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Abstract

We give a necessary and sufficient condition for transport-entropy inequalities in
dimension one. As an application, we construct a new example of a probability distri-
bution verifying Talagrand’s T2 inequality and not the logarithmic Sobolev inequality.
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1 Introduction

Transport-entropy inequalities were introduced by Marton and Talagrand in the
nineties [29, 38]. As their name indicates, this type of inequalities compare optimal
transport costs in the sense of Monge-Kantorovich to the relative entropy functional
(also called Kullback-Leibler divergence). Transport-entropy inequalities have deep
connections to the concentration of measure phenomenon [27, 19], to log-Sobolev type
inequalities [33, 5, 23], or large deviation theory [21, 19]. They also directly appear
in the definition proposed by Lott, Villani and Sturm of a metric measured space with
positive Ricci curvature [28, 37]. The interested reader can consult the books [27, 42]
or the recent survey [22] for an overview of their applications.

The purpose of this note is to give a necessary and sufficient condition for a large
class of transport-entropy inequalities involving probability measures on the real line.

Before presenting our main result, we first need to define transport costs and transport-
entropy inequalities. Let α : R+ → R+ be a cost function; the optimal transport cost
between two probability measures µ, ν is defined by

Tα(ν, µ) = inf

∫∫
α(|x− y|)π(dxdy), (1.1)

where the infimum runs over the set of couplings π between µ and ν, i.e probability
measures on R2 such that π(dx×R) = µ(dx) and π(R× dy) = ν(dy).
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Transport-Entropy inequalities on the line

A Borel probability measure µ on R is said to satisfy the transport-entropy inequality
Tα(a) for some a > 0 if

Tα(a · )(ν, µ) ≤ H(ν | µ),

for all ν ∈ P(R) (the set of Borel probability measures on R), where α(a · ) denotes the
cost function t 7→ α(at) and where H(ν | µ) stands for the relative entropy of ν with
respect to µ. This latter is defined by

H(ν | µ) =

∫
log

(
dν

dµ

)
dν,

when ν is absolutely continuous with respect to µ and ∞ otherwise. For instance, the
celebrated Talagrand’s inequality T2 enters this family of inequalities. We recall that µ
satisfies T2(C) if

T2(ν, µ) ≤ CH(ν | µ), ∀ν ∈ P(R), (1.2)

where T2 is an abbreviated notation for Tx2 . With the definition introduced above, T2(C)

holds if and only if Tx2

(
1/
√
C
)

holds.

In all the paper, we will use the following notation. The cumulative distribution
function Fν of a probability measure ν on R is the right continuous and non-decreasing
function defined by

Fν(x) = ν(−∞, x], ∀x ∈ R.

The generalized inverse of Fν is defined by

F−1ν (u) = inf{x ∈ R;F (x) ≥ u} ∈ R ∪ {±∞}, ∀u ∈ [0, 1].

If µ is a probability measure with no atom and ν is another probability measure we will
denote by Tµ,ν the map defined by

Tµ,ν = F−1ν ◦ Fµ. (1.3)

It is well known that Tµ,ν is the only one non-decreasing and left-continuous function
that pushes forward µ onto ν, that is to say

∫
f dν =

∫
f ◦ Tµ,ν dµ,

for all bounded measurable f : R→ R.

In what follows the exponential distribution

µ1(dx) = e−|x| dx/2 (1.4)

will play a central role.

EJP 17 (2012), paper 49.
Page 2/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1864
http://ejp.ejpecp.org/


Transport-Entropy inequalities on the line

In this paper, we will say that a Borel probability µ on R satisfy Poincaré inequality
with the constant λ > 0 if

λVarµ(f) ≤
∫
|∇f |2 dµ, ∀f Lipschitz, (1.5)

where

|∇f |(x) = lim sup
y→x

|f(y)− f(x)|
|y − x|

, ∀x ∈ R. (1.6)

Note that when f is differentiable at x, then |∇f |(x) = |f ′(x)|. Proposition 4.6 clarifies
this definition of the Poincaré inequality.

The following theorem is our main result. It characterizes transport-entropy inequal-
ities Tα for convex functions α which are quadratic near 0.

Theorem 1.1. Let µ be a Borel probability measure on R and α : R+ → R+ be a convex
function such that α(t) = t2 for all t ≤ h. The following propositions are equivalent

1. There is some a > 0 such that µ verifies Tα(a).

2. There are λ > 0 and d > 0 such that
(i) µ verifies Poincaré inequality with constant λ and
(ii) the map T := Tµ1,µ sending µ1 on µ verifies

|T (x)− T (y)| ≤ 1

d
α−1(h2 + |x− y|), ∀x, y ∈ R. (1.7)

Moreover, there exist two positive constants κ1, κ2 depending only on h such that the
optimal constants aopt, λopt, dopt are related as follows:

κ1 min
(√

λopt; dopt

)
≤ aopt ≤ κ2 min

(√
λopt; dopt

)
.

In other words, the transport-entropy inequality Tα carries two different informa-
tions: the existence of a spectral gap and a quantitative information on the way the
exponential distribution µ1 is deformed in order to produce µ. Theorem 1.1 improves
the results obtained by the author in a preceding work [18], where different necessary
or sufficient conditions were investigated (see Section 4.1 for a discussion). Here, a
true equivalence is obtained.

It is well known that an absolutely continuous probability measure µ on R verifies
Poincaré inequality if and only if the following holds

A+ := sup
x≥m

µ[x,∞)

∫ x

m

1

p(t)
dt <∞, (1.8)

A− := sup
x≤m

µ(−∞, x)

∫ m

x

1

p(t)
dt <∞,

where p denotes the density of µ with respect to the Lebesgue measure and m is a
median of µ. This result follows from a similar necessary and sufficient condition for
weighted Hardy’s inequalities due to Muckenhoupt [32] (extending previous works by
Artola, Talenti [39] and Tomaselli [40]). Moreover, it can be shown (see e.g [1]) that the
optimal constant λopt in Poincaré inequality (1.5) verifies

max(A−;A+) ≤ 1/λopt ≤ 4 max(A−;A+),

with possible cases of equalities see [31].
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Transport-Entropy inequalities on the line

To complete Theorem 1.1, we shall give in Section 4 an easy to check sufficient con-
dition for the contraction property (1.7) for absolutely continuous µwith smooth density.
This condition deals with the asymptotic behavior of the logarithm of the density of µ.

Theorem 1.1 is satisfactory from a theoretical point of view. Its conclusion is remi-
niscent of the characterizations of different functional inequalities on the line by Bobkov
and Houdré [9, 8] and Bobkov and Götze [6]. Theorem 1.1 is also a useful tool for con-
structing examples illustrating borderline situations. We will use it in the last section to
give a new example of a probability measure which verifies Talagrand’s T2 inequality
but not the logarithmic Sobolev inequality. Contrary to the previous example given by
Cattiaux and Guillin in [13], the tail behavior of the probability exhibited in the present
paper is exactly Gaussian. In the same section, we will answer a question raised by
Cattiaux and Guillin in [13] about the equivalence of Talagrand’s inequality to Gaus-
sian concentration and Poincaré inequality. We will use Theorem 1.1 again to give an
appropriate counterexample.

One of the main ingredient in the proof of Theorem 1.1 is the fact that optimal
transport has a very simple structure in dimension one. The following theorem is very
classical and goes back to the works by Hoeffding, Fréchet and Dall’Aglio [26, 16, 15].
A proof can be found in the books by Villani [41] or Rachev-Ruschendorf [34].

Theorem 1.2. Let α : R+ → R+ be a convex function such that α(0) = 0 and suppose
that µ ∈ P(R) has no atom, then for all probability measure ν ∈ P(R) such that

∫∫
α(|x−

y|)µ(dx)ν(dy) < ∞, the map Tµ,ν defined by (1.3) realizes the optimal transport of µ
onto ν. In other words, the coupling π(dxdy) = δTµ,ν(x)µ(dx) achieves the infimum in
(1.1) and so

Tα(ν, µ) =

∫
α(|x− Tµ,ν(x)|)µ(dx).

An immediate consequence of Theorem 1.2 is that the optimal transport cost Tα(ν, µ)

is linear with respect to α on the convex cone of non-negative convex cost functions α
vanishing at 0: in particular, if α = α1 + α2 with αi : R+ → R+ a convex function, then

Tα(ν, µ) = Tα1
(ν, µ) + Tα2

(ν, µ).

This property is really specific of the dimension one. In general, one only has the trivial
inequality

Tα ≥ Tα1
+ Tα2

.

To prove Theorem 1.1, we shall use this observation with a decomposition of α into a
function α1 which is quadratic near 0 and then linear and a function α2 which vanishes
in a neighborhood of 0 and has the same growth as α. The transport inequality Tα is
thus equivalent to the realization of both Tα1

and Tα2
. The transport-entropy inequality

Tα1
is equivalent to Poincaré inequality as proved by Bobkov, Gentil and Ledoux [5] (see

also Theorem 3.1 below). We shall establish that Tα2
is equivalent to the contraction

condition (1.7), which will complete the proof of Theorem 1.1.

The paper is organized as follows. Section 2 is devoted to transport-entropy in-
equalities associated to functions α vanishing in a neighborhood of 0. This class of
transport-entropy inequalities have their own interest since they can even be verified
by discrete probability measures. We show the equivalence between these inequalities
and contraction properties like (1.7). In Section 3, we complete the proof of Theorem
1.1 following the strategy explained above. Section 4 is devoted to examples. The ar-
ticle ends with an appendix relating the definition we adopted of Poincaré inequality
(1.5) to other more classical formulations.
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Transport-Entropy inequalities on the line

2 Transport-entropy inequalities for costs vanishing in a neigh-
borhood of 0

To begin with, let us observe that Talagrand’s inequality T2 cannot be satisfied by a
discrete probability measure of the form

µ =
∑
k∈N

µkδk,

where the µk’s are non-negative numbers of sum equal to 1. Indeed, if a probability
measure verifies T2 then it verifies Poincaré inequality (1.5) (see for instance the proof
of Theorem 1.1), which excludes probabilities µ as above (unless it is a Dirac mass).

In this section, we study transport-entropy inequalities associated to cost functions
which are identically 0 in a neighborhood of 0. As we shall see, the interest of this
type of cost functions is that the associated transport-entropy inequality can also be
satisfied by discrete probability measures. Let us mention that inequalities of this type
appeared also in a paper by Bonciocat and Sturm [11] in their study of curvature of
discrete metric spaces.

In all what follows, β : R+ → R+ will be a convex function such that β(t) = 0 for all
t ≤ h, for some h > 0, and β is increasing on [h,∞). The main result of this section is
the following

Theorem 2.1. A Borel probability measure µ on R verifies the transport-entropy in-
equality Tβ(a) for some constant a > 0 if and only if the transport map T = Tµ1,µ

sending the exponential distribution µ1 onto µ verifies the contraction property

|T (u)− T (v)| ≤ 1

d
β−1(|u− v|), ∀u 6= v ∈ R. (2.1)

Moreover, the optimal constants aopt and dopt verify

dopt

(
h

9β−1(2)

)
≤ aopt ≤ dopt

(
8β−1(log(3))

h

)
.

It is very easy to construct discrete probabilities enjoying a transport-entropy in-
equality Tβ . For example, consider the map T : R → N defined by T (x) = d

√
xe, for

x ≥ 0 and T (x) = 0 for x ≤ 0, where dxe is the smallest k ∈ N such that x ≤ k. It is clear
that

|T (x)− T (y)| ≤ 1 +
√
|x− y|, ∀x, y ∈ R.

Define µ as the image of µ1 under T . Since T is left continuous, we have T = Tµ1,µ and
so µ verifies the transport-entropy inequality Tβ2(a) for some constant a with the cost
function β2 defined by

β2(x) = [x− 1]2+, ∀x ≥ 0.

In this example, h = dopt = 1 and so the optimal constant aopt verifies

1

9(1 +
√

2)
≤ aopt ≤ 8(1 +

√
log(3)).

To prove Theorem 2.2, we need to introduce some additional notation. Let µ be a
probability measure on R which is not a Dirac mass and define

sµ = inf Supp(µ) and tµ = sup Supp(µ).

Let us define two families of probability measures {µ+
x } and {µ−x } on R+ as follows:

µ+
x = L(X − x|X > x), ∀x < tµ
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Transport-Entropy inequalities on the line

and
µ−x = L(x−X|X < x), ∀x > sµ,

where X is a random variable with law µ.

In other words, for all bounded measurable function f : R→ R,∫
f dµ+

x =

∫
(x,∞)

f(u− x)µ(du)

µ(x,∞)

and ∫
f dµ−x =

∫
(−∞,x) f(x− u)µ(du)

µ(−∞, x)
.

Define, for all b ≥ 0

K+(b) = sup
tµ>x≥m

∫ ∞
0

eβ(bu) µ+
x (du) ∈ R+ ∪ {∞} (2.2)

K−(b) = sup
sµ<x≤m

∫ ∞
0

eβ(bu) µ−x (du) ∈ R+ ∪ {∞},

where m is the median of µ defined by m = F−1µ (1/2), with the convention sup ∅ = 0.

Theorem 2.1 follows immediately from the following improved version.

Theorem 2.2. Let µ be a probability measure onR which is not a Dirac mass, and let µ1

be the two sided exponential distribution defined by (1.4). The following propositions
are equivalent

1. There is a > 0 such that µ verifies the transport inequality Tβ(a).

2. There are b > 0 and K > 0 such that max(K−(b);K+(b)) ≤ K.

3. There is c > 0 such that the map S : R× [0, 1]→ R ∪ {±∞} defined by

S(x, u) = F−1µ1
(µ(−∞, x) + µ ({x})u) , ∀x ∈ R, ∀u ∈ [0, 1],

verifies

|S(x, u)− S(y, v)| ≥ β(c|x− y|), ∀x, y ∈ R, ∀u, v ∈ [0, 1].

4. There is d > 0 such that the map T := Tµ1,µ defined by (1.3) which sends µ1 onto
µ verifies

|T (u)− T (v)| ≤ 1

d
β−1(|u− v|), ∀u 6= v ∈ R.

The constants are related in the following way:

(1)⇒ (2) with b = a/2 and K = 3.

(2)⇒ (3) with c = b
(

h
4β−1(k)

)
and k = logK.

(3)⇒ (4) with d = c.

(4)⇒ (1) with a = d
(

h
9β−1(2)

)
.

Let us give an interpretation of the map S appearing in condition (3). More generally,
if µ and ν are arbitrary Borel probability measures on R, we define the map Sµ,ν :

R× [0, 1]→ R ∪ {±∞} as follows:

Sµ,ν(x, u) = F−1ν (µ(−∞, x) + µ ({x})u) , ∀x ∈ R, ∀u ∈ [0, 1]. (2.3)

Remark that in case µ has no atom, Sµ,ν coincides with Tµ,ν defined by (1.3). As the
following theorem explains, this map realizes the optimal transport of µ onto ν.
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Theorem 2.3. Let α : R+ → R+ a convex cost function such that α(0) = 0 and µ, ν be
two probability measures on R such that

∫
α(|x− y|)µ(dx)ν(dy) <∞; then the coupling

πo ∈ P(R2) whose distribution function is given by

πo((−∞, x]× (−∞, y]) = min(Fµ(x), Fν(y)), ∀x, y ∈ R

achieves the infimum in the definition of Tα(ν, µ). Moreover, if X is a random variable
with law µ and U a random variable uniformly distributed on [0, 1] and independent of
X, then

πo = Law(X,Sµ,ν(X,U)).

Theorem 2.3 generalizes Theorem 1.2; we state it for completeness but it will not be
used in the sequel. Note that the coupling πo remains optimal for a more general class
of transport costs [12].

During the proof of Theorem 2.2, we will use the following simple technical lemma
twice.

Lemma 2.4. Let β : R+ → R+ be a convex function such that β = 0 on [0, h] and β is
increasing on [h,∞). Then, for all b > 0 and k > 0

[β(bv)− k]+ ≥ β(cv), ∀v ≥ 0,

where c = b
(

h
2β−1(k)

)
.

Proof. If v ≤ h/c, there is nothing to prove. If v > h/c, then since b
2 = cβ

−1(k)
h > c, it

holds
β(bv) ≥ β(bv/2) + β(bv/2) ≥ β(cv) + β(cβ−1(k)v/h) ≥ β(cv) + k,

which proves the claim.

Proof of Theorem 2.2.
(1)⇒ (2). According [22, Proposition 8.3] or [20, Proposition 4.13], the assumed trans-
port inequality implies the following inf-convolution inequality∫

eQf dµ

∫
e−f dµ ≤ 1,

for all function f bounded from below, where

Qf(y) = inf
z∈R
{f(z) + 2β(a|y − z|/2)} .

Consider the function fx which is 0 on (−∞, x] and∞ otherwise, thenQf(y) = 2 infz≤x β(a|y−
z|/2) and so Qf = 0 on (−∞, x] and Qf(y) = 2β(a(y − x)/2) on (x,∞). Applying the in-
equality above to fx thus yields(

µ(−∞, x] +

∫
(x,∞)

e2β(a(y−x)/2) µ(dy)

)
µ(−∞, x] ≤ 1.

From this follows that if x ≥ m∫ ∞
0

e2β(au/2) µ+
x (du) ≤ 1

µ(−∞, x]
+ 1 ≤ 3.

So K+(a/2) ≤ 3 and similarly K−(a/2) ≤ 3.
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Transport-Entropy inequalities on the line

(2) ⇒ (3). To prove (3) we can first restrict to the case y > x and then using the
monotonicity of S we can further assume that v = 0 and u = 1. So Property (3) is
equivalent to the following one

S(y, 0)− S(x, 1) ≥ β(c(y − x)), ∀y > x. (2.4)

To establish (2.4) it is enough to consider the cases y > x ≥ m and m ≥ y > x. Namely,
suppose that (2.4) is true with a constant c̃ for these two particular cases, and consider
y > m > x. Then, it holds

S(y, 0)− S(x, 1) ≥ S(y, 0)− S(m, 1) + S(m, 0)− S(x, 1)

≥ β(c̃(y −m)) + β(c̃(m− x))

≥ β(c̃(y − x)/2),

where the first inequality comes from the fact that S(m, 1) − S(m, 0) ≥ 0 and the last
one from the monotonicity of β ≥ 0 and the inequality min(m− x; y −m) ≥ (y − x)/2.

Let us check (2.4) when m ≤ x < y. Since F−1µ1
(t) = − log(2(1 − t)) for t ∈ [1/2; 1) and

F−1µ1
(t) = log(2t) for t ∈ (0, 1/2), it holds (since µ(−∞, x] ≥ 1/2)

S(y, 0)− S(x, 1) = − log(2(1− µ(−∞, y)) + log(2(1− µ(−∞, x]))

= − log(µ+
x [y − x,∞)).

Since K+(b) ≤ K, Markov inequality implies that µ+
x ([u,∞)) ≤ Ke−β(bu) for all u > 0.

So,

S(y, 0)− S(x, 1) ≥ [β(b(y − x))− log(K)]+ ≥ β(c̃(y − x)), ∀y > x ≥ m,

with c̃ = b
(

h
2β−1(k)

)
and k = log(K), where the second inequality follows from Lemma

2.4. Reasoning exactly as above we show that the same inequality holds when x < y ≤
m. So, according to what precedes, (3) holds with c = c̃/2.

(3)⇒ (4). By assumption, it holds

|F−1µ1
(µ(−∞, x) + µ({x})u)− F−1µ1

(µ(−∞, y) + µ({y})v)| ≥ β(c|x− y|),

for all x, y ∈ R and u, v ∈ [0, 1]. Let us apply this inequality to x = F−1µ (s) and y = F−1µ (t)

with s, t ∈ (0, 1). It is easy to check that

µ(−∞, F−1µ (s)) ≤ s ≤ µ(−∞, F−1µ (s)].

So choosing properly u and v yields

|F−1µ1
(s)− F−1µ1

(t)| ≥ β
(
c|F−1µ (s)− F−1µ (t)|

)
.

Finally applying this inequality to s = Fµ1(z) and t = Fµ1(w) gives the desired inequality.

(4) ⇒ (1). According to [30], the exponential distribution µ1 verifies the following inf-
convolution inequality ∫

eQg dµ1 ≤ e
∫
g dµ1 , (2.5)

for all bounded measurable g, where Qg(x) = infy∈R {g(y) + β1(|x− y|)} , with β1(x) =
1
36x

2 if 0 ≤ x ≤ 4 and β1(x) = 2
9 (x − 2) if x ≥ 4. In particular, β1(x) ≥ 2

9 [x − 2]+, for all
x ≥ 0.
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According to (4),

2

9
[β(d|T (x)− T (y)|)− 2]+ ≤ β1(|x− y|), ∀x, y ∈ R.

According to Lemma 2.4, 2
9 [β(dv)− 2]+ ≥ β(av), with a = d

(
h

9β−1(2)

)
.

So, defining
Qf(x) = inf

y∈R
{f(y) + β(a|x− y|)} ,

we have
(Qf) (T (x)) ≤ inf

z∈R
{f(T (z)) + β(a|T (x)− T (z)|)} ≤ Q(f ◦ T ).

So applying (2.5) to g = f ◦ T , we get∫
eQf dµ ≤ e

∫
f dµ,

for all bounded measurable f . According to Bobkov and Götze dual characterization [7]
(see also [22]), we conclude that µ verifies Tβ(a).

3 Proof of Theorem 1.1

According to Bobkov, Gentil and Ledoux [5], the Poincaré inequality is equivalent to
a family of transport-entropy inequalities involving the cost functions αh1 defined by

αh1 (t) = t2, if 0 ≤ t ≤ h and αh1 (t) = 2ht− h2, if t ≥ h.

More precisely,

Theorem 3.1 (Bobkov-Gentil-Ledoux [5]). Let µ be a Borel probability measure on R.
The following propositions are equivalent:

1. There is λ > 0 such that µ verifies the Poincaré inequality (1.5) with the constant
λ.

2. There are a, h > 0 such that µ verifies Tαh1
(a).

The constants are related as follows

(1) ⇒ (2) with a = 1

2
√
K(c)

, and h = c
√
K(c) where K(c) = 1

2λ

(
2
√
λ+c

2
√
λ−c

)2
ec
√

5/λ, for all

c ∈ [0, 2
√
λ).

(2)⇒ (1) with λ = 2a2.

The preceding theorem is stated in dimension one only, but it is true in any dimen-
sion.

Proof. The implication (2) ⇒ (1) is true on any metric space (see [25]). We refer to
[5] or [42] for the proof of (1) ⇒ (2) in the case when µ is absolutely continuous with
respect to Lebesgue. In what follows, we show that this implication is still true when µ
is not.

Let µ be a Borel probability measure on R. For all σ > 0, let γσ = N (0, σ2) be a
centered Gaussian distribution with variance σ2 and define µσ = µ ∗ γσ. The probability
γσ verifies the Poincaré inequality with the constant 1/σ2. According to the well known
tensorization property of Poincaré inequality [27], it is not difficult to check that the
product measure µ⊗ γσ verifies the following inequality

Varµ⊗γσ (g) ≤
∫

1

λ2
|∇xg|2(x, y) + σ2|∇yg|2(x, y)µ⊗ γσ(dxdy),
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for all Lipschitz function g : R2 → R. Considering functions g of the form g(x, y) =

f(x+ y), we obtain

Varµσ (f) ≤
(

1

λ2
+ σ2

)∫
|∇f |2(z)µσ(dz).

So µσ verifies Poincaré with the constant λσ =
(

1
λ2 + σ2

)−1
. Since µσ is absolutely

continuous, we can conclude applying [5] that µσ verifies the family of transport-entropy
inequalities Tαh1

(a) with a, h satisfying the constraints given in Theorem 3.1. Since
µσ → µ for the weak topology and λσ → λ, when σ goes to 0, it is not difficult to see
that µ verifies the transport-entropy inequalities Tαh1

(a) for a and h in the good range.
(This last step is easier to check on the dual form of Bobkov-Götze.)

We are now ready to prove Theorem 1.1 using the decomposition trick explained in
the introduction.

Proof of Theorem 1.1. (1) ⇒ (2). Observe that α(a · ) ≥ αh1 (a · ). This inequality is im-
mediate when t ≤ 1/a and results from the convexity of α when t ≥ 1/a. Therefore,
µ verifies Tαh1

(a) and so the Poincaré inequality with the constant 2a2. On the other

hand, the inequality α(a · ) ≥ α2(a · ), with α2 = [α − h2]+ implies that µ verifies Tα2
(a).

According to Theorem 2.2, we conclude that the transport map T enjoys (1.7) with

d = a
(

h
8α−1(h2+log(3))

)
. So

aopt ≤ min
(
dopt;

√
λopt

)
max

(
1√
2

;
8α−1(h2 + log(3))

h

)
(3.1)

(2) ⇒ (1). Let co be such that co
√
K(co) = h, then, according to Theorem 3.1, µ

verifies Tαh1
(a1) with a1 = 1

2
√
K(co)

= co
2h . It is not difficult to check that a1 ≥

√
λ κ

1+κh ,

with κ =
(√

2e−
√
5
)
/4. Define α2 = [α − h2]+; according to Theorem 2.2, µ verifies

Tα2
(a2), with a2 = d

(
h

9α−1(h2+2)

)
. Observe that the function α − αh1 : R+ → R+ is

convex and verifies the inequality α − αh1 ≤ α2. This inequality is clear on [0, h] and for
t ≥ h, it holds

α(t)− αh1 (t) = α(t)− 2ht+ h2 = α2(t)− 2h(t− h) ≤ α2(t).

So defining a = min(a1; a2) and applying Theorem 1.2, we thus have

Tα(a · )(ν, µ) ≤ Tαh1 (a1 · )(ν, µ) + Tα2(a2 · )(ν, µ), ∀ν ∈ P(R).

So, µ verifies Tα/2(a) wich is stronger than Tα(a/2). So

aopt ≥
1

2
min

(
dopt;

√
λopt

)
min

(
κ

1 + κh
;

h

9α−1(h2 + 2)

)
. (3.2)

To complete the proof, observe that since α is convex and α(x) = x2 on [0, h], one has

α(x) ≥ 2xh − h2 for all x ≥ 0. Therefore, α−1(y) ≤ y+h2

2h , for all y ≥ 0. Plugging this
upper bound into (3.1) and (3.2) yields

κ1 min
(
dopt;

√
λopt

)
≤ aopt ≤ κ2 min

(
dopt;

√
λopt

)
,

with

κ1 =
1

2
min

(
κ

1 + κh
;

h2

9(h2 + 1)

)
,

and

κ2 =
4

h2
(2h2 + log(3)).
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4 Examples

This section is devoted to examples. First we recall the result obtained in [18] and
make the link with the present paper. After that, we give a general sufficient condition
for transport-entropy inequalities which holds for absolutely continuous distributions
with smooth densities. We end the section by showing how Theorem 1.1 can be used to
construct borderline examples, typically a probability enjoying T2 but not the logarith-
mic Sobolev inequality.

4.1 Connection with [18]

Let us make the connection between [18] and the present paper. Let us recall that a
probability measure µ on R verifies Cheeger’s inequality, if∫

|f −m| dµ ≤
∫
|∇f | dµ, for all f Lipschitz,

where m is a median of µ and |∇f | is defined by (1.6). Cheeger’s inequality is known
to be strictly stronger than Poincaré inequality. For probability distributions on R, it
was proved by Bobkov and Houdré [8] that Cheeger’s inequality holds if and only if the
transport map Tµ1,µ is Lipschitz.

In [18], we obtained the following incomplete characterization

Theorem 4.1. Let µ be an absolutely continuous distribution on R verifying Cheeger’s
inequality; µ verifies Tα(a) for some a > 0 if and only if there is some b > 0 such that
max(K−(b);K+(b)) <∞, where K± are defined by (2.2) (with β = α).

It is not difficult to construct a probability verifying for example T2 and not Cheeger’s
inequality (and thus which is not covered by Theorem 4.1). For example, consider the
probability ν(dx) = 1

Z |x|
re−|x| dx for some r ∈ (0, 1). One can check that ν verifies Muck-

enhoupt’s conditions (1.8) and so Poincaré. Let T1 be the transport map Tµ1,ν . Writing
Fν(x) = Fµ1

(T−11 (x)) and taking the derivative at x = 0, we see that T ′1(x) → ∞ when
x → 0 and so T1 is not Lipschitz. According to Bobkov and Houdré [8], it follows that
ν does not verify Cheeger’s inequality (this example is taken from [8]). Now, consider
T2(x) = sign(x) min(|x|;

√
|x|) and define µ as the image of ν under T2. We claim that µ

verifies Talagrand’s inequality T2 and not Cheeger’s inequality. Indeed, since ν verifies
Poincaré inequality, one concludes from Theorems 3.1 and 1.1 that

|T1(x)− T1(y)| ≤ a+ b|x− y|, ∀x, y ∈ R

On the other hand,

|T2(x)− T2(y)| ≤ 2
√
|x− y|, ∀x, y ∈ R.

Combining these two inequalities we see that T = T2 ◦ T1 verifies

|T (x)− T (y)| ≤ 2
√
a+ b|x− y|, ∀x, y ∈ R.

Moreover, since T2 is 1-Lipschitz, µ verifies Poincaré inequality and so according to
Theorem 1.1 µ verifies T2. Finally, T ′(x) = T ′2(T1(x))T ′1(x) → ∞ when x → 0 and so µ
does not verify Cheeger’s inequality.

4.2 A general criterion on the density.

We recall below a sufficient condition obtained by the author in [18] that ensures
that a probability on R with a smooth density verifies a transport-entropy inequality.
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Theorem 4.2. Suppose that α : R+ → R+ is a convex function of class C2 such
that α(t) = t2 for small values of t and verifying the following regularity assumption:
α′′(t)

(α′(t))2 → 0 when t → ∞. Let µ be an absolutely continuous probability measure on R

with a density of the form dµ(x) = e−V (x) dx, where V : R → R is a function of class C2

such that V ′′(t)
(V ′(t))2 → 0 as t→∞. If V is such that there is λ > 0 such that

lim inf
x→±∞

|V ′(x+m)|
α′(λ|x|)

> 0, (4.1)

where m is the median of µ, then µ verifies the transport-entropy inequality Tα(a) for
some a > 0.

Note that in the quadratic case, condition (4.1) was first obtained by Cattiaux and
Guillin in [13]. The proof of [18] goes as follows: using a classical asymptotic analysis,
we show that the condition (4.1) ensures that max(K−(b);K+(b)) is finite for b small
enough. On the other hand, the condition lim infx→±∞ |V ′(x)| > 0 (which is implied by
(4.1)) is enough to have Cheeger’s inequality. The conclusion follows from Theorem 4.1.

Let us mention that multidimensional generalizations of condition (4.1) were pro-
posed in [20] or in [14]. In the one dimensional case, we do not know if it is possible to
use Theorem 1.1 to significantly enlarge the class of examples given in Theorem 4.2.

4.3 Counterexamples.

Our main result Theorem 1.1 enables us to exhibit new examples of probability
measures clarifying the links between Talagrand’s inequality (1.2) and the logarithmic
Sobolev inequality, the Poincaré inequality (1.5) and Gaussian concentration.

Let us recall that a Borel probability measure µ on R is said to verify the logarithmic
Sobolev inequality if

Entµ(f2) :=

∫
f2 log

(
f2∫
f2 dµ

)
dµ ≤ C

∫
|∇f |2 dµ, (4.2)

for all f Lipschitz, with |∇f | defined by (1.6). The known hierarchy between the above
mentioned inequalities is the following:

Log-Sobolev ⇒ T2 ⇒ Poincaré.

This chain of implications was first established by Otto and Villani in [33] on Riemannian
manifolds (see also [5]); it is true in a general framework [24].

4.3.1 A probability measure verifying T2 and not the logarithmic Sobolev in-
equality.

In [13], Cattiaux and Guillin were the first to show that Talagrand’s inequality was not
equivalent to Log-Sobolev. They proved that the probability measure µCG defined on R
by

µCG(dx) =
1

Z
exp(−|x|3 − |x|β − 3x2 sin2(x)) dx, with 2 < β < 5/2,

verifies T2 but not the logarithmic Sobolev inequality. Our purpose is to produce an-
other example whose tail distribution is exactly Gaussian.

Let us define a probability measure µ on R as the image of the exponential dis-
tribution µ1(dx) = exp(−|x|) dx/2 under the map T : R → R defined as follows: T

is odd, continuous and for all k ∈ N, T (x) = k on the interval [k2, (k + 1)2 − 1] and
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affine on [(k + 1)2 − 1, (k + 1)2]. We claim that this probability µ do the job. First, ob-
serve that µ verifies Poincaré inequality. This follows immediately from the fact that
T is 1-Lipschitz. Moreover, it is easy to show that there is some d > 0 such that
|T (x)− T (y)| ≤ 1

d

√
1 + |y − x|, for all x, y ∈ R. For instance, if y ≥ x ≥ 0, then

T (y)− T (x) = Leb
(
[x, y] ∩ ∪k∈N[(k + 1)2 − 1, (k + 1)2]

)
≤ Card{k ∈ N; [x, y] ∩ [(k + 1)2 − 1, (k + 1)2] 6= ∅}

≤ 1 +
√
y + 1−

√
x ≤ 2

√
1 + y − x.

The other cases are similar. According to Theorem 1.1, we conclude that µ verifies T2.
(Note that Theorem 1.1 actually applies because T = F−1µ ◦ Fµ1 .)

To show that µ does not verify the logarithmic Sobolev inequality, we shall use the
following criterion due to Bobkov and Götze [7] (see also [4]):

Theorem 4.3. Let µ be a Borel probability measure on R and let p : R → R+ be the
density of the absolutely continuous part of µ. The probability µ verifies the logarithmic
Sobolev inequality

Entµ(f2) ≤ C
∫
|f ′|2(x)p(x) dx, ∀f Lipschitz, (4.3)

if and only if

D+ = sup
x≥m

µ[x,∞) log

(
1

µ[x,∞)

)∫ x

m

1

p(t)
dt <∞

and

D− = sup
x≤m

µ(−∞, x) log

(
1

µ(−∞, x)

)∫ m

x

1

p(t)
dt <∞,

where m is any median of µ. Moreover, the optimal constant CLS in (4.2) is such that

c1 max(D−;D+) ≤ CLS ≤ c2 max(D−;D+),

where c1, c2 are universal constants.

Remark 4.4. We refer to Proposition 4.6 for the relation between (4.2) and (4.3). In
particular, the probability µ defined above enters the class of probability measures for
which (4.2) and (4.3) are equivalent.

Let us come back to our example and show that the probability µ constructed above
does not verify the logarithmic Sobolev inequality. We will show that D+ = ∞. Let
f : R+ → R be a bounded measurable function; then it holds∫ ∞
0

f dµ =
1

2

∫ ∞
0

f ◦ T (x)e−x dx

=
1

2

∞∑
k=1

f(k)
(
e−k

2

− e−(k+1)2+1
)

+
1

2

∞∑
k=0

∫ (k+1)2

(k+1)2−1
f(u+ k + 1− (k + 1)2)e−u du

=
1

2

∞∑
k=1

f(k)
(
e−k

2

− e−(k+1)2+1
)

+

∫ ∞
0

f(t)p(t) dt,

where

p(t) =
e−t

2

∞∑
k=0

1(k,k+1)(t)e
(k+1)−(k+1)2 , ∀t ≥ 0.
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is the density of the absolutely continuous part of µ onR+. Observe also that the median
of µ is 0 and that for all n ∈ N, µ[n,∞) = µ1[n2,∞) = 1

2e
−n2

. After some calculations,
we get

D+
n : = µ[n,∞) log

(
1

µ[n,∞)

)∫ n

0

1

p(t)
dt

= e−n
2

(n2 + log(2))(1− 1/e)

n∑
k=1

ek
2

≥ e−n
2

(n2 + log(2))(1− 1/e)

∫ n

0

et
2

dt.

Observing that, ∫ n

0

et
2

dt ≥
∫ n

0

t

n
et

2

dt =
1

2n
(en

2

− 1),

we conclude that D+
n → ∞, when n → ∞, and so D+ = ∞. This completes the proof

that µ does not verify the logarithmic Sobolev inequality.

Remark 4.5. If one wants to construct a counterexample µ̃ absolutely continuous with
respect to the Lebesgue measure, it suffices to replace in the definition of T the constant
steps by linear steps with small slope.

4.3.2 A probability with a Gaussian tail verifying Poincaré inequality and not
T2.

To motivate the construction of this probability, let us say a word on the tightening
of functional inequalities. Recall that an absolutely continuous probability measure µ

on Rn verifies the defective logarithmic Sobolev inequality if there are some constants
C,D ≥ 0 such that

Entµ(f2) ≤ C
∫
|∇f |2 dµ+D

∫
f2 dµ,

for all f : Rn → R Lipschitz. A very classical result states that if µ verifies a defective
logarithmic Sobolev inequality with constants C,D and a Poincaré inequality with con-
stant λ, then it verifies the logarithmic Sobolev inequality with a constant that can be
expressed in terms of C,D and λ. Up to a subtle centering argument due to Rothaus
[35], this tightening result is intuitively clear. The tightening recipe

“defective functional inequality + Poincaré inequality = tight functional inequality”

appears to be very general, and holds for a large class of functional inequalities (see
e.g [2, 3]). A natural question is to ask if this tightening principle holds for transport-
entropy inequalities.

Let us say that a probability µ on Rn equipped with its standard Euclidean norm
‖ · ‖2 verifies the defective transport-entropy inequality T2 if there are C,D ≥ 0 such
that

T2(ν, µ) ≤ CH(ν | µ) +D,

for all probability measure ν. (The transport cost T2(ν, µ) is defined as the infimum of
E
[
‖X − Y ‖22

]
over all the possible random variables X,Y with respective law µ and ν.)

This defective T2 inequality has been characterized in various places ([13, 10, 17]). It
has been shown that it was equivalent to Gaussian concentration or equivalently to the
finiteness of

∫
eε‖x‖

2
2 µ(dx) for some ε > 0. Therefore, if the tightening principle was true

for transport-entropy inequalities, then we would have the following equation

T2 = Poincaré +

∫
eε‖x‖

2
2 µ(dx) <∞, for some ε > 0. (4.4)
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The question of validating or infirming (4.4) was communicated to us by Cattiaux and
Guillin.

Our next goal is to disclaim (4.4) by exhibiting a counterexample µ̄ on R. The
construction is as follows: µ̄ will be the image of the exponential distribution µ1 un-
der an odd, continuous, non-decreasing and Lipschitz map T : R → R which verifies
|T (x)| ≤

√
|x| for all x ∈ R but does not satisfy the growth condition (1.7) for α(x) = x2,

which means that

sup
x,y∈R

|T (x)− T (y)|√
1 + |x− y|

=∞. (4.5)

Let us take for granted the existence of such a map T . The fact that it is Lipschitz
then implies that µ̄ verifies Poincaré and the inequality |T (x)| ≤

√
|x| easily implies that∫

eεx
2

µ̄(dx) < ∞ for all ε < 1. Finally, we conclude from Theorem 1.1 and condition
(4.5) that µ̄ does not verify T2 (here we use the fact that T is actually the transport map
between µ1 and µ̄).

Now let us construct such a map T . The strategy is to wait until there is enough
room under the graph of x 7→

√
x to put a linear step with slope 1 and range of length n,

for each n ∈ N∗. A possible construction is as follows: let xn = n(n+1)
2 , for all n ∈ N and

define T (x) = xn−1+(x−x2n+n) if x ∈ [x2n−n, x2n] and T (x) = xn if x ∈ [x2n, x
2
n+1−(n+1)],

for all n ∈ N∗. This defines T on R+ and so everywhere since T is assumed to be odd.
This map T is clearly non-decreasing and 1-Lipschitz and it is not difficult to check that
|T (x)| ≤

√
|x| for all x ∈ R. Finally, T (x2n) − T (x2n − n) = xn − xn−1 = n which proves

(4.5).

Appendix

Usually, functional inequalities are assumed to hold “for all functions smooth enough".
When the reference probability measure is absolutely continuous with respect to Lebesgue,
this formulation makes sense. Since we allow, in this paper, probability measures to
have singular parts (in particular in the examples given in Section 4), we need to clar-
ify this condition. In our definition of Poincaré (and log-Sobolev), we took the class of
Lipschitz functions as domain of the inequality, with

|∇f |(x) = lim sup
y→x

|f(y)− f(x)|
|y − x|

(4.6)

in the right hand side. The following proposition establishes the equivalence between
this definition and others appearing in the literature.

Proposition 4.6. Let µ be a Borel probability measure on R with the following decom-
position:

µ = µac + µs,

where µac and µs are non-negative Borel measures such that µac is absolutely con-
tinuous with respect to Lebesgue and µs is such that there is a closed set C with
µs(C

c) = 0 = Leb (C).

Let λ > 0; the following are equivalent

1. The probability measure µ verifies

λVarµ(f) ≤
∫
|∇f |2 dµ, ∀f Lipschitz.

2. The probability measure µ verifies

λVarµ(f) ≤
∫
|f ′|2 dµ, ∀f Lipschitz and of class C1.
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3. The probability measure µ verifies

λVarµ(f) ≤
∫
|f ′|2 dµac, ∀f Lipschitz.

The same conclusion holds for the logarithmic Sobolev inequality instead of Poincaré
inequality.

We recall that according to Rademacher theorem, Lipschitz functions are Lebesgue
almost everywhere differentiable, so that the right hand side of (3) is well defined.

Proof. We do the proof in the case of Poincaré inequality. We remark that when f is
differentiable at x, then |∇f |(x) = |f ′(x)|. So (1)⇒ (2) and (3)⇒ (1).
Let us show that (2) implies (3). First notice that (2) is equivalent to

λVarµ(Ff ) ≤
∫
f2 dµ, (4.7)

for all bounded continuous f and with Ff (x) =
∫ x
0
f(t) dt. Take f a measurable bounded

function. Define φn(x) =
√

n
2π e
−nx2/2, f̃n = φn ∗ f , and hn(x) = min(1;nd(x,C)), where

d(x,C) = infy∈C |x − y|, and finally fn = f̃nhn. The functions fn and f̃n are continuous
on R and it is not difficult to check that |fn| ≤ |f̃n| ≤ M, where M = sup |f |. Define
Fn = Ffn and F = Ff ; it holds for all x > 0

|F − Fn|(x) ≤
∫ x

0

|f̃n − f |(t) dt+

∫ x

0

|f |(t)(1− hn(t)) dt.

Since f̃n → f in L1([a, b],Leb), for all bounded interval [a, b], and 1 − hn → 1C point-
wise (this property requires that C is closed), we easily conclude from the fact that
Leb(C) = 0 that Fn → F pointwise. Moreover, the inequality |Fn(x)| ≤ M |x| enables to
use Lebesgue dominated convergence theorem (µ has a finite moment of order 2). So
Varµ(Fn) → Varµ(F ) when n goes to ∞. On the other hand, since fn is bounded and
continuous, one can apply (4.7), and conclude that

λVarµ(Fn) ≤
∫
f2n dµ =

∫
f2n dµac ≤

∫
f̃2n dµac,

where the equality follows from the fact that fn vanishes on C. It is not difficult to see
that one can extract from f̃n a sequence converging Lebesgue almost everywhere on R.
Since |f̃n| ≤M for all n, one can apply Fatou’s lemma along this sequence and conclude
that

λVarµ(F ) ≤
∫
f2 dµac, ∀f bounded. (4.8)

Now, let g be a Lipschitz function on R. Being Lipschitz, this function is absolutely
continuous, and so its derivative g′(t) exists Lebesgue almost everywhere and is in
L1([a, b],Leb) for all bounded interval [a, b] and it holds

g(x) = g(0) +

∫ x

0

g′(t) dt, ∀x ∈ R

(see e.g [36]). Applying (4.8) to the bounded function f defined by f(t) = g′(t) if g is
differentiable at t and f(t) = 0 otherwise, we finally obtain (3).
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