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Abstract

In this paper we study a classical model concerning occurrence of words in a random
sequence of letters from an alphabet. The problem can be studied as a game among
(m + 1) words: the winning word in this game is the one that occurs first. We prove
that the knowledge of the first m words results in an advantage in the construction
of the last word, as it has been shown in the literature for the cases m = 1 and m = 2
[1, 2]. The last word can in fact be constructed so that its probability of winning is
strictly larger than 1/(m+1). For the latter probability we will give an explicit lower
bound. Our method is based on rather general probabilistic arguments that allow
us to consider an arbitrary cardinality for the alphabet, an arbitrary value for m and
different mechanisms generating the random sequence of letters.
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1 Introduction

The theme of the occurrence of words in random sequences of letters from an al-
phabet is a rather classical one in discrete probability. The related literature has a long
tradition and papers with new insights and deep results continue to appear from time
to time.

This topic has, among others, the following interesting aspects: it has a number
of important applications and it is characterized by surprising results which, at a first
glance, can sometimes appear even contradictory. Feller’s book is a starting point for
the study of occurrence of words in a Bernoulli scheme [3]. Different types of inter-
esting problems arise in this field and many important papers appeared in the related
literature; see in particular [4, 1, 2, 5, 6, 7] and references cited therein.

One interesting problem considers a finite set of given words, a dictionary, and
concerns the probability that a fixed word occurs as the first. This problem can be seen
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First occurrences of words

as related to a game among different words, where the winner is the word which occurs
first.

In this respect, given m words w1, . . . ,wm, we construct a word wm+1 such that its
probability of winning is larger than 1/(m+ 1).

In [1] the case of two competing words (i.e. m = 1) on a binary alphabet has been
considered. In [2], the analysis has been extended in a thorough way to the case of
three words (i.e. m = 2).

Provided that the length of the words is sufficiently large, and by introducing suit-
able probabilistic arguments, we solve the problem for an arbitrary value of m and for
an alphabet of arbitrary size. In particular we provide an explicit lower bound for the
probability of first occurrence for the constructed word wm+1.

In the next section, we introduce some useful notation to formalize our result in
Theorem 2.3. Then we give our constructive proof after presenting the preliminary
Lemmas 1-3. Section 3 is devoted to a short discussion containing some comments and
concluding remarks.

2 Construction of efficient words and probability of winning

Let AN = {a1, . . . , aN} be an alphabet composed of N distinct letters. We consider
(m + 1) words w1, . . . ,wm+1 of a fixed length k, i.e. (m + 1) elements of Ak

N and let
Wm+1 = {w1, . . . ,wm+1}. We write wi,l for the i-th letter of the word wl and we say that
the word (wi,l, . . . , wj,l), for 1 ≤ i ≤ j ≤ k, is a sub-word of wl.

At any instant n = 1, 2, . . . a letter is drawn from the alphabet AN . Drawings are
supposed to be independent and uniformly distributed over AN . We define the space
Ω = ANN ; for ω = (ω1, ω2, . . .) ∈ Ω, we refer to ωn as the letter at time n ∈ N. The
probability measure on Ω is then the product measure that, at any drawing, assigns
probability 1/N to each letter of AN :

P (ωn = a) =
1

N
, a ∈ AN , n ∈ N.

We now consider a game that ends at the random time R1, where

R1 = inf{n ≥ k : (ωn−k+1, . . . , ωn) ∈ Wm+1}, (2.1)

and the winner is the word wl such that

(ωR1−k+1, . . . , ωR1
) = wl. (2.2)

Next we define the events

El = {ω ∈ Ω : (ωR1+1−k, . . . , ωR1
) = wl} for l = 1, . . . ,m+ 1. (2.3)

Hence, the event El means that wl occurs first withinWm+1.
We assume that wm+1 can be chosen as a function of the other words w1, . . . ,wm

and we show that this can be done in such a way that the winning probability of wm+1

is greater than 1
m+1 .

For this purpose it is convenient to assume that drawings of letters go on indefinitely
also beyond time R1, so that, a.s., we will have an infinite number of games.

Let us introduce the random variables Vl,n, for each l = 1, . . . ,m + 1 and n ∈ N, as
the number of wins of word wl until time n. Obviously the probability law of Vl,n also
depends on the ordered sequence (w1, . . . ,wm+1), however these words are fixed once
forever and for shortness sake we will omit to indicate this dependence. Recursively
define

Rh+1 = inf{n ≥ Rh + k : (ωn−k+1, . . . , ωn) ∈ Wm+1}, (2.4)
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First occurrences of words

for h = 1, 2, . . . where R1 is the random variable defined in (2.1). Thus, by using this
notation, the random variables V1,n, . . . , Vm+1,n can be more formally defined as

Vl,n =

∞∑
s=1

1{Rs≤n}1{(ωRs−k+1,...,ωRs )=wl}, (2.5)

for l = 1, . . . ,m + 1 and n = 1, 2, . . . . Let moreover R = {Rh : h ∈ N} and define the
random variable Nl,n as the number of times in which the word wl occurs inside the
interval [0, n], i.e.

Nl,n =

n∑
s=k

1{(ωs−k+1,...,ωs)=(w1,l,...,wk,l)}. (2.6)

Furthermore we consider the random times Th = inf{n :
∑m+1

l=1 Nl,n = h} and put
T = {Th : h ∈ N}; clearly R ⊂ T .

We present a remark that will be useful for the proof of Lemmas 2.5-2.6.

Remark 2.1. Let n ≥ k be fixed. An event of the form

{ω ∈ Ω : (ωn−k+1, . . . , ωn) = (w1,l, . . . , wk,l)} for l = 1, . . . ,m+ 1

implies the event {n ∈ T } but does not imply the event {n ∈ R}. In order to guarantee
{n ∈ R} it is sufficient (but not necessary), see definition (2.4), to exclude that, for some
s = n− k + 1, . . . , n− 1 and some j = 1, . . . ,m+ 1 it happened

{ω ∈ Ω : (ωs−k+1, . . . , ωs) = (w1,j , . . . , wk,j)}. (2.7)

Notice on the other hand that, again by (2.4), the event {s ∈ R} excludes the event
{n ∈ R} for n = s + 1, . . . , s + k − 1. In fact we can not observe two wins at a distance
less than k.

By a renewal-theorem, or an ergodic-theorem, argument the limit limn→∞ Vl,n/n

exists almost surely for l = 1, . . . ,m+ 1 and it is constant. Thus we define the quantities
ql as follows

ql = lim
n→∞

Vl,n
n

a.s. (2.8)

By taking into account the latter equation we see that

lim
n→∞

Vl,n∑m+1
h=1 Vh,n

= P (El) a.s. (2.9)

Remark 2.2. Denote µ = 1
E(R1)

. Concerning the probabilities P (El), we can also write

P (El) = lim
n→∞

Vl,n
µn

a.s. (2.10)

The above identity is obtained by recalling (2.9) and by noticing that, by the renewal
theorem or by the ergodic theorem, one must have

lim
n→∞

∑m+1
h=1 Vh,n
n

= µ a.s. (2.11)

As the main achievement of our paper we can state the following result. It is conve-
nient first to introduce the notation:

L = L(N,m, k) = blogN (mk)c+ 1, (2.12)

for given N , m, k.
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Theorem 2.3. Let k be such that

1

(m+ 1)N2L
− 2L

Nk
>

2L(m+ 1)

Nk−2L (2.13)

and let w1, . . . ,wm ∈ Ak
N be any m distinct words. Then there exists a word wm+1 ∈ Ak

N

such that P (Em+1) > 1
m+1 .

The proof of Theorem 2.3 will be presented at the end of this section as a direct
consequence of Lemmas 2.4, 2.5, 2.6 below.

The interest of P (Em+1) > 1
m+1 becomes clear when we consider the following case:

each of (m+1) players bets one dollar on a word of length k and the one who has chosen
the winning word receives (m+1) dollars. Even if the drawings are independent and the
letters are equiprobable, the word wm+1 can be constructed, for any given w1, . . . ,wm,
in such a way that the game is unfair, namely it is favorable for (m+ 1)-th player.

It is intuitive that, for fixed N and m, the length k of the words should be large
enough. We shall see in Remark 2.7, as a consequence of (2.13), that logN m is the
appropriate order.

As mentioned, the word wm+1 will be obtained by means of a constructive procedure.
We roughly anticipate that the word wm+1 can be constructed according to the following
steps:

Step 1. The second part of wm+1, of a suitable length r, must coincide with the initial part
of the word w1.

Step 2. The first k−r letters of wm+1 must give rise to a sub-word which does not coincide
with any sub-word drawn from w1, . . . ,wm (see Lemma 2.4).

We will discover that a suitable value for r is 2L = 2blogN (mk)c + 2. Now, we proceed
to explain how to explicitly construct the word wm+1.

Let us consider the set WL,m of all the words w̃i,l = (wi+1,l, wi+1,l, . . . , wi+L,l) ∈ AL
N

with l = 1, . . .m, i = 0, . . . , k−L and with L defined in (2.12). Hence we are considering
all the sub-words of length L of the words w1, . . . ,wm.

Clearly |AL
N | = NL and |WL,m| < mk, therefore |AL

N | > |WL,m|; thus, the set AL
N \

WL,m is not empty, and we can choose a word (v1, . . . , vL) /∈WL,m.
Let us arbitrarily take a letter ṽ 6= v1 and consider

wm+1 = (ṽ, . . . , ṽ︸ ︷︷ ︸
L

, v1, . . . , vL︸ ︷︷ ︸
L

, w1,1, . . . , wk−2L,1︸ ︷︷ ︸
k−2L

). (2.14)

Concerning such a choice, the following lemma shows that any possible matching
between an initial sub-word of wm+1 and a final sub-word of any word in Wm+1 must
be sufficiently short.

Lemma 2.4. For l = 1, . . . ,m+ 1, if i < k and

(wk−i+1,l, wk−i+2,l, . . . , wk,l) = (w1,m+1, w2,m+1, . . . , wi,m+1), (2.15)

then i ≤ 2L.

Proof. First we prove the case l = m + 1. For i = k − L, . . . , k − 1, we compare the
(i + L − k + 1)- th letter of the two sub-words in (2.15). The (i + L − k + 1)-th letter of
the word on the l.h.s. is wL+1,m+1 = v1, while the (i+L− k+ 1)-th letter of the word on
the r.h.s. is ṽ. Then the validity of (2.15) excludes the possibility that k − L ≤ i ≤ k − 1.

As to i = 2L+1, . . . , k−L−1, we notice that the sub-word (wL+1,m+1, . . . , w2L,m+1) =

(v1, . . . , vL) on the r.h.s. is different from the corresponding word on the l.h.s. for
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the construction presented before (2.14). Then the validity of (2.15) also excludes the
possibility that 2L+ 1 ≤ i ≤ k − L− 1.

For what concerns l = 1, . . . ,m the latter argument is sufficient to solve directly all
the cases i = 2L+ 1, . . . , k − 1 and this completes the proof.

For the words wm+1 and w1 we now respectively consider the ratios Nm+1,n

Vm+1,n
and

N1,n

V1,n
. The latter expresses the ratio between the numbers of times where the word w1

appears within the first n drawings and the corresponding number of wins of the same
word. Similarly for Nm+1,n

Vm+1,n
concerning wm+1. The following lemma provides an almost

sure lower bound for the limit of the ratio Vm+1,n

Nm+1,n
. Notice that the existence of such a

limit can be guaranteed by ergodicity arguments. An upper bound for limn→∞
V1,n

N1,n
will

be provided in Lemma 2.6.

Lemma 2.5.

lim
n→∞

Vm+1,n

Nm+1,n
≥ 1− 2L(m+ 1)

Nk−2L a.s. (2.16)

Proof. For n ≥ k, let us define the events

Fn = {ω ∈ Ω : (ωn−k+1, . . . , ωn) = (w1,m+1, . . . , wk,m+1)}, (2.17)

Hn = {ω ∈ Ω : n ∈ R(ω)}, (2.18)

G(i,l)
n = {ω ∈ Ω : (ωn−k−i+1, . . . , ωn−k) 6= (w1,l, . . . , wi,l)}, (2.19)

for i = 1, . . . , k − 1, for l = 1, . . . ,m+ 1. Let

Gn =

m+1⋂
l=1

k−1⋂
i=k−2L

G(i,l)
n . (2.20)

Clearly, for n ≥ k, the event Hn ∩ Fn means that word wm+1 wins at n. Moreover
the probabilities P (Gn ∩ Fn) and P (Fn) do not depend on n and the events Gn, Fn are
independent.

Now, in view of Lemma 2.4 and the above definition (2.20), we will show that

Gn ∩ Fn ⊂ Hn ∩ Fn (2.21)

whenever n ≥ 2k. First notice that the event Hn ∩ Fn is equivalent to {Vm+1,n −
Vm+1,n−1 = 1}. In order to prove inclusion (2.21), we can argue as follows.

Remark 2.1 says that

Fn ∩ (

m+1⋂
l=1

k−1⋂
i=1

G(i,l)
n ) ⊂

n−1⋂
s=n−k+1

{s 6∈ T }.

Hence

Fn ∩ (

m+1⋂
l=1

k−1⋂
i=1

G(i,l)
n ) ⊂ Fn ∩ (

n−1⋂
s=n−k+1

{s 6∈ T }).

On the other hand

Fn ∩ (

n−1⋂
s=n−k+1

{s 6∈ T }) ⊂ Fn ∩Hn = {Vm+1,n − Vm+1,n−1 = 1}.

Therefore

Fn ∩ (

m+1⋂
l=1

k−1⋂
i=1

G(i,l)
n ) ⊂ Hn ∩ Fn.
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At this point, we can use Lemma 2.4 to ensure that the above argument is still valid if
we replace

⋂m+1
l=1

⋂k−1
i=1 G

(i,l)
n with Gn.

Now notice that P (F2k+i) = P (F2k), P (G2k+i) = P (G2k), and P (F2k+i ∩ G2k+i) =

P (F2k ∩ G2k) for i ≥ 0. We set pF = P (F2k), pG = P (G2k), and pF∩G = P (F2k ∩
G2k). Independence between F2k and G2k immediately yields pF∩G = pF pG. By ergodic
theorem the following equalities hold almost surely:

lim
n→∞

Vm+1,n

Nm+1,n
= lim

n→∞

n

Nm+1,n
lim
n→∞

Vm+1,n

n
=

1

pF
lim
n→∞

P (Hn ∩ Fn). (2.22)

By (2.21) and (2.22), we conclude

lim
n→∞

Vm+1,n

Nm+1,n
≥ pF∩G

pF
= pG a.s. (2.23)

Now

pG = 1− P (

m+1⋃
l=1

k−1⋃
i=k−2L

G
(i,l)
2k ) ≥ 1−

m+1∑
l=1

k−1∑
i=k−2L

1

N i
≥ 1− 2L(m+ 1)

Nk−2L .

By following a same type of argument as in the previous proof we can now obtain an
asymptotic upper bound for the ratio V1,n/N1,n.

Lemma 2.6.

lim
n→∞

V1,n
N1,n

≤ 1− 1

N2L
+

2L(m+ 1)

Nk
a.s. (2.24)

Proof. We consider n ≥ 3k and define the events

F̂n = {ω ∈ Ω : (ωn−k+1, . . . , ωn) = (w1,1, . . . , wk,1)}, (2.25)

K̂n = {ω ∈ Ω : (ωn−k−2L+1, . . . , ωn−k) = (w1,m+1, . . . , w2L,m+1)}, (2.26)

and, for l = 1, . . . ,m+ 1 and for i = 1, . . . , 2L,,

Ĝ(i,l)
n = {ω ∈ Ω : (ωn−2k−i+1, . . . , ωn−k−2L) 6= (w1,l, . . . , wk−2L+i,l)}, (2.27)

Ĝn =

m+1⋂
l=1

2L⋂
i=1

Ĝ(i,l)
n . (2.28)

We will also use Hc
n where Hn is defined in (2.18). Concerning the event Hc

n, we can
write, for n ≥ 3k, that the event Hc

n ∩ F̂n is equivalent to {V1,n − V1,n−1 = 0, N1,n −
N1,n−1 = 1}. Moreover the probabilities P (G̃n ∩ K̃n ∩ F̂n) and P (F̂n) do not depend on

n for n ≥ 3k; the events Ĝn, F̂n and K̂n are independent. Concerning the event Ĝn, we
can say that Lemma 2.4 allow us to limit the range of the index i in formula (2.28), i.e.
i = 1, . . . , 2L.

We can now use the arguments in Remark 2.1 as follows: in view of Lemma 2.4 and
the above definition of Ĝn, we will show that

Ĝn ∩ K̂n ∩ F̂n ⊂ Hc
n ∩ F̂n, (2.29)

whenever n ≥ 3k. In fact, F̂n ∩ K̂n implies that the special word wm+1 appears at time
n− 2L, which in particular means n− 2L ∈ T ; moreover, the concomitant occurrence of
the event Ĝn guarantees that n − 2L ∈ R by using an argument similar to the proof of
Lemma 2.5. The event {n− 2L ∈ R} implies {n 6∈ R}, whence (2.29) easily follows.
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Now notice that, for i ≥ 0, P (F̂3k+i) = P (F̂3k). Similarly it happens for K̂3k+i, Ĝ3k+i,
and F̂3k+i ∩ K̂3k+i ∩ Ĝ3k+i and we set pF̂ = P (F̂3k),pK̂ = P (K̂3k), pĜ = P (Ĝ3k), and

pF̂∩K̂∩Ĝ = P (F̂3k ∩ K̂3k ∩ Ĝ3k). Independence among F̂3k, K̂3k and Ĝ3k immediately
yields pF̂∩K̂∩Ĝ = pF̂ pK̂pĜ.

By ergodic theorem we claim

lim
n→∞

V1,n
N1,n

=
1

pF̂
lim

n→∞
P (F̂n ∩Hn) a.s. (2.30)

As to the r.h.s. of previous formula, we can write

limn→∞(P (F̂n)− P (F̂n ∩Hc
n))

pF̂
≤ 1−

pF̂∩K̂∩Ĝ
pF̂

= 1− pK̂pĜ =

= 1− 1

N2L
pĜ ≤ 1− 1

N2L
+

1

N2L

m+1∑
l=1

2L∑
i=1

1

Nk−2L+i+1
≤

≤ 1− 1

N2L
+

m+1∑
l=1

2L∑
i=1

1

Nk+2
≤ 1− 1

N2L
+

2L(m+ 1)

Nk
.

We are now in a position to give the proof of our main result.

Proof of Theorem 2.3. Since the probability of the occurrence in a given position of a
single word (a1, . . . , ak) is a constant, equal to 1/Nk, we have that, for l = 1, . . . ,m+ 1,

lim
n→∞

Nl,n

n
=

1

Nk
a.s., (2.31)

hence

lim
n→∞

Nl,n∑m+1
k=1 Nk,n

=
1

m+ 1
a.s. . (2.32)

In order to achieve the proof, we will use the inequality (2.16) of Lemma 2.5 and
(2.24) of Lemma 2.6. For what concerns the remaining indexes, l = 2, . . . ,m, it is
enough taking into account the obvious inequality

Nl,n ≥ Vl,n. (2.33)

By employing the inequalities (2.16), (2.24) and (2.33) in equation (2.9) we can write

lim
n→∞

Nm+1,n(1− 2L(m+1)
Nk−2L )

N1,n(1− 1
N2L + 2L(m+1)

Nk ) +
∑m+1

h=2 Nh,n

≤ P (Em+1) a.s., (2.34)

thus (2.34) gives a lower bound for the probability of winning for wm+1.
Finally, by (2.32), we obtain that

lim
n→∞

Nm+1,n(1− 2L(m+1)
Nk−2L )

N1,n(1− 1
N2L + 2L(m+1)

Nk ) +
∑m+1

h=2 Nh,n

=

1− 2L(m+1)
Nk−2L

m+ 1− 1
N2L + 2L(m+1)

Nk

=
1

m+ 1

(
1− 2L(m+1)

Nk−2L

1− 1
(m+1)N2L + 2L

Nk

)
>

1

m+ 1
,

the last inequality following from the hypothesis (2.13). This ends the proof.
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Remark 2.7. In the proof of Theorem 2.3 we obtain the explicit bound

P (Em+1) ≥ 1

m+ 1

(
1− 2L(m+1)

Nk−2L

1− 1
(m+1)N2L + 2L

Nk

)
.

We notice furthermore that, in the statement of Theorem 2.3, the condition (2.13) can be
replaced by the simpler inequality k ≥ 22(1 + logN m). In fact, at the cost of elementary
but rather tedious manipulations, one can show that the latter implies (2.13). We notice
in this respect that the latter estimate is of the right order. In fact, for given N and k,
the number of distinct words of length k on the alphabetAN is obviously Nk; then, since
we need to find at least (m+1) distinct words, we must necessarily have k ≥ logN (m+1).
On the other hand

lim
m→∞

22(1 + logN m)

logN (m+ 1)
= 22.

This limit does not depend on N and shows that the condition in Theorem 2.3 is quite
efficient.

3 Discussion and final remarks

We conclude the paper with some comments about our result and about the method
that we use. First of all, our construction is based on rather general probabilistic argu-
ments. This has allowed us to formulate a general result. In fact, in Theorem 2.3, we
have no limitation on the choice of N and m, provided that k is large enough. Notice,
for instance, that the methods used in [1, 2] are specific for the cases N = 2, m = 1, 2.

Our procedure could be easily extended to deal with cases where stochastic inde-
pendence among the letters fails.

Let us denote by πw the probability that a word w of length k occurs as soon as
possible, namely in the first k drawings. In the independence setting this probability is
1/Nk. Now we point out that, essentially, we have used three hypotheses to prove our
result. The latter can be conveniently summarized as follows

a) The process of generation of random sequences of letters is ergodic.

b) For any word w of length k the probability πw belongs to {0, Ck}, where Ck is
a positive constant, i.e. some words are forbidden and all the remaining words
share the same probability Ck.

Besides the probabilistic hypotheses a) and b), our method requires the construction
of a word satisfying suitable conditions (see Step 1, Step 2, and Lemma 1, Lemma 2,
Lemma 3 in the previous section). More precisely we assume

c) Given w1, . . . ,wm ∈ Ak
N , one can construct a word wm+1 ∈ Ak

N such that

c1) πwm+1
= Ck;

c2) For l = 1, . . . ,m+ 1. If i < k and

(wk−i+1,l, wk−i+2,l, . . . , wk,l) = (w1,m+1, w2,m+1, . . . , wi,m+1),

then i ≤ 2L.
c3) wi+2L,m+1 = wi,1 for i = 1, . . . , k − 2L.

Concerning item c), we point out that wm+1 should be composed of two different parts.
The second part is fixed (it coincides with the initial part of word w1). On the contrary,
several possible choices for determining the first part of wm+1 are possible. We only
need, in fact, that the first letters of wm+1 give rise to a sub-word, of a convenient
length, which does not coincide with any sub-word extracted from w1, . . . ,wm.
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First occurrences of words

Under the case of independence, that we considered along the paper, condition c1)
is trivially satisfied and there are many different words that satisfy item c). When
independence is dropped, c1) is not trivial anymore. We can still expect however that
one can find different words that satisfy c1) besides satisfying c2), c3). It is just this
possibility of different employable words which could be useful in a possible extension
of our work beyond the case of independence.

An instance where all the conditions a), b) and c) hold is the model of random draw-
ings with delayed replacement of letters from an urn: two consecutive letters can not be
equal. For such a model, validity of b) is obvious with Ck = 1

N(N−1)k and a) holds when
N ≥ 3. In fact, in such a case, the sequence of letters drawn is an irreducible, aperiodic
Markov chain. Finally, some words wm+1 satisfying condition c) can be constructed,
provided N ≥ 4.
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