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Random number sequences
and the first digit phenomenon
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Abstract

The sequences of mantissa of positive integers and of prime numbers are known
not to be distributed as Benford’s law in the sense of the natural density. We show
that we can correct this defect by selecting the integers or the primes by means of an
adequate random process and we investigate the rate of convergence. Our main tools
are uniform bounds for deterministic and random trigonometric polynomials. We
then adapt the random process to prove the same result for logarithms and iterated
logarithms of integers. Finally we show that, in many cases, the mantissa law of the
nth randomly selected term converges weakly to the Benford’s law.
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1 Introduction and definitions

We fix a numeration base b > 1 and denote the logarithm in base b by logb and the
set of positive integers by N∗. Many sequences (un)n of positive numbers, like un = 2n

(if b is not 2, 4 and so on), un = n!, un = nn, un = Fn where Fn is the nth Fibonacci
number, are known to verify the so-called first digit phenomenon. This means that, if
FD(un) denotes the first digit of un, the natural density of ∆u

k = {n ∈ N∗ : FD(un) = k}
is logb

(
k+1
k

)
, that is to say

lim
N→+∞

1

N

N∑
n=1

1∆u
k
(n) = logb

(
k + 1

k

)
(k = 1, . . . , b)

(here and in the sequel, 1B is the indicator function of the subsetB). In particular, about
30.1 percent of the un have first digit 1 in the sense of the above formula when b = 10.
As Newcomb [15] and Benford [1] noticed, this occurs more or less in many real-life sets
of data and this is why this phenomenon is used in fraud detection [16] and computer
design [12, 9] (roundoff error estimation and data storage). Some considerations about
scale-invariance have led Newcomb and Benford to use the so-called Benford’s law µb
(defined below) to depict this phenomenon.
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Random number sequences and the f.d.p.

The mantissa in base b of a positive real number x is the unique number Mb(x) in
[1, b[ such that there exists an integer k verifying x = M(x)bk (there exists another
definition of the mantissa, but for technical reasons we shall use this one). Of course
studying the mantissa of a number is more precise than studying its first digit. To state
the properties concerning the distribution of the mantissa of the above sequences, we
need more definitions: the Benford’s law in base b is the probability measure µb on the
interval [1, b[ defined by

µb([1, t[ ) = logb t (1 ≤ t < b) .

A sequence (vn)n of real numbers in [1, b[ is called natural-Benford in base b if it is
naturally distributed as µb, that is to say if

lim
N→+∞

1

N

N∑
n=1

1[1, t[(vn) = logb t (1 ≤ t < b) .

The above formula means that, for each t ∈ [1, b[ , the set {n ∈ N∗ : 1 ≤ vn < t} admits a
natural density and its natural density is logb t and this can be interpreted as the weak
convergence of the sequence of probability measures (1/N)

∑N
1 δvn to µb as N → +∞

(δx denotes the Dirac measure at point x).
A sequence (un)n of positive numbers is also called natural-Benford in base b when

the sequence of mantissae (Mb(un))n is natural-Benford. We can now say that the
sequences (2n)n (if b is not 2 and so on), (n!)n, (nn)n and (Fn)n are all natural-Benford.

When un = n or un = pn (pn is the nth prime number) and b = 10,

lim inf
N→+∞

1

N

N∑
n=1

1∆u
1
(n) =

1

9
and lim sup

N→+∞

1

N

N∑
n=1

1∆u
1
(n) =

5

9
(1.1)

(see [8] and [20]). So these two sequences do not verify the first digit phenomenon in
base 10 in the sense of the natural density (in fact they do not verify this phenomenon
in any base and so they are not natural-Benford in any base). From [6], we know that
this phenomenon is verified by un = n in the sense of the logarithmic density, that is is
to say

lim
N→+∞

1

logN

N∑
n=1

1

n
1∆u

k
(n) = log10

(
k + 1

k

)
(k = 1, . . . , 9)

where log is the natural logarithm. In a way (but not the same way as above), about
30.1 percent of the un have first digit 1. The defect in equation (1.1) is corrected by
assigning lighter weights to large numbers. The calculations in [8] can be adapted to
prove the same property for un = pn and a more general statement (also proved in [7]):
(n)n and (pn)n are logarithmic-Benford in any base b which means that, when un = n or
un = pn, we have

lim
N→+∞

1

logN

N∑
n=1

1

n
1[1, t[(Mb(un)) = logb t (1 ≤ t < b) .

Some convergence rates are given in [7].

1.1 Main notations and results

We consider a sequence (qn)n of numbers in [0, 1] summing to infinity and a sequence
(Xn)n of independent Bernoulli random variables such that P (Xn = 1) = qn. By the
Borel-Cantelli lemma,

∑+∞
n=1Xn = +∞ almost surely (a.s. in abbreviated form), so

we can suppose, without loss of generality, that
∑+∞
n=1Xn = +∞ everywhere. The
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nth number in the random set {k : Xk = 1} is denoted Yn (in other words, Yn is the
number of trials needed to get n successes). We shall consistently use the following
notations through the paper: whenever (un)n is a given sequence of positive numbers,
then (Un)n = (uYn)n will denote the random subsequence of (un)n whose terms are
selected by means of the Xn. Moreover we set π(N) =

∑N
n=1Xn (of course π(YN ) = N )

and

AtN =
1

N

N∑
n=1

1[1, t[(Mb(Un)) =
1

π(YN )

YN∑
n=1

Xn1[1, t[(Mb(un)).

So the random variable AtN is the frequency of the Un, among U1, . . . , UN , whose man-
tissa is less than t. We want to find conditions on (un)n and (qn)n ensuring that a.s.
limN A

t
N = logb t for every t ∈ [1, b[, that is to say: ensuring that the random sequence

(Un)n is a.s. natural-Benford.

We also look for conditions ensuring that the law of the random variable Mb(Un)

converges weakly to µb as n tends to infinity.

In [11], it is proved that if un = n and qn = 1/n, then (Un)n is a.s. natural-Benford.
In Section 2, we extend this property to a larger class of probabilities qn and to the case
un = pn. We investigate the rates of convergence in the cases un = n, un = n log n and
un = pn for qn = (log n)δ/n with δ > 0. Our techniques are totally different from those
of [11].

By theorem 2.6 in [13, p. 15] and direct calculations it is easily seen that (log n)n
and (log log n)n are not natural-Benford because the sequences of their logarithms in
base b are not uniformly distributed modulo 1 (see Section 2 for the link between
natural-Benford sequences and sequences which are uniformly distributed modulo 1).
In Section 3, we prove that (log n)n and (log log n)n are not logarithmic-Benford either
and that (Un)n is a.s. natural-Benford when un = log n and qn = 1/(n log n) and when
un = log log n and qn = 1/((n log n)(log log n)).

In Section 4, we prove that, in many situations, if the law of Mb(Un) converges
weakly, then the limit must be the Benford’s law. We also prove that if the sequence
(nqn)n is nonincreasing, then this law converges actually to the Benford’s law in the
case un = n and, under additional conditions on qn, in the cases un = n log n, un =

n log log n and un = pn.

1.2 Weighted densities

The above definitions use tacitly the notion of weighted density of a subset of N∗.
We recall below the definition and some useful facts.

Let (wn)n be a sequence of positive real numbers summing to infinity and, for each
N ≥ 1, let WN =

∑N
n=1 wn. One says that ∆ ⊂ N∗ has a wn-density when the sequence(∑N

n=1
wn
WN

1∆(n)
)
N

converges, and in that case its limit is called the wn-density of ∆.

This is the limit of the weighted frequency of the elements of ∆ among those of N∗. In
view of this definition, a sequence (un)n is natural-Benford (respectively logarithmic-
Benford) when, for all t ∈ [1, b[, the set {n :Mb(un) < t} admits a 1-density (respectively
a (1/n)-density) equal to logb(t).

Another sequence (vn)n of positive real numbers summing to infinity being given,
we say that the wn-density is stronger than the vn-density when the existence of a wn-
density for ∆ ⊂ N∗ implies the existence of a vn-density and that the two densities
are equal (as pointed out by an anonymous referee, some authors adopt the reverse
point of view, and say that a density is stronger than another if it allows to define the
density of more subsets of N∗). If each density is stronger than the other one, then
the two densities are said to be equivalent. It is known [13, 14] that the 1-density is
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strictly stronger than the (1/n)-density, which is strictly stronger than the (1/n log n)-
density, and so on, and that all the nδ-densities with δ > −1 are equivalent, all the
the ((log n)δ/n)-densities with δ > −1 are equivalent, all the the ((log log n)δ/n log n)-
densities with δ > −1 are equivalent, and so on. Moreover the (1/n log n)-density and
the (1/pn)-density are equivalent.

In particular, if a sequence is natural-Benford, then it is logarithmic-Benford. The
converse is false. Moreover, if a sequence (un)n is logarithmic-Benford and is not
natural-Benford, then the sets {n :Mb(un) < t} do not admit any 1-density.

2 Random integers and primes

For every x ∈ R and h ∈ Z∗, we set eh(x) = exp(2iπhx) where i2 = −1.

2.1 Uniform distribution modulo 1 and Weyl criterion

Here and in the sequel, the fractional part of x will be denoted {x}. A sequence (an)n
of real numbers is said to be uniformly distributed modulo 1 when, for every s ∈ [0, 1[,

lim
N→+∞

1

N

N∑
n=1

1[0, s[({an}) = s.

By the Weyl criterion (see [13, p. 7] or [5, p. 15]), this happens if and only if, for every
h ∈ Z∗,

lim
N→+∞

1

N

N∑
n=1

eh(an) = 0 .

And, since logb y and logb(Mb(y)) are equal modulo 1, the following lemma holds.

Lemma 2.1. A sequence (vn)n of positive numbers is natural-Benford if and only if, for
every h ∈ Z∗,

lim
N→+∞

1

N

N∑
n=1

eh(logb vn) = 0 .

2.2 Random sequences which are a.s. Benford

Aiming at simplicity and clarity, we state the following theorems only for sequences
(qn)n such that (nqn)n is monotonic. The sufficient conditions obtained in the proofs
are more general. Our statements imply that, if un = n or un = n log n or un = pn,
the random sequence (Un)n is a.s. natural-benford in particular when qn = (log n)δ/n,
qn = (log log n)δ/(n log n), qn = (log log log n)δ/(n(log n)(log log n)) and so on, with δ ≥ −1.

The next lemma can be proved by combining two famous estimates, namely Lemma
4.10 in [19, p. 76] and Lemma 2.43 in [5, p. 253] (see lemma 8 in [7] for details). It
gives a uniform bound for some trigonometric polynomial.

Lemma 2.2. There exists a constant C0 (depending only on b) such that, for every
integer N ≥ 1 and every h ∈ Z∗,∣∣∣∣∣

N∑
n=1

eh(logb n)

n

∣∣∣∣∣ ≤ C0 + log |h|.

The following lemma characterizes the random sequences (Un)n (where Un = uYn)
which are a.s. natural-Benford by means of conditions on qn and un.
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Lemma 2.3. The sequence (Un)n is a.s. natural-Benford if and only if, for every h ∈ Z∗,

lim
N→+∞

1∑N
n=1 qn

N∑
n=1

qneh(logb un) = 0. (2.1)

Proof. For h ∈ Z∗ and N ∈ N∗, set

FhN =
1

N

N∑
n=1

eh(logb Un) =
1

π(YN )

YN∑
n=1

Xneh(logb un)

and

GhN =
1

π(N)

N∑
n=1

Xneh(logb un) .

By lemma 2.1, (Un)n is a.s. natural-Benford if and only if

a.s. ∀h ∈ Z∗ , lim
N→+∞

FhN = 0 . (2.2)

So, to prove our lemma, it suffices to show that

∀ω ∈ Ω , ∀h ∈ Z∗ ,
(

lim
N→+∞

FhN (ω) = 0

)
⇐⇒

(
lim

N→+∞
GhN (ω) = 0

)
(2.3)

and that (2.1) is equivalent to

a.s. ∀h ∈ Z∗ , lim
N→+∞

GhN = 0 . (2.4)

Fix ω ∈ Ω and h ∈ Z∗. The converse part of (2.3) is evident because (FhN (ω))N is
a subsequence of (GhN (ω))N . For every N ∈ N∗, there exists a unique M(ω) such that
YM(ω)(ω) ≤ N < YM(ω)+1(ω) and we get GhN (ω) = FhM(ω)(ω) because either N = YM(ω)

or Xn(ω) = 0 for YM(ω) < n ≤ N . This proves the direct part of (2.3) since M(ω)→ +∞
as N → +∞.

Now we fix h ∈ Z∗ and we consider the two martingales (SN )N and (S∗N )N defined
by

SN =

N∑
n=1

Xn − qn
sn

and S∗N =

N∑
n=1

(Xn − qn)eh(logb un)

sn

where sn =
∑n
k=1 qk. Note that, for n ≥ 2,

qn(1− qn)

s2
n

≤ qn
snsn−1

=
1

sn−1
− 1

sn
.

Hence E(S2
N ) ≤ 2/q1 and E(|S∗N |2) ≤ 2/q1 since the Xn are independent. So (SN )N

and (S∗N )N are a.s. convergent by the second Doob’s classical martingale convergence
theorem. By Kronecker lemma, the convergence of (SN )N implies

lim
N→+∞

1

sN

N∑
n=1

(Xn − qn) = 0 a.s.

which implies

lim
N→+∞

π(N)

sN
= 1 a.s. (2.5)

and the convergence of (S∗N )N implies

lim
N→+∞

1

sN

N∑
n=1

(Xn − qn)eh(logb un) = 0 a.s.. (2.6)

This completes the proof because (2.5) and (2.6) prove that (2.1) and (2.4) are equiva-
lent.
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We are now able to treat the case un = n.

Theorem 2.4. Let un = n. If (nqn)n is non-increasing or if (nqn)n is non-decreasing
and

lim
N→+∞

NqN∑N
n=1 qn

= 0,

then (Un)n is a.s. natural-Benford.

Proof. Fix h ∈ Z∗ and N ≥ 1. Then, by Abel’s transformation,

N∑
n=1

qneh(logb n) = NqN

N∑
k=1

eh(logb k)

k
+

N−1∑
n=1

(nqn − (n+ 1)qn+1)

n∑
k=1

eh(logb k)

k
.

So, by lemma 2.2,

lim
N→+∞

1∑N
n=1 qn

N∑
n=1

qneh(logb n) = 0

when

lim
N→+∞

NqN∑N
n=1 qn

= 0 and lim
N→+∞

1∑N
n=1 qn

N−1∑
n=1

|nqn − (n+ 1)qn+1| = 0.

We can now conclude with lemma 2.3.

To treat the cases un = n log n and un = pn, we need to estimate another trigono-
metric polynomial.

Lemma 2.5. There exists a constant C (depending only on b) such that, for every inte-
ger N ≥ 3 and every h ∈ Z∗,∣∣∣∣∣

N∑
n=2

eh(logb(n log n))

n

∣∣∣∣∣ ≤ C|h| log |h| log logN.

Proof. Fix h and N . Then, by Abel’s transformation,

N∑
n=2

eh(logb(n log n))

n
= aN

N∑
k=2

eh(logb k)

k
+

N−1∑
n=2

(an − an+1)

n∑
k=2

eh(logb k)

k

where an = eh(logb log n). By the mean value theorem, for every n ≥ 2,

|an − an+1| ≤
2π|h|
log b

1

n log n
.

We can conclude by using lemma 2.2.

We are now able to treat the cases un = n log n and un = pn.

Theorem 2.6. Let un = n log n or un = pn. If (nqn)n is monotonic and

lim
N→+∞

N(log logN)qN∑N
n=1 qn

= 0,

then (Un)n is a.s. natural-Benford.
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Proof. Replacing logb n by logb(n log n) and lemma 2.2 by lemma 2.5 in the proof of
theorem 2.4 shows that, if un = n log n, (Un)n is a.s. natural-Benford when

lim
N→+∞

N(log logN)qN∑N
n=1 qn

= 0 and lim
N→+∞

log logN∑N
n=1 qn

N−1∑
n=1

|nqn − (n+ 1)qn+1| = 0

and this concludes the proof in the case un = n log n.
The mean value theorem shows that, for every h ∈ Z∗ and N ≥ 1,∣∣∣∣∣

N∑
n=1

qneh(logb pn)−
N∑
n=1

qneh(logb(n log n))

∣∣∣∣∣ ≤ 2π|h|
N∑
n=1

qn

∣∣∣∣logb
pn

n log n

∣∣∣∣ .
Since pn ∼ n log n, this and the theorem of Cesàro prove that, for a given sequence (qn)n,
the hypotheses of lemma 2.3 are verified by un = pn if and only if they are verified by
un = n log n. This completes the proof.

2.3 Rate of convergence

It is natural to look for an estimation of the rate of convergence in the limit involved
in the definition of a Benford sequence of numbers. So we are seeking a.s. bounds for

dN (U) = sup
1<c<d<b

∣∣∣∣∣
(

1

N

N∑
n=1

1[c, d[(Mb(Un))

)
− logb

d

c

∣∣∣∣∣
which is a distance, similar to the Kolmogorov one, between the Benford law µb and

1

N

N∑
n=1

δMb(Un). We shall treat the cases qn =
(log n)δ

n
(δ > 0) and un = n, un = n log n

and un = pn. Our methods seem inefficient when qn ≤
1

n
.

The so-called discrepancy of a sequence (vn)n of real numbers is defined by

DN (v) = sup
0<x<y<1

∣∣∣∣∣
(

1

N

N∑
n=1

1[x, y[({vn})

)
− (y − x)

∣∣∣∣∣ .
This is the distance between the Lebesgue measure on [0, 1[ and

1

N

N∑
n=1

δ{vn}.

If vn = logb un, then dN (u) = DN (v) because logb (Mb(x)) = {logb x}. Considering
the disprepancy will permit us to use the following lemma, known as the Erdős-Turán
inequality and available, among many other sources, in [18].

Lemma 2.7. Let (vn)n be a sequence of real numbers and let N be a natural number.
Then, for every natural number H, we have

DN (v) ≤ 1

H + 1
+

H∑
h=1

1

h

∣∣∣∣∣ 1

N

N∑
n=1

eh(vn)

∣∣∣∣∣ .
The second lemma is in the wake of lemmas 2.2 and 2.5. We denote O the standard

big O of Landau.

Lemma 2.8. There exists a constant C (depending only on b) such that, for every inte-
ger N ≥ 3 and every h ∈ Z∗,∣∣∣∣∣

N∑
n=1

eh(logb(pn))

n

∣∣∣∣∣ ≤ C|h| log |h|(log logN)2.
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Proof. The celebrated relation

pn = n log n+O(n log log n)

and the mean value theorem imply∣∣∣∣∣
N∑
n=3

eh(logb pn)

n
− eh(logb(n log n))

n

∣∣∣∣∣ = O

(
|h|

log b

N∑
n=3

log log n

n log n

)

= O
(
|h|

log b
(log logN)2

)
.

Lemma 2.5 completes the proof.

The last lemma gives an estimation of some random trigonometric polynomial. Re-
call from Section 1.1 that YN is the nth randomly selected integer.

Lemma 2.9. If vn = logb n or vn = logb(n log n) or vn = logb pn there exists a positive
a.s. finite random variable C such that, for all positive integers N and h,∣∣∣∣∣

YN∑
n=1

(Xn − qn)eh(vn)

∣∣∣∣∣ ≤ C
√√√√log(1 + 2πh) log(YN )

YN∑
n=1

qn.

Proof. Applying theorem 1.1 (2) (ii) in [3] to the sequence of independent centered
random variables (Xn−qn)n yields the existence of a positive a.s. finite random variable
C1 such that∣∣∣∣∣
YN∑
n=1

(Xn − qn)eh(vn)

∣∣∣∣∣
2

≤ C1 log(1 + 2πh) log(max(YN , vYN ))

YN∑
n=1

((Xn− qn)2 +E(Xn− qn)2)

for all positive integers N and h. This proves our statement because, by (2.5),

(Xn − qn)2 + E(Xn − qn)2 = |Xn − qn| ≤ C2 qn

and because YN ≥ vYN when vn = logb n or vn = logb(n log n) or vn = logb pn.

We can now give an estimation of the rate of convergence in theorems 2.4 and 2.6
when un = n, un = n log n or un = pn and for a large family of sequences of probabilities
(qn)n.

Theorem 2.10. Let δ > 0 and qn =
(log n)δ

n
. Then

dN (U) = O

(
(logN)

3
2

Nβ

)
a.s.

where β =
min(δ, 2)

2(δ + 1)
if un = n and β =

min(δ, 1)

2(δ + 1)
if un = n log n or un = pn.

Proof. In this proof, C denotes a positive a.s. finite random variable which may vary
from line to line. Here un = n or un = n log n or un = pn. By lemma 2.9,∣∣∣∣∣

N∑
n=1

eh(logb Un)

∣∣∣∣∣ =

YN∑
n=1

Xneh(logb un)

≤ C

√√√√log(1 + 2πh) log(YN )

YN∑
n=1

qn +

∣∣∣∣∣
YN∑
n=1

qneh(logb un)

∣∣∣∣∣ (N ≥ 1).
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Since qn =
(log n)δ

n
, (2.5) yields

log YN ≤ CN
1
δ+1 and YNqYN ≤ CN

δ
δ+1 . (2.7)

Hence, for every H ≥ 1 and N ≥ 1,

H∑
h=1

1

h

∣∣∣∣∣
N∑
n=1

eh(logb Un)

∣∣∣∣∣ ≤ C(logH)
3
2N

δ+2
2(δ+1) +

H∑
h=1

1

h

∣∣∣∣∣
YN∑
n=1

qneh(logb un)

∣∣∣∣∣ (2.8)

because, by (2.5) again,
∑YN
n=1 qn ∼ N a.s..

Using the Abel transformation, lemma 2.2, lemma 2.5, lemma 2.8 and (2.7), we get
for every H and N

H∑
h=1

1

h

∣∣∣∣∣
YN∑
n=1

qneh(logb n)

∣∣∣∣∣ ≤ CN δ
δ+1 (logH)2, (2.9)

H∑
h=1

1

h

∣∣∣∣∣
YN∑
n=1

qneh(logb(n log n))

∣∣∣∣∣ ≤ CN δ
δ+1 (log logN)H logH (2.10)

and
H∑
h=1

1

h

∣∣∣∣∣
YN∑
n=1

qneh(logb pn)

∣∣∣∣∣ ≤ CN δ
δ+1 (log logN)2H logH. (2.11)

When un = n, by choosing H = [Nα] with α = δ
2(δ+1) if δ ≤ 2 and α = 1

(δ+1) if δ > 2 in
(2.8) and (2.9), we get

1

H + 1
+

H∑
h=1

1

h

∣∣∣∣∣ 1

N

N∑
n=1

eh(logb Un)

∣∣∣∣∣ ≤ C (logN)
3
2

Nβ

with β = min(δ,2)
2(δ+1) .

When un = n log n or un = pn, by choosing H = [Nα] with α = 1
2(δ+1) in (2.8) and

(2.10) or (2.11), we get

1

H + 1
+

H∑
h=1

1

h

∣∣∣∣∣ 1

N

N∑
n=1

eh(logb Un)

∣∣∣∣∣ ≤ C (logN)
3
2

Nβ

with β = min(δ,1)
2(δ+1) .

Lemma 2.7 completes the proof.

3 Random logarithms

The techniques used in Section 2.2 can be adapted to the case un = logn, but they
do not give useful results. Indeed, we can adapt lemma 2.5 and prove∣∣∣∣∣

N∑
n=2

eh(logb(log n))

n

∣∣∣∣∣ ≤ C|h| log |h| logN

and then adapt theorem 2.6 and prove that, if un = log n, (Un)n is a.s. natural-Benford
when

lim
N→+∞

NqN logN∑N
n=1 qn

= 0 and lim
N→+∞

logN∑N
n=1 qn

= 0.
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But these two conditions seem incompatible at least for the kind of sequences (qn)n we
are interested in: qn = 1/nα with α ∈]0, 1[, qn = (log n)δ/n, qn = (log log n)δ/(n log n),
qn = (log log log n)δ/(n(log n)(log log n)) and so on, with δ ≥ −1.

Hence we must use different techniques when un is equal to log n or log log n. The
following lemma is quite similar to lemma 2.3. It states that the random sequence
(uYn)n is a.s. natural-Benford if and only if the set {n : Mb(un) < t} has qn-density
logb(t) for any t ∈ [1, b[ (see Section 1.2).

Lemma 3.1. The random sequence (Un)n is a.s. natural-Benford if and only if

∀ t ∈ [1, b[ , lim
N→+∞

1∑N
n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) = logb t.

Proof. For t ∈ [1, b[ and N ∈ N∗, set

BtN =
1

π(N)

N∑
n=1

Xn1[1, t[(Mb(un)).

The sequences (AtN (ω))N (see Section 1.1 for definition) and (BtN (ω))N have the same
role as (FhN (ω))N and (GhN (ω))N in the proof of lemma 2.3 and the arguments we used
there prove the following equivalence

∀ω ∈ Ω , ∀ t ∈ [1, b[ ,

(
lim

N→+∞
AtN (ω) = 0

)
⇐⇒

(
lim

N→+∞
BtN (ω) = 0

)
.

Since we already know that

lim
N→+∞

π(N)

sN
= 1 a.s.

where sn =
∑n
k=1 qk and since logb is continuous, we only need to prove that, for every

t ∈ [1, b[,

lim
N→+∞

1

sN

N∑
n=1

(Xn − qn)1[1, t[(Mb(un)) = 0 a.s..

But this follows from the Doob theorem and the Kronecker lemma applied to the mar-
tingale (S∗∗N )N defined by

S∗∗N =

N∑
n=1

(Xn − qn)

sn
1[1, t[(Mb(un)).

The following general lemma happens to be very useful when un = f(n) and qn =

g(n) with f and g such that the inverse of f and a primitive integral of g are explicitly
known. This is only a restatement in the context of mantissa distribution of techniques
that Fuchs and Letta have used in [8] to study the digit distribution. Recall that the qn
are positive numbers summing to infinity.

Lemma 3.2. Fix a real t ∈ [1, b[. Suppose that (un)n is increasing and unbounded. For
m ∈ N, set

Cm = {n : bm ≤ un < tbm} , Dm = {n : bm−1 ≤ un < bm}

and

Em = {n : tbm−1 ≤ un < tbm} .
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Then

limN

1∑N
n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) = lim
m→+∞

∑
n∈Cm−1

qn∑
n∈Dm qn

and

limN
1∑N

n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) = lim
m→+∞

∑
n∈Cm qn∑
n∈Em qn

provided that the two limits exist.

Proof. First note that the sequence(
1∑N

n=1 qn

N∑
n=1

qn1[1, t[(Mb(un))

)
N

is increasing on the sets Cm and decreasing on the sets {n : tbm−1 ≤ un < bm}. Then

limN

1∑N
n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) = lim
M→+∞

∑M
m=1

∑
n∈Cm−1

qn∑M
m=0

∑
n∈Dm qn

and

limN
1∑N

n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) = lim
M→+∞

∑M
m=1

∑
n∈Cm qn∑M

m=0

∑
n∈Em qn

.

But, since the numbers qn sum to infinity, so do the numbers αm =
∑
n∈Dm qn and the

numbers βm =
∑
n∈Em qn. So, when the limits

lim
m→+∞

∑
n∈Cm−1

qn∑
n∈Dm qn

and lim
m→+∞

∑
n∈Cm qn∑
n∈Em qn

exist, they are respectively equal to

lim
M→+∞

∑M
m=1

∑
n∈Cm−1

qn∑M
m=0

∑
n∈Dm qn

and lim
M→+∞

∑M
m=1

∑
n∈Cm qn∑M

m=0

∑
n∈Em qn

by the Stolz-Cesàro theorem.

We have already seen in Section 1.1 that the deterministic sequences (log n)n and
(log log n)n are not natural-Benford. We prove now that they are not logarithmic-Benford
either.

Proposition 3.3. The sequences (log n)n and (log log n)n are not logarithmic-Benford.

Proof. We want to verify that, for some t ∈ [1, b[,

limN

1∑N
n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) 6= limN
1∑N

n=1 qn

N∑
n=1

qn1[1, t[(Mb(un))

when qn = 1/n and un = log n or un = log log n. Fix t ∈ [1, b[ and qn = 1/n. If un = log n,
then Cm = {n : eb

m ≤ n < etb
m} and we can write Dm and Em in the same way (Cm, Dm

and Em are defined in the proof of lemma 3.2). Direct calculations and lemma 3.2 give

limN

1∑N
n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) =
t− 1

b− 1
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and

limN
1∑N

n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) =
b(t− 1)

t(b− 1)
.

If un = log log n, then Cm = {n : ee
bm ≤ n < ee

tbm } and we can write Dm and Em in the
same way. We get

limN

1∑N
n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) = 0

and

limN
1∑N

n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) = 1 .

We prove now that, if the numbers qn are chosen in an adequate manner, the random
sequence (Un)n corresponding to (log n)n or (log log n)n is a.s. natural-Benford.

Proposition 3.4. If un = log n and qn = 1/(n log n), then (Un)n is a.s. natural-Benford.

Proof. Set un = log n and qn = 1/(n log n). By lemma 3.1 it suffices to verify that, for
every t ∈ [1, b[,

limN

1∑N
n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) = limN
1∑N

n=1 qn

N∑
n=1

qn1[1, t[(Mb(un)) = logb t.

Fix t ∈ [1, b[. Again Cm = {n : eb
m ≤ n < etb

m} and, writing Dm and Em in the same way,
direct calculations give

lim
m→+∞

∑
n∈Cm−1

qn = lim
m→+∞

∑
n∈Cm

qn = log t

and

lim
m→+∞

∑
n∈Dm

qn = lim
m→+∞

∑
n∈Em

qn = log b .

We now conclude with lemma 3.1 and lemma 3.2.

A slight adaptation of the above arguments prove the following proposition.

Proposition 3.5. If un = log log n and qn = 1/((n log n)(log log n)), then (Un)n is a.s.
natural-Benford.

Remark 3.6. If un = log n or un = log log n and if (qn)n is non-decreasing or qn = 1/nα

with 0 < α < 1 or qn = (log n)δ/n with δ > −1, then the random sequence (Un)n is not
a.s. natural-Benford, because, if it were, the sequence (un)n would be natural-Benford
or logarithmic-Benford by the general properties of summation methods (see [10, p. 68]
or [13, p. 63]) and lemma 3.1. The same arguments and the above propositions show
that if qn = (n(log n)(log log n))−1 or qn = (n(log n)(log log n)(log log log n))−1 and so on
and if un = log n or un = log log n, then the random sequence (Un)n is a.s. natural-
Benford. Moreover, these techniques can be used to show that (Un)n is not a.s. natural-
Benford when un = log log n and qn = 1/(n log n). See [14] for a general treatement of
weighted densities in connection with Benford’s sequences of numbers.
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4 Mantissa limit law

For a sequence of positive random variables, there exists no general link between
having a mantissa whose law converges to µb and being almost surely natural-Benford.
Indeed, let Tn = n! a.s.. Then the law of Mb(Tn) does not converge weakly, but the
sequence (Tn)n is a.s. natural-Benford. Conversely, let Tn = T where the law of T is
µb. Then the law ofMb(Tn) converges weakly to µb, but the sequence (Tn)n is a.s. not
natural-Benford.

Recall that Un = uYn is the nth randomly selected term in the sequence (un)n. In
[11] it is proved that when un = n and qn = 1/n, the law ofM10(Un) converges weakly
to µ10 as n tends to infinity. We give below a broad generalization of this property. Our
main tool is the following elementary lemma.

Lemma 4.1. Let (Zn)n be a sequence of positive random variables. Then the law of
Mb(Zn) converges weakly to µb as n→ +∞ if and only if, for every h ∈ Z∗,

lim
n→+∞

E [eh(logb(Zn))] = 0.

Proof. The weak convergence of a sequence of probability measures on the torus is
entirely characterized by the convergence of its Fourier coefficients (see [2, p. 363] for
example). So a sequence of probability measures (Qn)n on [0, 1[ converges weakly to
the uniform probability if and only if, for every h ∈ Z∗,

lim
n→+∞

∫ 1

0

eh(x)dQn(x) = 0.

But the law of Mb(Zn) converges weakly to µb if and only if the law of {logb Zn} con-
verges weakly to the uniform probability on [0, 1[ and eh({logb Zn}) = eh(logb Zn) for
every h ∈ Z.

We first prove that, in many cases and in particular under the hypotheses of theo-
rems 2.4 and 2.6 and of propositions 3.4 and 3.5, the only possible limit for the law of
Mb(Un) is µb .

Proposition 4.2. If a sequence (Zn)n of positive random variables is a.s. natural-
Benford and if the law ofMb(Zn) converges weakly to a probabilty measure Q as n →
+∞, then Q = µb.

Proof. Fix h ∈ Z∗. For N ≥ 1, set

MN =
1

N

N∑
n=1

eh(logb Zn)

By lemma 2.1, (Zn)n is a.s. natural-Benford if and only if (MN )N converge a.s. to 0 for
every h ∈ Z∗. Hence, by the dominated convergence theorem,

lim
N→+∞

1

N

N∑
n=1

E [eh(logb(Zn))] = lim
N→+∞

E(MN ) = 0. (4.1)

If moreover the law ofMb(Zn) converges weakly to a probability measure on [1, b[ as
n→ +∞, then the law of {logb(Mb(Zn))} = {logb(Zn)} converges weakly to a probability
measure on [0, 1[ and its Fourier coefficient E [eh({logb(Zn)})] = E [eh(logb(Zn))] admits
a limit. But, by (4.1), this limit must be 0 and so, by lemma 4.1, the law of Mb(Zn)

converges weakly to µb.
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Remark 4.3. This remains true when (Zn)n is only supposed to be a.s. logarithmic-
Benford instead of a.s. natural-Benford.

The theorem 4.6 below seems inefficient when un = log n and un = log log n, but it
shows in particular that, when (nqn)n is nonincreasing and

∑+∞
n=1 qn = +∞, the law of

Mb(Un) converges weakly to µb in the cases listed below:

• when un = n (this contains the case considered in [11]);

• when un = n log n or un = pn and qn = O(1/(n logδ n)) where 1 > δ > 0;

• when un = n log log n and qn = O(1/(n log logδ n)) where 1 > δ > 0

(O denotes the Landau’s big O). The proof of theorem 4.6 uses the following estimation.

Lemma 4.4. Let (un)n be a sequence of positive numbers. Suppose that the sequence
(nqn)n is nonincreasing and that

+∞∑
n=1

nqn

∣∣∣∣log

[
wn
wn+1

]∣∣∣∣ < +∞ (4.2)

where wn = un/n. Then there exists a constant C ′ (depending only on b) such that, for
every integer N ≥ 1 and every h ∈ Z∗,∣∣∣∣∣

N∑
n=1

qneh(logb(un))

∣∣∣∣∣ ≤ C ′|h| log |h| .

Proof. Fix h and N . The Abel’s transformation gives

N∑
n=1

qneh(logb(un)) = NqNeh(logb(wN ))

N∑
j=1

aj +

N−1∑
n=2

(cn − cn+1)

n∑
j=1

aj


where aj = (1/j)eh(logb j) and cn = nqneh(logb wn).

Lemma 2.2 yields that
(∣∣∣∑n

j=1 aj

∣∣∣)
n

is bounded by C log |h|. The sequence (nqn)n

is bounded too since it is positive and nonincreasing. It remains to verify that, for all
N ≥ 1,

N−1∑
k=2

|ck − ck+1| ≤ C ′′|h|

where C ′′ is a constant. But

|ck − ck+1| ≤ |kqk − (k + 1)qk+1|+ (k + 1)qk+1|eh(logb wk)− eh(logb wk+1)| .

By the mean value theorem, we get

|ck − ck+1| ≤ (kqk − (k + 1)qk+1) + 2π|h|kqk
∣∣∣∣logb

[
wk
wk+1

]∣∣∣∣ .
We can conclude with (4.2) because

∑N
k=1(kqk − (k + 1)qk+1) ≤ q1.

Remark 4.5. Using lemma 2.2 and the Abel transformation, it is easily seen that, when
wn = 1, |h| log |h| can be replaced by log |h| in lemma 4.4.

Theorem 4.6. Suppose that the sequences (un)n and (qn)n verify the hypotheses of
lemma 4.4 and that the qn sum to infinity. Then the law ofMb(Un) converges weakly to
µb.
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Proof. Recall that πn = X1 + · · ·+Xn. Fix h ∈ Z∗. We aim at showing that

lim
n→+∞

+∞∑
k=n

P (Yn = k)eh(logb uk) = 0

because of lemma 4.1. For every n ≥ 1 and every N > n, the Abel’s transformation
gives

N∑
k=n

P (Yn = k)eh(logb uk) = d
(n)
N

N∑
j=n

aj +

N−1∑
k=n

(d
(n)
k − d(n)

k+1)

k∑
j=n

aj


where

aj = qjeh(logb uj) and d
(n)
k = (1/qk)P (Yn = k) = P (πk−1 = n− 1) .

By lemma 4.4, since h and b are fixed, |
∑N
j=n aj | and |

∑k
j=n aj | are bounded. Moreover,

for every fixed n, limN→+∞ d
(n)
N = 0. Thus it remains only to verify that

lim
n→+∞

lim
N→+∞

N−1∑
k=n

|d(n)
k − d(n)

k+1| = 0 .

Fix n ≥ 1. Then, for every k ≥ n,

d
(n)
k − d(n)

k+1 = qk(P (πk−1 = n− 1)− P (πk−1 = n− 2))

because P (πk = n− 1) = qkP (πk−1 = n− 2) + (1− qk)P (πk−1 = n− 1). Now, it is proved
in [4] that, for every k ≥ 1 the law of πk is unimodal with mode m = [q1 + · · · + qk] or
m = [q1+· · ·+qk]+1 or with two modes m1 = [q1+· · ·+qk] and m2 = [q1+· · ·+qk]+1 with

P (πk = m1) = P (πk = m2) (here [x] denotes the integer part of x). Hence d(n)
k −d

(n)
k+1 ≥ 0

when n− 1 ≤ [q1 + · · ·+ qk−1] and d(n)
k − d

(n)
k+1 ≤ 0 when n− 1 ≥ [q1 + · · ·+ qk−1] + 1. This

yields, for every N > n,

N−1∑
k=n

|d(n)
k − d(n)

k+1| ≤ 2 sup
k≥n

P (πk−1 = n− 1)

≤ 2 sup
k≥n

max
0≤j≤k−1

P (πk−1 = j).

By a classical property of the Levy’s concentration function (lemma 1 in [17, page 38]),
for every k ≥ n,

max
0≤j≤k−1

P (πk−1 = j) ≤ max
0≤j≤n−1

P (πn−1 = j)

because πk−1 = πn−1 + Xn + · · · + Xk−1 and πn−1 and Xn + · · · + Xk−1 are indepen-
dent. Applying the Kolmogorov-Rogozin inequality (theorem 4 in [17, page 44]) to the
concentration functions of the random variables Xl with l = 1, . . . , n− 1, we get

max
0≤j≤n−1

P (πn−1 = j) = O
(
1/
√
q1 + · · ·+ qn−1

)
where O denotes the Landau’s big O. This completes the proof since the qn sum to
infinity.

It is quite surprising to find sequences of random variables whose mantissa in base
b converges in law to µb for every base b since it is known (see [12, pages 238–247])
that there does not exist any random variable X such that the law of Mb(X) is µb for
every base b.
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5 Concluding remark

It is natural to wonder what happens when qn = q ∈]0, 1[ (this is the i.i.d. case) or
when qn = n−δ with 0 < δ < 1.

Is (Un)n a.s. natural-Benford? Lemma 3.1 shows that, when (qn)n is constant or
nondecreasing, (Un)n is a.s. natural-Benford if and only if (un)n is natural Benford. We
know that this is not true in all the cases we have considered above: un = n, un = n log n,
un = pn, un = log n and un = log log n. Lemma 3.1 yields the same conclusion in the
case qn = n−δ with 0 < δ < 1 because the weights 1 and the weights n−δ with 0 < δ < 1

lead to equivalent weighted densities (see [13, page 64]). But if (qn)n is nondecreasing,
we can adapt our techniques to prove that (Un)n is a.s. logarithmic-Benford, that is to
say: a.s.

∀ t ∈ [1, b[ lim
N→+∞

1

logN

N∑
n=1

1

n
1[1, t[(Mb(Un)) = 0.

Does the law ofMb(Un) converge weakly to µb? All we can say is that our methods
seem inefficient when (qn)n is constant. Indeed, if we want to use lemma 2.2 to treat
the case un = n and qn = 1/2, the bound 2 supk≥n P (πk−1 = n − 1) in the proof of
theorem 4.6 is replaced by n supk≥n P (πk = n) which does not tend to 0 as n tends to
infinity since P (π2n = n) is equivalent to 1/

√
nπ. The same difficulties appear when we

choose qn = n−δ with 0 < δ < 1. Anyway, some computer simulations we have made
suggest that the law of Mb(Un) does not converge weakly when (qn)n is constant or
when qn = 1/

√
n.
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