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Abstract

Recently, the Kahn–Kalai–Linial (KKL) Theorem on influences of functions on {0, 1}n

was extended to the setting of functions on Schreier graphs. Specifically, it was
shown that for an undirected Schreier graph Sch(G,X,U) with log-Sobolev con-
stant ρ and generating set U closed under conjugation, if f : X → {0, 1} then E [f ] &
log(1/M[f ]) · ρ ·Var[f ]. Here E [f ] denotes the average of f ’s influences, and M[f ]

denotes their maximum. In this work we investigate the extent to which this result is
sharp. Our main result is that Talagrand’s strengthened version of KKL also holds in
the Schreier graph setting:

avg
u∈U

{
Iu[f ]/ log(1/Iu[f ])

}
& ρ ·Var[f ].

We also give both positive and negative results regarding the strength of this theo-
rem. We show:

• The condition that U is closed under conjugation cannot in general be elimi-
nated.

• The log-Sobolev constant cannot be replaced by the modified log-Sobolev con-
stant.

• The result cannot be improved for the Cayley graph on Sn with transpositions.
• The result can be improved for the Cayley graph on Zn

m with standard genera-
tors.
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1 Introduction

1.1 The KKL Theorem

The famed KKL (Kahn–Kalai–Linial) Theorem [18] asserts that for any “roughly bal-
anced” function f : {0, 1}n → {0, 1}, one of the coordinate i ∈ [n] must have “influ-
ence” Ii[f ] & logn

n . This theorem, along with generalizations by Bourgain–Kahn–Kalai–
Katznelson–Linial [6], Talagrand [29], and Friedgut [12], has important applications in
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Sharpness of KKL on Schreier graphs

numerous areas of computer science and mathematics, including distributed comput-
ing [1], random k-SAT [13] and random graphs [14], communication complexity [27],
hardness of approximation [11, 7, 20], metric embeddings [22, 9], weak random sources [19],
learning theory [24, 25], and extremal combinatorics [25]. To state the KKL Theorem
more precisely, we first introduce some definitions.

Definition 1.1. For f : {0, 1}n → R we define:

Var[f ] = E
x

[f(x)2]−E
x

[f(x)]2;

Ii[f ] = 1
2 E
x

[(f(x)− f(xei))2], i ∈ [n];

E [f ] = avg
i∈[n]

{Ii[f ]}; M[f ] = max
i∈[n]
{Ii[f ]}.

Here the random variable x is always uniformly distributed on {0, 1}n, and xei denotes
x with its ith coordinate flipped.1

We may now state the KKL Theorem:

KKL Theorem. Let f : {0, 1}n → {0, 1}. ThenM[f ] & logn
n ·Var[f ].

(Throughout this paper, A & B means that A ≥ cB for some absolute constant c > 0,
and log denotes the natural logarithm.) The KKL Theorem should be compared to the
much easier “Poincaré Inequality” for {0, 1}n:

Poincaré Inequality. Let f : {0, 1}n → R. Then E [f ] ≥ 2
n ·Var[f ].

Note that the Poincaré Inequality may be sharp even for functions f : {0, 1}n →
{0, 1}; e.g., when f(x) = xi for some i ∈ [n]. The proof method used in [18] can easily
be extended to give the following sharper result, first stated by Talagrand [29]:

KKL Theorem 2. Let f : {0, 1}n → {0, 1}. Then E [f ] & log(1/M[f ])
n ·Var[f ].

Indeed, Talagrand [29] gave an even sharper version:

Talagrand Theorem. Let f : {0, 1}n → {0, 1}. Then avgi∈[n]

{
Ii[f ]

/
log(1/Ii[f ])

}
&

1
n ·Var[f ].

To see that this is strictly sharper, note that it rules out a function f having Var[f ] &
1, I1[f ] = 1/ log n, and Ii[f ] = (log log n)/n for i ≥ 2, something that isn’t ruled out by
KKL Theorem 2.

1.2 KKL on Schreier graphs

In a recent work [25], the authors generalized KKL Theorem 2 to the setting of
functions on Schreier graphs. Let us recall this setting. Let G be a finite group acting
transitively on a finite set X. Let U ⊆ G be a generating set which is symmetric; i.e.,
closed under inverses. The associated Schreier graph Sch(G,X,U) is the undirected
graph with vertex set X and edges (x, xu) for each x ∈ X, u ∈ U , where xu denotes the
action of u on x. In the special case thatG acts onX = G by xu = xu, the Schreier graph
is simply the Cayley graph Cay(G,U). This is the case in the original KKL Theorem
setting, where G = X = Zn2 and U is the standard generating set U = {ei : i ∈ [n]}.

There is a natural random walk on a Schreier graph Sch(G,X,U). Let K denote
the Markov transition matrix for this walk and write L = id − K for the normalized
Laplacian. Since Sch(G,X,U) is undirected, regular, and connected, the random walk

1The factor of 1
2

in our definition of Ii[f ] is sometimes 1 or 1
4

elsewhere in the literature; the difference is
not important for this paper.
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Sharpness of KKL on Schreier graphs

has a unique invariant probability measure: the uniform distribution on X. We denote
this measure by π, and we write L2(π) for the inner product space of functions f : X → R

with inner product 〈f, g〉 = Ex∼π[f(x)g(x)].
Thinking of K as an operator on L2(π), we have K = avgu∈U Ku, where Ku is the

operator defined by Kuf(x) = f(xu). Similarly, L = avgu∈U Lu, where we define the
operator Lu = id−Ku. We have the following simple facts:

Proposition 1.2. The adjoint K∗u of Ku is Ku−1 , and similarly L∗u = Lu−1 .

Proof. This holds because for each fixed u ∈ U , the pairs (x,xu) and (xu
−1

,x) have the
same distribution when x ∼ π.

Proposition 1.3. For all f, g ∈ L2(π) it holds that 〈Luf, Lug〉 = 〈f, Lug〉+ 〈f, L∗ug〉.

Proof. We have 〈Luf, Lug〉 = 〈f − Kuf, g − Kug〉 = (〈f, g〉 − 〈f,Kug〉) + (〈Kuf,Kug〉 −
〈Kuf, g〉). The first quantity in parentheses is precisely 〈f, Lug〉. As for the second
quantity, we have 〈Kuf,Kug〉 = Ex∼π[f(xu)g(xu)] = 〈f, g〉, because xu is uniformly
distributed when x is; furthermore, 〈Kuf, g〉 = 〈f,K∗ug〉. Hence the second quantity in
parentheses is indeed 〈f, L∗ug〉 as required.

We may now define “influences” in the Schreier graph setting:

Definition 1.4. The influence of generator u ∈ U on f ∈ L2(π) is defined to be

Iu[f ] = 〈f, Luf〉 =
1

2
‖Luf‖22,

where the second equality is by Proposition 1.3. We also defineM[f ] = maxu∈U{Iu[f ]}
and

E [f ] = avg
u∈U

{
Iu[f ]

}
= 〈f, Lf〉,

which is sometimes called the “energy” of f .

These definitions agree with those in the original KKL Theorem setting where G = X =

Zn2 , U = {ei : i ∈ [n]}.
To state the KKL Theorem in Schreier graphs we must also recall the “log-Sobolev

inequality” for Markov chains. For a nonnegative function f ∈ L2(π), the entropy of f
is defined to be

Ent[f ] = E
x∼π

[f(x) log f(x)]− E
x∼π

[f(x)] log E
x∼π

[f(x)],

with 0 log 0 defined to be 0. The log-Sobolev constant for the Markov chain on Sch(G,X,U)

is defined to be the largest constant ρ such that the following inequality holds:

Log-Sobolev Inequality. For all nonconstant f ∈ L2(π), Ent[f2] ≤ 2ρ−1E [f ].

This notion was introduced by Gross [17] who showed the following:

Gross’s Theorem. For Cay(Zn2 , U) with U = {ei : i ∈ [n]}, the log-Sobolev constant is
ρ = 2

n .

We may now state the authors’ generalization [25] of KKL Theorem 2 to Schreier
graphs:

Theorem 1.5. Let Sch(G,X,U) be a Schreier graph with log-Sobolev constant ρ. As-
sume that U is closed under conjugation. Then for all f : X → {0, 1} it holds that
E [f ] & log(1/M[f ]) · ρ ·Var[f ]. In particular,M[f ] & ρ log(1/ρ) ·Var[f ].
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Sharpness of KKL on Schreier graphs

The motivation for this theorem was the setting where X is the set of length-n bi-
nary strings of Hamming weight k, G = Sn acts on X by permuting coordinates, and
U = {(ij) : 1 ≤ i < j ≤ n}. The log-Sobolev constant for this Schreier graph is
known [23] to be ρ = Θ( 1

n ) assuming k
n is bounded away from 0 and 1. Using the re-

sulting KKL Theorem, the authors were able to give a stable version of the classical
Kruskal–Katona theorem, as well as an optimal weak-learning algorithm for the class of
monotone Boolean functions.

Subsequently, additional related generalizations of KKL appear in manuscripts of
Cordero-Erausquin–Ledoux [8] and Sachdeva–Tulsiani [28], both of which were written
independently of the present work.

1.3 Our results

One may ask whether Talagrand’s strengthening of the KKL Theorem also holds in
the Schreier graph setting. We establish this using a method of proof alluded to in
Talagrand’s paper [29].

Theorem 1.6. Let Sch(G,X,U) be a Schreier graph with log-Sobolev constant ρ. As-
sume that U is closed under conjugation. Then for all f : X → {0, 1} it holds that

avg
u∈U

{
Iu[f ]

log(1/Iu[f ])

}
& ρ ·Var[f ].

In particular, this proves the original KKL Theorem with a proof that has not previ-
ously appeared in the literature.

Further, in this paper we address several natural questions one might ask regarding
the sharpness of Theorem 1.6. The most obvious question is whether the condition
that U be closed under conjugation is really necessary. Although originally inclined to
believe it is not, we show here the following:

Theorem 1.7. The assumption that U is closed under conjugation cannot in general be
removed from Theorem 1.6, even for Cayley graphs.

There are also natural cases where Theorem 1.5 does not give a strong result be-
cause the log-Sobolev constant is too small. One such example is the Cayley graph on
Sn with generating set given by transpositions. In this case the log-Sobolev constant
is known [10, 23] to be ρ = Θ( 1

n logn ). Hence for f : Sn → {0, 1} with Var[f ] & 1,

Theorem 1.5 only implies that M[f ] & 1
n . One might ask whether this inequality can

nevertheless be improved. Unfortunately, the answer is no:

Theorem 1.8. For the Cayley graph on Sn (n > 1) with generating set U equal to all
transpositions, there is a function f : Sn → {0, 1} with Var[f ] ≥ 2/9 and Iu[f ] ≤ 2

n for all
u ∈ U .

The proof is short enough that we can give it here. Say that f(σ) = 1 if σ is a
derangement (i.e., has no fixed point) and f(σ) = 0 otherwise. It is well known that the

fraction of permutations in Sn which are derangements is
∑n
i=0

(−1)i

i! ∈ [1/3, 1/2]; thus
Var[f ] ≥ 2/9. By symmetry, all transpositions u have the same influence; the influence
of (12), say, is

Pr
σ∼Sn

[σ has no fixed point,σ · (12) has a fixed point].

For the event in question to occur, σ must have either σ(1) = 2 or σ(2) = 1. But the
probability of this is at most 1

n + 1
n = 2

n , completing the proof of Theorem 1.8. This
theorem also immediately implies:
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Corollary 1.9. In general, one cannot replace the log-Sobolev constant ρ in Theo-
rem 1.5 with the modified log-Sobolev constant ρ0.

The modified log-Sobolev constant ρ0, which always satisfies ρ0 ≥ ρ, was introduced
in several papers, dating back to [30]; it is defined to be the largest the constant such
that Ent[f2] ≤ 1

2ρ
−1
0 〈f2, L log f2〉. Corollary 1.9 follows from Theorem 1.8 because it

is known [15, 16, 3] that the modified log-Sobolev constant for the Cayley graph of Sn
with transpositions is ρ0 = Θ( 1

n ).

Another natural setting for which Theorem 1.5 does not give a strong result is the
Cayley graph on Znm with standard generating set U = {±ei : i ∈ n}. It is known that
the log-Sobolev constant for this Cayley graph satisfies ρ = Θ( 1

m2n ); thus Theorem 1.5

shows thatM[f ] & logn+logm
m2n ·Var[f ] for any f : Znm → {0, 1}. In contrast to the case of

Sn, we show that Theorem 1.5 can be improved for Znm.

Theorem 1.10. For any f : Znm → {0, 1} it holds that E [f ] & log(1/(mM[f ]))
n ·Var[f ]. In

particular, M[f ] & logn
mn ·Var[f ]. Further, these inequalities are sharp up to a constant

factor.

1.4 Organization of the remainder of the paper

In Section 2 we prove Theorem 1.6, we prove our main result, the generalization
of the Talagrand Theorem to the Schreier graph setting. This proof uses Orlicz norms
and is probably the most technically interesting part of the paper. In the following sec-
tions we discuss various strengths and weaknesses of this theorem. In Section 3 we
show Theorem 1.7, establishing that the condition that U be closed under conjugation
cannot be removed, even for Cayley graphs. The example takes place on the semidi-
rect product Zn2 o Zn. In Section 4 we show Theorem 1.10 regarding Znm; the proof
follows from a simple combinatorial compression argument combined with the “BKKKL
generalization” [6] of the KKL Theorem.

2 The Talagrand Theorem in Schreier graphs

Recall Talagrand’s Theorem, which generalizes the KKL Theorem: for all f : {0, 1}n →
{0, 1},

avg
i∈[n]

{
Ii[f ]

/
log(1/Ii[f ])

}
& Var[f ]. (2.1)

In fact, in [29] Talagrand also proved a version of this result for {0, 1}n equipped with
the p-biased measure, p 6= 1/2. Talagrand straightforwardly deduced (2.1) from the
following Fourier-theoretic inequality:

Talagrand’s Inequality. For g : {0, 1}n → R with E[g] = 0,

∑
∅6=S⊆[n]

ĝ(S)2

|S|
. ‖g‖2M . (2.2)

Here ‖ · ‖M denotes a certain Orlicz-type norm with M(t) ∼ t2/ log t.

Talagrand’s proof of (a p-biased version of) (2.2) is slightly lengthy. It relies in part
on a hypercontractive inequality for {0, 1}n under the p-biased distribution, which Tala-
grand proves by reduction to the standard ([5]) p = 1/2 case. After the proof, Talagrand
remarks that one can obtain (2.2) in the p = 1/2 case “by duality from an inequality
of L. Gross [the log-Sobolev inequality], that itself follows from [the hypercontractive
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inequality]”. However it would be two years before the sharp log-Sobolev and hyper-
contractive constants for the p-biased distribution were obtained [10]; as Talagrand
wrote, this “creates complications in using this [log-Sobolev and duality] approach when
p 6= 1/2”. In this section we deduce the approach Talagrand presumably had in mind,
and show that it can be extended to the setting of Schreier graphs.

2.1 Basics of Orlicz norms

We begin by recalling some basics of Orlicz norms; see, e.g., [21, 26]. A function
Φ : R → R≥0 is called a Young function if it is convex, even, and satisfies Φ(0) = 0,
limt→∞ Φ(t) = ∞. Each such function has a complementary Young function Ψ, defined
by Ψ(s) = sup{t|s| −Φ(t) : t ≥ 0}. Given a measure space (Ω, σ, µ) and a Young function
Φ, one can define the following “gauge” (or “Luxemburg”) norm on functions f : Ω→ R:

‖f‖Φ = inf{c > 0 :

∫
Ω

Φ(f/c) dµ ≤ 1}.

This norm is closely equivalent to the “Orlicz” norm. Given two Young functions Φ1 and
Φ2 one writes Φ1 ≺ Φ2 if there exist constants c, t0 > 0 such that Φ(t) ≤ Φ(ct) for all
t ≥ t0. If Φ1 ≺ Φ2 and also Φ2 ≺ Φ1, then we call Φ1 and Φ2 equivalent and write
Φ1 ∼ Φ2. In this case the associated norms are also equivalent [21, (9.24) and (13.7)]:

‖f‖Φ1
. ‖f‖Φ2

. ‖f‖Φ1
for all f.

Finally, if Φ and Ψ are a complementary Young pair we have the following generalized
Hölder’s inequality [26, Prop. 1] for functions f, g : Ω→ R:∫

Ω

|fg| dµ ≤ 2‖f‖Φ‖g‖Ψ.

2.2 Talagrand’s key inequality for Markov chains

We now show how to generalize Talagrand’s key inequality (2.2) to the setting of
Markov chains.

These Markov chains need not be random walks on Schreier graphs; for this sub-
section, we merely assume that we have an irreducible finite Markov chain X with a
transition matrix K which is not necessarily reversible. We write π for the (unique)
probability distribution on X which is invariant for K, and L2(π) for the inner prod-
uct space of functions f : X → R with inner product 〈f, g〉 = Ex∼π[f(x)g(x)]. We also
let L = id − K be the (normalized) Laplacian of the Markov chain. The entropy and
energy of functions f ∈ L2(π) are defined as in the Schreier graph case, as is the log-
Sobolev constant of the chain. We write L2

0(π) for the subspace of functions f with
Ex∼π[f(x)] = 0. By the assumption that the chain is irreducible, L is invertible when
restricted to L2

0(π); we write L−1 for its inverse on this subspace. For example, in the
setting of the natural random walk on {0, 1}n we have

Lf =
∑
S⊆[n]

|S|f̂(S)χS , L−1f =
∑

∅6=S⊆[n]

f̂(S)

|S|
χS

for all f ∈ L2(π), `20(π) respectively.
The generalization of Talagrand’s inequality (2.2) involves certain gauge norms on

L2(π). Let

M(t) =
t2

log(e+ t2)
, N ′(t) =

t2 log(e+ t2)

4
,
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which are easily verified to be Young functions. M and N ′ are not complementary but
by [21, Lem. 7.2] we have that M ∼ M ′, where M ′ is the Young complement of N ′. Let
us also introduce the Young function

N(t) = t2 log(1 + t2),

for which it is easy to verify N(t/2) ≤ N ′(t) ≤ N(t) when t ≥ 1, and hence N ∼ N ′.
Bobkov and Götze [2] have shown that the norm ‖ · ‖N is closely related to entropy:

Proposition 2.1. For any f ∈ L2
0(π) it holds that ‖f‖2N . supc∈R

{
Ent[(f+c)2]

}
. ‖f‖2N .

Note that
sup
c∈R

{
Ent[(f + c)2]

}
≤ 2ρ−1E [f ] (2.3)

follows immediately from the log-Sobolev inequality because E [f + c] = E [f ] for all con-
stants c.

We now state and prove the generalization of Talagrand’s inequality (2.2) to our
setting of Markov chains:

Theorem 2.2. For all f ∈ L2
0(π) it holds that 〈f, L−1f〉 . ρ−1‖f‖2M .

Proof. The result is trivial if f = 0. Otherwise,

〈f, L−1f〉2 . ‖f‖2M ′‖L−1f‖2N ′ . ‖f‖2M‖L−1f‖2N . ‖f‖2M · sup
c∈R

{
Ent[(L−1f + c)2]

}
. ρ−1‖f‖2M · E [L−1f ] = ρ−1‖f‖2M · 〈L−1f, f〉,

as required, where the first inequality uses generalized Hölder, the second inequality
uses M ′ ∼ M and N ′ ∼ M , the third inequality uses Proposition 2.1, and the fourth
inequality is the log-Sobolev inequality (or rather, (2.3)).

2.3 The Talagrand Theorem for Schreier graphs

We now return to our setting of Schreier graphs and prove Theorem 1.6, the gener-
alization of the Talagrand Theorem. We begin with a simple calculation (cf. [21, (9.23)]):

Fact 2.3. Let f : X → {0, 1} be the indicator of a subset of measure τ . Then

‖f‖M ≤
√

τ

log(e+ 1/τ)
.

Proof. Write c = c(τ) =
√

τ
log(e+1/τ) . If τ = 0 then f is 0 almost everywhere and hence

‖f‖M = 0 = c(0). Otherwise, we verify that
∫

Ω
M(f/c) dµ ≤ 1:∫

Ω

M(f/c) dµ = τM(1/c) =
τ

c2 log(e+ 1/c2)
=

log(e+ 1/τ)

log(e+ log(e+1/τ)
τ )

≤ 1,

as log(e+ 1/τ) ≥ 1.

With this calculation in hand, we are able to deduce Theorem 1.6 from Theorem 2.2.
The deduction is not quite as straightforward as in Talagrand’s case, since our operators
Lu are not self-adjoint.

Theorem 1.6 restated. Let Sch(G,X,U) be a Schreier graph with log-Sobolev
constant ρ. Assume that U is closed under conjugation. Then for all f : X → {0, 1} it
holds that

avg
u∈U

{
Iu[f ]

log(1/Iu[f ])

}
& ρ ·Var[f ].
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Proof. Given u ∈ U , let g = Luf . Since xu is uniformly distributed when x is, it follows
that Ex∼π[g(x)] = 0. Hence we may apply Theorem 2.2, obtaining

〈g, L−1g〉 . ρ−1‖g‖2M . (2.4)

Since |g| is the 0-1 indicator of a set of measure 2Iu[f ], we conclude from Fact 2.3 that

‖g‖2M = ‖ |g| ‖2M ≤
2Iu[f ]

log(e+ 1/2Iu[f ])
.

Iu[f ]

log(1/Iu[f ])

(using 0 ≤ Iu[f ] ≤ 1/2). Thus from (2.4) we deduce

Iu[f ]

log(1/Iu[f ])
& ρ · 〈Luf, L−1Luf〉.

Since U is closed under conjugation, it follows that Lu commutes with L (see [25]).
Hence Lu commutes with L−1 on L2

0(π) and we obtain

〈Luf, L−1Luf〉 = 〈Luf, LuL−1f〉 = 〈f, LuL−1f〉+ 〈f, Lu−1L−1f〉,

using Propositions 1.3 and 1.2. Thus

Iu[f ]

log(1/Iu[f ])
& ρ ·

(
〈f, LuL−1f〉+ 〈f, Lu−1L−1f〉

)
.

Averaging over u ∈ U and noting that avgu∈U{Lu} = L = avgu∈U{Lu−1} (because U is
closed under inverses), we get

avg
u∈U

{
Iu[f ]

log(1/Iu[f ])

}
& 2ρ · 〈f, LL−1f〉 = 2ρ · 〈f, f −E[f ]〉 = 2ρ ·Var[f ],

completing the proof.

3 When U is not closed under conjugation

In this section we prove Theorem 1.7, establishing that the condition that U be
closed under conjugation cannot be removed from Theorem 1.6. Our counterexample
will take place on a Cayley graph, Cay(G,U). The group G is the semidirect prod-
uct Zn2 o Zn, where Zn acts on Zn2 by the natural cyclic shift of coordinates. I.e., for
(x, i), (y, j) ∈ Zn2 ×Zn the group multiplication is given by

(x, i) · (y, j) = (x+ yπi , i+ j), (3.1)

where yπi ∈ Zn2 is the vector given by cyclically shifting y’s coordinates i places to the
right. We take U to be the following symmetric generating set of 2n elements:

U = {(ei, 0) : i ∈ [n]} ∪ {(~0, j) : j ∈ Zn}.

(If one prefers not to have the group identity in the generating set, it is not hard to alter
our argument so that it works for U \ {(~0, 0)}.) We remark that U is not closed under
conjugation; e.g.,

(e1, 0) · (~0, 1) · (e1, 0)−1 = (e1, 0) · (~0, 1) · (e1, 0) = (e1, 0) · (e2, 1) = (e1 + e2, 1) 6= (~0, 1).

To show that the conclusion of Theorem 1.5 is not satisfied for Cay(G,U), it suffices to
establish the following two lemmas:
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Lemma 3.1. There is a function f : G→ {0, 1} with Var[f ] = 1/4 and Iu[f ] ≤ 1
2n for all

u ∈ U .

Lemma 3.2. Assuming n > 1, the log-Sobolev constant ρG for Cay(G,U) satisfies ρG =
1
n .

The first lemma is extremely easy; the function is f((x, i)) = x1. Clearly Pr(x,i)[f((x, i)) =

1] = 1/2 and hence Var[f ] = 1/4. The generators (~0, i) ∈ U have 0 influence on f , and
it is easy to calculate that the generators (ei, 0) have influence 1

2n each. We now prove
the second lemma.

Proof. (Lemma 3.2.) We determine ρG by comparing it with the log-Sobolev constant
ρH of a related Cayley graph. Specifically, let X be the set Zn2 ×Zn; we write G = (X, ·),
where · is the group multiplication defined in (3.1). Let H be the abelian direct product
group Zn2 ×Zn; we write H = (X,+). We may interpret U ⊆ X as both a subset of G and
of H; it is a symmetric generating set of both. We may interpret any function f : X → R

as being both a function on G and on H; we distinguish the influence of u ∈ U on f

within G and within H as

IGu [f ] = E
x∼X

[f(x)(f(x)− f(x · u))], IHu [f ] = E
x∼X

[f(x)(f(x)− f(x+ u))].

We claim that

EG[f ] = avg
u∈U
{IGu [f ]} = avg

u∈U
{IHu [f ]} = EH [f ]

for all f : X → R. First, IGu [f ] = IHu [f ] for any u = (~0, j), since x · u = x + u for such u.
Second, for the generators in U of the form (ei, 0) we have

avg
i∈[n]

{
IG(ei,0)[f ]

}
= E
x∼X

[
f(x)(f(x)− avg

i∈[n]

{
f(x · (ei, 0))

}
)
]

= E
x∼X

[
f(x)(f(x)− avg

i∈[n]

{
f(x+ (ei, 0))

}
)
]

= avg
i∈[n]

{
IH(ei,0)[f ]

}
,

because {x · (ei, 0) : i ∈ [n]} = {x+ (ei, 0) : i ∈ [n]} (as multisets) for each x ∈ X.

Since we have EG[f ] = EH [f ] for all f : X → R and since Ent[f ] does not depend
on the group structure, it follows that ρG = ρH . It thus remains to show that ρH = 1

n .
The random walk on Cay(H,U) is the product two random walks, one the standard
random walk on Zn2 and one the random walk on the complete graph Kn with self-
loops. It follows [10, Lemma 3.2] that ρH = 1

2 min{ρZn
2
, ρKn

}. Since ρZn
2

= 2
n ([17]) and

ρKn
= 2(1−2/n)

log(n−1) ≥
2
n ([10, Theorem A.1]), it follows that ρH = 1

n as claimed.

4 Improved bounds for Zn
m

Here we prove Theorem 1.10.

Theorem 1.10 restated. For any f : Znm → {0, 1} it holds that

E [f ] &
log(1/(mM[f ]))

n
·Var[f ]. (4.1)

In particular,M[f ] & logn
mn ·Var[f ]. Further, these inequalities are sharp up to a constant

factor.

We remind the reader that Theorem 1.6 implies onlyM[f ] & logm+logn
m2n ·Var[f ] for a

function whose influences are all equal.
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Proof. Let g : Znm → {0, 1}. For x ∈ Znm and i ∈ [n], we write gi,x : Zm → {0, 1} for the
function gi,x(a) = g(x1, . . . , xi−1, a, xi+1, . . . , xn); we also identify gi,x with a subset of
Zm. It follows from the definitions that Iei [g] = I−ei [g] = Ex[|∂gi,x|/2m], where we write
∂gi,x = {x ∈ Zm : g(x) 6= g(x+ 1)}. We will write simply Ii[g] for this common value.

Consider the jth compression operator σj for j ∈ [n]; one may define σjg : Znm →
{0, 1} by stating that (σjg)j,x(a) = 1[a < |gj,x|] for each x ∈ Znm. Note that E[σjg] = E[g]

always. It is a familiar fact in the study of influences (see, e.g., [1]) that compressing
a function does not increase any of its influences. In our particular context of Znm
the proof is straightforward and essentially appears in [4]. (That paper studies ‘grids’
rather than our ‘discrete torus’; the only difference this makes is for the claim that
Ii[σig] ≤ Ii[g], but this follows immediately from the fact that |∂(σig)i,x| ≤ |∂gi,x| for
every x ∈ Znm.) If we now write g̃ = σ1σ2 · · ·σng, we conclude that

E[g̃] = E[g], Ii[g̃] ≤ Ii[g] ∀i, ∀i, x, g̃i,x = {0, 1, . . . , a− 1} for some 0 ≤ a < m.

Given any f : Znm → {0, 1}, the first two facts above show that to prove (4.1) for f , it
suffices to prove it for f̃ . Thus without loss of generality we may assume f satisfies the
third condition above: for each i ∈ [n] and x ∈ Znm it holds that fi,x = {0, 1, . . . , a − 1}
for some 0 ≤ a < m. In this case, note that |∂fi,x| is always either 0 or 2, depending on
whether or not fi,x is a constant. It follows that

Ii[f ] = I ′i[f ]/m = Prx∼Zn
m

[fi,x not constant]/m,

where I ′i[f ] denotes the influence of the ith coordinate on f in the sense of Bourgain–
Kahn–Kalai–Katznelson–Linial [6]. Hence proving (4.1) for f is equivalent to proving

n∑
i=1

I ′i[f ] & log
(
1/max

i
{I ′i[f ]}

)
·Var[f ]. (4.2)

But the inequality (4.2) was proved by Friedgut and Kalai [14] (building on [6]) for any
f : Ωn → {0, 1}, where Ωn is a product probability space.

Finally, to show that (4.1) may be sharp up to a constant, consider functions f : Znm →
{0, 1} of the form f(x) = h(b2x1/mc, . . . b2xm/mc), where h : {0, 1}n → {0, 1}. Then
inequality (4.1) is sharp up to a constant for f if and only if inequality (4.2) is sharp
up to a constant for h with respect to Ω, a p-biased probability space on {0, 1}n. Here
p = 1/2 if m is even and p = 1/2 − 1/2m ∈ [1/3, 1/2) if m is odd. In either case, it is
well known [14] that there are function families h (namely “Tribes”) which are sharp
for (4.2) on Ω up to a universal constant.
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