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R. A. Doney

Department of Mathematics, University of Manchester
Oxford Road, Manchester M13 9Pl, U.K.

rad@ma.man.ac.uk

Abstract. In this paper a necesary and sufficient condition is established
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1 Introduction

The quantity ρ(t) = P (Xt > 0) where X = (Xt, t ≥ 0) is a Lévy process
is of fundamental importance in fluctuation theory. For example, combining
results in [1] and [2] shows that, both as t→∞ and as t ↓ 0,

ρ(t) → ρ ∈ [0, 1] (1)

⇐⇒ 1

t

∫ t

0

ρ(s)ds→ ρ

⇐⇒ 1

t

∫ t

0

1{Xs>0}ds
d→ Aρ,

where Aρ denotes a random variable with an arc-sine law of parameter ρ
if 0 < ρ < 1, and a random variable degenerate at ρ if ρ = 0, 1. It would
therefore be useful to find a necessary and sufficient condition for (1) to hold,
ideally expressed in terms of the characteristics ofX, that is its Lévy measure
Π, its Brownian coefficient σ2, and γ, the coefficient of the linear term in the
Lévy-Itô decomposition (2) below.

This problem is obviously difficult, and has so far only been solved for
large t in the special case ρ = 0, 1. This result is in Theorem 3.3 of [5], and
in an extended form in Theorem 1.3 in [4]. In both cases the results are
deduced from the corresponding results for random walks due to Kesten and
Maller in [7] and [8]. Here we consider the corresponding question for small
t, where apparently the large t results will have no relevance, but in fact it
turns out that there is a striking formal similarity, both in the statement and
proof.

Our Lévy process will be written as

Xt = γt+ σBt + Y
(1)
t + Y

(2)
t , (2)

where B is a standard BM, Y (1) is a pure jump martingale formed from the
jumps whose absolute values are less than or equal to 1, Y (2) is a compound
Poisson process formed from the jumps whose absolute values exceed 1, and
B, Y (1), and Y (2) are independent.

We denote the Lévy measure of X by Π, and introduce the tail functions

N(x) = Π{(x,∞)}, M(x) = Π{(−∞,−x)}, x > 0, (3)

and the tail sum and difference

T (x) = N(x) +M(x), D(x) = N(x)−M(x), x > 0. (4)
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The rôles of truncated first and second moments are played by

A(x) = γ +D(1) +

∫ x

1

D(y)dy, U(x) = σ2 + 2

∫ x

0

yT (y)dy, x > 0. (5)

We will denote the jump process of X by ∆ = (∆s, s ≥ 0), and put

∆
(1)
t = sup

s≤t
∆−

s (6)

for the magnitude of the largest negative jump which occurs by time t.
For the case t ↓ 0, a sufficient condition for (1) with ρ = 1 was given

in Theorem 2.3 of [5]; the following, together with Lemma 5 shows that the
condition given there is also necessary:

Theorem 1 Suppose that the Lévy process X has σ = 0,Π(R) =∞, and
M(0+) > 0; then the following are equivalent.

ρt = P (Xt > 0)→ 1 as t ↓ 0; (7)

Xt

∆
(1)
t

P→∞ as t ↓ 0; (8)

for some deterministic d which decreases to 0 and

is regularly varying of index 1 at 0,
Xt

d(t)

P→∞ as t ↓ 0; (9)

and
A(x)

√

U(x)M(x)
→ +∞ as x ↓ 0. (10)

Remark 2 None of the above assumptions are really restrictive. First, if
σ 6= 0, it was shown in [5] that P (Xt > 0) → 1/2. It was also shown there
that when M(0+) = 0, i.e. X is spectrally positive, and N(0+) = ∞, then
(7) occurs iff X is a subordinator iff A(x) ≥ 0 for all small x, and it is easy to
see that these are equivalent to (9) in this case. (Of course (8) is not relevant

here, as ∆
(1)
t ≡ 0.) Finally the case when Π(R) < ∞ is of no real interest;

then X is a compound Poisson process plus linear drift, and the behaviour of
ρt as t ↓ 0 is determined by whether the drift is positive or not.
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Remark 3 Comparing the above results with the large-time results we see
that each of (7)-(10) has a formally similar counterpart at ∞. (Actually
the counterpart of (8) was omitted in [4], but it is easy to establish.) One

difference is that (7) as t → ∞ implies that Xt
P→ ∞, and of course this

can’t happen as t ↓ 0. At first sight the appearance of A in both (10) and its
counterpart at ∞ is surprising. However this can be understood by realising
that A acts both as a generalised mean at ∞ and a generalised drift at 0. To

be precise, t−1Xt
P→ c, as t→∞ or as t ↓ 0 is equivalent to xT (x)→ 0 and

A(x)→ c as x→∞ or as x ↓ 0; in the first case if X has finite mean µ then
c = µ, and in the second if X has bounded variation and drift δ then c = δ.
(See Theorems 2.1 and 3.1 of [5].)

Remark 4 The structure of the following proof also shows a strong simi-
larity to the proof of the random walk results in [7] and [8]. There are of
course differences in detail, and some simplifications due to the advantages
of working in continuous time and the ability to decompose X into inde-
pendent components in various ways. There are also some extra difficulties;
for example we need to establish results related to the Cental Limit Theorem
which are standard for random walks but apparently not previously written
down for Lévy processs at zero. Also the case where Π has atoms presents
technical difficulties which are absent in the random walk situation; compare
the argument on page 1499 of [7] to the upcoming Lemma 9.

2 Preliminary Results

We start by showing that (10) can be replaced by the simpler

A(x)

xM(x)
→∞ as x ↓ 0. (11)

Lemma 5 (i) If (10) holds then (11) holds.
(ii) If (11) holds then

lim sup
x↓0

U(x)

xA(x)
≤ 2, (12)

and consequently (10) holds.
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Proof For i) just note that

U(x) =

∫ x

0

2yT (y)dy ≥ T (x)

∫ x

0

2ydy = x2T (x), (13)

so that

lim inf
x↓0

A(x)

xM(x)
≥ lim inf

x↓0

A(x)
√

U(x)M(x)

√

U(x)

x2M(x)
≥ lim inf

x↓0

A(x)
√

U(x)M(x)
.

For (ii) we first show that

lim
x↓0

U−(x)

xM(x)
= 0, (14)

where we write

U−(x) =

∫ x

0

2yM(y)dy, U+(x) =

∫ x

0

2yN(y)dy, (15)

so that U(x) = U−(x) + U+(x). Given ε > 0 take x0 > 0 such that εA(x) ≥
xM(x) for x ∈ (0, x0], and hence

U−(x) =

∫ x

0

2yM(y)dy ≤ 2ε

∫ x

0

A(y)dy.

Note also that for 0 < x < 1 we can write

A(x) = γ̃ + A−(x)− A+(x), where γ̃ = γ +D(1),

A−(x) =

∫ 1

x

M(y)dy, and A+(x) =

∫ 1

x

N(y)dy.

Then

U−(x) =

∫ x

0

2yM(y)dy = −2
∫ x

0

ydA−(y)

= 2

∫ x

0

A−(y)dy − 2xA−(x),

and similarly

U+(x) = 2

∫ x

0

A+(y)dy − 2xA+(x).
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Thus for 0 < x < 1 ∧ x0

U−(x) ≤ 2ε

∫ x

0

{γ̃ + A−(y)− A+(y)}dy

= ε{2γ̃x+ 2xA−(x) + U−(x)− 2xA+(x)− U+(x)}
≤ ε{2xA(x) + U−(x)}.

Since ε is arbitrary, (14) follows. Also for 0 < x < 1 ∧ x0

U+(x)− U−(x) = 2

(∫ x

0

A+(y)dy − xA+(x)−
∫ x

0

A−(y)dy + xA−(x)

)

= 2

(

xA(x)−
∫ x

0

A(y)dy

)

≤ 2xA(x).

So
U(x) ≤ 2xA(x) + 2U−(x) = 2xA(x) + o{xA(x)} as x ↓ 0,

and (12) follows. Since

A(x)
√

U(x)M(x)
=

√

A(x)

xM(x)
·
√

xA(x)

U(x)
,

(11) is immediate.
The main part of the proof consists of showing that (11) holds whenever

ρt → 1. We first dispose of one situation where the argument is straightfor-
ward.

Lemma 6 Let X be any Lévy process satisfying the assumptions of Theorem
1, having ρt → 1 as t ↓ 0, and additionally having M(0+) < ∞. Then (11)
holds.

Proof In this case we can write

Xt = X
(0)
t +X

(1)
t , t ≥ 0,

where
X
(1)
t =

∑

s<t

∆s1{∆s<0}

is a compound Poisson process which is independent of the spectrally positive
process X(0). Clearly

P{X(1)t = 0} = e−tM(0) → 1 as t ↓ 0,
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so we have
P{X(0)t > 0} → 1 as t ↓ 0.

But, as previously mentioned, it was shown in [5] that this happens iff X (0)

is a subordinator, i.e. it has bounded variation, so that
∫ 1

0
xΠ(0)(dx) =

∫ 1

0
xΠ(dx) <∞, xN(x)→ 0 as x ↓ 0, and we can write

X
(0)
t =

∑

s<t

∆s1{∆s>0} + δ(0)t,

where the drift δ(0) is non-negative. Comparing this to the representation
(2) of X we see that δ(0) = γ −

∫ 1

0
xΠ(dx) +

∫ 1

0
xΠ∗(dx), where Π∗ denotes

the Lévy measure of −X. If δ(0) > 0 the alternative expression

A(x) = γ −
∫ 1

x

yΠ(dy) +

∫ 1

x

yΠ∗(dy) + xD(x), (16)

which results from (5) by integration by parts shows that A(x) → δ(0) as
x ↓ 0. Thus A(x)/{xM(x)} ∼ δ(0)/{xM(0+)} → ∞. If δ(0) = 0 the same
conclusion follows because

A(x)

x
∼
∫ x

0
D(y)dy

x
→∞,

since D(0+) = N(0+)−M(0+) =∞.
The next result allows us to make some additional assumptions about X

in the remaining case.

Lemma 7 Let X# be any Lévy process with no Brownian component which
has M#(0+) =∞ and ρ#t = P (X#t > 0)→ 1 as t ↓ 0. Then there is a Lévy
process X with no Brownian component such that ρt = P (Xt > 0) → 1 as
t ↓ 0 whose Lévy measure can be chosen so that

(i) N(1) =M(1) = 0, M(0+) =∞;
(ii) each of N and M is continuous and strictly decreasing on (0, c] for

some c > 0.
Moreover, (iii) (11) holds for X# if and only if it holds for X.

Proof Note that if X (1) has the same characteristics as X# except that
Π# is replaced by

Π(1)(dx) = {Π#(dx) + λ(dx)}1{−1<x<1},
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where λ denotes Lebesgue measure, we have X (1)+Y (1) = X#+Y (2), where
Y (1) is a compound Poisson process independent of X (1) and Y (2) is a com-
pound Poisson process independent of X#. Since P (Y

(i)
t = 0) → 1 as t ↓ 0

for i = 1, 2 it is immediate that P (X
(1)
t > 0) → 1 as t ↓ 0. By construction

N (1)(1) =M (1)(1) = 0, for 0 < x < 1 both N (1)(x) = N#(x)+1−x−N#(1)
andM (1)(x) =M#(x)+1−x−M#(1) are strictly decreasing, and (16) shows
that A(1)(x) = A#(x)−xD#(1). Thus M (1)(x) ∼ M#(x) as x ↓ 0 and we see
that (11) holds for X (1) if and only if it holds for X#. This establishes (i), and
allows us to assume in the remainder of the proof that N#(1) =M#(1) = 0,
and both N# and M# are strictly decreasing on (0, 1]. For (ii) it remains
only to show that we can take N and M to be continuous.

So suppose that Π# has atoms of size an and bn located at x1 > x2 >
· · · > 0 and −y1 < −y2 < · · · < 0 respectively, for n = 1, 2, · · · ; clearly if Π#

has only finitely many atoms there is nothing to prove, and the case when the
restriction of Π# to (0, 1] or [−1, 0) has only finitely many atoms can be dealt

with in a similar way to what follows. Note that from
∫ 1

−1 x
2Π#(dx) <∞ we

have ∞
∑

1

anx
2
n +

∞
∑

1

bny
2
n <∞. (17)

Now let Π(c) denote the continuous part of Π#, so that

Π# = Π(c) +
∞
∑

1

anδ(xn) +
∞
∑

1

bnδ(−yn),

where δ(x) denotes a unit mass at x. With U [a, b] denoting a uniform prob-
ability distribution on [a, b] we introduce the measure

Π = Π(c) +
∞
∑

1

anU [xn, xn + αn] +
∞
∑

1

bnU [−yn,−yn + βn].

We choose αn > 0, βn > 0 to satisfy the following conditions; for n = 1, 2, · · · ,

xn + αn < xn+1, − yn + βn < −yn+1; (18)

and

αn ≤ x3n, βn ≤ y3n. (19)
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Note that (17) and (19) imply that

c :=
1

2

∞
∑

1

anαn <∞, c∗ :=
1

2

∞
∑

1

bnβn <∞,

and hence

lim
ε↓0

(∫ 1

ε

xΠ(dx)−
∫ 1

ε

xΠ#(dx)

)

= lim
n→∞

(

n
∑

1

ak(xk +
αk
2
)−

n
∑

1

akxk

)

= c,

(20)
and

lim
ε↓0

(∫ −ε

−1
xΠ(dx)−

∫ −ε

−1
xΠ#(dx)

)

= lim
n→∞

(

−
n
∑

1

bk(yk −
βk
2
) +

n
∑

1

bkyk

)

= c∗.

(21)
Now let X be a Lévy process with Lévy measure Π, no Brownian component,
and having γ = γ# + c+ c∗. Since T (1) = T#(1) = 0 and we have got Π by
‘moving some of the mass of Π# to the right’, we have, for each fixed t > 0,

Xt = γt+ lim
ε↓0

(

∑

0<s<t

∆s1{|∆s|>ε} − t

∫

ε<|x|<1
xΠ(dx)

)

P

≥ γ#t+ (c+ c∗)t+ lim
ε↓0

(

∑

0<s<t

∆#s 1{|∆#
s |>ε} − t

∫

ε<|x|<1
xΠ#(dx)

)

−t lim
ε↓0

(∫

ε<|x|<1
xΠ(dx)−

∫

ε<|x|<1
xΠ#(dx)

)

= X#t .

Thus P (Xt > 0)→ 1, and to conclude we only need to show that (11) holds
for X# if and only if it holds for X.

Again using D(1) = D#(1) = 0 we have, for x ∈ (0, 1),

A(x) = γ −
∫ 1

x

N(y)dy +

∫ 1

x

M(y)dy

= γ# + c+ c∗ −
∫ 1

x

N#(y)dy +

∫ 1

x

M#(y)dy

+

∫ 1

x

{N#(y)−N(y)}dy +
∫ 1

x

{M(y)−M#(y)}dy
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= A#(x) + c+ c∗ +

∫ 1

x

{N#(y)−N(y)}dy +
∫ 1

x

{M(y)−M#(y)}dy

= A#(x) +

∫ x

0

{N(y)−N#(y)}dy +
∫ x

0

{M(y)−M#(y)}dy, (22)

where we have used (20) to see that

∫ 1

0

{N(y)−N#(y)}dy = lim
ε↓0

(∫ 1

ε

xΠ(dx)−
∫ 1

ε

xΠ#(dx)

)

= c,

and similarly for c∗. Since (19) gives

0 ≤
∫ x

0

{N(y)−N#(y)}dy ≤ 1

2

∑

n:xn<x

anαn

≤ 1

2

∑

n:xn<x

anx
3
n ≤

x

2

∑

n:xn<x

anx
2
n = o(x),

and the same argument applies to the second integral in (22), we see that

A#(x)

x
=
A(x)

x
+ o(1) as x ↓ 0. (23)

Next note that if −x /∈ ⋃∞1 (−yn,−yn + βn], then M(x) = M#(x). On the
other hand, if −x = −yn + θβn, with 0 < θ ≤ 1, then

M#(x) =M(x) + (1− θ)bn ∼ M(x) as x ↓ 0,

so (iii) follows.
The next piece of information we need is reminiscent of the Berry-Esseen

Theorem;

Lemma 8 Let µ be any Lévy measure, and write µt for the restriction of µ
to the interval [−bt, bt], where bt ↓ 0 as t ↓ 0. Suppose that for each t > 0 Zt

has an infinitely divisible distribution determined by

E(eiθZt) = exp−t{
∫

R
(1− eiθx + iθx)µt(dx)} := ψt(θ). (24)

Put

tσ2t = t

∫

R
x2µt(dx) = EZ2t ,
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and write Φ for the standard Normal distribution function. Then for any
ε > 0 there is a positive constant Wε such that for all x

|P{Zt ≤ x
√
tσt} − Φ(x)| ≤ ε (25)

for all t satisfying √
tσt
bt

≥ Wε. (26)

Proof Note first that EZt = 0 and EZ3t = t
∫

R x
3µt(dx) := tζt, and write

νt =
EZ3t

6(EZ2t )
3
2

=
ζt

6
√
tσ3t

.

We will apply the inequality (3.13), p 512 of [6], with t fixed,

F (x) = P{Zt ≤ x
√
tσt}, and G(x) = Φ(x)− νt(x

2 − 1)φ(x),

where φ is the standard Normal density function. From it we deduce that
for any T > 0 the LHS of (25) is bounded above by

|νt(x2 − 1)|φ(x) + 1

π

∫ T

−T

|ψt( θ√
tσt

)− e
−θ

2

2 (1 + νt(iθ)
3)|

|θ| dθ +
24mt

πT
. (27)

Here

mt = sup
x
|G′(x)| = sup

x
φ(x){1 + |νt(2x2 − 3x+ 1)|} ≤M,

where M is an absolute constant, for all t satisfying |νt| ≤ 1. But if (26)
holds we have

|νt| ≤
btσ

2
t

6
√
tσ3t

=
bt

6
√
tσt

≤ 1

6Wε

, (28)

so this will hold provided 6Wε ≥ 1. Now fix T = 72M
πε
, so that the third

term in (27) is no greater than ε/3. The same argument shows that the first
term in (27) is also no greater than ε/3 provided (26) holds and 3Wε ≥ 1/ε.
Finally, to deal with the middle term we write θ̃ = θ√

tσt
, and note that

ψt(θ̃) = e
−θ

2

2 exp t{
∫

|x|≤bt
(eiθ̃x − (1 + iθ̃x− 1

2
θ̃2x2)µ(dx)}

= e
−θ

2

2 exp t{
∫

|x|≤bt

(iθ̃x)3

6
µ(dx)} · exp t{

∫

|x|≤bt
r(iθ̃x)µ(dx)}

= e
−θ

2

2 exp νt(iθ)
3 · exp t{

∫

|x|≤bt
r(iθ̃x)µ(dx)}, (29)
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where for some positive constant cε

|r(z)| = |ez − (1 + z +
1

2
z2 +

1

6
z3)| ≤ ε|z|3 (30)

whenever |z| ≤ cε. Since for |θ| ≤ T and |x| ≤ bt we have

|θ̃x| ≤ Tbt√
tσt

≤ T

Wε

we see that when (26) holds andWε ≥ (T/cε)∨1 we can apply (30) to deduce
that for |θ| ≤ T

∣

∣

∣

∣

t

(∫

|x|≤bt
r(iθ̃x)µ(dx)}

)∣

∣

∣

∣

≤ εt|θ̃|3
∫

|x|≤bt
|x|3µ(dx)

≤ εt|θ̃|3btσ2t ≤
ε|θ|3bt√
tσt

≤ ε|θ|3.

It follows from this and (28) that, increasing the value of Wε if necessary, we
can make

1

π

∫ T

−T

|ψt( θ√
tσt

)− e
−θ

2

2
+νt(iθ)3(−1 + exp t{

∫

|x|≤bt r(iθ̃x)µ(dx)})|
|θ| dθ ≤ ε

6
,

and clearly we can also arrange that

1

π

∫ T

−T

|e−θ
2

2 {eνt(iθ)3 − 1− νt(iθ)
3}|

|θ| dθ ≤ ε

6
,

whenever (26) holds. Putting these bounds into (27) finishes the proof.
Next we record a variant of the Lévy-Khintchine decomposition (2) which

is important for us:

Lemma 9 If X is any Lévy process with no Brownian component and b, b∗ ∈
(0, 1) and t > 0 are fixed we can write

Xt = γ̃(b, b∗)t+ Y
(1,+)
t + Y

(1,−)
t + Y

(2,+)
t + Y

(2,−)
t , (31)

where

Y
(1,+)
t = lim

ε↓0

{

∑

s≤t
∆s1{ε<∆s<b} − t

∫ b

ε

xΠ(bx)

}

, Y
(2,+)
t =

∑

s≤t
∆s1{∆s≥b},

Y
(1,−)
t = lim

ε↓0

{

∑

s≤t
∆s1{−b∗<∆s<−ε} − t

∫ −ε

−b∗
xΠ(dx)

}

, Y
(2,−)
t =

∑

s≤t
∆s1{∆s≤−b∗},
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are independent, and

γ̃(b, b∗) = γ −
∫ 1

b

xΠ(dx) +

∫ 1

b∗
xΠ∗(dx).

Proof This is proved in the same way as (2), except we compensate over
the interval (−b∗, b) rather than (−1, 1).

Finally we are in a position to establish the main technical estimate we
need in the proof of Theorem 1;

Proposition 10 Suppose that X is a Lévy process with no Brownian com-
ponent whose Lévy measure satisfies N(0+) = M(0+) = ∞, and suppose
d(t) and d∗(t) satisfy

N(d(t)) =M(d∗(t)) =
1

t
(32)

for all small enough t > 0. Then there is a finite constant K such that, for
any λ > 0, ρ > 0, L ≥ 0 there exists C = C(X,λ, ρ, L) > 0 with

P{Xt ≤ tγ̃(d(λt), d∗(ρλt)) +Kd(λt)− Ld∗(ρλt)} ≥ C (33)

for all small enough t.

Proof We start by noting that if we use decomposition (31) for each
fixed t with b and b∗ replaced by d(λt) and d∗(ρλt), (32) gives

P (Y
(2,+)
t = 0) = e−tN(d(λt)) = e−

1
λ . (34)

Also Y
(1,+)
t has mean zero and since d(t) ↓ 0, because N(0+) = ∞, we can

apply Lemma 8 to Y
(1,+)
t with bt = d(λt) and σ2t =

∫ d(λt)

0
x2Π(dx). Choosing

x = 0 and writing W for the Wε of Lemma 8 with ε = 1/4 we conclude

from (25) that P{Y (1,+)t ≤ 0} ≥ 1
4
whenever tσ2t ≥ {Wd(λt)}2. On the other

hand, if tσ2t ≤ {Wd(λt)}2 it follows from Chebychev’s inequality that

P{|Y (1,+)t | > Kd(λt)} ≤ tσ2t
{Kd(λt)}2 ≤

W 2

K2
.

Thus in all cases we can fix K large enough that

P{Y (1,+)t ≤ Kd(λt)} ≥ 1

4
. (35)
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An exactly similar argument shows that we can fix a finite K∗ with

P{Y (1,−)t ≥ −K∗d∗(ρλt)} ≥ 1

4
. (36)

Finally we note that if Z is a random variable with a Poisson(1/ρλ) distri-
bution

P{Y (2,−)t ≤ −(K∗ + L)d∗(ρλt)} ≥ P{Z ≥ (K∗ + L)} > 0. (37)

Combining (34)-(37) gives the required conclusion.

3 Proofs

Proof of Theorem 1.1 Since we have demonstrated in Lemma 5 the equiv-
alence of (10) and (11), and Theorem 2.3 of [5] shows that (11) implies (7)
under our assumptions, we will first show that (7) implies (11), and later
their equivalence to (9) and (8)

So assume (7), and also that M(0+) = ∞, since Lemma 6 deals with
the contrary case. Then X satisfies the assumptions we made about X# in
Lemma 7, so that result allows us to save extra notation by assuming that the
conclusions (i) and (ii) of that lemma apply to X. For the moment assume
also that N(0+) =∞, so that we can define d and d∗ as the unique solutions
of (32) on (0, t0] for some fixed t0 > 0. Our first aim is to show that

lim inf
x↓0

γ̃(x, x)

xN(x)
≥ 0. (38)

To see this we use Proposition 10 with L = 0, which since P (Xt ≤ 0) → 0
implies that for all sufficiently small t

tγ̃(d(λt), d∗(λρt)) +Kd(λt) ≥ 0. (39)

Writing ν(x) =
∫ 1

x
yΠ(dy) and ν∗(x) =

∫ 1

x
yΠ∗(dy) we have

γ̃(x1, x2) = γ − ν(x1) + ν∗(x2),

and clearly γ̃(x1, x2) is a decreasing function of x2 for fixed x1. Thus if d(λt) ≤
d∗(λρt) then from (39)

tγ̃(d(λt), d(λt)) +Kd(λt) ≥ tγ̃(d(λt), d∗(λρt)) +Kd(λt) ≥ 0.
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However if d∗(λρt) < d(λt) then

ν∗(d∗(λρt))− ν∗(d(λt)) =

∫ d(λt)

d∗(λρt)

yΠ∗(dy)

≤ d(λt)M(d∗(λρt)) =
d(λt)

λρt
.

Consequently in both cases

γ̃(d(λt), d(λt)) ≥ −(Kλ+
1

ρ
)
d(λt)

λt
= −(Kλ+

1

ρ
)d(λt)N(d(λt)),

and since Lemma 7 allows us to assume the continuity of d, we have

lim inf
x↓0

γ̃(x, x)

xN(x)
≥ −(Kλ+

1

ρ
).

But in this we may choose λ arbitrarily small and ρ arbitrarily large, so (38)
follows.

Assume next that (11) fails, and recall that

A(x) = γ̃(x, x) + xD(x) = γ̃(x, x) + xN(x)− xM(x).

Then for some sequence xk ↓ 0 and some D <∞

γ̃(x, x) + xN(x) ≤ DxM(x) when x = x1, x2 · · · . (40)

Let

tk =
K

2DM(xk)
, or equivalently xk = d∗(

2Dtk
K

),

then from (38) we have γ̃(xk, xk) ≥ −12xkN(xk) for all large enough k, and
hence, using (40),

2DxkM(xk) ≥ xkN(xk).

Thus

N(xk) ≤ 2DM(xk) =
K

tk
,

and hence
d(K−1tk) ≤ xk. (41)
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We now invoke Proposition 10 again, this time choosing t = tk, λ = K−1,
and ρ = 2D, to get

P{Xt ≤ tγ̃(d(K−1t), d∗(2DK−1t)) +Kd(K−1t)− Ld∗(2DK−1t)} ≥ C > 0,
(42)

whenever t = tk and k is large enough. However, in view of (41) the term on
the right of the inequality is bounded above by

tk{γ + ν∗(xk)− ν(xk)}+Kxk − Lxk = tkγ̃(xk, xk) + (K − L)xk

≤ DtkxkM(xk) + (K − L)xk

= (
3

2
K − L)xk.

If now we choose L = 2K we see that (42) contradicts (7); this contra-
diction implies that (11) is in fact correct.

We reached this conclusion making the additional assumption thatN(0+) =
∞, but it is easy to see that it also holds if N(0+) < ∞. In this case by an
argument we have used previously there is no loss of generality in taking
N(0+) = 0, so that X is spectrally negative. We can then repeat the proof
of Proposition 10 with b(t) ≡ 0, the conclusion being that for any L ≥ 0
there exists C = C(X,L) > 0 with

P (Xt ≤ {t[γ + ν∗(d∗(t))]− Ld∗(t)}) ≥ C (43)

for all sufficiently small t.When (7) holds this clearly implies that γ+ν∗(x) ≥
0 for all sufficiently small x. If (11) were false, we would have

γ + ν∗(x) ≤ DxM(x)

along some sequence xk ↓ 0. Choosing tk = 1/M(xk), or equivalently xk =
d∗(tk), (43) becomes

P{Xtk ≤ {tk[γ + ν∗(xk)]− Lxk} ≥ C.

Since

γ + ν∗(xk)−
Lxk
tk

= γ + ν∗(xk)− LxkM(xk) ≤ (D − L)xkM(xk),

we again get a contradiction by choosing L sufficiently large. This completes
the proof of the equivalence of (7) and (10).
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As (9) obviously implies (7), our next aim is to show the reverse implica-
tion, or in view of Lemma 5, that (11) implies (9).

SinceM(0+) > 0 a first consequence of (11) is that there is a x0 > 0 with
A(y) > 0 for 0 < y ≤ x0, and a second is that y−1A(y) → ∞ as y ↓ 0. For
δ ≥ 1 define a function bδ(x) by

bδ(x) = inf{0 < y ≤ x0 :
A(y)

y
≥ δ

x
}. (44)

Then bδ(x) ↓ 0 as x ↓ 0, and since A is continuous, there is a x1 > 0 such
that

xA(bδ(x)) = δbδ(x) for 0 < x ≤ x1. (45)

Our first aim is to show that there is a slowly varying function fδ(x) which
increases as x ↓ 0 and satisfies

A(bδ(x))

δ
=
bδ(x)

x
:= γδ(x) ≤ fδ(x) for 0 < x ≤ x1. (46)

First, using (5) we see that for x ≤ x1/2,

γδ(2x)

γδ(x)
=

A(bδ(2x))

A(bδ(x))
= 1 +

∫ bδ(2x)

bδ(x)
D(y)dy

A(bδ(x))

≥ 1−
∫ bδ(2x)

bδ(x)
M(y)dy

A(bδ(x))
≥ 1− {bδ(2x)− bδ(x)}M(bδ(x))

A(bδ(x))

= 1−
(

bδ(2x)− bδ(x)

bδ(x)

)

εδ(x) (47)

say, where

εδ(x) =
bδ(x)M(bδ(x))

A(bδ(x))
=
xM(bδ(x))

δ
. (48)

¿From (11) we have εδ(x) → 0 as x ↓ 0 for each fixed δ, and it is also the
case that

γδ(2x)

γδ(x)
≥ 1− εδ(x) for 0 < 2x ≤ x1. (49)

To see this observe that if bδ(2x)− bδ(x) ≤ bδ(x) then this is immediate from
(47), whereas if bδ(2x)− bδ(x) > bδ(x) then

γδ(2x)

γδ(x)
=
bδ(2x)/2x

bδ(x)/x
=

1

2
· bδ(2x)
bδ(x)

> 1.
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Next, given 0 < x ≤ x1/2 choose k = k(x) such that

2−(k+1) < x ≤ 2−k

and k0 such that εδ(2
−j) ≤ 1/2 when j ≥ k0. Applying (49) we get for

k(x) ≥ k0

γδ(x) =
bδ(x)

x
≤ bδ(2

−k)

2−(k+1)
= 2γδ(2

−k)

= 2
γδ(2

−k)

γδ(2−(k−1))
· γδ(2

−(k−1))

γδ(2−(k−2))
· · · · γδ(2

−k0))

γδ(2−(k0−1))
γδ(2

−(k0−1))

≤ Cδ

k
∐

k0

(1− εδ(2
−j))−1,

where Cδ = 2γδ(2
−(k0−1)). If ln denotes the base 2 logarithm, we have k(x) ≥

ln 1/x, so (46) holds with

fδ(x) = Cδ

∐

k0≤j≤ln 1/x
(1− εδ(2

−j))−1.

Clearly fδ(x) increases as x ↓ 0, and if j = j(x) is the unique integer with

ln 1/x < j ≤ ln 2/x = 1 + ln 1/x,

we have
fδ(x)

fδ(x/2)
= (1− εδ(2

−j))→ 1,

and we conclude that fδ(x) is slowly varying as x ↓ 0. (See [3], Prop 1.10.1,
p. 54.)

If we now put Lδ(x) = (fδ(x))
2 when fδ(0+) = ∞, and Lδ(x) = log 1/x

when fδ(0+) < ∞, we have that Lδ(x) is increasing and slowly varying as
x ↓ 0, and

bδ(x)

xLδ(x)
→ 0 as x ↓ 0. (50)

Furthermore, since bδ(x) ≤ b1(x) for δ ≥ 1, we automatically have

bδ(x)

xL1(x)
→ 0 as x ↓ 0 for δ ≥ 1. (51)
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We are now in a position to prove (9). We use Lemma 9 with b = b∗ =

bδ(t). Replacing M{bδ(t)} by 0, observing that Y
(2,+)
t ≥ bδ(t)Zt, where Z is

a Poisson process with rate N{bδ(t)}, and combining Y
(1,+)
t and Y

(1,−)
t we

deduce that, a.s. for each fixed t,

Xt ≥ tA{bδ(t)}+ bδ(t) (Zt − tN{bδ(t)}) + Y
(1)
t + Y

(2,−)
t .

Here the Y ′s and Z are independent,

EY
(1)
t = 0, V arY

(1)
t = t

∫

|x|≤bδ(t)

x2Π(dx),

and
P{Y (2,−)t = 0} = exp−tM{bδ(t)}.

It follows from (11) that tM{bδ(t)} = o (tA{bδ(t)}/bδ(t)) as t ↓ 0, and
tA{bδ(t)} = δbδ(t), so for all sufficiently small t we have

P (Y
(2,−)
t 6= 0) ≤ 1/δ.

So for such t Chebychev’s inequality gives

P (Xt ≤ δ

2
bδ(t)) ≤

1

δ
+

P

(

tA{bδ(t)}+ bδ(t) (Zt − tN{bδ(t)}) + Y
(1)
t ≤ δ

2
bδ(t), Y

(2−)
t = 0

)

≤ 1

δ
+ P

(

bδ(t) (Zt − tN{bδ(t)}) + Y
(1)
t ≤ −δ

2
bδ(t)

)

≤ 1

δ
+

4{V ar[Y (1)t + bδ(t)Zt]}
{δbδ(t)}2

. (52)

Next we note that for all small enough t

V ar[Y
(1)
t + bδ(t)Zt] = t

∫

|x|≤bδ(t)

x2Π(dx) + {bδ(t)}2tN{bδ(t)}

≤ t







∫

|x|≤bδ(t)

x2Π(dx) + {bδ(t)}2T{bδ(t)}







= tU(bδ(t)) ≤ 3tbδ(t)A(bδ(t)) = 3δ{bδ(t)}2,
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where we have used (12). Putting this into (52) gives

P (Xt ≤
δ

2
bδ(t)) ≤

1

δ
+

12δ{bδ(t)}2
{δbδ(t)}2

=
13

δ
.

Finally, using (51) we deduce from this that, for arbitrary K > 0 and small
enough t

P (Xt ≤ KtL1(t)) ≤ P (Xt ≤
δ

2
bδ(t)) ≤

13

δ
.

Letting t ↓ 0, then δ →∞, we see that (9) holds with d(t) = tL1(t).
Finally (8) clearly implies (7). On the other hand if (7) holds the above

proof shows that with b(t) = b1(t) as defined in (44) we have xA(b(x)) = b(x)
for 0 < x ≤ x1, and by (50)

Xt

b(t)
≥ Xt

tL1(t)

P→∞ as t ↓ 0. (53)

Since P (∆
(1)
t ≤ b(t)) = exp−tM(b(t)) and

tM(b(t)) =
b(t)M(b(t))

A(b(t))
· tA(b(t))

b(t)
=
b(t)M(b(t))

A(b(t))
→ 0,

(8) follows from (53).
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