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Abstract

The purpose of this article is a set-indexed extension of the well-known Ornstein-
Uhlenbeck process. The first part is devoted to a stationary definition of the random
field and ends up with the proof of a complete characterization by its L2-continuity,
stationarity and set-indexed Markov properties. This specific Markov transition sys-
tem allows to define a general set-indexed Ornstein-Uhlenbeck (SIOU) process with
any initial probability measure. Finally, in the multiparameter case, the SIOU process
is proved to admit a natural integral representation.
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1 Introduction

The study of multiparameter processes goes back to the 70’ and the theory devel-
oped for years covers multiple properties of random fields (we refer to the recent books
[22] and [2] for a modern review). For instance, Cairoli and Walsh [10, 34, 35] have
deeply investigated the extension of the martingale and stochastic integral theories to
the two-parameter framework. A vast literature also concerns the Markovian aspects of
random fields. Similarly to the case of martingales, different interesting Markov proper-
ties can be formalized for multiparameter processes. Among these, the most commonly
studied ones are sharp-Markov [27, 13], germ-Markov [29, 30, 25] and ∗-Markov [9, 24]
properties. We refer to [6] for a more complete description of these concepts. The study
multiparameter processes is still a very active area of research, particularly the analysis
of sample paths and geometric properties (see e.g. [4, 11, 23, 32, 38]).

Set-indexed processes constitute a natural generalization of multiparameter stochas-
tic processes and their local regularity have been considered in the Gaussian case since
the early work of Dudley [14] (see also [1, 3, 8]). Extending the literature on ran-
dom fields, several different subjects have been recently investigated, including set-
indexed martingales [21], set-indexed Markov [20, 5, 6] and Lévy processes [1, 7, 19],
and set-indexed fractional Brownian motion [17, 18]. Although the set-indexed formal-
ism appears to be more abstract, it usually offers a simpler and more condensed way
to express technical concepts of multiparameter processes. For instance, the present
work intensively uses the C-Markov property introduced and developed in [6]. In the
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latter, the Chapman-Kolmogorov equation related to transition probabilities turns out
to be more easily expressed using the set-indexed formalism than the two-parameter
framework.

In this paper, we follow the framework established by Ivanoff and Merzbach in the
context of set-indexed martingales [21]. An indexing collection A is constituted of com-
pact subsets of a locally compact metric space T equipped with a Radon measure on
the σ-field generated by A. A(u) and C respectively denote the class of finite unions
of sets belonging to A and the collection of increments C = A \ B, where A ∈ A and
B ∈ A(u). Finally, ∅′ denotes the set ∩A∈AA, which usually plays a role equivalent to
0 in RN

+ . In the present article, we suppose that the collection A and the measure m

satisfy the following assumptions:

(i) ∅′ is a nonempty set and A is closed under arbitrary intersections;

(ii) Shape hypothesis: for any A,A1, . . . , Ak ∈ A with A ⊆ ∪ki=1Ai, there exists i ∈
{1, . . . , k} such that A ⊆ Ai;

(iii) m(∅′) = 0 andm is monotonically continuous onA, i.e. for any increasing sequence
(An)n∈N in A,

lim
n→∞

m(An) = m
(
∪k∈NAk

)
.

For sake of readability, we restrict properties of A to the strictly required ones in the
sequel. The particular case of A = {[0, t]; t ∈ RN

+} shows that the set-indexed formalism
extends the multiparameter setting. Another simple example satisfying Shape can be
constructed on the R3-unit sphere: A = {Aθ,ϕ; θ ∈ [0, π) and ϕ ∈ [0, 2π)} where Aθ,ϕ =

{(1, θ̂, ϕ̂) : θ̂ ∈ [0, θ] and ϕ̂ ∈ [0, ϕ]}. We refer to [21] for a more complete definition of an
indexing collection used in the general theory of set-indexed martingales.

We investigate the existence and properties of a set-indexed extension of the Ornstein-
Uhlenbeck (OU) process, originaly introduced in [33] and then widely used in the liter-
ature to represent phenomena in physics, biology and finance (e.g. see [15, 26, 28]). A
well-known integral representation of the real-parameter OU processX = {Xt; t ∈ R+}
is given by

∀t ∈ R+; Xt = X0 e
−λt +

∫ t

0

σ eλ(s−t) dWs, (1.1)

where λ and σ are positive parameters and the initial distribution ν = L(X0) is indepen-
dent of the Brownian motion W . Furthermore, X is a Markov process characterized by
the following transition densities, for all t ∈ R+ and x, y ∈ R;

pt(x; y) =
1

σt
√

2π
exp

[
− 1

2σ2
t

(
y − xe−λt

)2]
where σ2

t =
σ2

2λ

(
1− e−2λt

)
. (1.2)

Two particular cases of initial distribution will be of specific interest in the sequel:

1. If ν = δx, x ∈ R, X is a Gaussian process with the following mean and covariance,
for all s, t ∈ R+,

Ex[Xt] = xe−λt and Covx(Xs, Xt) =
σ2

2λ

(
e−λ|t−s| − e−λ(t+s)

)
. (1.3)

2. If ν ∼ N (0, σ
2

2λ ), X is a stationary Ornstein-Uhlenbeck process, i.e. a zero-mean
Gaussian process such that

∀s, t ∈ R+; Eν [XsXt] =
σ2

2λ
e−λ|t−s|. (1.4)
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Since a set-indexed extension of the OU process cannot be directly derived from the
integral representation (1.1), we first focus on the stationary process described in (1.4).
A natural way to extend this covariance to the set-indexed framework is to substitute
the absolute value |t−s| with d(U, V ) where d is a distance defined on the elements of A.
Similarly to the case of the set-indexed fractional Brownian motion described in [17],
we consider the choice d(U, V ) = m(U∆V ), where ∆ denotes the symmetric difference.

In Section 2, we first define a stationary set-indexed Ornstein-Uhlenbeck process
(ssiOU) as a zero-mean Gaussian process X = {XU ;U ∈ A} such that

∀U, V ∈ A; E[XUXV ] =
σ2

2λ
e−λm(U∆V ), (1.5)

where λ and σ are positive parameters. Stationarity and Markov properties of this
set-indexed process are studied, and lead to the complete characterization proved in
Theorem 2.7. Then, using the Markov kernel obtained, we are able to introduce in Def-
inition 3.1 a general set-indexed Ornstein-Uhlenbeck process, whose law is consistent
with the covariance structure (1.3) in particular case of initial Dirac distributions.

Finally, in Section 4, we prove that in the multiparameter case, the set-indexed
Ornstein-Uhlenbeck has a natural integral representation which generalizes expression
(1.1).

2 A stationary set-indexed Ornstein-Uhlenbeck process

In this section, we define a set-indexed extension of the stationary Ornstein-Uhlenbeck
process, defined by the Gaussian covariance structure (1.4).

2.1 Definition and first properties

As a preliminary to the definition, we need to prove that the expected covariance
function of the process is positive definite in the same way as Lemma 2.9 of [17].

Lemma 2.1. If A is an indexing collection, m a Radon measure on the σ-field generated
by A and λ, σ positive constants, the function Γ : A×A → R defined by

∀U, V ∈ A; Γ(U, V ) =
σ2

2λ
e−λm(U∆V ),

is positive definite.

Proof. Let f1, f2, . . . , fk be in L2(m) and u1, u2, . . . , uk be in R. Let V be the vector space

V = span(f1, . . . , fk). Since f 7→ e
− 1

2‖f‖
2
L2(m) is positive definite, there exists a Gaussian

vector X on the finite-dimensional space V such that

∀λ > 0, ∀f ∈ V; E
[
ei
√

2λ〈X,f〉 ] = e
−λ‖f‖2

L2(m) .

The non-negative definition of f 7→ e
−λ‖f‖2

L2(m) can be written

k∑
i=1

k∑
j=1

uiuje
−λ‖fi−fj‖2L2 =

k∑
i=1

k∑
j=1

uiujE
[
ei
√

2λ〈X,fi−fj〉
]

=

∥∥∥∥ k∑
i=1

uie
i
√

2λ〈X,fi〉
∥∥∥∥2

L2(Ω)

≥ 0.

For any U1, . . . , Uk ∈ A, the previous result is applied to f1 = 1U1 , . . . , fk = 1Uk ∈ L2(m).
As in the proof of Lemma 2.9 in [17], we remark that

∀i, j ∈ {1, . . . , k}; m(Ui∆Uj) = m
(
|1Ui − 1Uj |

)
=
∥∥fi − fj∥∥2

L2(m)
,
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and we deduce
k∑
i=1

k∑
j=1

uiuje
−λm(Ui∆Uj) ≥ 0

which proves the result.

According to Lemma 2.1, we can define

Definition 2.2. Given the indexing collection A and positive real numbers λ and σ, any
Gaussian process {XU ; U ∈ A} such that for all U, V ∈ A,

E[XU ] = 0 and E[XUXV ] =
σ2

2λ
e−λm(U∆V ),

is called a stationary set-indexed Ornstein-Uhlenbeck (ssiOU) process.

The covariance structure of the Gaussian process coming from Definition 2.2 directly
implies the L2-continuity and stationarity properties.

Proposition 2.3. The stationary set-indexed Ornstein-Uhlenbeck process X of Defini-
tion 2.2 is L2-monotone inner- and outer-continuous, i.e. for any increasing sequence
(Un)n∈N in A, such that ∪k∈NUk ∈ A and for any decreasing sequence (Vn)n∈N in A,

lim
n→∞

E
[
|XUn −X∪k∈NUk |

2
]

= 0 and lim
n→∞

E
[
|XVn −X∩k∈NVk |2

]
= 0.

Proof. Let (Un)n∈N be an increasing sequence in A such that ∪k∈NUk ∈ A. Then using
equation (1.5), we have

∀n ∈ N; E
[
|XUn −X∪k∈NUk |

2
]

=
σ2

2λ

(
2− 2e−λm(∪k∈NUk\Un)

)
.

According to Assumption (iii) on A and m, limn→∞m(∪k∈NUk \ Un) = 0. Therefore, the
L2-monotone inner-continuity follows, and similarly, the outer-continuity of X.

The stationarity increments property for set-indexed processes has been introduced
in [18] in the context of fractional Brownian motion, and it has constitued the key prop-
erty to derive deep understanding of the set-indexed Lévy processes in [19]. The sta-
tionarity property defined below is closely related to these two previous works.

Proposition 2.4. The stationary set-indexed Ornstein-Uhlenbeck process X of Defini-
tion 2.2 is m-stationary, i.e. for any k ∈ N, V ∈ A and increasing sequences (Ui)1≤i≤k
and (Ai)1≤i≤k in A such that m(Ui \ V ) = m(Ai) for all i ∈ {1, . . . , k}, X satisfies

(XU1 , . . . , XUk)
(d)
= (XA1 , . . . , XAk).

Proof. Let V , (Ui)1≤i≤k and (Ai)1≤i≤k be as in the statement. Without any loss of gen-
erality, we suppose that V ⊆ Ui. Then, for all j ≥ i, as Ui ⊆ Uj and Ai ⊆ Aj ,

m(Ui∆Uj) = m(Uj)−m(Ui) = m(Uj \ V )−m(Ui \ V ) = m(Aj)−m(Ai) = m(Aj∆Ai).

Therefore, we deduce the expected equality, sinceX is a centered Gaussian process and

for all i, j ∈ {1, . . . , k}, E[XUiXUj ] =
σ2

2λ
e−λm(Ui∆Uj) =

σ2

2λ
e−λm(Aj∆Ai) = E[XAiXAj ].
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We observe that the definition of stationarity is given in a strict sense, since it
concerns the invariance of finite-dimensional distributions under a form of measure-
invariant translation. In the classic theory of stationary random fields, a weaker prop-
erty relying on the correlation function is usually defined (see [39]): C(s, t) = E[XsXt]

only depends on the difference t − s. The weak definition of stationarity for one-
parameter processes can be naturally extended to the multiparameter case, but it ap-
pears that this straightforward extension is not the most relevant. Indeed, the stationar-
ity of increments defined using Lebesgue measure or their invariance under translation
appeared to be more interesting to study multiparameter processes (see e.g. Lévy and
fractional Brownian sheets), and this fact explains the form of the set-indexed extension
for the stationarity property.

2.2 Markov property and characterisation of the stationary set-indexed Ornstein-
Uhlenbeck process

To investigate the Markov property, we first need to recall a few notations used in
[6]. Let C ∈ C such that C = A\B, with B ∈ A(u) and B ⊆ A ∈ A. Since the assumption
Shape holds on A, Definition 1.4.5 in [21] states that there exists a unique extremal
representation {Ai}i≤k of B, i.e. such that B = ∪ki=1Ai and for all i 6= j, Ai * Aj .

Then, let A` be the semilattice {A1 ∩ · · · ∩ Ak, . . . , A1 ∩ A2, A1 . . . , Ak} ⊂ A and AC

be defined as the following subset of A`,

AC = {U ∈ A`; U * B◦} def
= {U 1

C , · · · , UnC }, where n = #(AC). (2.1)

The notation XC refers to the random vector XC =
(
XU1

C
, . . . , XUnC

)
, and similarly xC is

used for a vector of variables. Thereby, according to [6], the extension ∆X of X on the
class C satisfies

∆XC
def
= XA −

[ k∑
i=1

XAi −
∑
i<j

XAi∩Aj + · · ·+ (−1)k+1XA1∩···∩Ak

]

= XA −
[ n∑
i=1

(−1)εiXU iC

]
, (2.2)

where (−1)εi represents the sign of the term XU iC
in the inclusion-exclusion formula. In

other words, (2.2) says that every term XU in the previous inclusion-exclusion formula
such that U /∈ AC is cancelled by another term in the sum.

Finally {FA;A ∈ A} denotes the natural filtration generated by X, and for all B ∈
A(u) and C ∈ C, FB and G∗C respectively correspond to

FB =
∨

A∈A,A⊆B

FA and G∗C =
∨

B∈A(u),B∩C=∅

FB . (2.3)

We note that these filtrations are not necessarily outer-continuous.
In the following result, we prove that the ssiOU process satisfies the C-Markov prop-

erty introduced in [6].

Proposition 2.5. The stationary set-indexed Ornstein-Uhlenbeck process X of Defini-
tion 2.2 is a C-Markov process with respect to its natural filtration (FA)A∈A, i.e. for all
C = A \B with A ∈ A, B ∈ A(u) and all Borel function f : R→ R+, X satisfies

E[f(XA) | G∗C ] = E[f(XA) |XC ]
def
= PCf(XC) P-a.s. (2.4)

Proof. Let C = A\B be in C, {Ai}i≤k be the extremal representation of B and U be in A
such that U∩C = ∅. We first note that U∩A = (U∩C)∪(U∩B) = U∩B ∈ A. Thus, since
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A satisfies the Shape hypothesis, there exists l ∈ {1, . . . , k} such that U ∩ B = U ∩ Al.
Consider the following quantity IU ,

IU = E
[
XU

(
XA −

k∑
i=1

XAie
−λm(A\Ai) +

∑
1≤i<j≤k

XAi∩Aje
−λm(A\Ai∩Aj)+

· · ·+ (−1)kXA1∩···∩Ake
−λm(A\A1∩···∩Ak)

)]
=
σ2

2λ

(
e−λm(A∆U) −

k∑
i=1

e−λ(m(Ai∆U)+m(A\Ai)) +
∑

1≤i<j≤k

e−λ(m(Ai∩Aj∆U)+m(A\Ai∩Aj))+

· · ·+ (−1)ke−λ(m(A1∩···∩Ak∆U)+m(A\A1∩···∩Ak))
)

=
σ2

2λ
e−λ(m(A)+m(U))

(
e−2λm(A∩U) −

k∑
i=1

e−2λm(Ai∩U) +
∑

1≤i<j≤k

e−2λm(Ai∩Aj∩U)+

· · ·+ (−1)ke−2λm(A1∩···∩Ak∩U)
)
.

Let us introduce the set-indexed function h : A 7→ e−2λm(A∩U). Since the assumption
Shape holds, h admits an extension ∆h onA(u) based on an inclusion-exclusion formula.

Thus, we have IU = σ2

2λe
−λ(m(A)+m(U))

(
h(A∩U)−∆h(B∩U)

)
. But since A∩U = B∩U =

Al ∩ U ∈ A and h coincides with ∆h on A, we obtain IU = 0.
Therefore, IU = 0 for all U ∈ A such that U ∩ C = ∅ and as X is a Gaussian process,

we can claim that the random variable

XA −
k∑
i=1

XAie
−λm(A\Ai) + · · ·+ (−1)kXA1∩···∩Ake

−λm(A\A1∩···∩Ak)

and G∗C are independent. Since the previous random variable is expressed as an inclusion-
exclusion formula, equation (2.2) shows that it can also be expressed as

XA − ZC with ZC = e−λm(A)

[ n∑
i=1

(−1)εiXU iC
eλm(U iC)

]
.

Notice that ZC is XC -measurable (and then G∗C -measurable) andXA−ZC is independent
of G∗C (and then independent of XC). Hence, using a classic property of the conditional
expectation, we have

E[f(XA) | G∗C ] = E[f(XA − ZC + ZC) | G∗C ] = E[f(XA) |ZC ].

We similarly obtain the equality E[f(XA) |XC ] = E[f(XA) |ZC ] which ends the proof.

Intuitively, the C-Markov property can be understood as following: For any incre-
ment C = A \ B, the σ-field G∗C represents the past, described as strong as it contains
all the information inside the regions B satisfying C = A \ B. The vector XC itself
gathers the minimum information related to the "border" points of C, and finally, XA

represents the future value of the process. Then, Equation (2.4) simply states that
conditioning the future with respect the full history G∗C or the vector XC are equivalent.

According to Proposition 2.9 in [6], we can deduce that the set-indexed Ornstein-
Uhlenbeck process also satisfies set-indexed sharp-Markov and Markov properties whose
definitions can be found in [20]. In the multiparameter case, it implies that this pro-
cess is sharp-Markov and germ-Markov with respect to finite unions of rectangles (see
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[20, 6]). The question whether this implication remains true for more complex sets has
not been investigated yet (see [13, 12] for answers in the particular case of Brownian
and Lévy sheets).

As a consequence of the previous proposition, we can derive the C-transition system
P and the initial law that characterize entirely a ssiOU process.

Corollary 2.6. The C-transition system P = {PC(xC ; Γ); C ∈ C,Γ ∈ B(R)} of the sta-
tionary set-indexed Ornstein Uhlenbeck process of Definition 2.2 is characterized by
the following transition densities, for all C = A \B ∈ C:

pC(xC ; y) =
1

σC
√

2π
exp

[
− 1

2σ2
C

(
y − e−λm(A)

[ n∑
i=1

(−1)εi xU iC e
λm(U iC)

])2
]
, (2.5)

where

σ2
C =

σ2

2λ

(
1− e−2λm(A)

[ n∑
i=1

(−1)εie2λm(U iC)

])
.

Furthermore, the initial law is given by X∅′ ∼ N (0, σ
2

2λ ).

Proof. Let C = A \B be in C and let ZC and YC be the following Gaussian variables

ZC = e−λm(A)

[ n∑
i=1

(−1)εiXU iC
eλm(U iC)

]
and YC = XA − ZC .

Since the process X is centered, E[ZC ] = E[YC ] = 0. We note σ2
C the variance of YC .

Using the independence of YC and G∗C , shown in the proof of Proposition 2.5, and the
fact that ZC is G∗C -measurable, we have for any measurable function f : R→ R+,

E[f(XA) | G∗C ] =E[f(ZC + YC) | G∗C ]

=
1

σC
√

2π

∫
R

f(u+ ZC) exp

(
− u2

2σ2
C

)
du

=
1

σC
√

2π

∫
R

f(v) exp

(
− (v − ZC)2

2σ2
C

)
dv

def
=

∫
R

f(v) pC(XC ; v) dv.

Equation (2.5) follows from this last equality. It remains to prove the expression of the
variance σ2

C . We first note that, as XU iC
is G∗C -measurable and YC is independent of G∗C ,

E[XU iC
YC ] = 0 for any i ∈ {1, . . . , n}. Therefore, we have

σ2
C = E[XAYC ] = E[X2

A]− e−λm(A)

[ n∑
i=1

(−1)εi E
[
XAXU iC

]
eλm(U iC)

]

=
σ2

2λ

(
1− e−λm(A)

[ n∑
i=1

(−1)εi e−λm(A∆U iC) eλm(U iC)

])

=
σ2

2λ

(
1− e−2λm(A)

[ n∑
i=1

(−1)εie2λm(U iC)

])
.

The following result shows that properties exhibited in Propositions 2.3, 2.4 and 2.5
lead to a complete characterization of the stationary set-indexed Ornstein-Uhlenbeck
process.
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Theorem 2.7. A set-indexed mean-zero Gaussian process X = {XU ; U ∈ A} is a sta-
tionary set-indexed Ornstein-Uhlenbeck process if and only if the three following prop-
erties hold:

(i) L2-monotone inner- and outer-continuity;

(ii) m-stationarity;

(iii) C-Markov property.

Proof. We already know that the stationary set-indexed Ornstein-Uhlenbeck process
of Definition 2.2 satisfies these three properties. Conversely, let X be a zero-mean
Gaussian set-indexed process which is L2-monotone inner- and outer-continuous, m-
stationary and C-Markov. Without any loss of generality, we suppose E[X2

∅′ ] = 1.
We first consider an increasing and continuous function f : R+ → A, i.e. an elemen-

tary flow in the terminology of [21, 18], such that f(0) = ∅′. Since m is monotonically
continuous on A (Condition (iii) of the indexing collection), the function θ : t 7→ m[f(t)]

is continuous, θ(0) = 0 and the pseudo-inverse θ−1(t) = inf{u : θ(u) > t} satisfies
θ ◦ θ−1(t) = t. Then, the projected one-parameter process Xm,f = {Xf◦θ−1(t); t ∈ R+}
is a centered one-parameter Gaussian process which is L2-continuous, stationary (see
[18]) and Markov (see [6], Proposition 2.10). Therefore, Xm,f is a one-dimensional
Ornstein-Uhlenbeck process (see e.g. [31]). Since E[(Xf

0 )2] = 1, there exists λf > 0

such that for all s, t ∈ R+,

E[Xm,f
s Xm,f

t ] = e−λf |t−s| = e−λf |m[f◦θ−1(t)]−m[f◦θ−1(s)]| = e−λfm[f◦θ−1(s)∆f◦θ−1(t)].

Let us prove the constant λf does not depend on the function f . Let f1 and f2 be two
different elementary flows which satisfy the previous conditions. Then, as m(∅′) = 0,
for any t > 0, we know that m(f1 ◦ θ−1

1 (t) \ ∅′) = m(f2 ◦ θ−1
2 (t)) = t, and therefore,

according to the m-stationarity of X,
(
Xm,f1
t , Xm,f1

0

) d
= (Xm,f2

t , Xm,f2
0 ), which implies

e−λf1 t = E[Xm,f1
t Xm,f1

0 ] = E[Xm,f2
t Xm,f2

0 ] = e−λf2 t, i.e. λf1 = λf2
def
= λ.

For all U, V ∈ A such that U ⊆ V , there exists f which goes through U and V . We
obtain

E[XUXV ] = e−λ|m(V )−m(U)| = e−λm(U∆V ).

Finally let U, V ∈ A. From the previous equation, we observe that

E[(XV − e−λm(V \U)XU∩V )XU∩V ] = e−λm(V∆(U∩V )) − e−λm(V \U) = 0.

Therefore, since X is a Gaussian process, E[XV |XU∩V ] = e−λm(V \U)XU∩V , and using
the C-Markov property applied to C = U \V with the fact XU\V = XU∩V , we obtain the
expected covariance,

E[XUXV ] = E
[
XU E[XV | G∗U\V ]

]
= E

[
XU E[XV |XU∩V ]

]
= e−λm(V \U)E

[
XUXU∩V

]
= e−λm(V \U) · e−λm(U\V ) = e−λm(U∆V ).

3 Definition of a general set-indexed Ornstein-Uhlenbeck pro-
cess

Using the C-Markov property obtained in Proposition 2.5 and the C-transition system
P from Corollary 2.6, we can finally define a general set-indexed Ornstein-Uhlenbeck
process.
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Definition 3.1. A process X is called a set-indexed Ornstein-Uhlenbeck process if

(i) X∅′ ∼ ν, where ν is a given initial probability distribution;

(ii) X is C-Markov with a C-transition system given by (2.5).

Theorem 2.2 in [6] proves the existence of such processes in the canonical probabil-
ity space (RA,Pν) for any initial probability distribution ν. Then, Pν is the probability
measure on RA under which the canonical process defined by XU (ω) = ω(U) for all
ω ∈ RA is a set-indexed Ornstein-Uhlenbeck process. In the particular case of Dirac
initial distribution, the complete determination of the laws ofX is given by the following
result.

Proposition 3.2. For any x ∈ R, under the probability Px, the canonical set-indexed
Ornstein-Uhlenbeck process X is the Gaussian process defined by the covariance struc-
ture

∀U ∈ A; Ex[XU ] = x e−λm(U), (3.1)

∀U, V ∈ A; Covx(XU , XV ) =
σ2

2λ

(
e−λm(U∆V ) − e−λ(m(U)+m(V ))

)
. (3.2)

Proof. We first check that X is a Gaussian process under the probability Px.
Let A1, . . . , Ak ∈ A and λ1, . . . , λk ∈ R. Without any loss of generality, we can suppose
that A` = {A0 = ∅′, A1, . . . , Ak} is a semilattice and we denote Ci = Ai \ (∪i−1

j=0Aj) for all
i ∈ {1, . . . , k}. Then, using notations from Corollary 2.6, we have

Ex

[
exp

(
i

k∑
j=1

λjXAj

)]
= Ex

[
exp

(
i

k−1∑
j=1

λjXAj

)
Ex

[
exp
(
iλkXAk

) ∣∣∣ G∗Ck]]

= Ex

[
exp

(
i

k−1∑
j=1

λjXAj

)
exp
(
iλkZCk

)
Ex
[
exp(iλkYCk)

]]

= exp

(
−
λ2
kσ

2
Ck

2

)
Ex

[
exp

(
i

k−1∑
j=1

λ′jXAj

)]
,

since ZCk is weighted sum of XV , V ∈ {A0, . . . , Ak−1}. Therefore, by induction on k, we
get the characteristic function of a Gaussian variable.

In order to obtain the mean and the covariance functions, we consider the case
k = 3, with the semi-lattice {∅′, A1 = A2 ∩A3, A2, A3}. We compute

Ex

[
exp
(
i(λ2XA2

+ λ3XA3
)
)]

= exp
(
−1

2
λ2

3σ
2
C3

)
Ex

[
exp
(
i(λ2XA2

+ λ3ZC3
)
)]

= exp
(
−1

2
λ2

3σ
2
C3

)
Ex

[
exp
(
i(λ2XA2

+ λ3e
−λm(A3\A1)XA1

)
)]
.

Using the C-Markov property applied to C2 = A2 \A1, we get

Ex

[
exp
(
i(λ2XA2 + λ3XA3)

)]
= exp

(
−1

2
λ2

3σ
2
C3
− 1

2
λ2

3σ
2
C2

)
× Ex

[
exp
(
i
(
λ2e
−λm(A2\A1) + λ3e

−λm(A3\A1)
)
XA1

)]
.
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Then, the C-Markov property applied to C1 = A1 \ ∅′ leads to

Ex

[
exp
(
i(λ2XA2

+ λ3XA3
)
)]

= exp
(
−1

2
λ2

3σ
2
C3
− 1

2
λ2

3σ
2
C2
− 1

2

(
λ2e
−λm(A2\A1) + λ3e

−λm(A3\A1)
)2
σ2
C1

)
× Ex

[
exp
(
i
(
λ2e
−λm(A2\A1) + λ3e

−λm(A3\A1)
)
e−λm(A1)X∅′

)]
= exp

(
−1

2
λ2

3σ
2
C3
− 1

2
λ2

3σ
2
C2
− 1

2

(
λ2e
−λm(A2\A1) + λ3e

−λm(A3\A1)
)2
σ2
C1

)
× exp

(
i
(
λ2e
−λm(A2) + λ3e

−λm(A3)
)
x
)
.

The mean of X comes from the last line. The covariance is obtained from the cross term
in front of λ2λ3:

σ2
C1
e−λm(A2\A1)e−λm(A3\A1) =

σ2

2λ

(
1− e−2λm(A1)

)
e−λm(A2∆A3)

=
σ2

2λ

(
e−λm(A2∆A3) − e−λ(m(A2)+m(A3))

)
,

since A1 = A2 ∩A3 and σ2
C1

= σ2

2λ

(
1− e−2λm(A1)

)
.

4 Multiparameter Ornstein-Uhlenbeck process

In the particular case of the indexing collection A = {[0, t] ; t ∈ R+} endowed with
the Lebesgue measurem, the set-indexed Ornstein-Uhlenbeck processes studied in Sec-
tions 2 and 3 reduce to the classical one-dimensional Ornstein-Uhlenbeck process.

In the multiparameter setting, a natural extension of the stationary Ornstein-Uhlenbeck
process can be defined by

∀t ∈ RN
+ ; Yt =

∫ t

−∞
σ e〈α,u−t〉dWu. (4.1)

where σ > 0, α = (α1, . . . , αN ) ∈ RN with αi > 0 and W is the Brownian sheet. The
covariance of this process is given by

E[YsYt] =

N∏
i=1

∫ si∧ti

−∞
σ2eαi(ui−si−ti) dui =

σ2∏N
i=1 αi

exp

{
−

N∑
i=1

αi(si + ti − si ∧ ti)
}
.

Hence, Y is a stationary set-indexed Ornstein-Uhlenbeck process on the space RN
+ en-

dowed with the indexing collection A = {[0, t] ; t ∈ RN
+} and the measure mα defined on

the Borel σ-field by

∀A ∈ B(RN ); mα(A) =

N∑
i=1

αiλ1(A ∩ ei), (4.2)

where λ1 is the Lebesgue measure on R and e1, . . . , eN are the axes of RN : e1 = R ×
{0}N−1, e2 = {0} ×R× {0}N−2, . . .

The following proposition extends this result to the general set-indexed Ornstein-
Uhlenbeck process defined in Section 3, proving that it also has a natural integral rep-
resentation in the particular multiparameter case.

Proposition 4.1. Let Y = {Yt; t ∈ RN
+} be the multiparameter process defined by

∀t ∈ RN
+ ; Yt = e−〈α,t〉

[
Y0 + σ

∫
(−∞,t]\(−∞,0]

e〈α,u〉dWu

]
, (4.3)
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where σ > 0, α = (α1, . . . , αN ) ∈ RN with αi > 0 for each i ∈ {1, . . . , N}, W is the
Brownian sheet and Y0 is a random variable independent of W .
Then, Y is a set-indexed Ornstein-Uhlenbeck process of Definition 3.1 on the space
(T ,A,mα), with A = {[0, t]; t ∈ RN

+} and mα defined in (4.2).

Proof. First we observe that the measure mα satisfies, for all s, t ∈ RN
+ ,

mα

(
[0, s] ∩ [0, t]

)
=

N∑
i=1

αi(si ∧ ti) = 〈α, sf t〉 where sf t := (s1 ∧ t1, . . . , sN ∧ tN ).

Let t1, . . . , tk be in RN
+ and λ1, . . . , λk in R. For any fixed x0 ∈ R, Y x0 denotes the

Gaussian process defined by

∀t ∈ RN
+ ; Y x0

t = e−〈α,t〉
[
x0 + σ

∫
At

e〈α,u〉dWu

]
,

where At = (−∞, t] \ (−∞, 0].
Let Y be the RN

+ -indexed process defined by (4.3) and denote by ν the law of Y0.
Since Y0 and W are independent, we have

E
[
ei

∑k
j=1 λjYtj

]
=

∫
R

E
[
e
i
∑k
j=1 λjY

x0
tj

]
ν(dx0),

Let us determine the mean and covariance of the process Y x0 , for any x0 ∈ R:

∀t ∈ RN
+ ; E

[
Y x0
t

]
= x0 e

−〈α,t〉 = x0 e
−mα([0,t])

and for all s, t ∈ RN
+ ,

Cov(Y x0
s , Y x0

t ) = σ2e−〈α,s+t〉E

[∫
As

e〈α,u〉dWu

∫
At

e〈α,u〉dWu

]
= σ2e−〈α,s+t〉

∫
Asft

e2〈α,u〉du

=
σ2

2n
∏n
j=1 αj

e−〈α,s+t〉
(
e2〈α,sft〉 − 1

)
=

σ2

2n
∏n
j=1 αj

e−mα([0,s])−mα([0,t])
(
e2mα([0,s]∩[0,t]) − 1

)
=
σ̃2

2

(
e−mα([0,s]∆[0,t]) − e−(mα([0,s])+mα([0,t]))

)
= Covx0

(X[0,s], X[0,t]),

where X is the canonical set-indexed Ornstein-Uhlenbeck process with parameters
(σ̃, λ = 1) with notations of Proposition 3.2. Therefore, the process Y x0 has the same
law as X[0,•] starting from x0 and

E
[
e
i
∑k
j=1 λjY

x0
tj

]
= Ex0

[
e
i
∑k
j=1 λjX[0,tj ]

]
.

Consequently

E
[
ei

∑k
j=1 λiYtj

]
=

∫
R

Ex0

[
e
i
∑k
j=1 λjX[0,tj ]

]
ν(dx0) = Eν

[
e
i
∑k
j=1 λjX[0,tj ]

]
,

which states that Y and X[0,•] have the same law and concludes the proof.

Remark 4.2. We have exhibited an unusual measuremα on RN , which only charges the
axes (ei)i≤N . This measure is also interesting when the set-indexed Brownian motion
(siBM) is considered on the space (T ,A,mα) with α = (1, . . . , 1), as it corresponds to
a classic multiparameter process called the additive Brownian motion (see e.g. [22]).
Conversely, since we know that the Brownian sheet is a siBM on the space (T ,A, λ),
where λ is the Lebesgue measure, we could also define a different multiparameter
Ornstein-Uhlenbeck process using the Lebesgue measure instead of mα.
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Remark 4.3. A different multiparameter extension of the Ornstein-Uhlenbeck process
has already been introduced in the literature (e.g. see [36, 37] and [16]). It admits an
integral representation given by,

∀t ∈ RN
+ ; Yt = e−〈α,t〉

[
Y0 + σ

∫ t

0

e〈α,u〉dWu

]
. (4.4)

If we consider a Markov point of view, the definition given in Proposition 4.1 seems
more natural. Indeed, as described in [6], the transition probabilities of the process de-
scribed in Equation (4.4) do not strictly correspond to those of the set-indexed Ornstein-
Uhlenbeck, and can not be extended to the set-indexed formalism. Furthermore, we
observe that the model (4.4) does not embrace the natural stationary case described in
equation (4.1).
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