On the infinite sums of deflated Gaussian products*

Enkelejd Hashorva ${ }^{\dagger} \quad$ Lanpeng Ji ${ }^{\ddagger} \quad$ Zhongquan Tan ${ }^{\S}$

Abstract

In this paper we derive the exact tail asymptotic behaviour of $S_{\infty}=\sum_{i=1}^{\infty} \lambda_{i} X_{i} Y_{i}$, where $\lambda_{i}, i \geq 1$ are non-negative square summable deflators (weights) and $X_{i}, Y_{i}, i \geq$ 1 , are independent standard Gaussian random variables. Further, we consider the tail asymptotics of $S_{\infty ; p}=\sum_{i=1}^{\infty} \lambda_{i} X_{i}\left|Y_{i}\right|^{p}, p>1$, and also discuss the influence on the asymptotic results when λ_{i} 's are independent random variables.

Keywords: Gaussian products; infinite sums; random deflation; exact tail asymptotics; maxdomain of attraction; regular variation; chi-square distribution.
AMS MSC 2010: 60G70; 60G15.
Submitted to ECP on April 4, 2012, final version accepted on July 15, 2012.

1 Introduction and Main Result

Let $X_{i}, Y_{i}, i \geq 1$ be independent standard (zero mean and unit variance) Gaussian random variables, and let $\lambda_{i}, i \geq 1$ be non-negative constants. Define, for some fixed integer n, the weighted sum

$$
S_{n}=\sum_{i=1}^{n} \lambda_{i} X_{i} Y_{i}
$$

Since a one-dimensional projection of a standard Gaussian random vector is distributed as a Gaussian random variable, we have the stochastic representation

$$
\begin{equation*}
S_{n} \stackrel{d}{=} X_{1} \sqrt{\sum_{i=1}^{n} \lambda_{i}^{2} Y_{i}^{2}}=X_{1} Z_{n}, \quad \text { with } \quad Z_{n}:=\sqrt{\sum_{i=1}^{n} \lambda_{i}^{2} Y_{i}^{2}} \tag{1.1}
\end{equation*}
$$

where $\stackrel{d}{=}$ stands for the equality of the distribution functions. Note in passing that (1.1) holds for general random variables Y_{1}, \ldots, Y_{n} being independent of Gaussian random variables X_{1}, \ldots, X_{n}. Clearly, due to the symmetry about 0 of $X_{i}, i \geq 1$, the following stochastic representation

$$
\begin{equation*}
S_{n} \stackrel{d}{=} \sum_{i=1}^{n} \lambda_{i} X_{i}\left|Y_{i}\right| \tag{1.2}
\end{equation*}
$$

is also valid, and hence S_{n} is a symmetric (about 0) random variable. In this paper, we will make use of the stochastic representations of S_{n}, following from the fact that

[^0]$X_{i}, i \geq 1$, are Gaussian. For notational simplicity, we consider in the following ordered weights $\lambda_{i}, i \geq 1$ meaning
$$
\lambda:=\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}>\lambda_{m+1} \geq \cdots \geq 0
$$

In view of [7] (see also [11] p. 168 and [16]), we have ($\operatorname{set} \prod_{m+1}^{n}(\cdot)=: 1$ when $m=n$)

$$
\boldsymbol{P}\left\{Z_{n}^{2}>\lambda^{2} x\right\} \sim \prod_{i=m+1}^{n}\left(1-\lambda_{i}^{2} / \lambda^{2}\right)^{-1 / 2} \frac{2^{1-m / 2}}{\Gamma(m / 2)} x^{m / 2-1} \exp (-x / 2), m \leq n \leq \propto(1.3)
$$

as $x \rightarrow \infty$. The standard notation \sim stands for asymptotic equivalence as the argument tends to infinity, and $\Gamma(\cdot)$ denotes the Euler Gamma function. In the light of Lemma 3.4 (presented in Section 3) we obtain

$$
\begin{equation*}
\boldsymbol{P}\left\{\left|S_{n}\right|>\lambda x\right\} \sim \boldsymbol{P}\left\{Z_{n}^{2}>\lambda^{2} x\right\} \exp (-x / 2), n \geq m \tag{1.4}
\end{equation*}
$$

which is shown in the special case $\lambda_{i}=\lambda, i \leq n$ in the first Lemma of [8].
An interesting quantity with application in statistics, insurance and several other applied fields is the random variable

$$
S_{\infty}=\sum_{i=1}^{\infty} \lambda_{i} X_{i} Y_{i}
$$

where the non-negative weights $\lambda_{i}, i \geq 1$ are square summable, i.e.,

$$
\begin{equation*}
\sum_{i=1}^{\infty} \lambda_{i}^{2}<\infty \tag{1.5}
\end{equation*}
$$

The random variable S_{∞} appears as the distributional limits for various statistics; for instance as shown by [9], S_{∞} is essential for the characterisation of continuous, separately exchangeable processes. Several examples of statistics given as infinite weighted sums of Gaussian products appear naturally when dealing with U-statistics or row and column exchangeable processes.

The main result of [8] gives an upper bound for the tail probability of the random variable S_{∞}, namely

$$
\begin{equation*}
\boldsymbol{P}\left\{\left|S_{\infty}\right|>x\right\} \leq K \boldsymbol{P}\left\{\left|S_{m}\right|>x\right\}, \quad x>0 \tag{1.6}
\end{equation*}
$$

with K some unknown constant and $S_{m}=\lambda \sum_{i=1}^{m} X_{i} Y_{i}$. Recall that m is the multiplicity of the largest weight $\lambda=\lambda_{1}$, and by the square summability assumption on $\lambda_{i}, i \geq 1, m$ is necessarily a finite integer.
The main goal of this contribution is to derive, instead of the bound above, the exact tail asymptotic behaviour of $\left|S_{\infty}\right|$. Our main result below gives such an asymptotic expansion showing further connections with the tail asymptotic behaviours of Z_{∞} and S_{n} for any $n \geq m$.

Theorem 1.1. Let $X_{i}, Y_{i}, i \geq 1$ be independent standard Gaussian random variables. For given constants $\lambda:=\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}>\lambda_{m+1} \geq \cdots \geq 0$ satisfying the square summability criterion (1.5)

$$
\begin{equation*}
\boldsymbol{P}\left\{\left|S_{\infty}\right|>\lambda x\right\} \sim\left[\prod_{i=m+1}^{\infty}\left(1-\lambda_{i}^{2} / \lambda^{2}\right)^{-1 / 2}\right] \frac{2^{1-m / 2}}{\Gamma(m / 2)} x^{m / 2-1} \exp (-x) \tag{1.7}
\end{equation*}
$$

holds as $x \rightarrow \infty$. Furthermore, as $x \rightarrow \infty$, we have

$$
\begin{equation*}
\boldsymbol{P}\left\{\left|S_{\infty}\right|>x\right\} \sim\left[\prod_{i=n+1}^{\infty}\left(1-\lambda_{i}^{2} / \lambda^{2}\right)^{-1 / 2}\right] \boldsymbol{P}\left\{\left|S_{n}\right|>x\right\}, \text { for any } n \geq m \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{P}\left\{\left|S_{\infty}\right|>\lambda x\right\} \sim \boldsymbol{P}\left\{Z_{\infty}^{2}>\lambda^{2} x\right\} \exp (-x / 2) \tag{1.9}
\end{equation*}
$$

2 Extensions and Discussions

In this section we discuss two directions which provide natural extensions of the main result presented in Theorem 1.1. Initially, motivated by the stochastic representation (1.2), we consider $S_{n ; p}, p>0$ defined by

$$
S_{n ; p}:=\sum_{i=1}^{n} \lambda_{i} X_{i}\left|Y_{i}\right|^{p} .
$$

The same reasoning as (1.1) yields

$$
S_{n ; p} \stackrel{d}{=} X_{1} \sqrt{\sum_{i=1}^{n} \lambda_{i}^{2} Y_{i}^{2 p}}=: X_{1} Z_{n ; p}
$$

We show in Lemma 3.1 below that both $S_{\infty ; p}$ and $Z_{\infty ; p}$ exist almost surely, and moreover $S_{\infty ; p} \stackrel{d}{=} X_{1} Z_{\infty ; p}$. Since the tail asymptotic behaviour of $Z_{\infty ; p}$ is known (see [3], [10] and [11]) applying Lemma 3.3 for any $p>1$ we obtain

$$
\begin{equation*}
\boldsymbol{P}\left\{\left|S_{\infty ; p}\right|>\lambda x\right\} \sim \frac{2 m}{\sqrt{\pi(1+p)}} p^{\frac{p}{2(1+p)}} x^{-\frac{1}{1+p}} \exp \left(-\frac{1}{2}\left(p^{\frac{1}{1+p}}+p^{-\frac{p}{1+p}}\right) x^{\frac{2}{1+p}}\right) \tag{2.1}
\end{equation*}
$$

where we use the same notation and assumptions as in Theorem 1.1. We note in passing that for the cases when $p \in(0,1)$ the asymptotics can not be obtained similarly due to the complexity of the tail asymptotic behaviour of $Z_{\infty ; p}$ (e.g., [10, 11, 12]).

Our second extension concerns the case of random deflators

$$
\Lambda_{i}=\lambda_{i} R_{i}, \quad i \geq 1
$$

with $R_{i} \in(0,1], i \geq 1$ and λ_{i} 's as above. A close inspection of (1.8) indicates that the main contribution in the asymptotics of $\boldsymbol{P}\left\{\left|\sum_{i=1}^{\infty} \Lambda_{i} X_{i} Y_{i}\right|>x\right\}$ should be from the quantity $\boldsymbol{P}\left\{\left|\sum_{i=1}^{m} \Lambda_{i} X_{i} Y_{i}\right|>x\right\}$. However, the asymptotic behavior of the latter is, in general, not easy to obtain, and thus in the following we discuss a special case that

$$
\begin{equation*}
R_{1}=\cdots=R_{m} \text { and } \lim _{u \rightarrow 0} \frac{\boldsymbol{P}\left\{R_{1}>1-s u\right\}}{\boldsymbol{P}\left\{R_{1}>1-u\right\}}=s^{\gamma}, \forall s>0 \tag{2.2}
\end{equation*}
$$

for some positive constant γ. The above assumption means that the function $\boldsymbol{P}\left\{R_{1}>1-s\right\}$ is regularly varying at 0 , so we have

$$
\begin{equation*}
\boldsymbol{P}\left\{R_{1}>1-s\right\}=L(s) s^{\gamma} \tag{2.3}
\end{equation*}
$$

with $L(\cdot)$ a positive slowly varying function at 0, i.e., $\lim _{u \rightarrow 0} L(u s) / L(u)=1, \forall s>0$. For more details on the max-domains of attraction and regularly varying functions see [2], [4] or [15].

On the infinite sums of deflated Gaussian products

Theorem 2.1. Let $R_{i} \in(0,1], i \geq 1$, be independent random variables, which are further independent of $X_{i}, Y_{i}, i \geq 1$, such that (2.2) holds. Under the conditions of Theorem 1.1, we have

$$
\boldsymbol{P}\left\{\left|\sum_{i=1}^{\infty} \Lambda_{i} X_{i} Y_{i}\right|>\lambda x\right\} \sim \mathcal{K} \boldsymbol{P}\left\{R_{1}>1-1 / x\right\} x^{m / 2-1} \exp (-x), \quad x \rightarrow \infty
$$

with

$$
\mathcal{K}=\frac{2^{1-m / 2} \Gamma(\gamma+1)}{\Gamma(m / 2)} \prod_{i=m+1}^{\infty} \boldsymbol{E}\left\{\left(1-\frac{\lambda_{i}^{2}}{\lambda^{2}} R_{i}^{2}\right)^{-1 / 2}\right\} \in(0, \infty) .
$$

Our final remark concerns the role of the deterministic weights $\lambda_{i}, i \geq m$. In view of our asymptotic results in the above theorems, the restriction that $\lambda_{i}, i>m$, are positive is not necessary since only $\lambda_{i}^{2}, i>m$, appear. Therefore this condition can be replaced by assuming instead

$$
\begin{equation*}
\lambda>\left|\lambda_{i}\right| \tag{2.4}
\end{equation*}
$$

for all $i>m$.

3 Further Results and Proofs

We present first some lemmas and then continue with the proofs of Theorem 1.1 and Theorem 2.1.
Lemma 3.1. Let $\lambda_{i}, X_{i}, Y_{i}, i \geq 1$, be as in Theorem 1.1. Then, for $p>0$

$$
\begin{equation*}
\boldsymbol{P}\left\{\left|S_{\infty ; p}\right|<\infty\right\}=1=\boldsymbol{P}\left\{Z_{\infty ; p}<\infty\right\} \tag{3.1}
\end{equation*}
$$

with $Z_{\infty ; p}$ being independent of X_{1}. Furthermore

$$
\begin{equation*}
S_{\infty ; p} \stackrel{d}{=} X_{1} Z_{\infty ; p} \tag{3.2}
\end{equation*}
$$

Proof. Since by (1.5)

$$
\boldsymbol{E}\left\{Z_{\infty ; p}^{2}\right\}=\boldsymbol{E}\left\{Y_{1}^{2 p}\right\} \sum_{i=1}^{\infty} \lambda_{i}^{2}<\infty
$$

it follows that $\boldsymbol{P}\left\{Z_{\infty ; p}<\infty\right\}=1$. Similarly, using again (1.5)

$$
\begin{aligned}
\boldsymbol{E}\left\{\left|S_{\infty ; p}\right|\right\} & \leq \liminf _{n \rightarrow \infty} \boldsymbol{E}\left\{\left|S_{n ; p}\right|\right\}=\liminf _{n \rightarrow \infty} \boldsymbol{E}\left\{\left|X_{1}\right| \sqrt{\sum_{i=1}^{n} \lambda_{i}^{2} Y_{i}^{2 p}}\right\} \\
& \leq \boldsymbol{E}\left\{\left|X_{1}\right|\right\} \sqrt{\boldsymbol{E}\left\{Y_{1}^{2 p}\right\} \sum_{i=1}^{\infty} \lambda_{i}^{2}}<\infty
\end{aligned}
$$

establishing thus (3.1). In order to show (3.2), it is sufficient to prove that the characteristic functions of both sides coincide. For any $s \in \mathbb{R}$ we have

$$
\boldsymbol{E}\left\{\exp \left(i s X_{1} Z_{\infty ; p}\right)\right\}=\boldsymbol{E}\left\{\boldsymbol{E}\left\{\exp \left(i s X_{1} Z_{\infty ; p}\right)\right\} \mid Z_{\infty ; p}\right\}=\boldsymbol{E}\left\{\exp \left(-\frac{s^{2}}{2} Z_{\infty ; p}^{2}\right)\right\}
$$

and

$$
\begin{aligned}
\boldsymbol{E}\left\{\exp \left(i s S_{\infty ; p}\right)\right\} & =\boldsymbol{E}\left\{\exp \left(i s \sum_{j=1}^{\infty} \lambda_{j} X_{j}\left|Y_{j}\right|^{p}\right)\right\}=\prod_{j=1}^{\infty} \boldsymbol{E}\left\{\exp \left(i s \lambda_{j} X_{j}\left|Y_{j}\right|^{p}\right)\right\} \\
& =\prod_{j=1}^{\infty} \boldsymbol{E}\left\{\exp \left(-\frac{s^{2}}{2} \lambda_{j}^{2}\left|Y_{j}\right|^{2 p}\right)\right\}=\boldsymbol{E}\left\{\exp \left(-\frac{s^{2}}{2} Z_{\infty ; p}^{2}\right)\right\}
\end{aligned}
$$

implying (3.2), and thus the proof is complete.
Lemma 3.2. Let $\xi_{i}, i=1,2$, be two non-negative independent random variables such that, as $x \rightarrow \infty$,

$$
\begin{equation*}
\boldsymbol{P}\left\{\xi_{i}>x\right\} \sim C_{i} x^{\alpha_{i}} \exp \left(-L_{i}(x) x^{p_{i}}\right), i=1,2 \tag{3.3}
\end{equation*}
$$

with some positive constants $C_{i}, p_{i}, i=1,2, \alpha_{1}, \alpha_{2} \in \mathbb{R}$, and two positive measurable functions $L_{i}(\cdot), i=1,2$. If $\lim _{x \rightarrow \infty} L_{i}(x)=L_{i}>0, i=1,2$, hold, then

$$
\begin{equation*}
\boldsymbol{P}\left\{\xi_{1} \xi_{2}>x\right\} \sim \boldsymbol{P}\left\{\xi_{1}^{*} \xi_{2}^{*}>x\right\}, \quad x \rightarrow \infty \tag{3.4}
\end{equation*}
$$

where ξ_{1}^{*}, ξ_{2}^{*} are two independent non-negative random variables such that for all x large enough

$$
\boldsymbol{P}\left\{\xi_{i}^{*}>x\right\}=C_{i} x^{\alpha_{i}} \exp \left(-L_{i}(x) x^{p_{i}}\right), \quad i=1,2
$$

Proof. The proof is similar to that of Lemma 3.2 in [5], and therefore omitted here.
Lemma 3.3. Under the assumptions of Lemma 3.2, if further

$$
\begin{equation*}
L_{1}(x)=L_{1}+o\left(x^{-p_{1}}\right), \quad x \rightarrow \infty \tag{3.5}
\end{equation*}
$$

and $L_{2}(x)=L_{2} \in(0, \infty)$ for all large x, then we have

$$
\begin{aligned}
\boldsymbol{P}\left\{\xi_{1} \xi_{2}>x\right\} \sim & \left(\frac{2 \pi p_{2} L_{2}}{p_{1}+p_{2}}\right)^{1 / 2} C_{1} C_{2} A^{p_{2} / 2+\alpha_{2}-\alpha_{1}} x^{\frac{2 p_{2} \alpha_{1}+2 p_{1} \alpha_{2}+p_{1} p_{2}}{2\left(p_{1}+p_{2}\right)}} \\
& \times \exp \left(-\left(L_{1} A^{-p_{1}}+L_{2} A^{p_{2}}\right) x^{\frac{p_{1} p_{2}}{p_{1}+p_{2}}}\right), \quad x \rightarrow \infty
\end{aligned}
$$

where $A=\left[\left(p_{1} L_{1}\right) /\left(p_{2} L_{2}\right)\right]^{1 /\left(p_{1}+p_{2}\right)}$.
Proof. If $L_{1}(x)=L_{1}>0$ for all $x>0$, the claim is established by Lemma 2.1 in [1]. In the light of Lemma 3.2, we can restrict our attention to the simpler case that

$$
\boldsymbol{P}\left\{\xi_{1}>x\right\}=C_{1} x^{\alpha_{1}} \exp \left(-L_{1}(x) x^{p_{1}}\right) \text { and } \boldsymbol{P}\left\{\xi_{2}>x\right\}=C_{2} x^{\alpha_{2}} \exp \left(-L_{2} x^{p_{2}}\right)
$$

hold for x sufficiently large. As in the proof of Proposition 3.1 of [13], for some $0<l_{1}<$ $1<l_{2}<\infty\left(\operatorname{set} z_{x}=A x^{\frac{p_{1}}{p_{1}+p_{2}}}, A=\left[\left(p_{1} L_{1}\right) /\left(p_{2} L_{2}\right)\right]^{1 /\left(p_{1}+p_{2}\right)}\right)$, we have as $x \rightarrow \infty$

$$
\begin{aligned}
\boldsymbol{P}\left\{\xi_{1} \xi_{2}>x\right\} & \sim C_{1} C_{2} p_{2} L_{2} x^{\alpha_{1}} z_{x}^{p_{2}+\alpha_{2}-1-\alpha_{1}} \int_{l_{1} A x^{\frac{p_{1}}{p_{1}+p_{2}}}}^{l_{2} A x^{\frac{p_{1}}{p_{1}+p_{2}}}} \exp \left(-L_{1}(x / y) x^{p_{1}} y^{-p_{1}}-L_{2} y^{p_{2}}\right) d y \\
& \sim C_{1} C_{2} p_{2} L_{2} x^{\alpha_{1}} z_{x}^{p_{2}+\alpha_{2}-\alpha_{1}} \int_{l_{1}}^{l_{2}} \exp \left(-x^{\frac{p_{1} p_{2}}{p_{1}+p_{2}}}\left[L_{1}\left(A^{-1} x^{\frac{p_{2}}{p_{1}+p_{2}}} y^{-1}\right)(A y)^{-p_{1}}+L_{2}(A y)^{p_{2}}\right]\right) d y .
\end{aligned}
$$

By (3.5) we can further write

$$
\boldsymbol{P}\left\{\xi_{1} \xi_{2}>x\right\} \sim C_{1} C_{2} p_{2} L_{2} x^{\alpha_{1}} z_{x}^{p_{2}+\alpha_{2}-\alpha_{1}} \int_{l_{1}}^{l_{2}} \exp \left(-x^{\frac{p_{1} p_{2}}{p_{1}+p_{2}}}\left[L_{1}(A y)^{-p_{1}}+L_{2}(A y)^{p_{2}}\right]\right) d y
$$

Since the function $\psi(y)=L_{1}(A y)^{-p_{1}}+L_{2}(A y)^{p_{2}}$ attains its minimum in $\left[l_{1}, l_{2}\right]$ at 1 , applying the Laplace approximation we obtain

$$
\begin{aligned}
& \int_{l_{1}}^{l_{2}} \exp \left(-x^{\frac{p_{1} p_{2}}{p_{1}+p_{2}}}\left[L_{1}(A y)^{-p_{1}}+L_{2}(A y)^{p_{2}}\right]\right) \mathrm{d} y \\
& \quad \sim \frac{\sqrt{2 \pi}}{\sqrt{x^{\frac{p_{1} p_{2}}{p_{1}+p_{2}}} \psi^{\prime \prime}(1)}} \exp \left(-\psi(1) x^{\frac{p_{1} p_{2}}{p_{1}+p_{2}}}\right), \quad x \rightarrow \infty,
\end{aligned}
$$

where

$$
\psi(1)=L_{1}\left[\left(p_{1} L_{1}\right) /\left(p_{2} L_{2}\right)\right]^{-\frac{p_{1}}{p_{1}+p_{2}}}+L_{2}\left[\left(p_{1} L_{1}\right) /\left(p_{2} L_{2}\right)\right]^{\frac{p_{2}}{p_{1}+p_{2}}},
$$

and

$$
\psi^{\prime}(1)=0, \quad \psi^{\prime \prime}(1)=L_{2} A^{p_{2}} p_{2}\left(p_{1}+p_{2}\right)>0
$$

hence the claim follows.
Lemma 3.4. Let $X_{i}, Y_{i}, i \leq n$, be independent standard Gaussian random variables. For given weights $\lambda=\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}>\lambda_{m+1} \geq \cdots \geq 0$, as $x \rightarrow \infty$, we have

$$
\begin{equation*}
\boldsymbol{P}\left\{\left|S_{n}\right|>\lambda x\right\} \sim \prod_{i=m+1}^{n}\left(1-\lambda_{i}^{2} / \lambda^{2}\right)^{-1 / 2} \frac{2^{1-m / 2}}{\Gamma(m / 2)} x^{m / 2-1} \exp (-x), \quad n \geq m \tag{3.6}
\end{equation*}
$$

Proof. By the representation of S_{n} in (1.1) we need to derive the tail asymptotic of $\boldsymbol{P}\left\{X_{1}^{2}\left(Z_{n}^{2} / \lambda^{2}\right)>x^{2}\right\}$ as $x \rightarrow \infty$. The tail asymptotic of Z_{n}^{2} implies that of X_{1}^{2} by taking $\lambda_{2}=\cdots=\lambda_{n}=0$ and $\lambda_{1}=1$. Hence (1.3) and Lemma 3.3 establish the claim.

The following result, which is restatement of Lemma 2.1 in [14], is crucial for the proof of Theorem 1.1.

Lemma 3.5. Let G be a distribution function having an exponential tail with rate $\theta \geq 0$, i.e.,

$$
\lim _{x \rightarrow \infty} \frac{1-G(x+y)}{1-G(x)}=\exp (-\theta y), \quad \forall y \in \mathbb{R}
$$

and let H be another distribution function satisfying $1-H(x)=o(1-G(x))$. If further, $M_{H}(\beta):=\int_{-\infty}^{\infty} e^{\beta x} d H(x)<\infty$ holds for some $\beta>\theta$, then we have

$$
1-G * H(x) \sim M_{H}(\theta)(1-G(x)), \quad x \rightarrow \infty
$$

where $G * H$ denotes the convolution of distribution functions G and H.
Proof of Theorem 1.1 First proof: The result follows by (1.3), Lemma 3.1 and Lemma 3.3.

We present below an alternative proof. Write $S_{m, \infty}=\sum_{i=m+1}^{\infty} \lambda_{i} X_{i} Y_{i}$, hence $S_{\infty}=$ $S_{m}+S_{m, \infty}$. If $\lambda_{m+1}=0$, then the proof follows by (3.6). We consider therefore below only the case $\lambda_{m+1}>0$. By the symmetry about 0 of S_{∞} and S_{m} for any $x>0$ we have

$$
\boldsymbol{P}\left\{\left|S_{\infty}\right|>x\right\}=2 \boldsymbol{P}\left\{S_{\infty}>x\right\} \text { and } \boldsymbol{P}\left\{\left|S_{m}\right|>x\right\}=2 \boldsymbol{P}\left\{S_{m}>x\right\}
$$

In view of (3.6), $S_{m}=\lambda \sum_{i=1}^{m} X_{i} Y_{i} \stackrel{d}{=} \lambda \sqrt{\sum_{i=1}^{m} X_{i}^{2}} Y_{1}$ is in the Gumbel max-domain of attraction with constant auxiliary function $a(x)=\lambda$, i.e.,

$$
\frac{\boldsymbol{P}\left\{S_{m}>x+y \lambda\right\}}{\boldsymbol{P}\left\{S_{m}>x\right\}} \sim \frac{\exp (-(x+y \lambda) / \lambda)}{\exp (-x / \lambda)}=\exp (-y), \quad \forall y \in \mathbb{R}
$$

as $x \rightarrow \infty$. Since $\lambda_{m+1} \in(0, \lambda)$ (with the multiplicity denoted by m_{1}) we have

$$
\begin{gathered}
\boldsymbol{P}\left\{S_{m, \infty}>x\right\} \quad=\frac{1}{2} \boldsymbol{P}\left\{\left|S_{m, \infty}\right|>x\right\} \stackrel{(1.6)}{\leq} \frac{1}{2} K \boldsymbol{P}\left\{\lambda_{m+1}\left|\sum_{i=m+1}^{m+m_{1}} X_{i} Y_{i}\right|>x\right\} \\
\stackrel{(1.3-1.4)}{=} o\left(\boldsymbol{P}\left\{\lambda\left|\sum_{i=1}^{m} X_{i} Y_{i}\right|>x\right\}\right)=o\left(\boldsymbol{P}\left\{S_{m}>x\right\}\right) .
\end{gathered}
$$

Furthermore, in view of Lemma 3.1, for any $s \in\left(1, \lambda / \lambda_{m+1}\right)$,

$$
\begin{aligned}
\boldsymbol{E}\left\{\exp \left(s S_{m, \infty} / \lambda\right)\right\} & =\boldsymbol{E}\left\{\exp \left(X_{1} \sqrt{\sum_{i=m+1}^{\infty}\left(\frac{s \lambda_{i}}{\lambda}\right)^{2} Y_{i}^{2}}\right)\right\}=\boldsymbol{E}\left\{\exp \left(\frac{1}{2} \sum_{i=m+1}^{\infty}\left(\frac{s \lambda_{i}}{\lambda}\right)^{2} Y_{i}^{2}\right)\right\} \\
& =\prod_{i=m+1}^{\infty} \boldsymbol{E}\left\{\exp \left(\frac{1}{2}\left(\frac{s \lambda_{i}}{\lambda}\right)^{2} Y_{i}^{2}\right)\right\}=\prod_{i=m+1}^{\infty}\left(1-s^{2} \lambda_{i}^{2} / \lambda^{2}\right)^{-1 / 2}<\infty
\end{aligned}
$$

Consequently, applying Lemma 3.5 we obtain

$$
\begin{aligned}
\boldsymbol{P}\left\{S_{m}+S_{m, \infty}>x \lambda\right\} & \sim \boldsymbol{E}\left\{\exp \left(S_{m, \infty} / \lambda\right)\right\} \boldsymbol{P}\left\{S_{m} / \lambda>x\right\} \\
& =\boldsymbol{E}\left\{\exp \left(\sum_{i=m+1}^{\infty} \frac{\lambda_{i} X_{i} Y_{i}}{\lambda}\right)\right\} \boldsymbol{P}\left\{S_{m} / \lambda>x\right\} \\
& =\left[\prod_{i=m+1}^{\infty}\left(1-\lambda_{i}^{2} / \lambda^{2}\right)^{-1 / 2}\right] \boldsymbol{P}\left\{S_{m} / \lambda>x\right\}
\end{aligned}
$$

hence the first claim follows from (3.6). Furthermore, Eq. (1.8) follows obviously from (1.7) and (3.6). Finally, in view of (1.3) and (1.7), we establish (1.9), and thus the proof is complete.

In the next lemma we present a result of Theorem 3.1 in [6] which will be used in the proof of Theorem 2.1.

Lemma 3.6. Let $\xi \in[0,1]$ be a random variable with distribution function G such that

$$
\lim _{u \rightarrow \infty} \frac{1-G(1-x / u)}{1-G(1-1 / u)}=x^{\alpha}, \quad \forall x>0
$$

for some $\alpha \geq 0$. Assume that η is a positive random variable with distribution function F in the Gumbel max-domain of attraction with some positive auxiliary function $\omega(\cdot)$, i.e.,

$$
\lim _{u \rightarrow \infty} \frac{1-F(u+x / \omega(u))}{1-F(u)}=\exp (-x), \quad \forall x \in \mathbb{R}
$$

If both ξ and η are independent, then

$$
\boldsymbol{P}\{\xi \eta>x\} \sim \Gamma(\alpha+1)\left(1-G\left(1-\frac{1}{u \omega(u)}\right)\right)(1-F(x)), \quad x \rightarrow \infty
$$

Proof of Theorem 2.1 We use the same idea as the proof of Theorem 1.1. Set next $V_{n}:=\sum_{i=1}^{n} X_{i} Y_{i}$ for $n \geq 1$. We only need to consider the case that $\lambda_{m+1}>0$ (with the multiplicity denoted by $m_{2} \geq 1$). With the aid of (1.4), (2.2) and Lemma 3.6, we obtain that, as $x \rightarrow \infty$,

$$
\begin{aligned}
\frac{\boldsymbol{P}\left\{R_{1} V_{m}>x-y\right\}}{\boldsymbol{P}\left\{R_{1} V_{m}>x\right\}} & =\frac{\boldsymbol{P}\left\{R_{1}\left|V_{m}\right|>x-y\right\}}{\boldsymbol{P}\left\{R_{1}\left|V_{m}\right|>x\right\}} \\
& \sim \frac{\boldsymbol{P}\left\{R_{1}>1-\frac{1}{x-y}\right\} \boldsymbol{P}\left\{\left|V_{m}\right|>x-y\right\}}{\boldsymbol{P}\left\{R_{1}>1-\frac{1}{x}\right\} \boldsymbol{P}\left\{\left|V_{m}\right|>x\right\}} \sim \exp (y), \quad \forall y \in \mathbb{R} .
\end{aligned}
$$

Furthermore, utilising (1.6) we have

$$
\boldsymbol{P}\left\{\sum_{i=m+1}^{\infty} \Lambda_{i} X_{i} Y_{i}>\lambda x\right\} \leq \boldsymbol{P}\left\{\sum_{i=m+1}^{\infty} \frac{\lambda_{i}}{\lambda} X_{i} Y_{i}>x\right\} \leq K \boldsymbol{P}\left\{\frac{\lambda_{m+1}}{\lambda} \sum_{i=m+1}^{m+m_{2}} X_{i} Y_{i}>x\right\}
$$

and from (1.4), (2.2) and Lemma 3.6

$$
\boldsymbol{P}\left\{R_{1} V_{m}>x\right\} \sim \frac{\Gamma(\gamma+1)}{2} \boldsymbol{P}\left\{R_{1}>1-\frac{1}{x}\right\} \boldsymbol{P}\left\{\left|V_{m}\right|>x\right\}, \quad x \rightarrow \infty
$$

which, in the light of(1.4) and (2.3), implies

$$
\boldsymbol{P}\left\{\sum_{i=m+1}^{\infty} \Lambda_{i} X_{i} Y_{i}>\lambda x\right\}=o\left(\boldsymbol{P}\left\{R_{1} V_{m}>x\right\}\right), \quad x \rightarrow \infty
$$

Consequently, the claim follows by using Lemma 3.5 and Lemma 3.6.

References

[1] Arendarczyk, M. and Dębicki, K.: Asymptotics of supremum distribution of a Gaussian process over a Weibullian time. Bernoulli 17, (2011), 194-210. MR-2797988
[2] Bovier, A.: Extreme values of random processes. Lecture Notes Technische Universität Berlin, 2005.
[3] Dobrič, V., Marcus, M.B., and Weber, M.: The distribution of large values of the supremum of a Gaussian process. Astérisque 157-158, (1988), 95-127. MR-0976215
[4] Embrechts, P., Klüppelberg, C., and Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer-Verlag, Berlin, 1997. MR-1458613
[5] Hashorva, E., and Ji., L.: Asymptotics of the finite-time ruin probability for the Sparre Andersen risk model perturbed by inflated chi-process. (2012) Preprint.
[6] Hashorva, E., Pakes, A. G., and Tang, Q.: Asymptotics of random contractions. Insurance: Mathematics and Economics 47, (2010), 405-414. MR-2759158
[7] Hoeffding, W.: On a theorem of V.N. Zolotarev. Theory of Probab. Appl. IX 1, (1964), 89-91. (English translation) MR-0171337
[8] Ivanoff, B.G., and Weber, N.C.: Tail probabilities for weighted sums of products of normal random variables. Bull. Austral. Math. Soc. 58, (1998), 239-244. MR-1642043
[9] Kallenberg, O.: Some new representations in bivariate exchangeability. Probab. Theory Related Fields 77, (1988), 415-455. MR-0931507
[10] Lifshits, M.A.: Tail probabiloites of Gaussian suprema and Laplace transform. Ann. Inst. Henri Poincaré 30, (1994), 163-179. MR-1276995
[11] Lifshits, M. A.: Gaussian random functions. Mathematics and its Applications, 322. Kluwer Academic Publishers, Dordrecht, 1995. xii+333. MR-1472736
[12] Lifshits, M.A. Lectures on Gaussian Processes. Springer Briefs in Mathematics, Springer, 2012.
[13] Liu, Y., and Tang, Q.: The subexponential product convolution of two Weibull-type distributions.. J. Aust. Math. Soc., 89, 2010, 277-288.MR-2769141
[14] Pakes, G.: Convolution equivalence and infinite divisibility. J. Appl. Prob. 41, (2004), 407424. MR-2052581
[15] Resnick, S.I.: Extreme Values, Regular Variation and Point Processes. Springer Series in Operations Research and Financial Engineering. Springer, New York, 2008. xiv+320 pp. MR-2364939
[16] Zolotarev, V.M.: Concerning a certain probability roblem. Theory of Probab. Appl. IX1, (1961), 201-204. (English translation) MR-0150800

Acknowledgments. We would like to thank Prof. Mikhail Lifshits, Prof. Vladimir I. Piterbarg, Prof. Oleg Seleznjev, Prof. Qihe Tang and the referees of the paper for several suggestions which improved this contribution significantly.

[^0]: *Supported by the Swiss National Science Foundation Grant 200021-1401633/1.
 † University of Lausanne, Switzerland. E-mail: enkelejd.hashorva@unil.ch
 ${ }^{\ddagger}$ Corresponding author at: University of Lausanne, Switzerland. E-mail: lanpeng.ji@unil.ch
 §Jiaxing University, China. E-mail: tzq728@163.com

