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Abstract

In this article, we study predictable projections of stochastic integrals with respect
to the conformal Brownian motion, extending the connection between powers of the
conformal Brownian motion and the corresponding Hermite polynomials. As a con-
sequence of this result, we then investigate the relation between analytic functions
and Lp-convergent series of Hermite polynomials. Finally, our results are applied to
Widder’s representation for a class of Brownian martingales, retrieving a character-
ization for the moments of Widder’s measure.
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1 Introduction

The purpose of this article is to introduce some complexification techniques for
stochastic processes, that allow to consider real-valued processes as appropriate pro-
jections of corresponding complex-valued, conformal stochastic processes. As an ap-
plication of our complexification techniques, we derive a characterization of Widder’s
integral representation for Brownian martingales, which is obtained by adapting to the
probabilistic setting a classical result for the heat equation [15].

We start by studying predictable projections in a conformal Brownian setting. Con-
formal martingales have been introduced by Getoor and Sharpe [4] to prove the duality
between the Hardy space H1 and the space BMO in the martingale setting: conformal
martingales later played an important role in the probabilistic study of analytic func-
tions as well as in the derivation of the conformal invariance of Brownian motion (see
for instance the survey article [2]).
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Predictable projections of conformal stochastic integrals

While stochastic integration with respect to conformal martingales is particularly
interesting because of the properties of the complex plane, to our knowledge there has
not been any attempt to introduce a notion of projection of such integrals on the real
line. As a first step in this direction, we consider the predictable projection on the
real component of a conformal Brownian motion. It turns out that such a projection
behaves well under integration, and in particular powers of the conformal Brownian
motion project onto the corresponding Hermite polynomials. Such a remarkable prop-
erty stresses once more the importance of Hermite polynomials in stochastic analysis
(which is due especially to their close relation with iterated stochastic integrals and the
Wiener chaos decomposition, see for instance Nualart [11]), and it motivates the sub-
sequent study of series of Hermite polynomials, allowing us to obtain, in a stochastic
setting, interesting connections to analytic functions.

In the second part, the techniques derived previously are applied to a wide class of
Brownian martingales, obtaining a further characterization of Widder’s representation.
We recall that, by the results of Widder [15], any positive solution of the heat equation
can be rewritten in terms of a Laplace-Stieltjes integral with respect to some measure
µ, which however remains undetermined. We will show that the quadratic exponential
moments of µ can be characterized by applying our results on series of Hermite poly-
nomials and related power series of conformal Brownian motion. Moreover, we obtain
a relation between Widder’s representation and a particular class of analytic functions.

The article is organized as follows. In Section 2, we recall the notion of predictable
projections of stochastic processes and show how stochastic integrals with respect to
the conformal Brownian motion are projected on the real line. Then, in Section 3 we
derive Lp-convergence properties for series of Hermite polynomials from well known
Lp-estimates on the Wiener chaos. Section 4 is dedicated to the presentation in a
purely probabilistic setting of Widder’s representation result as well as its extension
to L1-bounded martingales. Finally, we derive in Section 5 the characterization of the
moments of Widder’s measure µ, as well as the aforementioned connection to analytic
functions.

2 Predictable projections of stochastic integrals

We begin by introducing some notation. Let (Ω,F , P ) be a complete probability
space, and assume that X, Y are two independent, d-dimensional Brownian motions
on (Ω,F , P ). We denote by Z the conformal d-dimensional Brownian motion given by
Z = X + i Y . Furthermore, let F = (Ft)t≥0 be the augmented filtration generated by Z,
and let FX = (FXt )t≥0, FY = (FYt )t≥0 denote the filtrations generated byX, respectively
Y , and augmented by the P -nullsets from F. Unless otherwise stated, we will always
define stochastic integrals with respect to the filtered probability space (Ω,F ,F, P ). We
denote by bL the space of all adapted processes with bounded càglàd paths, and by bP
the space of all bounded predictable processes. Moreover, we define as usual

H 2(Z) :=

{
H : Ω× [0, T ]→ Cd

∣∣∣∣ H predictable with respect to PF, and

‖H‖H 2(Z) := E

[∫ ∞
0

|Ht|2dt
]
<∞

}
,

where | · | is the Euclidean norm, and similarly for H 2(X). Finally, we denote by ΠX

the orthogonal projection from H 2(Z) onto the space H 2(X). We shortly recall the
definition of the predictable projection of a measurable process:

Definition 2.1. Let G be a filtration on (Ω,F , P ), and let PG denote the predictable
σ-field with respect to G. Then, for a measurable process L such that L is positive or
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Predictable projections of conformal stochastic integrals

bounded, there exists a unique process L̃, measurable with respect to PG such that, for
every predictable G-stopping time T ,

E[LT |GT−] = L̃T P -a.s. on {T <∞}.

L̃ is then called the predictable projection of L on G.

An easy calculation shows that, for stochastic processes H that are optional for FZ

and such that E[
∫ T

0
|Hu|2 du] < ∞, the predictable projection on FX is a version of the

projection ΠX(H). There is a slight distinction that shows that the predictable projec-
tion is a finer object than the orthogonal projection. Indeed, the predictable projection
is a process, defined up to evanescent sets, whereas the orthogonal projection is a class
of random variables defined up to sets of dP × dt measure zero.

In the following, we will concentrate our attention on the predictable projection on
FX : because of the properties of the Brownian motion X, this actually coincides with
the optional projection on FX . To simplify our notation, the predictable projection of L
on FX will be denoted by LP

X

.

We can now prove our first main result: the predictable projection on FX maps
stochastic integrals with respect to Z onto stochastic integrals with respect to X. More-
over, we also obtain a relation between the integrand processes.

Theorem 2.2. Let H be a process such that H ∈H 2(Z). Then, the predictable projec-

tions
(∫
HdZ

)PX
exists, and

(∫
HdZ

)PX
t

=

∫ t

0

ΠX(H) dX P -a.s. for all t ≥ 0.

Proof. First of all, we observe that both stochastic integrals can be realized on the
filtered probability space (Ω,F ,F, P ), as X and Z are both continuous martingales on

it. Moreover, we notice that the existence of
(∫
HdZ

)PX
is a consequence of classical

results on filtration shrinkage, which can be found for instance in [13].

We first assume that H ∈ bL. Fix t ≥ 0, and consider a sequence (πn)n∈N of parti-
tions of [0, t] such that |πn| → 0. Because of classical convergence results in stochastic
analysis (see [13]), we have that∫ t

0

HsdZs = lim
n→∞

∑
ti∈πn

Hti(Zti+1
− Zti) in H 2,

and hence there is a subsequence (πnk)k∈N so that
∑
ti∈πnk Hti(Zti+1

− Zti) converges

to
∫ t

0
HsdZs P -a.s. as k → ∞. Since H is bounded, the bounded convergence theorem

gives that

(∫
HdZ

)PX
t

= E

[ ∫ t

0

HsdZs

∣∣∣∣FXt ] = lim
k→∞

∑
ti∈πnk

E[Hti(Zti+1
− Zti)|FXt ]

= lim
k→∞

∑
ti∈πnk

(
E[Hti(Xti+1

−Xti)|FXt ] + i E[Hti(Yti+1
− Yti)|FXt ]

)
.

We compute the first term. Consider for t ≥ 0 the class

Ct := {C ∈ F | ∃A ∈ FXt , B ∈ FYt such that C = A ∩B},
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Predictable projections of conformal stochastic integrals

which is stable under intersection. Because of the independence of X and Y , we can
compute that, for all F ∈ L1(F) and C = A ∩B ∈ Cti ,

E
[
E[F |FXt ]1C

]
= E

[
E[F |FXt ]1A1B

]
= E

[
E[F |FXt ]1A

]
E[1B ]

= E
[
E[F |FXti ]1A

]
E[1B ] = E

[
E[F |FXti ]1C

]
.

Therefore, by the Dynkin class theorem,

E
[
E[F |FXt ]

∣∣FZti ] = E[F |FXti ]

since FZti = σ(Cti). This implies that E[Hti |FXt ] = E
[
E[Hti |FZti ]

∣∣FXt ] = E[Hti |FXti ] =

ΠX(H)ti , and therefore

E[Hti(Xti+1
−Xti)|FXt ] = E[Hti |FXt ](Xti+1

−Xti) = ΠX(H)ti(Xti+1
−Xti).

On the other hand, we have for the second term that

E[Hti(Yti+1 − Yti)|FXt ] = E[E[Hti(Yti+1 − Yti)|FYti ∨ F
X
t ]|FXt ]

= E[HtiE[(Yti+1 − Yti)|FYti ∨ F
X
t ]|FXt ] = 0,

and we can hence conclude that(∫
HdZ

)PX
t

= lim
k→∞

∑
ti∈πnk

ΠX(H)ti(Xti+1
−Xti) =

∫ t

0

ΠX(H) dX,

since ΠX(H) remains bounded and left continuous by the general theory of stochastic
processes. This proves the claim for H ∈ bL. The result is extended first to H ∈
bP and then to H ∈ H 2(Z) by applying respectively the bounded and the monotone
convergence theorem. As this procedure is fairly standard, the details are left to the
reader.

In particular, if the predictable projection HP
X

exists for H ∈H 2(Z), then we have

that
(∫
HdZ

)PX
t

=
∫ t

0
HP

X

dX P -a.s. for all t ≥ 0. We end this section by observing that
Theorem 2.2 immediately gives us an explicit expression for the predictable projection
on FX of two important classes of stochastic processes.

Corollary 2.3. For any t ≥ 0, the following assertions hold:

(i )
(
ea·Zt

)PX
= E(a ·X)t P -a.s. for all a ∈ Rd and t ≥ 0.

(ii ) Let α = (α1, · · · , αd) ∈ Nd denote a multi-index. Then, for t ≥ 0,

(Zαt )P
X

= Hα(t,Xt) P -a.s.,

where zα :=
∏d
i=1 z

αi and Hα denotes the d-dimensional generalized Hermite poly-
nomial of degree α, defined by

Hα(t,Xt) :=

d∏
i=1

Hαi(t,X
i
t).

In other words, the powers of the conformal Brownian motion project onto the
corresponding Hermite polynomials.
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Predictable projections of conformal stochastic integrals

3 Expansions in Hermite polynomials

The result of Corollary 2.3 (ii ) is particularly interesting because of the importance
of Hermite polynomials in stochastic analysis, in particular in regards to their connec-
tion to iterated stochastic integrals and to the Wiener chaos expansion. Thus, expan-
sions in Hermite polynomials and some of their properties will be examined more in
detail in this section.

In the following, we denote byKn the homogeneous Wiener chaos of degree n gener-
ated by (Xt)t∈[0,1]. First of all, we recall that the Ornstein-Uhlenbeck semigroup (Tt)t≥0

is defined, for t ≥ 0 and F ∈ L2(σ(X1)) by

TtF :=

∞∑
n=0

e−ntJnF,

where Jn denotes the orthogonal projection on Kn. It is well known that the proper-
ties of the Ornstein-Uhlenbeck semigroup lead to useful comparison results about the
Lp-norms on the Wiener chaos. In particular, (Tt)t≥0 enjoys the following hypercontrac-
tivity property:

Proposition 3.1. Assume that we have constants 1 < p < q <∞ and t > 0 such that

et ≥
(
q − 1

p− 1

)1/2

.

Then we have that, for all F ∈ Lp(σ(X1)),

‖TtF‖q ≤ ‖F‖p.

The result can be found, for instance, in Nualart [11]. It is then possible to derive
the following estimate:

Lemma 3.2. Let Vn be a random variable in Kn. Then, for 1 < p < q <∞ we have that

‖Vn‖q ≤
(
q − 1

p− 1

)n/2
‖Vn‖p.

Proof. It is well known that, by applying the operator Tt to Vn, we get that

TtVn = e−ntVn.

We now choose t > 0 such that et =
(
q−1
p−1

)1/2
. Then, Proposition 3.1 implies that(

q − 1

p− 1

)−n/2
‖Vn‖q = e−nt‖Vn‖q = ‖TtVn‖q ≤ ‖Vn‖p.

Moreover, with the help of the well known interpolation of Hölder’s inequality, we
can derive from Lemma 3.2 the following inequality.

Lemma 3.3. Let Vn is a random variable in Kn, and p > 1. Then:

‖Vn‖p ≤ enp/2‖Vn‖1.

Proof. Let q > p be arbitrary, and let θ = θ(p, q) ∈ (0, 1) be such that 1
p = 1−θ

q + θ. Then,
the interpolation of Hölder’s inequality and Lemma 3.2 yield that

‖Vn‖p ≤ ‖Vn‖1−θq ‖Vn‖θ1 ≤
(
q − 1

p− 1

)n(1−θ)/2

‖Vn‖1−θp ‖Vn‖θ1.

EJP 17 (2012), paper 22.
Page 5/14

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1883
http://ejp.ejpecp.org/


Predictable projections of conformal stochastic integrals

By rearranging the terms, this gives us that

‖Vn‖p ≤
(
q − 1

p− 1

)n(1−θ)
2θ

‖Vn‖1.

The claim then follows by observing that

inf
q∈(p,∞)

(
q − 1

p− 1

)n(1−θ(p,q))
2θ(p,q)

= lim
q→p+

(
q − 1

p− 1

)n(1−θ(p,q))
2θ(p,q)

= enp/2.

Even though the constant enp/2 could be further optimized, it is sufficiently small for
our purpose. From now on, we will write Lp for the space Lp(Ω,F , P ), p ≥ 1. Because
of the well known fact that (Hα(t,Xt))α∈Nd forms a complete basis of L2(σ(Xt)), we
will consider in the sequel series associated to the system (Hα(t,Xt))α∈Nd . The hyper-
contractivity allows to find good estimates for ‖Hα(t,Xt)‖p: indeed, for p ≥ 2 we have
that

‖Hα(t,Xt)‖p ≤ e|α|p/2(α!t|α|)1/2,

whereas for 1 ≤ p ≤ 2 we get that

‖Hα(t,Xt)‖p ≥ ‖Hα(t,Xt)‖1 ≥ e−|α|/2(α!t|α|)1/2.

As a consequence of the hypercontractivity, we can now derive the second main
result of this chapter: this extends, via the corresponding Hermite series, the explicit
expression of Corollary 2.3 to a class of Lp-martingales.

Theorem 3.4. For p > 1 and T > 0, let (Mt)t∈[0,T ] be an Lp-martingale such that Mt is
σ(Xt)-measurable for all t ∈ [0, T ] (i.e. Mt is of the form g(t,Xt) for some function g).
Moreover, define bα, for α ∈ Nd, by

bα :=
E[MtHα(t,Xt)]

‖Hα(t,Xt)‖22
=
E[MtHα(t,Xt)]

α!t|α|
.

Then, the function f : Cd → C, f(z) :=
∑
α∈Nd bαz

α, is well defined, is analytic of order
2 and can be represented for z ∈ Cd and t ∈ [0, T ] as

f(z) = E

[
Mt exp

(
1

t

(
z ·Xt −

zT z

2

))]
. (3.1)

Moreover, let S < (p∨ p∗)−1 T , where p∗ = p
p−1 is the conjugate exponent of p. Then,

(f(Zs))s∈[0,S] is an Lp-martingale such that(
f(Zs)

)PX
= Ms, s ∈ [0, S].

Proof. First of all, we show that the series
∑
α∈Nd bαz

α is absolutely convergent for all

z ∈ Cd. Since
∏d
i=1 |zi|αi ≤ |z||α|, it is sufficient to prove that

∞∑
n=0

( ∑
|α|=n

|bα|
)
|z|n <∞.

By Hölder’s inequality and Lemma 3.2, it is easy to verify that( ∑
|α|=n

|bα|
)1/n

≤
( ∑
|α|=n

‖Mt‖p‖Hα(t,Xt)‖p∗
α!t|α|

)1/n

≤
(
‖Mt‖p

∑
|α|=n

(
(p∗ − 1) ∨ 1

)|α|/2 ‖Hα(t,Xt)‖2
α!t|α|

)1/n

=

((
1/(p− 1) ∨ 1

t

)n/2
‖Mt‖p

∑
|α|=n

1√
α!

)1/n

.
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Therefore, by the multinomial theorem,( ∑
|α|=n

|bα|
)1/n

≤
√

1/(p− 1) ∨ 1

t

(
‖Mt‖p

√∣∣{α | |α| = n
}∣∣√√√√∑

|α|=n

1

α!

)1/n

≤
√

1/(p− 1) ∨ 1

t

(
‖Mt‖p

dn/2√
n!

√√√√∑
|α|=n

(
n

α

))1/n

= d

√
1/(p− 1) ∨ 1

t

(
‖Mt‖p

1√
n!

)1/n

.

The last term converges for n→∞ to 0 because of Stirling’s approximation. This shows
that f is well defined and analytic. We now prove the representation (3.1). By applying
Corollary 2.3 and the dominated convergence theorem, it is easy to check that, for all
t > 0,

f(z) =
∑
α∈Nd

1

α!t|α|
E[MtHα(t,Xt)] · zα =

∑
α∈Nd

1

α!t|α|
E[MtZ

α
t ] · zα

= E

Mt

∑
α∈Nd

zαZαt
α!t|α|

 .
Hence, by the multinomial theorem,

f(z) = E

[
Mt

∑
n∈N

∑
|α|=n

zαZαt
α!t|α|

]
= E

[
Mt

∑
n∈N

1

n!tn

∑
|α|=n

(
n

α

)
zαZαt

]

= E

[
Mt

∑
n∈N

(z · Zt)n

n!tn

]
,

and the desired representation follows by computing that

f(z) = E

[
Mt exp

(
z · Zt
t

)]
= E

[
Mt exp

(
z ·Xt

t

)
E

[
exp

(
i
z · Yt
t

)]]
= E

[
Mt exp

(
1

t

(
z ·Xt −

zT z

2

))]
.

On the other hand, by applying Hölder’s inequality to this representation we can verify
that

|f(z)| ≤ ‖Mt‖p
∥∥∥∥exp

(
1

t

(
z ·Xt −

zT z

2

))∥∥∥∥
p∗

= ‖Mt‖pE
[∣∣∣∣exp

(
p∗

t
z ·Xt

)∣∣∣∣]1/p∗

exp

(
− Re(zT z)

2t

)
= Kt exp

(
1

2t
((p∗ − 1) Re(z)2 + Im(z)2)

)
≤ Kt exp

(
(p∗ − 1) ∨ 1

2t
|z|2
)
, (3.2)

where Kt := ‖Mt‖p, and hence f is analytic of order 2. It remains to consider the
process (f(Zs))s∈[0,S]. Because of the choice of S, we get that f(Zs) ∈ Lp for all s ∈ [0, S];
namely, by taking some t ∈ [0, T ] such that t > (p ∨ p∗)s, the estimate (3.2) implies that

E
[
|f(Zs)|p

]
≤ KtE

[
exp

(
p ∨ p∗

2t
|Zs|2

)]
<∞.
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Then, the fact that (f(Zs))s∈[0,S] is a martingale such that
(
f(Zs)

)PX
= Ms for s ∈ [0, S]

is obtained by applying Fubini’s theorem and Corollary 2.3 to the integral representa-
tion (3.1) for f : the details are left to the reader.

As a consequence, we obtain the following result for martingales on [0,∞):

Corollary 3.5. Let p > 1, and assume that (Mt)t∈[0,∞) is an Lp-martingale such that Mt

is σ(Xt)-measurable for all t ∈ [0, T ], and let f as in Theorem 3.4. Then, (f(Zt))t∈[0,∞) is
an Lp-martingale such that (

f(Zt)
)PX

= Mt, t ∈ [0,∞).

By analyzing the proof of Theorem 3.4, we immediately notice that the result cannot
hold for p = 1, due to the unboundedness of the Hermite polynomials. It is however
possible to relate the convergence in L1 of an Hermite series to that in Lp, p > 1.

Proposition 3.6. Let t ≥ 0, and assume that the family (bαHα(t,Xt))α∈Nd is bounded
in L1. Then, for p > 1,

∑
α∈Nd bαHα(s,Xs) converges absolutely in Lp for s < t

d2ep .

Proof. Let s ≥ 0 be arbitrary. As a consequence of the estimates on Hermite polynomials
and of the scaling property of Brownian motion we obtain that∑

α∈Nd
|bα|‖Hα(s,Xs)‖p ≤

∑
α∈Nd

|bα|e|α|p/2‖Hα(s,Xs)‖1

=
∑
α∈Nd

|bα|
(
ep
s

t

)|α|/2
‖Hα(t,Xt)‖1. (3.3)

Let K denote the L1-bound on the family (bαHα(t,Xt))α∈Nd , and assume that s < t
d2ep .

As a consequence of (3.3), we then obtain that

∑
α∈Nd

|bα|‖Hα(s,Xs)‖p ≤ K
∑
α∈Nd

(
ep
s

t

)|α|/2

≤ K
∞∑
n=0

(
ep
s

t

)n/2∣∣{α ∈ Nd| |α| = n}
∣∣

≤ K
∞∑
n=0

(
ep/2d

√
s

t

)n
<∞,

because of the choice of s. This proves the desired absolute convergence.

As a consequence of Proposition 3.6, we also obtain:

Corollary 3.7. Assume that, for all t ≥ 0, the series
∑
α∈Nd bαHα(t,Xt) converges, for

some rearrangement of the terms, in L1. Then,
∑
α∈Nd bαHα(t,Xt) converges absolutely

in Lp for all t ≥ 0 and p ≥ 1.

4 Widder’s representation for Brownian martingales

As an application of the above properties, we derive a characterization of Widder’s
theorem about the representation of positive martingales. First of all, we recall how
the classical formulation of Widder translates in a probabilistic setting. A purely prob-
abilistic proof of this theorem can be found in [10], but we prefer to include a different
presentation for the convenience of the reader. Moreover, we observe that our result
hold for any dimension d ∈ N.
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Theorem 4.1. Let X be a d-dimensional Brownian motion, and suppose that Mt =

g(t,Xt) is a continuous martingale such that g(0, 0) = 1 and g(t,Xt) ≥ 0. Then, there
exists a probability measure µ on Rd such that, for all t ≥ 0,

Mt =

∫
Rd
E(v ·X)t µ(dv) P -a.s..

Proof. Let f : Rd → C be a bounded, continuous map. Then, for s ≥ t one has that

E

[
Mtf

(
Xt

t

)]
= E

[
Msf

(
Xt

t

)]
= E

[
Msf

(
Xs

s
+

(
Xt

t
− Xs

s

))]
.

Note that the random variables
(
Xt
t −

Xs
s

)
and Xs

s are independent as they are un-
correlated in a Gaussian space. Therefore, by conditioning on Xs

s one gets that

E

[
Mtf

(
Xt

t

)]
= E

[
Ms

∫
Rd
f

(
Xs

s
+

√
1

t
− 1

s
x

)
exp(−|x|2/2)

(2π)d/2
dx

]
.

We can now proceed with the construction of the measure µ. By taking f(x) :=

exp(iu · x), the previous equality yields that

E

[
Mt exp

(
iu · Xt

t

)]
= E

[
Ms exp

(
iu · Xs

s

)]
exp

(
−1

2

(
1

t
− 1

s

)
|u|2
)
.

On the other hand, the process (Mt)t≥0 is by assumption a density process, and is
therefore associated to a measure Q on C(R+,Rd) with Q

∣∣
Ft

<< P
∣∣
Ft

via the Radon-
Nikodym theorem. This gives us that

EQ

[
exp

(
iu · Xt

t

)]
= EQ

[
exp

(
iu · Xs

s

)]
exp

(
−1

2

(
1

t
− 1

s

)
|u|2
)
.

By taking t = 1, this implies in particular that

ϕQX1
(u) = ϕQXs

s

(u) exp

(
−1

2

(
1− 1

s

)
|u|2
)
,

where ϕQY denotes the characteristic function of the random variable Y under the mea-
sure Q.

As a consequence, we get that ϕQXs
s

(u) converges pointwise for s → ∞ to a con-

tinuous function ϕQX1
(u) exp

(
1
2 |u|

2
)
. Therefore, Lévy’s continuity theorem yields the

existence of a measure µ such that Xs
s converges weakly to µ under Q as s→∞.

We now have to check that µ satisfies the desired property. By the above conver-
gence in distribution, we have that, for any f bounded and continuous and for any fixed
t > 0,

EQ

[∫
Rd
f

(
Xs

s
+

√
1

t
− 1

s
x

)
e−|x|

2/2

(2π)d/2
dx

]
→
∫
Rd

∫
Rd
f

(
v +

√
1

t
x

)
e−|x|

2/2

(2π)d/2
dx µ(dv)

when s→∞. Since the left hand side equals E
[
Mtf

(
Xt
t

)]
for any s ≥ t, we get that

E

[
Mtf

(
Xt

t

)]
=

∫
Rd

∫
Rd
f

(
v +

√
1

t
x

)
e−|x|

2/2

(2π)d/2
dx µ(dv).
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On the other hand, by using Girsanov’s theorem one can easily check that, for any f
bounded and continuous,

E

[∫
Rd
E(vX)t µ(dv)f

(
Xt

t

)]
=

∫
Rd
E

[
E(vX)t f

(
Xt

t

)]
µ(dv)

=

∫
Rd
E

[
f

(
Xt

t
+ v

)]
µ(dv)

=

∫
Rd

∫
Rd
f

(
v +

√
1

t
x

)
e−|x|

2/2

(2π)d/2
dx µ(dv).

By approximation arguments, this equality can then be extended to any f bounded
and measurable, obtaining the desired representation for Mt.

The condition that g(t,Xt) forms a martingale on the whole interval [0,∞) is essen-
tial. This can easily be shown by separation arguments: let d = 1, T > 0, and denote by
K the set of all the martingales having the desired representation, i.e.

K =
{
N = (Nt)0≤t≤T

∣∣ There is a probability measure µ such that

Nt =

∫
R

E(vX)t µ(dv), 0 ≤ t ≤ T
}
.

Clearly, K is a convex set. Now, for an arbitrary f ∈ L∞(Rd) and any N ∈ K we have
that

E [f(Xt)Nt] =

∫
Ω

∫
R

f(Xt)E(vX)t µ(dv)dP

=

∫
R

E [f(Xt)E(vX)t]µ(dv)

=

∫
R

E [f(Xt + vt)]µ(dv).

The choice fk(x) := sin(kx) gives

E [fk(Xt)Nt] =

∫
R

E [sin(kXt + kvt)]µ(dv)

=

∫
R

E [cos(kXt)] sin(kvt)µ(dv)

≥ E [cos(kXt)] inf
v∈R

sin(kvt) = −e−k
2t/2.

However, by defining

MT =
1{sin(kXT )<−e−k2T/2}

P (sin(kXT ) < −e−k2T/2)

and by setting Mt := E[MT |Ft] = g(t,Xt), we get a martingale on [0, T ] of the desired
form and such that E [fk(Xt)Mt] < −e−k

2t/2. This proves the claim.
On the other hand, Theorem 4.1 can easily be extended to any continuous L1-

bounded Brownian martingale on [0,∞). First of all, we recall the well known Kricke-
berg decomposition for L1-bounded martingales:

Theorem 4.2. Let M denote a martingale on [0,∞). Then M is L1-bounded if and
only if it can be written (P -a.s.) as the difference of two positive martingales M1, M2.
Moreover, one can choose M1, M2 so that

sup
t≥0
‖Mt‖1 = E[M1

0 ] + E[M2
0 ],
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and the decomposition is then given by

M1
t = sup

s≥t
E[M+

s |Ft], M2
t = sup

s≥t
E[M−s |Ft] P -a.s., t ≥ 0.

The proof of this well known result can be found for instance in [3]. Krickeberg’s
decomposition allows us to extend Widder’s representation theorem, obtaining the fol-
lowing result:

Proposition 4.3. Let (Mt)t≥0 be a continuous, L1-bounded martingale of the formMt =

g(t,Xt). Then there is a signed measure µ on Rd such that

Mt =

∫
Rd
E(v ·X)t µ(dv) P -a.s. for all t ≥ 0.

Moreover, we have that

sup
t≥0
‖Mt‖1 = ‖µ‖.

Proof. We apply the Krickeberg decomposition toM , obtaining two positive martingales
M1, M2 such that M = M1 −M2 and supt≥0 ‖Mt‖1 = M1

0 +M2
0 .

By construction, M i is of the form M i = f i(t,Xt): indeed,

M1
t = sup

s≥t
E[M+

s |Ft] = sup
s≥t

E[M+
s |Xt],

since M+
s is σ(Xs)-measurable. We can assume, without loss of generality, that M i

0 6=
0. Then, we can apply Widder’s representation to the positive martingales M1

M1
0

, M2

M2
0

,

obtaining two probability measures µ̂1, µ̂2 such that

M i
t

M i
0

=

∫
Rd
E(v ·X)t µ̂

i(dv) P -a.s..

We thus set µi := M i
0µ̂
i and µ := µ1 − µ2. Then, for all t,

Mt = M1
t −M2

t =

∫
Rd
E(v ·X)t µ(dv) P -a.s..

On the other hand, we have that

‖Mt‖1 ≤
∫

Ω

∫
Rd
E(v ·X)t |µ|(dv)dP =

∫
Rd
E [E(v ·X)t] |µ|(dv) = ‖µ‖,

so that we finally get that

‖µ1‖+ ‖µ2‖ = M1
0 +M2

0 = sup
t≥0
‖Mt‖1 ≤ ‖µ‖ ≤ ‖µ1‖+ ‖µ2‖.

5 A characterization of Widder’s measure

We now present the aforementioned characterization of the measure µ appearing in
Proposition 4.3. To the best of our knowledge, this characterization is new and shows
interesting analogies with results from Fourier analysis.

Theorem 5.1. Let (g(t,Xt))t≥0 be a continuous L1-bounded martingale on [0,∞) with
Widder’s representation g(t,Xt) =

∫
Rd
E(v · X)t µ(dv). Then, the following assertions

hold:
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(i ) If the measure |µ| has quadratic exponential moments of all orders, i.e.∫
Rd
eλ|v|

2

|µ|(dv) <∞ for all λ > 0,

then there is a family (bα)α∈Nd of coefficients in R such that, for all t ≥ 0, the
series

∑
α∈Nd bαHα(t,Xt) converges absolutely to g(t,Xt) in L1, and therefore in

Lp for all p > 1. The coefficients bα can be represented as

bα =
1

α!

∫
Rd
vα µ(dv), α ∈ Nd.

(ii ) Conversely, if µ is positive and there is a family (bα)α∈Nd such that the series∑
α∈Nd bαHα(t,Xt) converges, for some rearrangement of the terms, to g(t,Xt) in

L1 for all t ≥ 0, then µ has quadratic exponential moments of all orders. Moreover,
the function f(z) :=

∫
Rd
ev·zµ(dv), z ∈ Cd, is well defined, analytic of order 2, and

can be represented, for z ∈ Cd and t > 0, as

f(z) =
∑
α∈Nd

bαz
α = E

[
g(t,Xt) exp

(
1

t

(
z ·Xt −

zT z

2

))]
.

Proof. We can assume, without loss of generality, that |µ| has total mass 1. We first
show (i ): clearly, we have that

|g(t,Xt)|2 =

∣∣∣∣ ∫
Rd
E(v ·X)t µ(dv)

∣∣∣∣2 ≤ ∫
Rd
E(v ·X)2

t |µ|(dv),

so that

E
[
|g(t,Xt)|2

]
≤
∫
Rd
E
[
E(v ·X)2

t

]
|µ|(dv) =

∫
Rd
et|v|

2

|µ|(dv) <∞

for all t ≥ 0. Hence, g(t,Xt) is the limit in L2 of the series
∑
α∈Nd bαHα(t,Xt), where

bα = 1
α!t|α|

E[g(t,Xt)Hα(t,Xt)]. A simple application of Fubini’s theorem then gives that

bα =
E
[( ∫

Rd
E(v ·X)t µ(dv)

)
Hα(t,Xt)

]
α!t|α|

=
1

α!t|α|

∫
Rd
E[E(v ·X)tHα(t,Xt)] µ(dv) =

1

α!

∫
Rd
vα µ(dv).

We now prove the second implication. Since the series
∑
α∈Nd bαHα(t,Xt) converges

for some rearrangement to g(t,Xt) in L1, Corollary 3.7 implies that the same series
converges absolutely in L2 to g(t,Xt) for all t ≥ 0. Hence, we get that

∞ > E
[
g(t,Xt)

2
]

= E

[(∫
Rd
E(v ·X)tµ(dv)

)2]
=

∫
Rd

∫
Rd
e(v·w)tµ(dv)µ(dw)

for all t ≥ 0. This is enough to show the existence of quadratic exponential moments of
µ: indeed, by setting Ct := ‖g(t,Xt)‖2 we obtain that, for all K > 0,

(µ⊗ µ)
(
v · w > K

)
≤ Ct exp(−tK). (5.1)

On the other hand it is easy to verify that, for i ∈ {1, · · · , d} and (ε1, · · · , εd) ∈ {−1, 1}d,
the set

AK,i,(ε1,··· ,εd) :={v ∈ Rd| |vi| >
√
K, sign(vj) = εj ∀ j}

× {w ∈ Rd| |wi| >
√
K, sign(wj) = εj ∀ j}
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is a subset of {(v, w) ∈ Rd × Rd | v · w > K}. Thus, (5.1) implies that, for i ∈ {1, · · · , d}
and (ε1, · · · , εd) ∈ {−1, 1}d,

µ
(
{v ∈ Rd| |vi| >

√
K, sign(vj) = εj ∀ j}

)
≤ C1/2

t exp

(
− t

2
K

)
. (5.2)

Now, if v ∈ Rd is such that |v|2 > K, then there is an i ∈ {1, · · · , d} such that |vi| >√
K/d : hence, (5.2) gives that

µ
(
|v|2 > K

)
≤ d 2d C

1/2
t exp

(
− t

2d
K

)
.

Since t ≥ 0 is arbitrary, this finally implies for all λ ≥ 0 that∫
Rd
eλ|v|

2

µ(dv) <∞.

We conclude this article with an example illustrating the fact that the quadratic
exponential moments of µ are needed in order to have an expansion in Hermite series
of the corresponding martingale. Let µ denote the standard Gaussian measure on R:
we can then verify that, for t ≥ 0,

g(t,Xt) =

∫
R

E(v ·X)t µ(dv) =
1√
t+ 1

exp

(
X2
t

2(t+ 1)

)
.

Since not all the quadratic exponential moments of µ exist, Theorem 5.1 implies that
g(t,Xt) cannot be represented as an Hermite series in L1. Moreover, it is easy to check
that g(t,Xt) corresponds to the counterexample introduced in a deterministic setting by
Pollard [12] in order to prove that the Hermite polynomials do not form a basis of Lp for
p 6= 2, and his conclusions can then be recovered from the results on Lp-convergence
proved in Section 3.

We can therefore observe that Theorem 5.1 gives a full explanation of Pollard’s coun-
terexample: namely, the non-convergence of the corresponding Hermite series is sim-
ply due to the non-existence of quadratic exponential moments of any order for the
corresponding Widder’s measure. This observation allows us to construct several other
counterexamples whose Hermite series do not converge in L1: after choosing a mea-
sure on R which does not have quadratic exponential moments of all orders, it suffices
to consider the martingale given by the corresponding Widder representation.

Recently, there was a renewed interest in Widder’s representation in connection
with boundary crossing problems for Brownian motion, see Alili and Patie [1].
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