6] or [9]) to get

lim inf
t→∞

1

t
logP

ϕ
(g)
M −ε

0

(
1
t `t ∈ O

)
≥ − inf

O
I
ϕ

(g)
M −ε

,

where Iϕ is given in (1.13). Hence, from (2.5) we obtain

lim inf
t→∞

1

t
log
〈
Pt

1
η ω

0

(
1
t `t ∈ O

)〉
≥ −4dε− inf

O
I
ϕ

(g)
M −ε

−H(ϕ(g)

M )

≥ −4dε− inf
O
I
ϕ

(g)
M

−H(ϕ(g)

M )

≥ −4dε− I
ϕ

(g)
M

(g2)−H(ϕ(g)

M ),

since I
ϕ

(g)
M −ε

≤ I
ϕ

(g)
M

and g2 ∈ O. Now we send ε to zero and M to∞, to obtain

lim inf
t→∞

1

t
log
〈
Pt

1
η ω

0

(
1
t `t ∈ O

)〉
≥ −Iϕ(g)(g2)−H(ϕ(g)) = −J(g2),

where ϕ(g) = limM→∞ ϕ(g)

M is given in (1.17), and we used (1.18). The desired lower
bound follows by passing to the infimum over all g2 ∈ O.

2.2 Proof of the upper bound

In this section we prove (1.8). Let us first fix some configuration ϕ ∈ (0,∞)E and
start with an estimate for the probability Pϕ0 ( 1

t `t ∈ ·). This approach has actually been
used by other authors before, but we provide an independent proof for the sake of
completeness.

Lemma 2.4. Fix an arbitrary set A ⊂M1(B). Then

P
ϕ
0

(
1
t `t ∈ A

)
≤ f(0)

minB f
exp

{
t sup
h2∈A

∑
x∈B

∆ϕf(x)

f(x)
h2(x)

}
(2.6)

for arbitrary f : Zd → [0,∞) with supp(f) = B and t > 0.
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Proof. We consider the Cauchy problem{
∂tu(x, t) = ∆ϕu(x, t) + V (x)u(x, t), x ∈ Zd, t > 0,

u(x, 0) = f(x), x ∈ Zd,
(2.7)

with

V = −∆ϕf

f
1lB .

Keeping in mind that we have defined ∆ϕ with Dirichlet (i.e., zero) boundary conditions
on B, u(·, t) ≡ f(·) solves (2.7). On the other hand, by the Feynman-Kac formula, any
nonnegative solution u satisfies

u(x, t) = Eϕx

[
e
∫ t
0
V (Xs)dsu(Xt, 0)

]
, x ∈ Zd, t ≥ 0. (2.8)

Therefore, we may estimate

f(0) = E
ϕ
0

[
e−

∫ t
0

∆ϕf(Xs)
f(Xs)

dsf(Xt)
]

≥ Eϕ0
[
e−

∑
x∈B

∆ϕf(x)
f(x)

`t(x)f(Xt)1l{ 1
t `t∈A}

]
≥ min

B
f exp

{
− t sup

h2∈A

∑
x∈B

∆ϕf(x)

f(x)
h2(x)

}
P
ϕ
0

(
1
t `t ∈ A

)
,

which is a rearrangement of the assertion.

Now fix some closed set C ⊂ M1(B). As a closed subset of a finite-dimensional
space, C is compact with respect to the Euclidean topology. We are going to apply a
standard compactness argument, which is in the spirit of the proof of the upper bound
in Varadhan’s lemma [7, Thm. 4.3.1]. The idea is to cover C with certain open balls,
where ‘open’ refers to the Euclidean topology. Fix δ > 0. For g : Zd → [0,∞) with
g2 ∈ C, we define

dg = min
{
|g(y)− g(x)| : {x, y} ∈ E, g(x) 6= g(y)

}
∈ (0,∞),

where we recall that g2 is defined on the entire Zd and is zero outside B. Consider the
open ball in M1(B) of radius δg := min{d4

g, δ} centered at g2. Fixing a configuration

ϕ ∈ (0,∞)E , we can apply Lemma 2.4 with f(·) := g(·) +
√
δg1lB and obtain

P
ϕ
0

(
1
t `t ∈ Bδg (g2)

)
≤

1 +
√
δg√

δg
exp

{
t sup
h2∈Bδg (g2)

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

h2(x)
}
. (2.9)

In what follows, we show

sup
h2∈Bδg (g2)

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

h2(x) ≤ −Iϕ(g2)(1− 7δ
1
4 ), (2.10)

where we recall from (1.13) that Iϕ(g2) =
∑
{x,y}∈E ϕxy|g(x) − g(y)|2 = −(∆ϕg, g). To

that end, we replace h2 by (g +
√
δg1lB)2 and control the error terms.

sup
h2∈Bδg (g2)

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

h2(x)

=
∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

(g(x) +
√
δg)

2

+ sup
h2∈Bδg (g2)

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

[
(h2(x)− g2(x))− 2

√
δgg(x)− δg

]
. (2.11)
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The first sum is easily estimated against the standard Donsker-Varadhan rate function:∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

(g(x) +
√
δg)

2 =
(
∆ϕ(g +

√
δg1lB), g +

√
δg1lB

)
≤
(
∆ϕg, g

)
= −Iϕ(g2),

where we have used the symmetry of the operator ∆ϕ and that g = 0 outside B. In
order to estimate the last term in (2.11), we treat the contribution of every summand
within the square brackets separately. We begin with the first part and observe that
|h2(x)− g2(x)| = |h(x)− g(x)| |h(x) + g(x)| ≤ 2δg for all h2 ∈ Bδg (g2) and x ∈ B. Thus

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

(h2(x)− g2(x))

=
∑

{x,y}∈E :
x,y∈B

ϕxy
g(y)− g(x)

g(x) +
√
δg

(h2(x)− g2(x))−
∑

{x,y}∈E :
x∈B,y 6∈B

ϕxy(h2(x)− g2(x))

≤
∑

{x,y}∈E :
x,y∈B

ϕxy
|g(x)− g(y)|√

δg
2δg +

∑
{x,y}∈E :
x∈B,y 6∈B

ϕxy2δg

≤ 4δ
1
4 Iϕ(g2).

The last step is due to the fact that δ
1
4
g ≤ g(x)− g(y) whenever g(x)− g(y) > 0. Secondly,

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

(−2
√
δgg(x))

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x)− g(y)|
∣∣∣ 2
√
δgg(x)

g(x) +
√
δg
−

2
√
δgg(y)

g(y) +
√
δg

∣∣∣+
∑

{x,y}∈E :
x∈B,y 6∈B

ϕxy2
√
δgg(x)

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x)− g(y)|2 2δg√
δgdg

+
∑

{x,y}∈E :
x∈B,y 6∈B

ϕxy2
√
δg|g(x)− g(y)|

≤ 2δ
1
4 Iϕ(g2).

Here, we have used δ
1
4
g ≤ dg. The only part left is

∑
x∈B

∆ϕ(g +
√
δg1lB)(x)

g(x) +
√
δg

(−δg)

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x)− g(y)|
∣∣∣ 1

g(x) +
√
δg
− 1

g(y) +
√
δg

∣∣∣δg +
∑

{x,y}∈E :
x∈B,y 6∈B

ϕxyδg

≤
∑

{x,y}∈E :
x,y∈B

ϕxy|g(x)− g(y)|2 1√
δgdg

δg +
∑

{x,y}∈E :
x∈B,y 6∈B

ϕxyδg

≤ δ 1
4 Iϕ(g2).

Combining (2.11) with the last three estimates, we obtain (2.10) and in particular

P
ϕ
0

(
1
t `t ∈ Bδg (g2)

)
≤

1 +
√
δg√

δg

∏
{x,y}∈E

exp
{
− t ϕxy|g(x)− g(y)|2(1− 7δ

1
4 )
}
. (2.12)
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The balls Bδg (g2) with g2 ∈ C cover C and since this set is compact, we may extract a fi-
nite subcovering of C. Denote by (g2

i )i=1,...,N the centers of the balls in this subcovering.

Then, applying (2.12) for ϕ = t
1
η ω, we obtain

lim sup
t→∞

1

t
log
〈
Pt

1
η ω

0

(
1
t `t ∈ C

)〉
≤ max
i=1,...,N

lim sup
t→∞

1

t
log
〈
Pt

1
η ω

0

(
1
t `t ∈ Bδgi (g

2
i )
)〉

≤ max
i=1,...,N

∑
{x,y}∈EB

lim sup
t→∞

1

t
log
〈

exp
{
− t

1+η
η ωxy|gi(y)− gi(x)|2(1− 7δ

1
4 )
}〉
.

According to de Bruijn’s exponential Tauberian theorem [4, Theorem 4.12.9], the tail
assumption (1.4) is equivalent to the condition that, for any M > 0 and {x, y} ∈ E,

lim
t→∞

1

t
log
〈

exp
{
− t

1+η
η ωxyM

}〉
= −Kη,DM

η
1+η , (2.13)

where we recall Kη,D =
(
1 + 1

η

)
(Dη)

1
η+1 from Theorem 1.1. Thus, with δ so small that

1− 7δ
1
4 > 0, we obtain

lim sup
t→∞

1

t
log
〈
Pt

1
η ω
(

1
t `t ∈ C

)〉
≤ max
i=1,...,N

∑
{x,y}∈EB

−Kη,D|gi(y)− gi(x)|
2η

1+η (1− 7δ
1
4 )

η
1+η

≤ −(1− 7δ
1
4 )

η
1+η inf

g2∈C
J(g2)

with J as in (1.18). Since we may choose δ arbitrarily small, the proof of (1.8) is com-
plete.
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