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Abstract

We study the pathwise description of a (sub-)critical continuous-state branching pro-
cess (CSBP) conditioned to be never extinct, as the solution to a stochastic differential
equation driven by Brownian motion and Poisson point measures. The interest of our
approach, which relies on the use of Girsanov theorem on the SDE that describes the
unconditioned CSBP, is that it points out an explicit mechanism to build the immi-
gration term appearing in the conditioned process, by randomly selecting jumps of
the original one. These techniques should also be useful to represent more general
h-transforms of diffusion-jump processes.
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1 Introduction and preliminaries

Stochastic differential equations (SDE) representing continuous-state branching pro-
cesses (CSBP) or CSBP with immigration (CBI) have attracted increasing attention in
the last years, as powerful tools for studying pathwise and distributional properties of
these processes as well as some scaling limits, see e.g. Dawson and Li [5], [6] , Lambert
[19], Fu and Li [11] and Caballero et al. [4].

In this note, we are interested in SDE representations for (sub)-critical CSBP con-
ditioned to never be extinct. It is well known that such conditioned CSBP correspond
to CBIs with particular immigration mechanisms (see [29]). Thus, it is possible to ob-
tain SDE representations for them by using general results and techniques developed
in some of the aforementioned works, see [5] and [11]. However, our goal is to directly
obtain such representation by rather using the fact that the law of the conditioned
CSBP is obtained from the one of the non conditioned process, by means of an explicit
h−transform. This relation between the two laws, together with the “spine” or immor-
tal particle picture of the conditioned process ([29], [10]), suggest that one should be
able to identify, after measure change, copies of the original driving random processes
and an independent subordinator accounting for immigration . Our proof will show
how to obtain these processes by using Girsanov theorem and an enlargement of the
probability space in order to select by a suitable marking procedure those jumps of the
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On SDE associated with CSBP conditioned to never be extinct

original (non conditioned) process that will constitute (or will not) the immigrants. The
enlargement of the probability space and the marking procedure are both inspired in a
construction of Lambert [19] on stable Lévy processes. They are also reminiscent of the
sized biased tree representation of measure changes for Galton-Watson trees (Lyons et.
al [26]) or for branching Brownian motions (see e.g. Kyprianou [17] and Englänger and
Kyprianou [9]), but we do not aim at fully developing those ideas in the present frame-
work. In a related direction, using the look-down particle representation of CSBP of
Donnelly and Kurtz [8], Hénard obtains in a recently posted article [14] the same SDE
description of the conditioned CSBP. Our proof of the SDE representation contains less
information about the process, but in turn is much simpler. The reader is also referred
to [7], [24] and [25] for further recent developments on representations of CSBP and
their conditioned versions.

We start by recalling some definitions and classic results about CSBPs and Lévy pro-
cesses along the lines of [18, Chap. 1,2 and 10], in particular the relationship between
them through the Lamperti transform. (We also refer the reader to Le Gall [22] and Li
[23] for further background on CSBP).

1.1 Continuous-state branching processes

Continuous-state branching processes (CSBP) were introduced by Jirina [15] in 1958.
Later, Lamperti [21] showed that they can be obtained as scaling limits of a sequence
of Galton-Watson processes. A CSBP with probability laws given the initial state
{Px : x ≥ 0} is a càdlàg [0,∞)-valued strong Markov processes Z = {Zt : t ≥ 0} satis-
fying the branching property. That is, for any t ≥ 0 and z1, z2 ∈ [0,∞), Zt under Pz1+z2

has the same law as the independent sum Z
(1)
t + Z

(2)
t , where the distribution of Z(i)

t is
equal to that of Zt under pzi for i = 1, 2. Usually, Zt represents the population at time
t descending from an initial population x. The law of Z is completely characterized by
its Laplace transform

Ex(e−θZt) = e−xut(θ), ∀x > 0, t ≥ 0,

where u is a differentiable function in t satisfying
∂ut
∂t

(θ) + ψ(ut(θ)) = 0

u0(θ) = θ,

(1.1)

and ψ is called the branching mechanism of Z, which has the form

ψ(λ) = −q − aλ+
1

2
σ2λ2 +

∫
(0,∞)

(e−λx − 1 + λx1{x<1})Π(dx) λ ≥ 0, (1.2)

for some q ≥ 0, a ∈ R, σ ≥ 0 and Π a measure supported in (0,∞) such that∫
(0,∞)

(1 ∧ x2)Π(dx) < ∞. In particular, ψ is the characteristic exponent of a spectrally
positive Lévy process, i.e. one with no negative jumps.

Since clearly, Ex(Zt) = xe−ψ
′(0+)t, defining ρ := ψ′(0+) one has the following classi-

fication of CSBPs :

(i) subcritical, if ρ > 0,
(ii) critical, if ρ = 0 and

(iii) supercritical, if ρ < 0,

according to whether the process will, on average, decrease, remain constant or in-
crease.

In the following, we will assume that Z is conservative, i.e. ∀ t > 0, Px(Zt <∞) = 1.
By Grey (1974), this is true if and only if

∫
0+

dξ
|ψ(ξ)| = ∞, so it is sufficient to asume

ψ(0) = 0 and |ψ′(0+)| <∞.

ECP 17 (2012), paper 49.
Page 2/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1972
http://ecp.ejpecp.org/


On SDE associated with CSBP conditioned to never be extinct

1.2 Lévy Processes and their connection with CSBP

Let X = {Xt : t ≥ 0} be a spectrally positive Lévy process with characteristic
exponent ψ given by (1.2) with q = 0, and initial state x ≥ 0 . By the Lévy-Ito decom-
position it is well known that it can be written as the following sum of independent
processes

Xt = x+ at+ σBXt +

∫ t

0

∫ ∞
1

rNX(ds, dr) +

∫ t

0

∫ 1

0

rÑX(ds, dr),

where a is a real number, σ ≥ 0, BX is a Brownian motion, NX is an independent
Poisson measure on [0,∞)× (0,∞) with intensity measure dt×Π(dr) and ÑX(dt, dr) :=

NX(dt, dr) − dtΠ(dr) denotes the compensated measure associated to NX (the last in-
tegral thus being a square integrable martingale of compensated jumps of magnitude
less than unity).

In [20], Lamperti established a one-to-one correspondence between CSBPs and spec-
trally positive Lévy processes via a random time change. The correspondence at the
level of laws was also proved by Silverstein [30] by analytic methods, and a proof in the
conservative case by discrete (probabilistic) approximation was given in [13]. We refer
the reader to [4] for self-contained modern proofs of this result in the general case.
Given a Lévy process X as above, Lamperti’s construction states that the process

Z := {Zt = Xθt∧T0 : t ≥ 0},

where T0 = inf{t > 0 : Xt = 0} and θt = inf
{
s > 0 :

∫ s
0
du
Xu

> t
}

, is a continuous-state

branching process with branching mechanism ψ and initial value Z0 = x. Conversely,
given Z = {Zt : t ≥ 0} a CSBP with branching mechanism ψ, such that Z0 = x > 0, we
have that

X := {Xt = Zϕt∧T : t ≥ 0},
where T = inf{t > 0 : Zt = 0} and ϕt = inf

{
s > 0 :

∫ s
0
Zudu > t

}
, is a Lévy process

with no negative jumps, stopped at T0 and satisfying ψ(λ) = logE(e−λX1), with initial
position X0 = x.

Relying on this relationship, Caballero et al. [4, Prop 4] provide a pathwise descrip-
tion of the dynamics of a CSBP: given a version of the process (Zt, t ≥ 0) on some
probability space, there exist in an enlarged probability space a standard Brownian
motion BZ and an independent Poisson measure NZ on [0,∞) × (0,∞) × (0,∞) with
intensity measure dt× dν ×Π(dr) such that

Zt =x+ a

∫ t

0

Zsds+ σ

∫ t

0

√
ZsdB

Z
s +

∫ t

0

∫ Zs−

0

∫ ∞
1

rNZ(ds, dν, dr)

+

∫ t

0

∫ Zs−

0

∫ 1

0

rÑZ(ds, dν, dr),

(1.3)

where ÑZ is the compensated Poisson measure associated with NZ . Pathwise proper-
ties of stochastic differential equations driven by Brownian motion and Poisson point
processes have been studied in more general settings in [5], [11] and [6]. In particular,
strong existence and pathwise uniqueness for (1.3) is established [11]. Related SDE
have also been considered in Bertoin and Le Gall [2], [3].

2 CSBPs conditioned to be never extinct as solutions of SDEs

2.1 CSBP conditioned to be never extinct

We assume from now on that Z is a (sub-)critical CSBP such that ψ(∞) = ∞ and∫∞ dξ
ψ(ξ) < ∞. Under these and the previous conditions, the process does not explode
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and there is almost surely extinction in finite time. Branching processes conditioned to
stay positive were first studied in the continuous-state framework by Roelly and Rouault
[29], who proved that for Z as before,

P↑x(A) := lim
s↑∞

Px(A|T > t+ s), A ∈ σ(Zs : s ≤ t) (2.1)

is a well defined probability measure which satisfies

P↑x(A) = E(1Ae
ρtZt
x

).

In particular, P↑x(T < ∞) = 0, and {eρtZt : t ≥ 0} is a martingale under Px. Note that
P↑x is the law of the so-called Q-process (for an in-depth look at these processes, we
refer the reader to [19], [27] and references therein). They also proved that (Z,P↑)

has the same law as a CBI with branching mechanism ψ and immigration mechanism
φ(θ) = ψ′(θ) − ρ, θ ≥ 0. This means that (Z,P↑) is a càdlàg [0,∞)-valued process, such
that for all x, t > 0 and θ ≥ 0

E↑x(e−θZt) = exp{−xut(θ)−
∫ t

0

φ(ut−s(θ))ds},

where ut(θ) is the unique solution to (1.1). Note also that φ is the Laplace exponent of
a subordinator.

2.2 Main Result

The above result is the key for the study of CSBP conditioned on non-extinction,
but we seek a more explicit description for the paths of Z under P↑. To this end, we shall
prove that (Z,P↑) has a SDE representation, which agrees with the interpretation of a
CSBP conditioned on non-extinction as a CBI, but also gives us a pathwise description
for the conditioned process. In particular, this result extends Lambert’s results for the
stable case [19, Theorem 5.2] (see below for details) as well as equation (1.3).

Theorem 2.1. Under P↑, the process Z is the unique strong solution of the following
stochastic differential equation:

Zt =x+ a

∫ t

0

Zsds+ σ

∫ t

0

√
ZsdB

↑
s +

∫ t

0

∫ Zs−

0

∫ ∞
1

rN↑(ds, dν, dr)

+

∫ t

0

∫ Zs−

0

∫ 1

0

rÑ↑(ds, dν, dr) +

∫ t

0

∫ ∞
0

rN?(ds, dr) + σ2t

(2.2)

where {B↑t : t ≥ 0} is a Brownian motion, N↑ and N? are Poisson measures on [0,∞)×
(0,∞)2 and [0,∞) × (0,∞) with intensities measures ds × dν × Π(dr) and ds × rΠ(dr),
respectively, and these objects are mutually independent (as usual, Ñ↑ stands for the
compensated measure associated with N↑). Moreover, given a solution to (1.3) in some
filtered probability space (Ω,F , (Ft),P), the processes B↑, N↑ and N? can be explicitly
constructed by a change of measure in an enlargement of (Ω,F , (Ft)) by an independent
i.i.d. sequence of uniform random variables in [0, 1].

This result implies that we can recover Z conditioned on non-extinction as the so-
lution of a SDE driven by a copy of BZ , a copy of NZ , and a Poisson random measure
with intensity ds × rΠ(dr), plus a drift. (Notice that taking out the last two terms,
corresponding to a subordinator with drift, one again obtains equation (1.3).)
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3 Relations to previous results

3.1 Stable processes

We will show that, as pointed out before, Lambert’s SDE representation of sta-
ble branching processes given in [19, Theorem 5.2] can be seen as a special case of
Theorem 2.1.

Let X be a spectrally positive α-stable process with characteristic exponent ψ and
characteristic measure Π(dr) = kr−(α+1)dr, where k is some positive constant and
1 < α ≤ 2. Let Z be the branching process with branching mechanism ψ. Thanks
to Theorem 2.1 we know that, under P↑, Z satisfies the following stochastic differential
equation:

Zt = x+

∫ t

0

∫ Zs−

0

∫ ∞
1

rN↑(ds, dν, dr)+

∫ t

0

∫ Zs−

0

∫ 1

0

rÑ↑(ds, dν, dr)+

∫ t

0

∫ ∞
0

rN?(ds, dr),

(3.1)
where N↑ is a Poisson random measure with intensity ds × dν × Π(dr) and N? is an
independent Poisson random measure with intensity ds× rΠ(dr). Now, we define

θn =
r↑n1{ν↑n≤Zt−n }

Z
1/α

t−n

,

where {(tn, r↑n, ν↑n) : n ∈ N} are the atoms of N↑. We claim that, under P↑, {(tn, θn) : n ∈
N} are atoms of a Poisson random measure N ′ with intensity ds × Π(du). Indeed, for
any bounded non-negative predictable process H, and any positive bounded function f
vanishing at zero,

Mt :=
∑
tn≤t

Htnf(θn)−
∫ t

0

Hsds

∫ ∞
0

∫ ∞
0

f

(
r

Z
1/α
s

)
1{ν≤Zs}dνΠ(dr)

is a martingale. If we change variables, the particular form of Π implies that

Mt =
∑
tn≤t

Htnf(θn)−
∫ t

0

Hsds

∫ ∞
0

f(u)Π(du).

Taking expectations, our claim follows thanks to Lemma 4.2 below.

Since
∑
tn≤t

r↑n1{ν↑n≤Zt−n }
=
∑
tn≤t

Z
1/α

t−n
θn, we can rewrite (3.1) as

Zt = x+

∫ t

0

∫ ∞
1

Z
1/α
s− uN ′(ds, du) +

∫ t

0

∫ 1

0

Z
1/α
s− uÑ ′(ds, du) +

∫ t

0

∫ ∞
0

rN?(ds, dr).

Defining

Xt :=

∫ t

0

∫ ∞
1

uN ′(ds, du) +

∫ t

0

∫ 1

0

uÑ ′(ds, du),

by the Lévy-Ito decomposition it is easy to see that X is an α-stable Lévy process with
characteristic exponent ψ. Similarly,

St :=

∫ t

0

∫ ∞
0

rN?(ds, dr)

is seen to be an (α − 1)-stable subordinator. Independence of X and S is granted by
construction, because the two processes do not have simultaneous jumps. Thus, we
have

dZt = Z
1/α
t dXt + dSt,

which corresponds to Lambert’s result.
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3.2 CSBP flows as SDE solutions

A family of CSBP processes Z = {Zt(a) : t ≥ 0, a ≥ 0} allowing the initial population
size Z0(a) = a to vary, can be constructed simultaneously as a two parameter process
or stochastic flow satisfying the branching property. This was done by Bertoin and Le-
Gall [1] by using families of subordinators. In [2], [3] they later used Poisson measure
driven SDE to formulate such type of flows in related contexts, including equations
close to (1.3). In the same line, Dawson and Li [6] proved the existence of strong
solutions for stochastic flows of continuous-state branching processes with immigration,
as SDE families driven by white noise processes and Poisson random measures with
joint regularity properties. The stochastic equations they study (in particular equation
(1.5) therein) are close to equation (2.2), the main difference being the immigration
behavior which in their case only covers linear drifts. For simplicity reasons Theorem
2.1 is presented in the case of a Brownian motion and Poisson measure driven SDE,
but our arguments can be extended to the white-noise and Poisson measure driven
stochastic flow considered (in absence of immigration) in [6].

4 Proof of the main theorem

In [19], a suitable marking of Poisson point processes was used to firstly con-
struct a stable Lévy process, conditioned to stay positive, out of the realization of the
unconditioned one. After time-changing the author takes advantage of the scaling prop-
erty of α-stable processes to derive an SDE for the branching process. Our proof is
inspired in his marking argument but in turn it is carried out directly in the time scale
of the CSBP. We will need the following version of Girsanov’s theorem (cf. Theorem 37
in Chapter III.8 of [28]):

Theorem 4.1. Let (Ω,F , (Ft),P) be a filtered probability space, and let M be a P-local
martingale with M0 = 0. Let P? be another probability measure absolutely continuous
with respect to P, and let Dt = E(dP

?

dP |Ft). Assume that 〈M,D〉 exists for P. Then At =∫ t
0

1
Ds−

d〈M,D〉s exists a.s. for the probability P?, and Mt −At is a P?-local martingale.

The following well-known characterization of Poisson point processes will also be
useful:

Lemma 4.2. Let (Ω,F , (Ft),P) be a filtered probability space, (S,S, η) an arbitrary σ-
finite measure space, and {(tn, δn) ∈ R+ × S} a countable family of random variables
such that {tn ≤ t, δn ∈ A} ∈ Ft for all n ∈ N, t ≥ 0 and A ∈ S and, moreover,

E
∑
n:tn≤t

Ftng(δn) = E

t∫
0

Fsds

∫
S

g(x)m(dx) (4.1)

for any nonnegative predictable process Fs and any nonnegative measurable function
g : S → R. Then, (tn, δn)n∈N are the atoms of a Poisson random measure N on R+ × S
with intensity dt×m(dx).

Proof. Writing

e

{ ∑
tn≤t

f(δn))

}
=
∑
n:tn≤t

[ ∏
k:tk<tn

ef(δk)

]
(ef(δn) − 1) =

∑
n:tn≤t

[
e

∑
k:tk≤s

f(δk)
]

(ef(δn) − 1)

we get from (4.1) that E

[
e

∑
n:tn≤t

f(δn)
]

=
t∫

0

E

[
e

∑
k:tk≤s

f(δk)
]
ds
∫
S

(ef(x) − 1)m(dx) since
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Fs :=
∏
tk<s

ef(δk) is a predictable process. Solving this differential equation yields

E

[
e

∑
tn≤t

f(δn)
]

= e
−t

∫
S

(1−ef(x))m(dx)

,

and the statement follows by Campbell’s formula (see e.g. [16])

Proof of Theorem 2.1. We will prove that under the laws P↑x the process Z in equation
(1.3) is a weak solution of (2.2). Pathwise uniqueness, which then classically implies
also strong existence, will then be shown as in [11].

We write B = BZ and N = NZ for the processes in (1.3), and we denote by {Ft} the
filtration

Ft := σ(Bs, (rn, νn)1{tn≤s};n ∈ N, s ≤ t),

where {(tn, rn, νn) ∈ [0,∞) × (0,∞) × (0,∞)}n∈N are the atoms of the Poisson point
process N . We will use the absolute continuity of P↑ w.r.t. P with Radon-Nikodym
density Dt = eρtZt

x , applying Theorem 4.1. to the process {Bt : t ≥ 0} and, indirectly, to
the Poisson random measure N and its compensated measure.

Dealing with the diffusion part is standard since d〈D,B〉t = eρt

x σ
√
Ztdt, so that

B↑t := Bt −
∫ t

0

d〈D,B〉s
Ds

= Bt − σ
∫ t

0

Z
− 1

2
s ds

is a Brownian motion under P↑ by Theorem 4.1.

We next study the way the Poisson random measure N is affected by the change
of probability, which is the main part of the proof. Enlarging the probability space
and filtration if needed, we may and shall assume that there is a sequence (un)n≥1 of
independent random variables uniformly distributed on [0, 1], independent of B and N

and such that un1{tn≤t} is Ft-measurable. Define random variables (∆n, δn) ∈ [0,∞)2 ×
[0,∞) by

(∆n, δn) :=


((0, 0), rn1{νn≤Zt−n }

) if un >
Dtn−

Dtn

=
Zt−n
Ztn

and Ztn > 0,

((rn, νn), 0) if un ≤
Dt−n

Dtn

and Ztn > 0,

((0, 0), 0) if Ztn = 0.

Let fR,ε be a nonnegative measurable function such that for fixed R ≥ 0 and 0 < ε ≤ 1,
and all (r, ν, s),

- fR,ε((r, ν), s) = 0 when ν ≥ R,

- fR,ε((r, ν), s) = 0 when r < ε, and

- fR,ε((0, 0), 0) = 0.

For any non-negative predictable process F we then have (using the third property of
fR,ε to pass to the second line)

∑
tn≤t

FtnfR,ε(∆n, δn) =
∑
tn≤t

FtnfR,ε

(
(0, 0), rn1{νn≤Zt−n })1{

un>
Z
t
−
n

Ztn

} +
∑
tn≤t

FtnfR,ε((rn, νn), 0)1{
un≤

Z
t
−
n

Ztn

}

=
∑
tn≤t

FtnfR,ε((0, 0), rn)1{
νn≤Zt−n

}1{
un>

Z
t
−
n

Ztn

} +
∑
tn≤t

FtnfR,ε((rn, νn), 0)1{
un≤

Z
t
−
n

Ztn

}.
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Therefore, since 1−
Z
t
−
n

Ztn
=

rn1{
νn≤Z

t
−
n

}
Ztn

, by the compensation formula the process

St :=
∑
tn≤t

FtnfR,ε(∆n, δn)−
∫ t

0

dsFs

∫ ∞
0

∫ ∞
0

fR,ε((0, 0), r)
r1{ν≤Zs}

Zs + r1{ν≤Zs}
Π(dr)dν

−
∫ t

0

dsFs

∫ ∞
0

∫ ∞
0

fR,ε((r, ν), 0)
Zs

Zs + r1{ν≤Zs}
Π(dr)dν

is a pure jump martingale under P. The quadratic covariation of S and D is thus given
by

[S,D]t =
∑
tn≤t

(Stn − St−n )

(
eρtn

x
Ztn −

eρt
−
n

x
Zt−n

)

=
∑
tn≤t

FtnfR,ε(∆n, δn)
eρtn

x
rn1{νn≤Zt−n }

=
∑
tn≤t

FtnfR,ε((0, 0), rn)
eρtn

x
rn1{νn≤Zt−n }

1{
un>

Z
t
−
n

Ztn

}

+
∑
tn≤t

FtnfR,ε((rn, νn), 0)
eρtn

x
rn1{νn≤Zt−n }

1{
un≤

Z
t
−
n

Ztn

}.

By the compensation formula, the conditional quadratic covariation of S and D is then
given by

〈D,S〉t =

∫ t

0

eρs

x
Fsds

∫ ∞
0

∫ ∞
0

fR,ε((0, 0), r)
r1{ν≤Zs}

Zs + r1{ν≤Zs}
rΠ(dr)dν

+

∫ t

0

eρs

x
Fsds

∫ ∞
0

∫ ∞
0

fR,ε((r, ν), 0)
Zs

Zs + r1{ν≤Zs}
r1{ν≤Zs}Π(dr)dν.

Using Theorem 4.1 we see that the process

S↑t :=St −
∫ t

0

∫ ∞
0

∫ ∞
0

FsfR,ε((0, 0), r)
r1{ν≤Zs}

Zs + r1{ν≤Zs}

r

Zs
Π(dr)dνds

−
∫ t

0

∫ ∞
0

∫ ∞
0

FsfR,ε((r, ν), 0)
Zs

Zs + r1{ν≤Zs}

r1{ν≤Zs}

Zs
Π(dr)dνds

is a (Ft)-martingale under P↑. By definition of S and noting that
∫∞

0
r
Zs
1{ν≤Zs}dν = r,

we get

S↑t =
∑
tn≤t

FtnfR,ε(∆n, δn)−
∫ t

0

Fsds

∫ ∞
0

∫ ∞
0

[
fR,ε((0, 0), r)

r

Zs
1{ν≤Zs} + fR,ε((r, ν), 0)

]
Π(dr)dν

=
∑
tn≤t

FtnfR,ε(∆n, δn)−
∫ t

0

Fsds

[∫ ∞
0

fR,ε((0, 0), r)rΠ(dr) +

∫ ∞
0

∫ ∞
0

fR,ε((r, ν), 0)

]
Π(dr)dν.

Since E↑(S↑t ) = E↑(S↑0 ) = 0, this implies

E↑

∑
tn≤t

FtnfR,ε(∆n, δn)

 =E↑
[∫ t

0

Fsds

∫ ∞
0

fR,ε((0, 0), r)rΠ(dr)

]

+ E↑
[∫ t

0

Fsds

∫ ∞
0

∫ ∞
0

fR,ε((r, ν), 0)Π(dr)dν

]
.
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By standard arguments, this formula is also true for any nonnegative function f such
that f((0, 0), 0) = 0. Using Lemma 4.2 we then see that (tn,∆n)n≥0 and (tn, δn)n≥0 are
under P↑ the atoms of two Poisson point processes N↑ and N?, with intensity measures
dt×dν×Π(dr) and dt×rΠ(dr) on [0,∞)×(0,∞)×(0,∞) and [0,∞)×(0,∞), respectively.
By construction, N↑ and N? are independent because they never jump simultaneously.
Now set

Jt :=

∫ t

0

∫ Zs−

0

∫ ∞
1

rN(ds, dν, dr) =
∑
tn≤t

rn1{νn≤Zt−n }
1{rn≥1}.

From the definition of (∆n, δn)n∈N, and writing ∆
(i)
n for the i−th coordinate of ∆n, i =

1, 2, we have

Jt =
∑
tn≤t

∆(1)
n 1{∆(2)

n ≤Zt−n
}1{∆(1)

n ≥1} +
∑
tn≤t

δn1{δn≥1}

=

∫ t

0

∫ Zs−

0

∫ ∞
1

rN↑(ds, dν, dr) +

∫ t

0

∫ ∞
1

rN?(ds, dr).

Finally, we observe that for given 0 < ε < 1, the process

M̃
(ε)
t :=

∫ t

0

∫ Zs−

0

∫ 1

ε

rN(ds, dν, dr)−
∫ t

0

∫ Zs−

0

∫ 1

ε

r dsdνΠ(dr)

=
∑
tn≤t

rn1{νn≤Zt−n }
1{ε<rn<1} −

∫ t

0

∫ Zs

0

∫ 1

ε

r dsdνΠ(dr)

is aP-martingale which converges in the L2(P) sense when ε→ 0 to M̃t :=
∫ t

0

∫ Zs−
0

∫ 1

0
rÑ(ds, dν, dr).

In terms of (∆n) and (δn), we can write

M̃ (ε) =

∑
tn≤t

∆(1)
n 1{∆(2)

n ≤Zt−n
}1{ε<∆

(1)
n <1} −

∫ t

0

∫ Zs

0

∫ 1

ε

rdsdνΠ(dr)



+
∑
tn≤t

δn1{ε<δn<1}

=

(∫ t

0

∫ Zs−

0

∫ 1

ε

rN↑(ds, dν, dr)−
∫ t

0

∫ Zs

0

∫ 1

ε

rdsdνΠ(dr)

)

+

∫ t

0

∫ 1

ε

rN?(ds, dr).

(4.2)

Thanks to [18, Theorem 2.10], the L2(P↑) limit as ε → 0 of the P↑-martingale given by
the expression in the third line of (4.2) exists, and equals the P↑-martingale∫ t

0

∫ Zs−
0

∫ 1

0
rÑ↑(ds, dν, dr), where Ñ↑ is the compensated measure associated with N↑.

Also, as
∫∞

0
(1 ∧ x2)Π(dx) < ∞, by [18, Theorem 2.9] the last term of (4.2) converges

P↑-a.s. as ε→ 0, and so we have

M̃t =

∫ t

0

∫ Zs−

0

∫ 1

0

rÑ↑(ds, dν, dr) +

∫ t

0

∫ 1

0

rN?(ds, dr) P↑ − a.s. .

Bringing all parts together, we have shown that Z satisfies under P↑ the desired SDE,
except for the independence of the processes B↑ and (N↑, N?), which we establish

ECP 17 (2012), paper 49.
Page 9/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1972
http://ecp.ejpecp.org/


On SDE associated with CSBP conditioned to never be extinct

in what follows. Let ζ ∈ R, λk, γk ∈ R+, m ∈ N and k ∈ {1, ...,m}, and consider
{Wk}mk=1 and {Vk}mk=1 disjoint subsets of (0,∞) × (0,∞) and (0,∞) respectively, such
that

∫
Wk

Π(dr)dν and
∫
VK

rΠ(dr) are finite. Set

F (x, y1, .., ym, z1, .., zm) := eζxe−
∑m
k=1 λkyke−

∑m
k=1 γkzk .

Applying Itô’s formula to the semimartingale

Xt =
(
B↑t , N

↑((0, t]×W1), .., N↑((0, t]×Wm), N?((0, t]× V1), .., N?((0, t]× Vm)
)
,

we obtain for 0 ≤ s ≤ t that

F (Xt)− F (Xs) =

∫ t

s

ζF (Xu)dB↑u +
ζ2

2

∫ t

s

F (Xu)du+
∑

s<tn≤t

F (Xtn)− F (Xtn−)

+
∑

s<tn≤t

m∑
j=1

[
λjF (Xtn−)1{∆n∈Wj} + γjF (Xtn−)1{δn∈Vj}

]
−

m∑
j=1

∫ t

s

∫
Wj

λjF (Xu−)N↑(du, dν, dr)−
m∑
j=1

∫ t

s

∫
Vj

γjF (Xu−)N?(du, dr)

=

∫ t

s

ζF (Xu)dB↑u +
ζ2

2

∫ t

s

F (Xu)du+
∑

s<tn≤t

F (Xt−n
)f(∆n, δn),

(4.3)

where the second and third lines canceled out by definition of the integrals with respect

to N? and N↑, and where the notation f((r, ν), s) := e
−

m∑
k=1

λk1{(r,ν)∈Wk}−
m∑
k=1

λk1{s∈Vk} − 1

was used in the last term of the fourth line. Using the fact that f((0, 0), 0) = 0 and
previous arguments, we can show that the process

∑
tn≤t

F (Xtn−)f(∆n, δn)−
∫ t

0

F (Xu)du

[∫ ∞
0

∫ ∞
0

f((r, ν), 0)Π(dr)dν +

∫ ∞
0

f((0, 0), r)rΠ(dr)

]

is a P↑-martingale with respect to Ft. Since the sum of the two integrals in square
braquets is equal to

m∑
k=1

[∫
Wk

(e−λk − 1)Π(dr)dν +

∫
Vk

(e−γk − 1)rΠ(dr)

]
,

we deduce from the latter and (4.3) that

F (Xt)−F (Xs)−
∫ t

s

F (Xu)du

(
ζ2

2
+

m∑
k=1

[∫
Wk

(e−λk − 1)Π(dr)dν +

∫
Vk

(e−γk − 1)rΠ(dr)

])

is a martingale increment. Multiplying it by F ((Xs))
−11A for A ∈ Fs, taking expecta-

tion, and using then Gronwall’s lemma, we conclude that

E↑ [F (Xt −Xs)1A] = P↑(A) exp

{
(t− s)

[
ζ2

2
+

m∑
k=1

∫
Wk

(e−λk − 1)Π(dr)dν +

m∑
k=1

∫
Vk

(e−γk − 1)rΠ(dr)

]}
.

This means that under P↑, Xt is a multidimensional Lévy process with respect to Ft
with independent coordinates and implies the independence of B↑ and (N↑, N?).
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As regards pathwise uniqueness, we just remark that the proof of Theorem 3.2 in
[11] covers the case of equation (2.2). Indeed, if B↑, N↑ and N? are independent pro-
cesses as before driving two solutions {Z(1)

t } and {Z(2)
t } of (2.2), setting ζt := Z

(1)
t −Z

(2)
t

one gets that

ζt = ζ0 +

∫ t

0

a
(
Z(1)
s − Z(2)

s

)
ds+

∫ t

0

σ

(√
Z

(1)
s −

√
Z

(2)
s

)
dB↑s

+

∫ t

0

∫
U0

r
(
1{ν<Z(1)

s }
− 1{ν<Z(2)

s }

)
N↑(ds, dν, dr)

+

∫ t

0

∫
U1

r
(
1{ν<Z(1)

s }
− 1{ν<Z(2)

s }

)
Ñ↑(ds, dν, dr),

(4.4)

where U0 = [0,∞) × [1,∞) and U1 = [0,∞) × (0, 1). From this point on, the proof of
Theorem 3.2 in [11] applies, since conditions (2.a,b) and (3.a,b) therein are satisfied.
Indeed, in their notations, we have the intensity measure µ(du) = Π(dr)dν for N0 =

N↑|U0
and N1 = N↑|U1

(where u = (r, ν)), continuous functions on R given by b(x) :=

ax1{0≤x} and σ(x) := σ
√
x1{0≤x}, and Borel functions on R × Ui, i = {0, 1} given by

g(x, u) = g0(x, u) = g1(x, u) = r1{ν<x} such that g(x, u) + x ≥ 0 for x > 0 and g(x, u) = 0

for x ≤ 0. Moreover,

1. there is a constant K := |a|+M ≥ 0 , where
∫∞

1
rΠ(dr) = M <∞, such that

|ax|+
∫ ∞

0

∫ ∞
1

r1{ν<x}Π(dr)dν ≤ K(x+ 1) ;

2. there is a non-negative and non-decreasing function L(x) = (σ2 + I)(x) on R+,
with I =

∫ 1

0
r2Π(dr), so that

σ2x+

∫ ∞
0

∫ 1

0

r21{ν<x}Π(dr)dν ≤ L(x);

3. there is a continuous non-decreasing function x → b2(x) := x on R+ such that for
b1(x) = b(x) + b2(x), on has

|(a+ 1)(b1(x)− b1(y))|+
∫ ∞

0

∫ ∞
1

r1{y<ν<x}Π(dr)dν ≤ r(|x− y|) ;

where r is the non-decreasing and concave function r(z) =: (|a + 1| + M)z on R+

satisfying
∫

0+
r(z)−1dz =∞; and

4. for every fixed u ∈ U0 the function x → g(x, u) is non-decreasing, and there is
a non-negative and non-decreasing function ρ(z) := [σ2 + I]

√
z on R+ so that∫

0+
ρ(z)−2dz =∞ and

(σ
√
x− σ√y)2 +

∫ ∞
0

∫ 1

0

r21{y<ν<x}Π(dr)dν ≤ ρ(|xy|)2.

Conditions 1,2,3 and 4 respectively ensure that hypotheses (2.a,b) and (3.a,b) in [11]
hold, and pathwise uniqueness follows.
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