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Abstract

The inductive size bias coupling technique and Stein’s method yield a Berry-Esseen
theorem for the number of urns having occupancy d ≥ 2 when n balls are uniformly
distributed over m urns. In particular, there exists a constant C depending only on d
such that

sup
z∈R
|P (Wn,m ≤ z)− P (Z ≤ z)| ≤ C σn,m

1 + ( n
m
)3

for all n ≥ d and m ≥ 2,

where Wn,m and σ2
n,m are the standardized count and variance, respectively, of the

number of urns with d balls, and Z is a standard normal random variable. Asymptot-
ically, the bound is optimal up to constants if n and m tend to infinity together in a
way such that n/m stays bounded.

Keywords: Stein’s method; size bias; coupling; urn models.
AMS MSC 2010: 60F05; 60C05.
Submitted to EJP on April 25, 2012, final version accepted on February 16, 2013.

1 Introduction

In this paper we provide a Berry-Esseen theorem in the classical occupancy prob-
lem for the normal approximation of the distribution of the number of urns having oc-
cupancy d when n balls are uniformly distributed among m urns. Our proof relies on
the inductive version of Stein’s method using size bias couplings as presented in Gold-
stein (2012). In turn, that work springs from the use of induction in Bolthausen (1984),
achieving bounds for the combinatorial central limit theorem. The inductive method
relies on expressing a bound for the distance of the given variable to the normal in
terms of smaller versions of the same problem. For instance, in the occupancy model,
conditional on the contents of a randomly chosen urn, the distribution of the remaining
balls is uniformly distributed over one fewer urn.

Stein’s method often proceeds by coupling a random variable Y of interest to a
related one using, for example, the method of exchangeable pairs, size bias couplings,
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Berry-Esseen bound for the occupancy model

or zero bias couplings (see Stein (1972), Stein (1986) and Chen et al. (2010)). However,
some of the couplings that are the simplest to construct may lack a key boundedness
property that is required for the application of many results. By applying a theorem
that does not require the coupling to be bounded, in Theorem 1.1 we are able to extend
the work of Englund (1981) on the number of empty urns, and that of Penrose (2009)
on the number of urns occupied by a single ball, to the case of all occupancies of size
two and greater.

In the general multinomial occupancy model, one considers a vector Mn having
components Mn(i) that record the number of balls falling in urn i in n independent
trials, where in each trial a single ball falls in urn i with probability θi for all i ≥ 1. In
particular, the (multinomial) distributionM(n, θ) of Mn is given by

P (Mn(i) = mi, i ≥ 1) =
n!∏

i≥1mi!

∏
i≥1

θmii

when mi, i ≥ 1, are nonnegative integers summing to n, and θ ∈ Θ where

Θ =

(θ1, θ2, . . .) : θi ≥ 0, i ≥ 1,
∑
i≥1

θi = 1

 . (1.1)

For all d ≥ 0 the number Y (d)
n of urns containing d balls is therefore given by

Y (d)
n =

∑
i≥1

X
(d)
n,i where X

(d)
n,i = 1(Mn(i) = d). (1.2)

Among the many applications of multinomial occupancy models are the well-known
species trapping problem (see Chao et al. (1996), Robbins (1968), or Starr (1979)) and
the closely-related problem of statistical linguistics (see Efron and Thisted (1976) and
Thisted and Efron (1987)). In these applications a collection of species are trapped, or
a collection of words are observed, according to the multinomial distribution M(n, θ),
and estimators of parameters related to the number of unseen species, or words known
but unused by an author, are of central interest. Estimators of, say, the number of
unknown species most often take the form of linear combinations of Y (d)

n for various d.
For example, a well-known conjecture of Starr (1979) is that the uniformly minimum
variance unbiased estimator, or UMVUE, of the probability of sampling a new species
in a sample of size n− n0, based on an original sample of size n0, is

n−n0∑
d=1

(
n−n0−1
d−1

)(
n
d

) Y (d)
n .

For occupancy models where n balls are distributed among the first m urns only, the
urn probability vector θ is given by (θ1, . . . , θm, 0, 0, . . .) ∈ Θ as in (1.1). Below we will
find it convenient to continue to consider the case where the urns are indexed by all
i ≥ 1, even though all but the first m of them will be empty.

In what follows we fix d ≥ 0 and drop the superscript (d) from our notation, denoting

X
(d)
n,i and Y (d)

n simply as Xn,i and Yn, respectively. Kolchin et al. (1978, p. 37) show that
the mean µn,m and variance σ2

n,m of the number Yn of urns occupied by d ∈ {0, 1, . . .}
balls, when n balls are distributed uniformly over m urns, are given by

µn,m = m

(
n

d

)
1

md

(
1− 1

m

)n−d
, and (1.3)

σ2
n,m = µn,m +m(m− 1)

(
n

d, d, n− 2d

)
1

m2d

(
1− 2

m

)n−2d

− µ2
n,m (1.4)
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for all n ≥ d and m ≥ 2, with the second term in (1.4) set to zero for all d ≤ n < 2d and
m ≥ 2.

Since the cases d = 0 and d = 1 having already been handled by Englund (1981) and
Penrose (2009), respectively, we focus on d ≥ 2. Our main result is the following.

Theorem 1.1. For d ∈ {2, 3, . . . , }, let Yn be the number of urns containing d balls in
the uniform occupancy model with n balls and m urns. Then, with µn,m given by (1.3),
σ2
n,m by (1.4), and

rn,m =
σn,m

1 + (n/m)3
, (1.5)

there exists a constant C depending only on d such that the standardized count

Wn,m =
Yn − µn,m
σn,m

satisfies

sup
z∈R
|P (Wn,m ≤ z)− P (Z ≤ z)| ≤ C/rn,m for all n ≥ d and m ≥ 2. (1.6)

Regarding lower bounds, Englund (1981, Section 6) shows that in the case d = 0,

sup
z∈R
|P (Wn,m ≤ z)− P (Z ≤ z)| ≥ 0.087/max(3, σn,m) (1.7)

and we remark that Englund’s argument holds without changes for any random variable
Wn,m with finite variance supported on the integers, and so for the d ≥ 0 cases of the
occupancy problem in particular.

Although Theorem 1.1 yields a bound for all n ≥ d and m ≥ 2, often interest centers
on the behavior of a sequence of occupancy models where n and m vary together in
such a way that the ratio of n to m is bounded away from zero and infinity, that is, when
there exist 0 < a < b <∞ such that

a ≤ n

m
≤ b. (1.8)

Note that the bound on the supremum norm in (1.6) achieves the rate 1/σn,m, optimal in
view of (1.7), when σn,m/rn,m is bounded away from infinity, or equivalently, when the
upper bound in (1.8) holds. These observations yield the following immediate corollary;
see also Section 4 for a more detailed discussion of these and other asymptotic regimes.

Corollary 1.2. For any b ∈ (0,∞) there exists a constant C, depending only on d ∈
{2, 3, . . .} and b, such that

sup
z∈R
|P (Wn,m ≤ z)− P (Z ≤ z)| ≤ C/σn,m

for all n ≥ d and m ≥ 2 that satisfy n/m ≤ b, and the bound is optimal up to constants.

Specializing the broad results of Theorem 4.2 of Chen and Röllin (2010) for gen-
eral functions of urn occupancies to the case considered here under (1.8) results in a
bound in Kolmogorov distance in the central domain such as the one here, with explicit
constants but additional factors of log n to various powers.

To begin to describe the first ingredient required for the proof of Theorem 1.1, the
construction of a size biased coupling, recall that for a nonnegative random variable Y
with finite, nonzero mean µ, Y s has the Y -size bias distribution if

E[Y f(Y )] = µEf(Y s) (1.9)
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for functions f for which the expectations above exist. In employing the size bias version
of Stein’s method, see Baldi et al. (1989), Goldstein and Rinott (1996) and Chen et al.
(2010), the goal is to construct, on the same space as Y , a variable Y s with the Y -size
bias distribution, such that Y and Y s are close is some sense. Previous applications of
size bias coupling in Stein’s method for producing bounds in the Kolmogorov distance
in the presence of dependence, but for Goldstein (2012), have required that |Y s−Y | be
bounded.

To size bias the number of urns Yn containing d balls, note that when n balls are
uniformly distributed over m urns, Yn in (1.2) is the sum of m exchangeable indicators.
In general, Lemma 2.1 below says, essentially, that to size bias such a sum one chooses
an indicator uniformly, sets it to one, and then ‘adjusts’ the remaining indicators, if
necessary, to have their original distribution given that the selected indicator now takes
the value one. In the occupancy problem, to set an indicator for a chosen urn equal to
one if it is not so already, one must either add balls to that urn if it has fewer than
d balls, or redistribute balls from the urn if it has an excess over d. As it is possible
that the chosen urn has, say, all n balls, the resulting coupling fails to be bounded in
n. However, as there is small probability that a very large number of balls will need to
be redistributed, the coupling can be controlled using quantities such as moments on
bounds Kn on the absolute difference between Y sn and Yn.

To describe the second ingredient in the application of Theorem 3.1 in general, the
inductive component, suppose that for some nonnegative integer n1, for all n ≥ n1 we
are given a nonnegative random variable Yn whose distribution Lθ depends on a pa-
rameter θ in a topological space Θn. As bounds to the normal for Yn can be expressed
in terms of a number of quantities, including bounds to the normal for ‘smaller ver-
sions’ of the same problem, an inductive argument yielding a recursion for the bound
may be constructed when for random variables Ln and ψn,θ taking values in {0, . . . , n}
and Θn−Ln , respectively, and a certain collection of random variables Jn there exists a
random variable Vn on the same space as Yn such that

Lθ(Vn|Jn) = Lψn,θ (Yn−Ln)

holds on a set where the size of Ln is controlled. One must also control the difference
between Yn and Vn, but again strict boundedness is not required on Yn − Vn but rather
moment estimates of a bounding random variable Bn satisfying |Yn − Vn| ≤ Bn.

Regarding the inductive component for our occupancy problem, if the urn chosen
to have occupancy d in the size bias configuration is removed, then, conditional on the
identity of that urn and the number of balls it contains, the remaining configuration
has the same uniform multinomial distribution over the remaining urns, one fewer than
the number in the original configuration, of the balls not contained in the urn chosen.
And again, as with the bound Kn on |Y sn − Yn|, though it is possible that the chosen urn
contains a very large number of balls, it is unlikely that it will.

In the uniform model, Englund (1981) gave an explicit Berry-Esseen bound of order
1/σn,m, with a corresponding lower bound (1.7) of the same order, for the number of
occupied urns, or equivalently, for the number of empty urns forming the complement,
that is, those with occupancy d = 0. For the non-uniform case, Quine and Robinson
(1984) gave a less explicit error bound. Hwang and Janson (2008) obtained a local
limit theorem, and also describe applications including species trapping and statistical
linguistics. Johnson and Kotz (1977) and Kolchin et al. (1978) give results for models
of this type in the uniform and some non-uniform cases. Penrose (2009) considers the
case d = 1 where Yn counts the number of isolated balls, and obtains a Berry-Esseen
bound via size-biased coupling in the uniform case, and for the non-uniform case as
well with a slightly larger constant. Karlin (1967), Gnedin et al. (2007) and Barbour
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and Gnedin (2009) consider the infinite occupancy model, the first two proving central
limit theorems for the number of occupied urns, the last providing a multivariate normal
approximation for arbitrary occupancies of a fixed number of urns.

In Section 2 we construct the coupling of Yn and the size biased variable Y sn . In
Section 3, with the help of Lemma 3.2, we prove Theorem 1.1 by verifying the conditions
of Theorem 3.1. Some discussion is provided in Section 4, and the proof of Lemma 3.2
is given in the Appendix. With Z the set of integers, letNk = Z∩ [k,∞). Throughout, we
will use C,C1, C2, . . . to denote positive, finite constants depending only on d. Since in
what follows we focus on the uniform occupancy problem, for notational simplicity we
specify the multinomial probability vector by m ∈ N1 rather than by the corresponding
vector

θm = (1/m, . . . , 1/m,︸ ︷︷ ︸
m

0, 0, . . .) (1.10)

and write N2 for our parameter space. When considering subsets Θn ⊆ Θ for some
n ∈ N and invoking Theorem 3.1, statements such as m ∈ Θn should be interpreted as
meaning that θm ∈ Θn. Further, we will denote the uniform multinomial distribution
of n balls over m urns as M(n,m), in parallel to our notation for the binomial B(n, p)

distribution with n trials and success probability p. For Mn ∼ M(n,m), in accordance
with (1.10), we have Mn(j) = 0 for all j > m.

2 Size Bias Coupling

A general prescription for size biasing a sum of nonnegative variables is given in
Goldstein and Rinott (1996); specializing to exchangeable indicators yields the following
result.

Lemma 2.1. Suppose Y =
∑
α∈I Xα, a finite sum of nontrivial exchangeable Bernoulli

variables {Xα, α ∈ I}, and that for α ∈ I the variables {Xα
β , β ∈ I} have joint distribu-

tion

L(Xα
β , β ∈ I) = L(Xβ , β ∈ I|Xα = 1).

Then
Y α =

∑
β∈I

Xα
β

has the Y size biased distribution Y s characterized by (1.9), as does the mixture Y I

when I is a random index with values in I, independent of all other variables.

Proof. First, fixing α ∈ I, we show that Y α satisfies (1.9). For given f ,

E[Y f(Y )] =
∑
β∈I

E[Xβf(Y )] =
∑
β∈I

P [Xβ = 1]E[f(Y )|Xβ = 1].

As exchangeability implies that E[f(Y )|Xβ = 1] does not depend on β, we have

E[Y f(Y )] =

∑
β∈I

P [Xβ = 1]

E[f(Y )|Xα = 1] = E[Y ]E[f(Y α)],

demonstrating the first result. The second follows easily using that Y I is a mixture of
random variables all of which have distribution Y s.

With n ≥ d we prove Theorem 1.1 by constructing a size bias coupling of Y sn to Yn
for the urn model and verifying the hypotheses of Theorem 3.1. To apply Lemma 2.1 we
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construct, for each i ∈ {1, . . . ,m}, a configuration Mi
n that has the conditional distribu-

tion of M(n,m) given that urn i contains d balls on the same space as a configuration
Mn with the unconditional distributionM(n,m).

We now describe the joint construction of Mi
n and Mn formally; in its course we will

also define the vector Ri
n specifying the difference, up to sign, between Mn and Mi

n.
For a vector M and a given i ≥ 1, let 〈M〉i be the vector obtained by deleting the ith

component of M.
With i ∈ {1, . . . ,m} we first specify the ith components of Mn and Mi

n by letting
Mn(i) ∼ B(n, 1/m) and M i

n(i) = d, respectively. Next, let vectors M′n,i and Ri
n satisfy

M ′n,i(i) = Rin(i) = 0, and whose remaining components are conditionally independent
given Mn(i), with conditional distributions given Mn(i) specified by

L(〈M′n,i〉i|Mn(i)) =M(n−Mn(i) ∨ d,m− 1)

and
L(〈Ri

n〉i|Mn(i)) =M(|d−Mn(i)| ,m− 1), (2.1)

and set

〈Mn〉i = 〈M′n,i〉i + 1(Mn(i) < d) 〈Ri
n〉i and 〈Mi

n〉i = 〈M′n,i〉i + 1(Mn(i) > d) 〈Ri
n〉i.

By the additive property of the multinomial distribution, conditional on Mn(i) we have
that 〈Mn〉i ∼ M(n −Mn(i),m − 1) in all cases, so that Mn ∼ M(n,m), as required.
Likewise in all cases 〈Mi

n〉i ∼M(n− d,m− 1), so

Mn ∼M(n,m) and L(Mi
n) = L(Mn|Mn(i) = d). (2.2)

Further, we note that that the difference between the two configurations excluding urn
i satisfies

〈Mi
n〉i − 〈Mn〉i = sign(Mn(i) > d)〈Ri

n〉i, where
∑
j≥1

Rin(j) = |d−Mn(i)|. (2.3)

Applying the indicator function 1(· = d) coordinate-wise to (2.2) and recalling (1.2)
we obtain

L(Xi
n,1, . . . , X

i
n,m) = L(Xn,1, . . . , Xn,m|Mn(i) = d),

and Lemma 2.1 now yields that Y in, counting the number of urns containing d balls in
the configuration Mi

n, given explicitly by

Y in =
∑
j≥1

Xi
n,j , with Xi

n,j = 1(M i
n(j) = d) for j ≥ 1,

has the Yn-size biased distribution. Again by Lemma 2.1, if In is uniformly distributed
over {1, . . . ,m}, independent of all other variables, then Y sn = Y Inn also has the Yn-size
bias distribution.

3 Auxiliary Results and Proof of Theorem 1.1

To prove Theorem 1.1 we utilize a general result of Goldstein (2012), given as Theo-
rem 3.1 below, whose framework has already been described in Section 1. In particular,
the random variables of interest Yn, n ≥ n0 have distributions Lθ(Yn) that depend on a
parameter θ in a topological space Θn, also endowed with a σ-algebra of subsets. In our
application we give Θn = N2 the discrete topology, and the σ-algebra the collection of
all its subsets.
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In Theorem 3.1, rn,θ is a function that determines the quality of the bound to the
normal, the sequence sn,θ is used to control a random variable Ln determining the size
of the smaller subproblem Vn related to Yn. In general, the mean µn,θ and variance σ2

n,θ

of Yn under Lθ, and rn,θ, are required to be measurable in θ, a condition satisfied for all
natural examples, and in particular, for the one considered here.

Theorem 3.1. For some n0 ∈ N0 and all n ≥ n0 let Yn be a nonnegative random variable
with mean µn,θ = EθYn and positive variance σ2

n,θ = Varθ(Yn) for all θ ∈ Θn, and set

Wn,θ =
Yn − µn,θ
σn,θ

, (3.1)

the standardized value of Yn. Let rn,θ be positive for all n ≥ n0 and all θ ∈ Θn, and for
all r ≥ 0 let

Θn,r = {θ ∈ Θn : rn,θ ≥ r}. (3.2)

Assume there exists r1 > 0 and n1 ≥ n0 such that

max
n0≤n<n1

sup
θ∈Θn,r1

rn,θ <∞. (3.3)

Further, suppose that for all n ≥ n1 and θ ∈ Θn,r1 , there exist random variables
Y sn ,Kn, Ln, ψn,θ, Vn and Bn on the same space as Yn, and a σ-algebra Fn, generated
by a collection of random elements Jn, such that the following conditions hold.

1. The random variable Y sn has the Yn-size bias distribution, and

Ψn,θ =
√

Varθ (Eθ(Y sn − Yn|Yn)) satisfies sup
n≥n1,θ∈Θn,r1

rn,θµn,θΨn,θ

σ2
n,θ

<∞. (3.4)

2. The random variable Kn is Fn-measurable, |Y sn − Yn| ≤ Kn, and

sup
n≥n1,θ∈Θn,r1

rn,θµn,θEθ[(1 + |Wn,θ|)K2
n]

σ3
n,θ

<∞, (3.5)

with Wn,θ as given in (3.1).

3. The random variable Ln takes values in {0, 1, . . . , n}, there exists a positive integer
valued sequence {sn,θ}n≥n1

satisfying n− sn,θ ≥ n0, the variables Ln and ψn,θ are
Fn-measurable, for some Fn,θ ∈ Fn satisfying Fn,θ ⊂ {Ln ≤ sn,θ},

ψn,θ ∈ Θn−Ln and Lθ(Vn|Jn) = Lψn,θ (Yn−Ln) on Fn,θ (3.6)

and

sup
n≥n1,θ∈Θn,r1

r2
n,θµn,θ

σ3
n,θ

Eθ
[
K2
n(1− 1(Fn,θ))

]
<∞. (3.7)

4. There exist {C1, C2} ⊂ (0,∞) such that

σ2
n,θ ≤ C1σ

2
n−Ln,ψn,θ and rn,θ ≤ C2rn−Ln,ψn,θ on Fn,θ.

5. The random variable Bn is Fn-measurable, |Yn − Vn| ≤ Bn and

sup
n≥n1,θ∈Θn,r1

r2
n,θµn,θEθ[K

2
nBn]

σ4
n,θ

<∞. (3.8)
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6. Either

(a) there exists ln,0 ∈ N0 such that Pθ(Ln = ln,0) = 1 for all θ ∈ Θn,r1

or
(b) the set Θn,r1 is a compact subset of Θn, and the functions of θ

tn,θ,l = Eθ

(
K2
n

EθK2
n

1(Ln = l)

)
for l ∈ {0, 1, . . . , n}

are continuous on Θn,r1 for l ∈ {0, 1, . . . , sn} where sn = supθ∈Θn,r1
sn,θ.

Then there exists a constant C such that for all n ≥ n0 and θ ∈ Θn

sup
z∈R
|Pθ(Wn,θ ≤ z)− P (Z ≤ z)| ≤ C/rn,θ.

When higher moments exist a number of the conditions of the theorem may be ver-
ified using standard inequalities. In particular, by the Cauchy-Schwarz inequality a
sufficient condition for (3.5) is

sup
n≥n1,θ∈Θn,r1

rn,θµn,θk
1/2
n,θ,4

σ3
n,θ

<∞ where kn,θ,m = EθK
m
n , (3.9)

and, when Fn,θ = {Ln,θ ≤ sn.θ} then a sufficient condition for (3.7) is

sup
n≥n1,θ∈Θn,r1

r2
n,θµn,θk

1
2

n,θ,4l
1
2

n,θ,2

σ3
n,θsn,θ

<∞ where ln,θ,m = EθL
m
n , (3.10)

since, additionally using the Markov inequality yields

Eθ
[
K2
n1(Ln > sn,θ)

]
≤ k1/2

n,θ,4Pθ(Ln > sn,θ)
1
2 = k

1/2
n,θ,4Pθ(L

2
n > s2

n,θ)
1
2 ≤

k
1
2

n,θ,4l
1
2

n,θ,2

sn,θ
.

Similarly, a sufficient condition for (3.8) is

sup
n≥n1,θ∈Θn,r1

r2
n,θµn,θk

1
2

n,θ,4b
1
2

n,θ,2

σ4
n,θ

<∞ where bn,θ,m = EθB
m
n .

Regarding (3.6) we remark that by Lθ(Yn−Ln) we mean the mixture distribution∑n
m=0 Lθ(Ym)P (Ln = n−m), which can be defined without requiring that Y0, . . . , Yn and

Ln all be defined on the same space.
Recalling Nk = Z ∩ [k,∞), applying Theorem 3.1 to the occupancy problem we

let n0 = d, rn,m be given by (1.5), and Θn = N2 for all n ≥ n0, making note of the
identification between positive integers m and elements given by (1.10) that lie in the
set Θ of (1.1).

Before starting the proof of Theorem 1.1 we collect some crucial facts needed later
regarding the behavior of the mean and variance of Yn. Letting

τd(x) =
e−xxd

d!
and ϕd(x) = 1− τd(x)− τd(x)

(x− d)2

x
, (3.11)

Kolchin et al. (1978, p. 37-38) show that, for all n,m ≥ 1 and d ≥ 0,

µn,m ≤ mτd(n/m)ed/m (3.12)
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and that for n,m→∞ such that n/m = o(m),

µn,m = mτd(n/m) + τd(n/m)

(
d− n/m

2 − (d2)
n/m

)
+O(1/m)

and

σ2
n,m = mτd(n/m)ϕd(n/m)(1 + o(1)). (3.13)

The following lemma gives further properties of µn,m and σ2
n,m, and is proved in the

Appendix.

Lemma 3.2. 1. For any fixed n ≥ d ≥ 2,

lim
m→∞

σ2
n,m = 0 (3.14)

and the set Θn,r1 , given in (3.2) with rn,m as in (1.5), is finite for all r1 > 0.
2. Let d ≥ 1. There are constants C3, C4, C5, depending only on d, such that, for all

n ≥ d and m ≥ 2,

(a) σ2
n,m ≤ C3µn,m

(b) µn,m ≤ C4n and σ2
n,m ≤ C5n.

3. Let d ≥ 2. With ϕd(x) given by (3.11), infx>0 ϕd(x) > 0.
4. Let d ≥ 2. Given any n∗,m∗ and ε > 0 there are constants r1 and C6 such that all

n,m satisfying σ2
n,m ≥ r1 also satisfy

(a) n > n∗ and m > m∗

(b) n/m ≤ (1 + ε) logm
(c) µn,m ≤ C6σ

2
n,m.

In keeping with the notation of Theorem 3.1 and the identification between elements
in N1 and Θ in (1.1) and as described at the end of Section 1, in the following we will
use Em, Varm, and Pm to respectively denote expectation, variance, and probability
with respect to a multinomial distribution with probability parameter (1.10).

Proof of Theorem 1.1

We prove Theorem 1.1 by verifying the conditions of Theorem 3.1. When n = d and
m ≥ 2, the probability that all d balls fall in urn 1 is positive, as is the probability that
d − 1 balls fall in urn 1. Hence P (Yn > 0) and P (Yn = 0) are both positive, so Yn is not
constant almost surely, and its variance σ2

d,m is strictly positive. The same conclusion
holds for n ≥ d + 1 and m ≥ 2 by considering the event that d balls fall in urn 1 and
n − d in urn 2, and the event that all balls fall in urn 1. Hence rn,m given in (1.5) is
also positive for all n ≥ n0 and m ∈ Θn. In lieu of naming n1 and r1 explicitly, we show
that the conditions of Theorem 3.1 are satisfied by choosing n1 and r1 sufficiently large.
By Part 1 of Lemma 3.2, the set Θn,r1 is finite for all n ≥ n0 and r1 > 0, hence (3.3) is
satisfied for any such pair.

To help with the verification of the six conditions of Theorem 3.1 we first note that
Parts 2 and 4 of Lemma 3.2 allow us to choose r1 > 0 such that there exist positive
constants C3, C5, C6 such that σ2

n,m ≥ r1 implies

σ2
n,m ≤ C3µn,m (3.15)

σ2
n,m ≤ C5n (3.16)

µn,m ≤ C6σ
2
n,m (3.17)

n

m
≤ 2 logm ≤

√
m/3 (3.18)

m ≥ 3. (3.19)
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Below we will repeatedly use these bounds along with the fact that

Θn,r1 ⊂
{
m : σ2

n,m ≥ r1

}
for all n ≥ d and m ≥ 2, (3.20)

which follows from directly from (3.2) and the fact that rn,m ≤ σn,m.

Verification of Condition 1

We verify inequality (3.4) in Condition 1 of Theorem 3.1 by showing that, for Y sn con-
structed as in Section 2, there is a constant C7 and integer n1 ∈ N1 such that for all
n ≥ n1 and m ∈ Θn,r1 , the quantity Ψn,m satisfies

Ψn,m ≤ C7
1 + (n/m)3

√
n

. (3.21)

Inequality (3.21) implies (3.4) as

rn,mµn,mΨn,m

σ2
n,m

≤ C6rn,mΨn,m ≤ C6C7
σn,m√
n
≤ C6C7

√
C5,

where we have used (3.17) and (3.16). Hence we turn our attention to showing (3.21).
By conditional Jensen’s inequality, as Yn is a function of Mn,

Varm(Em(Y sn − Yn|Yn)) ≤ Varm(Em(Y sn − Yn|Mn)).

Recalling that In is chosen uniformly from {1, . . . ,m}, independently of the configura-
tion Mn, and that XIn

j , j ≥ 1 is the indicator that urn j contains exactly d balls in the
size biased configuration, we have that

Y sn − Yn =
∑
j≥1

(XIn
n,j −Xn,j) = (XIn

n,In
−Xn,In) +

∑
j 6=In

(XIn
n,j −Xn,j).

Averaging over In, we obtain

Em[Y sn−Yn|Mn] =
1

m

m∑
i=1

1(Mn(i) 6= d)+
1

m

∑
1≤i,j≤m,j 6=i

Pm(M i
n(j) = d|Mn)1(Mn(j) 6= d)

− 1

m

∑
1≤i,j≤m,j 6=i

Pm(M i
n(j) 6= d|Mn)1(Mn(j) = d). (3.22)

To understand the first sum, note that since urn In always contains d balls in the size
biased configuration, XIn

n,In
−Xn,In = 1−1(Mn(In) = d)) = 1(Mn(In) 6= d)), so averaging

over In, which takes the values 1, . . . ,m each with probability 1/m, yields the first term.
The next two terms arise from the fact that XIn

n,j − Xn,j ∈ {−1, 0, 1}; in particular, the
second term accounts for the cases when this difference is 1, and the third term for
when it is −1. For the second sum, when In = i we have Xi

n,j −Xn,j = 1 for j 6= i if and
only if Xi

n,j = 1 and Xn,j = 0, that is, if and only if M i
n(j) = d and Mn(j) 6= d. Likewise,

for the third sum, Xi
n,j −Xn,j = −1 for j 6= i if and only if Xi

n,j = 0 and Xn,j = 1, and so
if and only if M i

n(j) 6= d and Mn(j) = d.
To obtain a bound on the variance of Em[Y sn − Yn|Mn] we apply the inequality

Var

(
k∑
i=1

Ai

)
≤ k

k∑
i=1

Var(Ai) (3.23)

in order to handle the terms arising from (3.22) separately. We will use (3.23) and
(
∑k
i=1 ci)

2 ≤ k
∑k
i=1 c

2
i for any c1, . . . , ck, repeatedly below without further mention. The
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factor of 1/m outside each sum in (3.22) contributes a factor of 1/m2 to the variance,
which is withheld until further notice below.

To bound the variance of the first sum, we note that

Varm

(
m∑
i=1

1(Mn(i) 6= d)

)
= Varm

(
m−

m∑
i=1

1(Mn(i) = d)

)
= Varm(m−Yn) = Varm(Yn)

= σ2
n,m ≤ C5n (3.24)

by (3.16).
For considering the calculation of the variance for the next sum, as Mn(j) = M i

n(j)

when Mn(i) = d by (2.3), we have

Pm(M i
n(j) = d|Mn)1(Mn(j) 6= d) = Pm(M i

n(j) = d|Mn)1(Mn(i) 6= d,Mn(j) 6= d),

and therefore may write∑
1≤i,j≤m,i6=j

Pm(M i
n(j) = d|Mn)1(Mn(j) 6= d) =

∑
1≤i,j≤m,i 6=j

an,m(i, j) +
∑

1≤i,j≤m,i6=j

bn,m(i, j)

where for i 6= j we set

an,m(i, j) = Pm(M i
n(j) = d|Mn)1(Mn(i) > d,Mn(j) 6= d), (3.25)

bn,m(i, j) = Pm(M i
n(j) = d|Mn)1(Mn(i) < d,Mn(j) 6= d).

For considering the third sum in (3.22), we also define

cn,m(i, j) = Pm(M i
n(j) 6= d|Mn)1(Mn(j) = d). (3.26)

In Lemma 3.3, following the proof of this theorem, it is shown that there are constants
C8, C9 and C10 such that

Varm

 ∑
1≤i,j≤m,i6=j

an,m(i, j)

 ≤ C8n

[
1 +

( n
m

)4
]

(3.27)

Varm

 ∑
1≤i,j≤m,i 6=j

bn,m(i, j)

 ≤ C9
m2

n
(3.28)

Varm

 ∑
1≤i,j≤m,i6=j

cn,m(i, j)

 ≤ C10n

[
1 +

( n
m

)2
]

(3.29)

for all n ≥ n1 and m ∈ Θn,r1 . Combining (3.24) and (3.27)-(3.29), and accounting for
the 1/m factors in (3.22), we have

Ψ2
n,m ≤

4

m2
C11

{
n+ n

[
1 +

( n
m

)4
]

+
m2

n
+ n

[
1 +

( n
m

)2
]}

≤ C12
n

m2

{
1 +

(m
n

)2

+
( n
m

)2

+
( n
m

)4
}

= C12
1

n

{( n
m

)2

+ 1 +
( n
m

)4

+
( n
m

)6
}

≤ 3C12
1

n

{
1 +

( n
m

)6
}
,
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where in the last step and below we use the elementary bound

1+x`1 +x`2 . . .+x`j ≤ (j+1{`j < `})(1+x`) for all x > 0, 1 ≤ `1 ≤ . . . ≤ `j ≤ `. (3.30)

Then taking C7 =
√

3C12 yields

Ψn,m ≤ C7

√
1 + (n/m)6

√
n

≤ C7
1 + (n/m)3

√
n

.

Verification of Condition 2: Kn and its moments

Let Jn = (In,Mn(In)), the ordered pair consisting of the identity In of the selected urn
and the numberMn(In) of balls it contains, and recall that Fn is the σ-algebra generated
by Jn. For D ∼ B(n, p) and q ∈ N1 we have

EDq =

q∑
j=1

Sj,q(n)jp
j ≤

q∑
j=1

Sj,qn
jpj ≤ C13,q(np+ (np)q) ≤ C14,q(1 + (np)q), (3.31)

where in the first equality, due to Riordan (1937), Sj,q are the Stirling numbers of
the second kind and (n)j is the falling factorial, and in the second inequality C13,q =

qmax1≤j≤q Sj,q.
Clearly

Kn = 1 + |d−Mn(In)|

is Fn-measurable, being a function of Mn(In). Recalling (2.3) from the construction
in Section 2, accounting for urn In we see that the occupancy of at most Kn urns are
different in the configurations Mi

n and Mn for any i. In particular, |Y sn − Yn| ≤ Kn.
By the triangle inequality Kn ≤ (1+d)+Mn(In), and taking qth power, by a standard

inequality and (3.31) we obtain

EmK
q
n ≤ 2q−1 ((1 + d)q + EmMn(In)q) ≤ 2q−1 ((1 + d)q + C14,q (1 + (n/m)q))

≤ C15,q (dq + 1 + (n/m)q) ≤ C16,q (1 + (n/m)q) . (3.32)

We now show that (3.9), sufficient for (3.5), is satisfied. Applying the definition (1.5)
of rn,m, (3.17), (3.20), and the moment bound (3.32), there is some n1 such that for all
n ≥ n1 and any m ∈ Θn,r1 ,

rn,mµn,mk
1/2
n,m,4

σ3
n,m

≤ C6

[
C16,2(1 + (n/m)4)

]1/2
1 + (n/m)3

≤ C6

√
C16,2

(
1 + (n/m)2

1 + (n/m)3

)
≤ 2C6

√
C16,2,

using (3.30) in this last step.

Verification of Condition 3: Ln and its moments

Set

Ln = Mn(In), ψn,m = m− 1, sn,m =
⌈
n1/2

⌉
and Fn,m = {Ln ≤ sn,m}.

Clearly Ln takes values in {0, 1, . . . , n}, and n− sn,m ≥ n0 for all n sufficiently large, and
Ln, ψn,m and Fn,m are Fn measurable. Now, by (3.19), the first part of (3.6) holds.

Let

Vn =
∑
i6=In

Xn,i (3.33)
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with Xn,i as in (1.2). Using that In is independent of Mn(j), j = 1, . . . ,m, and the
properties of the multinomialM(n,m) distribution, we have

L(Mn(j), j 6= In|Mn(In) = l, In = i) = L(Mn(j), j 6= m|Mn(m) = l) =M(n− l, 1/(m− 1)),

and counting the number of urns with occupancy d on both sides of this distributional
identity yields

Lm(Vn|Jn) = Lm−1(Yn−Mn(In)) = Lψn,m(Yn−Ln),

so the second part of (3.6) holds on the entire probability space, so in particular on Fn,θ.
As Ln ∼ B(n, 1/m) under Pm, from (3.31) we obtain

EmL
q
n ≤ C14,q(1 + (n/m)q). (3.34)

Hence, inequality (3.10), sufficient for (3.7), holds as

r2
n,mµn,mk

1
2
n,m,4l

1
2
n,m,2

σ3
n,msn,m

≤ C17
µn,m

√
1 + (n/m)4

√
1 + (n/m)2

σn,m
√
n [1 + (n/m)3]

2 ≤ C18
σn,m

√
1 + (n/m)6

√
n [1 + (n/m)6]

≤ C18

√
C5,

where we have used the definition (1.5) of rn,m, the definition of sn,m, (3.32) and (3.34)
in the first inequality, (3.17) in the second inequality, and (3.16) in the final inequality.

Verification of Condition 4

We first show that there exists n1 such that, for all n ≥ n1 and m ∈ Θn,r1 ,

µn,m ≤ 18µn−Ln,m−1 on Fn,m. (3.35)

As n/(n − d
√
ne) → 1 as n → ∞ and Fn,m = {Ln ≤ d

√
ne}, there exists n1 such that

n− d
√
ne ≥ n0 and

(n)d
(n− Ln)d

≤
(

n

n− d
√
ne

)d
≤ 2 on Fn,m,

for all n ≥ n1.
Next, as m ≥ 3 by (3.19) we obtain m2 − 2m ≥ m2/3, and therefore, using the first

upper bound on n/m in (3.18) for the second to last inequality, we obtain(
1− 1

m

)n−d(
1− 1

m−1

)n−d =

(
1 +

1

m2 − 2m

)n−d
≤
(

1 +
3

m2

)n
≤ e3n/m2

≤ e6 logm/m ≤ 9.

Hence, for all n ≥ n2 and m ∈ Θn,r1 , on Fn,m, recalling (1.3) we have

µn,m =
(n)d
d!

1

md−1

(
1− 1

m

)n−d
<

(n)d
d!

1

(m− 1)d−1

(
1− 1

m

)n−d
≤ 2

(n− Ln)d
d!

1

(m− 1)d−1

(
1− 1

m

)n−d
≤ 18

(n− Ln)d
d!

1

(m− 1)d−1

(
1− 1

m− 1

)n−d
≤ 18

(n− Ln)d
d!

1

(m− 1)d−1

(
1− 1

m− 1

)n−Ln−d
= 18µn−Ln,m−1.
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By (3.20), (3.17) and (3.15) hold whenever m ∈ Θn,r1 . Now the first part of Condition 4
follows from (3.35), (3.17), and (3.15) since, for all n ≥ n1 and m ∈ Θn,r1 ,

σ2
n,m ≤ C3µn,m ≤ 18C3µn−Ln,m−1 ≤ C1σ

2
n−Ln,m−1 on Fn,m, where C1 = 18C6C3. (3.36)

Since for m ≥ 2,

1 +

(
n

m− 1

)3

= 1 +
( n
m

)3
(

m

m− 1

)3

≤ 1 + 8
( n
m

)3

≤ 8

[
1 +

( n
m

)3
]
,

and now the second part of Condition 4 follows with the help of (3.36) since

rn,m =
σn,m

1 + ( nm )3
≤
√
C1σn−Ln,m−1

1 + ( nm )3
≤ 8
√
C1σn−Ln,m−1

1 + ( n
m−1 )3

≤ 8
√
C1σn−Ln,m−1

1 + (n−Lnm−1 )3

= 8
√
C1rn−Ln,m−1.

Verification of Condition 5: Bn and its moments

With Vn given by (3.33), we have |Yn − Vn| = Xn,In ≤ 1, so we take Bn = 1, which is
trivially Fn-measurable. Now using (3.17), (3.30), and (3.32) we obtain

r2
n,θµn,θEm[K2

nBn]

σ4
n,θ

=
r2
n,θµn,θkn,m,2

σ4
n,θ

≤ C16,2

µn,m
(
1 + (n/m)2

)
σ2
n,m (1 + (n/m)6)

≤ 2C16,2C6.

Verification of Condition 6

Endowing the set N2 of integers with the discrete topology, a subset of Θn,r1 ⊂ N2 is
compact if and only if it is finite. As any function on a set with the discrete topology is
continuous, Condition 6b is a consequence of Lemma 3.2, Part 1. 2

Next we state and prove a lemma used in the verification of Condition 1.

Lemma 3.3. Let d ∈ {2, 3, . . .}. There exists n1 ≥ n0 and constants C8, C9, C10 depend-
ing only on d such that (3.27)-(3.29) hold for all n ≥ n1 and m ∈ Θn,r1 .

Proof. Consider first (3.27). By (2.3), for all 1 ≤ i, j ≤ m, i 6= j, on Mn(i) > d we have

M i
n(j) = Mn(j) +Rin(j),

so that Rin(j) is the number of the ‘excess’ Mn(i) − d balls distributed to urn j, which
requires d−Mn(j) of them to achieve M i

n(j) = d. Thus an,m(i, j) = 0 unless Mn(i)− d ≥
d−Mn(j), that is, unless Mn(i) +Mn(j) ≥ 2d. Hence, from (3.25),

an,m(i, j) = Pm(M i
n(j) = d|Mn)1(Mn(i) > d,Mn(j) 6= d)

= Pm(Mn(j) +Rin(j) = d|Mn)1(Mn(i) +Mn(j) ≥ 2d,Mn(i) > d,Mn(j) 6= d)

= Pm(Rin(j) = d−Mn(j)|Mn)1(Mn(i) +Mn(j) ≥ 2d,Mn(i) > d,Mn(j) < d),

where we have used that Rin(j) ≥ 0 makes Mn(j) > d impossible in the second equality.
As Mn(i) + Mn(j) ≥ 2d and Mn(j) < d imply that Mn(i) > d, letting p = 1/(m − 1) we
have, that

an,m(i, j) = Pm(Rin(j) = d−Mn(j)|Mn)1(Mn(i) +Mn(j) ≥ 2d,Mn(j) < d)

= Pm(Rin(j) = d−Mn(j)|Mn(i))1(Mn(i) +Mn(j) ≥ 2d,Mn(j) < d)

=

(
Mn(i)− d
d−Mn(j)

)
pd−Mn(j) (1− p)Mn(i)+Mn(j)−2d

1(Mn(i) +Mn(j) ≥ 2d,Mn(j) < d),

(3.37)
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where we have used that Mn and Ri
n are conditionally independent given Mn(i), and

therefore that the conditional distribution of Ri
n given Mn is the same as that given

Mn(i), specified in (2.1).
Now considering bn,m(i, j) in (3.25), using (2.3) and arguing similarly we obtain

bn,m(i, j) = Pm(M i
n(j) = d|Mn)1(Mn(i) < d,Mn(j) 6= d)

= Pm(Mn(j)−Rin(j) = d|Mn)1(Mn(i) < d,Mn(j) 6= d)

= Pm(Rin(j) = Mn(j)− d|Mn)1(Mn(i) < d,Mn(j) > d).

By (2.1), Rin(j) ≤ d −Mn(i) when Mn(i) < d, and therefore bn,m(i, j) = 0 unless d −
Mn(i) ≥Mn(j)− d, that is, unless Mn(i) +Mn(j) ≤ 2d. Hence

bn,m(i, j) = Pm(Rin(j) = Mn(j)− d|Mn)1(Mn(i) +Mn(j) ≤ 2d,Mn(i) < d,Mn(j) > d)

= Pm(Rin(j) = Mn(j)− d|Mn)1(Mn(i) +Mn(j) ≤ 2d,Mn(j) > d)

=

(
n−d
d

)(
d−Mn(i)
Mn(j)−d

)(
n−Mn(i)
Mn(j)

) 1(Mn(i) +Mn(j) ≤ 2d,Mn(j) > d), (3.38)

using that the conditional distribution of Rin(j) given Mn, as Mn(j) = M i
n(j) +Rin(j), is

hypergeometric. As n < 2d implies
(
n−d
d

)
= 0, which implies bn,m(i, j) = 0, we assume

n ≥ 2d when proving (3.28).
Considering cn,m(i, j) in (3.26), let q = 1− p and write

cn,m(i, j) = Pm(Rin(j) 6= 0|Mn)1(Mn(j) = d) = (1− Pm(Rin(j) = 0|Mn))1(Mn(j) = d)

=
(

1− q|Mn(i)−d|
)
1(Mn(j) = d). (3.39)

To prove each of (3.27)-(3.29) we apply the inequality of Efron and Stein (1981). Let
Sn−1(x1, . . . , xn−1) be a symmetric function of x1, . . . , xn−1, and suppose that U1, . . . , Un
are i.i.d. random variables. For k = 1, . . . , n, let Sn,(k) be the value of Sn−1 computed by
omitting the kth variable Uk, that is,

Sn,(k) = Sn−1(U1, . . . , Uk−1, Uk+1, . . . , Un), and set Sn,(·) =
1

n

n∑
k=1

Sn,(k).

Then by Efron and Stein (1981, Equation 1.6),

Var(Sn,(n)) ≤ E
n∑
k=1

(Sn,(k) − Sn,(·))2.

As the average Sn,(·) minimizes the sum of squares, replacing it by any symmetric func-
tion Tn of U1, . . . , Un yields

Var(Sn,(n)) ≤ E
n∑
k=1

(Sn,(k) − Tn)2 = nE(Sn,(n) − Tn)2, (3.40)

this last equality since the distribution of Sn,(k) − Tn does not depend on k.
In order to apply (3.40), independently label the n balls 1 through n such that all

orderings are equally likely, and let the variables Uk ∈ {1, . . . ,m} denote the location of
the kth ball, k = 1, . . . , n. Note that the three functions (3.37), (3.38) and (3.39) can be
written for all n as Tn = T (n,Mn(i),Mn(j)) for some function T . Hence, applying the
Efron-Stein inequality with Sn−1(U1, . . . , Un−1) = T (n− 1,Mn−1(i),Mn−1(j)), we obtain
Sn,(n) = Tn−1 and (3.40) yields

Var(Tn−1) ≤ nE(Tn−1 − Tn)2. (3.41)
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In particular, to prove (3.27) we apply (3.41) with

Tn =
∑

1≤i,j≤m,i6=j

an,m(i, j) and Tn−1 =
∑

1≤i,j≤m,i 6=j

an,m,(n)(i, j)

where an,m,(n)(i, j) is the value of an,m(i, j) in (3.37) when withholding ball n. As
L(M i

n(j)|Mn) = L(M i
n(j)|Mn(i),Mn(j)), we have that an,m,(n)(i, j) = an,m(i, j) when-

ever Un 6∈ {i, j}, and hence

Tn−1 − Tn =
∑

1≤j≤m,j 6=Un

[an,m,(n)(Un, j)− an,m(Un, j)]

+
∑

1≤i≤m,i 6=Un

[an,m,(n)(i, Un)− an,m(i, Un)]. (3.42)

By (3.37) we can further restrict the summation of the first sum in (3.42) over indices j
in the union of the random index sets

J1 = {1 ≤ j ≤ m, j 6= Un : Mn(Un) +Mn(j) ≥ 2d+ 1,Mn(j) < d} and

J2 = {1 ≤ j ≤ m, j 6= Un : Mn(Un) +Mn(j) = 2d,Mn(j) < d}.

For j ∈ J1,

an,m,(n)(Un, j)− an,m(Un, j) =

(
Mn(Un)− d− 1

d−Mn(j)

)
pd−Mn(j)(1− p)Mn(Un)+Mn(j)−2d−1

−
(
Mn(Un)− d
d−Mn(j)

)
pd−Mn(j)(1− p)Mn(Un)+Mn(j)−2d

=

(
Mn(Un)− d
d−Mn(j)

)
pd−Mn(j)(1− p)Mn(Un)+Mn(j)−2d−1

(
p− d−Mn(j)

Mn(Un)− d

)
,

and for j ∈ J1 this last term is bounded above in absolute value by∣∣∣∣p− d−Mn(j)

Mn(Un)− d

∣∣∣∣ ≤ p+

[
max

x+y≥2d+1, x≤d−1

(
d− x
y − d

)]
≤ p+

d− 0

(d+ 2)− d
≤ 1 + d/2 =: C19,

(3.43)
and hence

|an,m,(n)(Un, j)− an,m(Un, j)| ≤ C19

(
Mn(Un)− d
d−Mn(j)

)
pd−Mn(j). (3.44)

To bound the right hand side we will use the fact that, for any x, k, ` ∈ N0 satisfying
0 ≤ x ≤ k − `, (

k

x+ `

)
px ≤

{(
k
`

)
, k ≤ (`+ 1)/p+ `

2k, for all k.
(3.45)

The second case is trivial, and to prove the first write(
k
x+`

)
px(

k
`

) =
∏

1≤i≤x

(
k
i+`

)
pi(

k
i−1+`

)
pi−1

=
∏

1≤i≤x

(k − i− `+ 1)p

i+ `
≤
(

(k − `)p
`+ 1

)x
≤
(
`+ 1

`+ 1

)x
= 1,

using the restriction on k in the first case of (3.45). Then applying (3.45) with ` = 1 and
x = d−Mn(j)− 1 to (3.44) yields∣∣an,m,(n)(Un, j)− an,m(Un, j)

∣∣
≤ C19p

[
(Mn(Un)− d)+1{Mn(Un)− d ≤ 2/p+ 1}+ 2Mn(Un)−d1{Mn(Un)− d > 2/p+ 1}

]
≤ C19p

[
Mn(Un) + 2Mn(Un)1{Mn(Un) > 2/p}

]
.
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This same upper bound holds for j ∈ J2 as well since

∣∣an,m,(n)(Un, j)− an,m(Un, j)
∣∣ =

∣∣∣∣−(Mn(Un)− d
d−Mn(j)

)
pd−Mn(j)(1− p)Mn(Un)+Mn(j)−2d

∣∣∣∣
≤
(
Mn(Un)− d
d−Mn(j)

)
pd−Mn(j)

and since C19 ≥ 1 we obtain

Em

 ∑
1≤j≤m,j 6=Un

[an,m,(n)(Un, j)− an,m(Un, j)]


2

≤ Em

 ∑
j∈J1∪J2

C19p
[
Mn(Un) + 2Mn(Un)1{Mn(Un) > 2/p}

]
2

≤ Em
{
C19mp

[
Mn(Un) + 2Mn(Un)1{Mn(Un) > 2/p}

]}2

≤ 2(C19mp)
2
{
EmMn(Un)2 + Em

[
4Mn(Un)1{Mn(Un) > 2/p}

]}
. (3.46)

Using that Mn(Un) ∼ B(n, 1/m) we have

EmMn(Un)2 = (n/m)(1− 1/m) + (n/m)2 ≤ n/m+ (n/m)2 ≤ 2

[
1 +

( n
m

)2
]
, (3.47)

using (3.30). To bound the second expectation in (3.46), we let Bn,s denote a random
variable with distribution B(n, s), and note the identity

E[wBn,sf(Bn,s)] = (1− s+ sw)nEf(Bn,sw/(1−s+sw)) for all w > 0 and bounded f
(3.48)

and the bound
P (Bn,s > t) ≤ exp

[
−2n(t/n− s)2

]
(3.49)

of Hoeffding (1963). Letting p̃ = (4/m)/(1 + 3/m) and applying (3.48) with w = 4 and
the bound (3.49), we have

Em
[
4Bn,1/m1{Bn,1/m > 2/p}

]
= (1+3/m)nP (Bn,p̃ > 2/p) ≤ e3n/m exp

[
−2n

(
2

np
− p̃
)2
]

= exp

[
3n

m
− 8

np2
+

8p̃

p
− 2np̃2

]
≤ C20 exp

[
3n

m
− 8

np2

]
≤ C20, (3.50)

where in the second-to-last step we used that p̃/p ≤ 4 and −2np̃2 ≤ 0, and the final step
is as follows. The bounds in (3.18) imply that

3n

m
= 3

( n
m

)2 m

n
≤ m2

n
,

and so

3n

m
− 8

np2
≤ m2

n
− 8(m− 1)2

n
=
m2

n
− 8m2

n

(
1− 1

m

)2

≤ m2

n
− 2m2

n
= −m

2

n
≤ 0,

implying that the entire term (3.50) is bounded by C20. Combining this bound with
(3.47) and (3.46) yields

Em

 ∑
1≤j≤m,j 6=Un

[an,m,(n)(Un, j)− an,m(Un, j)]


2

≤ C21

[
1 +

( n
m

)2
]
. (3.51)
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Now consider the second sum in (3.42), whose summation index can be further
restricted to i ∈ J3 ∪ J4, where

J3 = {1 ≤ i ≤ n, i 6= Un : Mn(i) +Mn(Un) ≥ 2d+ 1,Mn(Un) < d}
J4 = {1 ≤ i ≤ n, i 6= Un : Mn(i) +Mn(Un) = 2d,Mn(Un) < d}.

For i ∈ J3,

an,m,(n)(i, Un)− an,m(i, Un) =

(
Mn(i)− d

d−Mn(Un) + 1

)
pd−Mn(Un)+1(1− p)Mn(i)+Mn(Un)−2d−1

−
(
Mn(i)− d
d−Mn(Un)

)
pd−Mn(Un)(1− p)Mn(i)+Mn(Un)−2d

=

(
Mn(i)− d

d−Mn(Un) + 1

)
pd−Mn(Un)(1− p)Mn(i)+Mn(Un)−2d−1

×
(
p− (1− p) d−Mn(Un) + 1

Mn(i) +Mn(Un)− 2d

)
(3.52)

and, by an argument like (3.43), the difference above is bounded in absolute value by

p+ (1− p) d− 0 + 1

(2d+ 1)− 2d
= p+ (1− p)(d+ 1) ≤ d+ 1 =: C22.

Applying (3.45) with ` = 2 and x = d −Mn(Un) − 1, we have that (3.52) is bounded in
absolute value by

C22p

[(
Mn(i)− d

2

)
1{Mn(i)− d ≤ 3/p+ 2}+ 2Mn(i)−d1{Mn(i)− d > 3/p+ 2}

]
≤ C22p

[
Mn(i)2 + 2Mn(i)1{Mn(i) > 3/p}

]
≤ C22p

[
Mn(i)2 + 2Mn(i)1{Mn(i) > 2/p}

]
.

This same bound holds for i ∈ J4without the factor C22, since by (3.45) with ` = 1 and
the same x,

∣∣an,m,(n)(i, Un)− an,m(i, Un)
∣∣ =

∣∣∣∣−( Mn(i)− d
d−Mn(Un)

)
pd−Mn(Un)(1− p)Mn(i)+Mn(Un)−2d

∣∣∣∣
≤
(
Mn(i)− d
d−Mn(Un)

)
pd−Mn(Un) ≤ p

[
Mn(i) + 2Mn(i)1{Mn(i) > 2/p}

]
≤ p

[
Mn(i)2 + 2Mn(i)1{Mn(i) > 2/p}

]
.

Hence, as C22 ≥ 1,

Em

∑
i 6=Un

[an,m,(n)(i, Un)− an,m(i, Un)]


2

≤ Em

{ ∑
i∈J3∪J4

C22p
[
Mn(i)2 + 2Mn(i)1{Mn(i) > 2/p}

]}2

≤ Em

{
m∑
i=1

C22p[Mn(i)2 + 2Mn(i)1{Mn(i) > 2/p}]

}2

≤ (C22mp)
2Em[Mn(1)2 + 2Mn(1)1{Mn(1) > 2/p}]2

≤ 2(C22mp)
2
{
EmMn(1)4 + Em

[
4Mn(1)1{Mn(1) > 2/p}

]}
. (3.53)
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Now, combining the bound

EmMn(1)4 ≤ C14,4[1 + (n/m)4]

obtained from (3.31) with q = 4 and p = 1/m with the bound (3.50), we have that (3.53)
can not exceed C23[1+(n/m)4]. Applying this bound together with (3.51) in (3.41) yields

Varm(Tn−1) ≤ nEm(Tn−1 − Tn)2 ≤ C24n

[
1 +

( n
m

)2

+
( n
m

)4
]
≤ 2C24n

[
1 +

( n
m

)4
]
,

using (3.30) in the final inequality. Hence

Varm

∑
i6=j

an,m(i, j)

 = Varm(Tn) ≤ 2C24(n+ 1)

[
1 +

(
n+ 1

m

)4
]
≤ C8n

[
1 +

( n
m

)4
]

by taking C8 = 26C24 and using the elementary bound

(n+ 1)

[
1 +

(
n+ 1

m

)j]
=

(
n+ 1

n

)
n

[
1 +

(
n+ 1

n

)j ( n
m

)j]
≤ 2n

[
1 + 2j

( n
m

)j]
≤ 2j+1n

[
1 +

( n
m

)j]
for all j ≥ 1, (3.54)

thus proving (3.27).
To prove (3.28) we let Tn =

∑
i6=j bn,m(i, j) and proceed similarly. In view of (3.38),

bn,m(i, j) = 0 when Mn(i) + Mn(j) ≥ 2d + 1, but since bn,m,(n)(i, j) is calculated when
withholding ball n, bn,m,(n)(i, j) may be nonzero when Mn(i) + Mn(j) = 2d + 1 and
Un ∈ {i, j}, a case we thus allow for in our definition of K below. We have

Tn−1 − Tn =
∑
j 6=Un

[bn,m,(n)(Un, j)− bn,m(Un, j)] +
∑
i 6=Un

[bn,m,(n)(i, Un)− bn,m(i, Un)]

=
∑
j∈K1

[bn,m,(n)(Un, j)− bn,m(Un, j)] +
∑
i∈K2

[bn,m,(n)(i, Un)− bn,m(i, Un)]

(3.55)

where

K1 = {j : (Un, j) ∈ K} and K2 = {i : (i, Un) ∈ K} with

K = {(i, j) : i 6= j,Mn(i) +Mn(j) ≤ 2d+ 1,Mn(j) > d}.

For any (i, j) ∈ K we have(
n−d
d

)(
d−Mn(i)
Mn(j)−d

)(
n−Mn(i)
Mn(j)

) =

(
Mn(j)
d

)(
n−Mn(i)−Mn(j)

n−2d

)(
n−Mn(i)
n−d

)
=

(
Mn(j)

d

)
(n−Mn(i)−Mn(j))2d−Mn(i)−Mn(j)

(n−Mn(i))d−Mn(i)
· (d−Mn(i))!

(2d−Mn(i)−Mn(j))!

≤
(

2d+ 1

d

)
n2d−Mn(i)−Mn(j)

(n− d+ 1)d−Mn(i)
· d!

1
≤ C25

n2d−Mn(i)−(d+1)

(n− d+ 1)d−Mn(i)
= C25

nd−Mn(i)−1

(n− d+ 1)d−Mn(i)

=
C25

n

(
n

n− d+ 1

)d−Mn(i)

≤ C25

n

(
2d

2d− d+ 1

)d−Mn(i)

≤ C25

n
· 2d−Mn(i) ≤ 2dC25

n
,

(3.56)
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using that on K we have Mn(j) ≥ d + 1, and that n ≥ 2d in the first inequality on the
last line.

Now considering bn,m,(n)(Un, j) for (Un, j) ∈ K, note that by (3.38), n ≤ 2d implies

bn,m,(n)(Un, j) = 0, as
(
n−1−d

d

)
= 0 in this case. Hence we may assume n − 1 ≥ 2d.

When (Un, j) ∈ K when n balls are tossed, then when the nth ball Un 6= j is omitted,
(Un, j) ∈ K still. Hence in this case (3.56) applies both to bn,m(Un, j) and bn,m,(n)(Un, j),
yielding∣∣bn,m,(n)(Un, j)− bn,m(Un, j)

∣∣ ≤ bn,m,(n)(Un, j) + bn,m(Un, j) ≤ C26/n for all j ∈ K1.

(3.57)

For the sum in (3.55) over i ∈ K2 we have bn,m(i, Un) = 0 if Mn(i) +Mn(j) = 2d+ 1,
and otherwise the bound (3.56) holds. To consider bn,m,(n)(i, Un), again assume that
n − 1 ≥ 2d since bn,m,(n)(i, Un) = 0 otherwise, as before. In addition, if Mn(Un) = d + 1

then removing ball n leaves d balls in cell Un, in which case (i, Un) 6∈ K, and hence we
assume Mn(Un) > d + 1. In this case, after removing ball n the pair (i, Un) remains in
K, and (3.56) applies. Thus,∣∣bn,m,(n)(i, Un)− bn,m(i, Un)

∣∣ ≤ bn,m,(n)(i, Un) + bn,m(i, Un) ≤ C27/n for all i ∈ K2,

and combining this bound with (3.57) for use in (3.41) yields

Varm(Tn−1) ≤ nEm(Tn−1 − Tn)2

= nEm

∑
j∈K1

[bn,m,(n)(Un, j)− bn,m(Un, j)] +
∑
i∈K2

[bn,m,(n)(i, Un)− bn,m(i, Un)]


2

≤ nEm

∑
j∈K1

C26/n+
∑
i∈K2

C27/n


2

≤ nEm {m(C26 + C27)/n}2 = C9
m2

n

by taking C9 = (C26 + C27)2, so

Varm

∑
i 6=j

bn,m(i, j)

 = Varm(Tn) ≤ C9
m2

n+ 1
≤ C9

m2

n
,

proving (3.28).

For (3.29) we recall expression (3.39) wherein q = 1−p, and let Tn =
∑
i 6=j cn,m(i, j).

Since cn,m,(n)(i, j) = cn,m(i, j) as long as Un 6∈ {i, j}, we have

Tn−1 − Tn =
∑
j 6=Un

[cn,m,(n)(Un, j)− cn,m(Un, j)] +
∑
i 6=Un

[cn,m,(n)(i, Un)− cn,m(i, Un)].

Considering the first sum and casing out on whether Mn(Un) ≤ d or Mn(Un) ≥ d+ 1,

cn,m,(n)(Un, j)− cn,m(Un, j) = 1{Mn(j) = d}(q|Mn(Un)−d| − q|Mn(Un)−d−1|)

= 1{Mn(j) = d}(pqd−Mn(Un)1{Mn(Un) ≤ d} − pqMn(Un)−d−11{Mn(Un) ≥ d+ 1})

= p · 1{Mn(j) = d}(qd−Mn(Un)1{Mn(Un) ≤ d} − qMn(Un)−d−11{Mn(Un) ≥ d+ 1}).

Since the term in parentheses is bounded in absolute value by 1, we have that∣∣cn,m,(n)(Un, j)− cn,m(Un, j)
∣∣ ≤ p · 1{Mn(j) = d},
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whence

Em

∑
j 6=Un

[cn,m,(n)(Un, j)− cn,m(Un, j)]

2

≤ Em

p m∑
j=1

1{Mn(j) = d}

2

= p2Em(Y 2
n )

= p2(σ2
n,m + µ2

n,m) ≤ (C28/m)2
(
C3µn,m + µ2

n,m

)
≤ (C29/m)2

(
C3m+m2

)
≤ C30, (3.58)

using (3.15) and the trivial bound µn,m ≤ m. Next,

|cn,m,(n)(i, Un)− cn,m(i, Un)| = (1− q|Mn(i)−d|)|1{Mn(Un) = d+ 1} − 1{Mn(Un) = d}|

≤ 1− q|Mn(i)−d| ≤ |Mn(i)− d| |log q| .

Further, since p = 1/(m− 1) ≤ 1/2 by (3.19), by Taylor series

|log q| = − log(1− p) ≤ p+
p2

2(1− 1/2)2
= p+ 2p2 ≤ C31/m,

giving

Em

∑
i 6=Un

[cn,m,(n)(i, Un)− cn,m(i, Un)]

2

≤ Em

(
m∑
i=1

|Mn(i)− d| |log q|

)2

≤ (C31/m)2m

m∑
i=1

Em(Mn(i)− d)2 = C2
31Em(Mn(1)− d)2

= C2
31[Varm(Mn(1)) + (EmMn(1)− d)2] ≤ C2

31[Varm(Mn(1)) + 2(EmMn(1))2 + 2d2]

= C2
31[(n/m)(1− 1/m) + 2(n/m)2 + 2d2] ≤ C32[1 + (n/m)2] (3.59)

by (3.30). Applying (3.58) and (3.59) in (3.41), we have

Varm(Tn−1) ≤ nEm(Tn−1 − Tn)2 ≤ C33n

[
1 +

( n
m

)2
]
,

so

Varm

∑
i 6=j

cn,m(i, j)

 = Varm(Tn) ≤ C33(n+ 1)

[
1 +

(
n+ 1

m

)2
]
≤ C10n

[
1 +

( n
m

)2
]

by taking C10 = 8C33 and using (3.54). This proves (3.29) and thus concludes the proof
of the lemma.

4 Discussion

Theorem 3.1 is applied in Goldstein (2012) to obtain bounds on the normal approxi-
mation for the number of vertices in the Erdős-Rényi random graph of a given degree.
Although the graph degree and occupancy problems have some features in common,
they also differ in a number of significant ways. On balance, the occupancy problem is
the more difficult of the two for the following reasons.

First, the term Ψ2
n,m required by Condition 1 of Theorem 3.1, the variance of the

conditional expectation of the difference Y sn−Yn, is harder to compute for the occupancy
problem. In particular, in the graph degree problem one can make a direct bound on
this term, but here we appear to be forced to rely instead on the use of the Efron-Stein
inequality.
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Table 1: Asymptotic domains, wherein τd and ϕd are given by (3.11) and f(n,m) ∼
g(n,m) denotes f(n,m) = (1 + o(1))g(n,m). That limσ2

n,m/µn,m is strictly positive in the
central domain follows from Lemma 3.2, Part 3.

Definition µn,m σ2
n,m/µn,m Asymptotic Distribution

of Yn under Pm

Left-hand domain
n/m→ 0 → µ → 1 Poi(µ)

µn,m → µ ∈ (0,∞)

Left-hand intermediate domain
n/m→ 0 ∼ mτd(n/m) → 1 N(µn,m, σ

2
n,m)

µn,m →∞ →∞
Central domain

n/m→ ρ ∈ (0,∞) ∼ mτd(ρ) → ϕd(ρ) ∈ (0, 1) N(µn,m, σ
2
n,m)

Right-hand intermediate domain
n/m→∞ ∼ mτd(n/m) → 1 N(µn,m, σ

2
n,m)

µn,m →∞ →∞
Right-hand domain

n/m→∞ → µ → 1 Poi(µ)

µn,m → µ ∈ (0,∞)

Another significant difference between these two problems is that for graph degree
the removal of a vertex leaves the connectivity of the remaining graph unaffected, while
the parameters of the occupancy problem that results after the removal of an urn de-
pends on the number of balls that urn contained. In particular, even if the removed ver-
tex in the graph degree problem was connected to all other vertices the reduced graph
remains non-trivial, in contrast to the ‘parallel’ situation of removing an urn which con-
tains all balls in the occupancy problem. As a result, though the graph degree problem
is indexed by the number of vertices, and the variable of interest is a count over those
same vertices, here we index by the number of balls, while the count is a sum over
urns. The choice is driven by the fact that Condition 3 is concerned only with reduced
problems of sizes n − Ln that satisfy Ln ≤ sn. And in the occupancy problem, limiting
the number of urns that are removed when forming the subproblem does not guarantee
that the reduced problem will be non-trivial, but limiting the number of balls removed
does.

A third important difference is that in the graph degree problem, we consider a
graph with n vertices and connectivity θ/(n − 1), and the reduced problem is on the
graph with one vertex removed. There, choosing the parameter space to be Θn =

(0, b] ∩ (0, n − 1) for some large b yields that θ ∈ Θn implies ψn,θ ∈ Θn−1 where ψn,θ =

(n− 2)θ/(n− 1), as required by Condition 3 of Theorem 3.1. That each parameter space
Θn is a subset of the same bounded interval (0, b] simplifies a number of the computa-
tions and bounds. For the occupancy problem we have taken Θn to be unbounded for
the following reason. When an empty cell is removed to form the reduced problem, the
differences n/(m−1)−n/m of the ratio of balls to urns equals n/(m(m−1)). In the cen-
tral domain this ratio behaves like 1/m, summing to the divergent harmonic series. On
the other hand, though we appear forced to deal with the case where Θ is unbounded,
here we obtain results in asymptotic domains in addition to the central one.

Although we state our main result, Theorem 1.1, as a uniform bound holding for all
n ≥ d and m ≥ 2, the occupancy problem has been classically studied asymptotically
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as n,m → ∞, such as by Kolchin et al. (1978), who define the five asymptotic domains
given in Table 1, which together give an essentially complete asymptotic picture of the
n,m → ∞ asymptotic with n/m varying from 0 to ∞. Kolchin et al. (1978, Theorem 4,
p. 68) also show that, in the uniform occupancy problem, Yn has limiting normal distri-
bution in exactly the domains in which σn,m → ∞, i.e., in the left-hand intermediate,
central, and right-hand intermediate domains. Except for a small portion of the latter,
our Berry-Esseen type bound in Theorem 1.1 provides convergence to the normal in
these domains as well: The left-hand intermediate and central domains are covered by
Corollary 1.2, and the right-hand intermediate domain is addressed in the following.

Corollary 4.1. Let
δn,m = logm+ d log logm− n/m.

If n,m→∞ in such a way that n/m→∞, µn,m →∞, and

lim
n,m→∞

(
δn,m

log logm

)
> 6, (4.1)

then rn,m →∞ and, in particular,

sup
z∈R
|P (Wn,m ≤ z)− P (Z ≤ z)| → 0.

Proof. If (4.1) holds then there is ε > 0 such that, for all n,m sufficiently large,

δn,m
log logm

≥ 6 + ε, or equivalently n/m ≤ logm+ (d− 6− ε) log logm. (4.2)

We will use below that log[x(1 + o(1))] = log x+ o(1). Using Table 1,

log r2
n,m = log

{
σ2
n,m

[1 + (n/m)3]2

}
= log

{
(1 + o(1))

mτd(n/m)

(n/m)6

}
= log

{
m(n/m)de−n/m

(n/m)6d!

}
+ o(1) = logm+ (d− 6) log(n/m)− n/m− log(d!) + o(1)

= logm+ (d− 6) log(n/m)− n/m+O(1). (4.3)

Noting that x 7→ (d− 6) log x− x is decreasing for x > (d− 6)+, for n,m large enough so
that n/m ≥ (d− 6)+ and (4.2) holds, by (4.3) we have

log r2
n,m ≥ logm+ (d− 6) log [logm+ (d− 6− ε) log logm]

− [logm+ (d− 6− ε) log logm] +O(1)

= (d− 6) log[(1 + o(1)) logm]− (d− 6− ε) log logm+O(1)

= (d− 6) log logm+ o(1)− (d− 6− ε) log logm+O(1) = ε log logm+O(1)→∞.

An example of a regime satisfying the hypothesis of Corollary 4.1 is

n = bm (logm+ (d− a) log logm)c, a > 6. (4.4)

Then logµn,m = a log logm + O(1) → ∞ by (1.3) and (4.4), and δn,m/(log logm) → a, so
(4.1) is satisfied.

Although (4.1) does not cover all of the right-hand intermediate domain, the miss-
ing part is small since it follows from n/m → ∞ and µn,m → ∞ that δn,m → ∞ (see,
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e.g., Kolchin et al. (1978, p. 41)). Since (4.1) implies that δn,m = a(log logm)(1 + o(1))

for some a > 6, the only portion of the right-hand intermediate domain in which
rn,m 6→ ∞ but Yn still converges to normal is the narrow asymptotic where δn,m → ∞
but δn,m ≤ 6(log logm)(1 + o(1)). We note, however, that the limiting factor in rn,m
that determines our bound arises when bounding Ψ2

n, a term that also appears when
computing a bound to the normal in the weaker Wasserstein metric using size bias cou-
plings, such as the bound obtained by applying Corollary 2.2 and Construction 3A of
Chen and Röllin (2010). Hence this behavior appears to be unrelated to any aspect
of our method that pertains to bounding the Kolmogorov distance, and the inductive
method in particular.

Lastly we remark that extensions of the present work to the case where the cell prob-
abilities are non-uniform is of additional interest, and may likely also be approached
with the use of Theorem 3.1.

Appendix

Proof of Lemma 3.2. Part 1: By (3.20), it suffices to show (3.14), as then for any r1 > 0

the set on the right hand side of (3.20) is finite. By (1.3) and d ≥ 2 we have

lim sup
m→∞

µn,m = lim sup
m→∞

(
n

d

)
1

md−1

(
1− 1

m

)n−d
≤
(
n

d

)
lim sup
m→∞

1

md−1
= 0,

and similarly

lim sup
m→∞

m(m− 1)

(
n

d, d, n− 2d

)
1

m2d

(
1− 2

m

)n−2d

≤
(

n

d, d, n− 2d

)
lim sup
m→∞

1

m2(d−1)
= 0.

Hence (3.14) holds by (1.4).
Part 2a: As the mean µn,m is positive over the range of n and m considered, we

equivalently show that the ratio

σ2
n,m

µn,m
= 1− µn,m +

(
n

d,d,n−2d

) (
1− 2

m

)n−2d(
n
d

) (
1− 1

m

)n−d (
m− 1

md

)
is bounded. For d ≤ n < 2d or m = 2 the result is clear, as

σ2
n,m

µn,m
= 1− µn,m ≤ 1.

For n ≥ 2d and m ≥ 3, we obtain

σ2
n,m

µn,m
− 1 =

(
n

d,d,n−2d

) (
1− 2

m

)n−2d(
n
d

) (
1− 1

m

)n−d (
m− 1

md

)
−
(
n

d

)
1

md−1

(
1− 1

m

)n−d

=
(n)2d

(
1− 2

m

)−d
d!(n)d

(
m− 1

md

)(
1− 1

m− 1

)n−d
− (n)d

d!

1

md−1

(
1− 1

m

)n−d
=

nd

d!md−1

((
1− 2

m

)−d(
1− 1

m− 1

)n−d
−
(

1− 1

m

)n−d)
(4.5)

−
(n)2d

(
1− 2

m

)−d
d!(n)dmd

(
1− 1

m− 1

)n−d
+O

(( n
m

)d−1
)((

1− 2

m

)−d(
1− 1

m− 1

)n−d
+

(
1− 1

m

)n−d)
.
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For the first term in (4.5), expanding (1− x)−d around zero and using d ≥ 3 yields(
1− 2

m

)−d
= 1 +

2d

m
+R1,m with |R1,m| ≤

2d(d+ 1)3d+2

m2
,

and similarly expanding (1− x)n−d around 1/m yields(
1− 1

m− 1

)n−d
=

(
1− 1

m

)n−d
+R2,m

with

|R2,m| ≤
n− d

m(m− 1)

(
1− 1

m

)n−d−1

≤ n

m(m− 1)
e−(n−d−1)/m.

Hence, we may bound the first term in (4.5) by nd/d!md−1 times∣∣∣∣∣
(

1 +
2d

m
+R1,m

)((
1− 1

m

)n−d
+R2,m

)
−
(

1− 1

m

)n−d∣∣∣∣∣
=

∣∣∣∣∣
(

1 +
2d

m

)
R2,m +

2d

m

(
1− 1

m

)n−d
+R1,m

((
1− 1

m

)n−d
+R2,m

)∣∣∣∣∣
≤ e−n/m

m

((
1 +

2d

m

)
ne(d+1)/m

m− 1
+ 2ded/m +

2d(d+ 1)3d+2

m

(
ed/m +

ne(d+1)/m

m(m− 1)

))
≤ C34e

−n/m

m

(
1 +

n

m

)
.

where we have used bounds such as ed/m ≤ ed/3 for m ≥ 3, and where C34 is a constant
depending only on d. Hence the first term in (4.5) can be no greater than

C34

d!
e−n/m

( n
m

)d (
1 +

n

m

)
≤ C34

d!
sup
x≥0

e−xxd(1 + x)

for all n ≥ 2d,m ≥ 3.
The next term in (4.5) is also bounded, as∣∣∣∣∣ (n)2d

(
1− 2

m

)−d
d!(n)dmd

(
1− 1

m− 1

)n−d∣∣∣∣∣ ≤ C35

( n
m

)d
e−n/m,

as are the final terms, in view of( n
m

)d−1
((

1− 2

m

)−d(
1− 1

m− 1

)n−d
+

(
1− 1

m

)n−d)
≤ C36

( n
m

)d−1

e−n/m.

Part 2b: Using (3.12),

µn,m
n
≤ τd(n/m)ed/m

n/m
=
e−n/m(n/m)d−1ed/m

d!
≤ ed

d!
sup
x>0

e−xxd−1

so taking this to be C4 suffices to show the first claim. The second now follows from
Part 2a.

Part 3: By differentiating and factoring we have

d! · ϕ′d(x) = xd−2e−x[x3 − 3dx2 + d(3d− 1)x− d2(d− 1)]

= xd−2e−x[x− (d−
√
d)][x− d][x− (d+

√
d)],
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and by considering the sign of this derivative we see that infx>0 ϕd(x) = minϕd(d±
√
d),

which we now show is positive. Letting y denote either positive value d±
√
d, note that

yd+1

d!
=
yd−1(d− 1− y)2

(d− 1)!
· y2

d(d− 1− y)2
=
yd−1(d− 1− y)2

(d− 1)!
· (d±

√
d)2

d(−1∓
√
d)2

=
yd−1(d− 1− y)2

(d− 1)!
· 1. (4.6)

Noting also that
∑∞
d′=0 e

−yyd
′
(d′ − y)2/d′! = y by considering the variance of a Poisson

random variable with mean y, we have

ϕd(y) = 1− τd(y)− τd(y)(y − d)2/y

= 1− 1

y

(
e−yyd+1

d!
+
e−yyd(y − d)2

d!

)
= 1− 1

y

(
e−yyd−1(d− 1− y)2

(d− 1)!
+
e−yyd(d− y)2

d!

)
(by (4.6))

> 1− 1

y

∞∑
d′=0

e−yyd
′
(d′ − y)2

d′!

= 0.

Part 4a: If the claim fails then there are n∗,m∗ < ∞ and sequences rj → ∞ and
(nj ,mj) such that, for each j, σ2

nj ,mj ≥ rj but nj ≤ n∗ or mj ≤ m∗. As at least one of the
previous two inequalities must hold for infinitely many j, by considering subsequences
we may assume that

nj ≤ n∗ for all j, or mj ≤ m∗ for all j. (4.7)

If the first case of (4.7) holds we have

∞ = lim
j→∞

rj = lim
j→∞

σ2
nj ,mj = lim inf

j→∞
σ2
nj ,mj ≤ lim inf

j→∞

(
max
n≤n∗

σ2
n,mj

)
. (4.8)

If it were that m := supjmj =∞, then there would be a subsequence jk →∞ on which
mjk →∞, hence σ2

n,mjk
→ 0 for each fixed n by Part 1, and by taking the maximum over

a finite set,

0 = lim
k→∞

max
n≤n∗

σ2
n,mjk

≥ lim inf
j→∞

(
max
n≤n∗

σ2
n,mj

)
, (4.9)

this inequality because the lim inf of a sequence is always at least as small as the limit of
a subsequence. (4.9) would be a contradiction of (4.8), leaving only the possibility that
m <∞, which also leads to a contradiction since, using the second equality in (4.8),

∞ = lim
j
σ2
nj ,mj ≤ sup

j
σ2
nj ,mj ≤ sup

n≤n∗, m≤m
σ2
n,m <∞,

as the last supremum is taken over a finite set. If the second case of (4.7) holds then
for j large enough so that rj > (m∗)2, since Yn ≤ m under Pm we have

(m∗)2 < rj ≤ σ2
nj ,mj = Varmj (Ynj ) ≤ Emj (Y 2

nj ) ≤ m
2
j ≤ (m∗)2,

again a contradiction.
Part 4b: If the claim fails then there is ε > 0 and sequences rj →∞ and (nj ,mj) such

that, for each j, σ2
nj ,mj ≥ rj but nj/mj > (1 + ε) logmj . By Part 4a, taking subsequences

if necessary, we can assume that nj ,mj →∞, and that for all j

nj/mj > (1 + ε) logmj > d. (4.10)
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Then, using Part 2a we obtain that for all j sufficiently large

rj
C3
≤
σ2
nj ,mj

C3
≤ µnj ,mj = mj

(
nj
d

)
1

md
j

(
1− 1

mj

)nj−d
≤ mj

(
nj
mj

)d
exp[−(nj − d)/mj ] ≤ mj

(
nj
mj

)d
e−nj/mjed.

Using (4.10) and that the function x 7→ xde−x is decreasing for x > d, we have

rj
C3
≤ mj

(
nj
mj

)d
e−nj/mjed ≤ mj ((1 + ε) logmj)

d
m
−(1+ε)
j ed ≤ m−εj ((1 + ε) logmj)

d
ed,

giving the contradiction

∞ = lim
j→∞

rj ≤ C3(1 + ε)ded lim
j→∞

[
m−εj (logmj)

d
]

= 0.

Part 4c: Set ε = 1/4 and, using (3.13) and Parts 4a and 4b, choose r1 > 0 large
enough so that any n,m satisfying σ2

n,m ≥ r1 also satisfy

σ2
n,m ≥ mτd(n/m)ϕd(n/m)(1− ε) and e−d/m ≥ 1− ε.

Then, using (3.12),

σ2
n,m

µn,m
≥ mτd(n/m)ϕd(n/m)(1− ε)

mτd(n/m)ed/m
≥ ϕd(n/m)(1− 2ε) ≥ (1/2) inf

x>0
ϕd(x),

so taking C6 to be this last suffices.
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Random graphs ’87 (Poznań, 1987), pages 131–139. Wiley, Chichester. MR-1094128

Palka, Z. (1984). On the number of vertices of given degree in a random graph. J. Graph
Theory, 8(1):167–170. MR-0732030

Penrose, M. D. (2009). Normal approximation for isolated balls in an urn allocation
model. Electron. J. Probab., 14:no. 74, 2156–2181. MR-2550296

Quine, M. P. and Robinson, J. (1984). Normal approximations to sums of scores based
on occupancy numbers. Ann. Probab., 12(3):794–804. MR-0744234

EJP 18 (2013), paper 27.
Page 28/29

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=0615434
http://www.ams.org/mathscinet-getitem?mr=0624696
http://www.ams.org/mathscinet-getitem?mr=0120167
http://www.ams.org/mathscinet-getitem?mr=2318403
http://www.ams.org/mathscinet-getitem?mr=2157512
http://www.ams.org/mathscinet-getitem?mr=2650046
http://www.ams.org/mathscinet-getitem?mr=2201883
http://www.ams.org/mathscinet-getitem?mr=2201883
http://www.ams.org/mathscinet-getitem?mr=1371949
http://www.ams.org/mathscinet-getitem?mr=2858224
http://www.ams.org/mathscinet-getitem?mr=0144363
http://www.ams.org/mathscinet-getitem?mr=2408581
http://www.ams.org/mathscinet-getitem?mr=1133371
http://www.ams.org/mathscinet-getitem?mr=0488211
http://www.ams.org/mathscinet-getitem?mr=0216548
http://www.ams.org/mathscinet-getitem?mr=0870602
http://www.ams.org/mathscinet-getitem?mr=0471016
http://www.ams.org/mathscinet-getitem?mr=1094128
http://www.ams.org/mathscinet-getitem?mr=0732030
http://www.ams.org/mathscinet-getitem?mr=2550296
http://www.ams.org/mathscinet-getitem?mr=0744234
http://dx.doi.org/10.1214/EJP.v18-1983
http://ejp.ejpecp.org/


Berry-Esseen bound for the occupancy model

Riordan, J. (1937) Moment Recurrence Relations for Binomial, Poisson and Hypergeo-
metric Frequency Distributions Ann. Math. Statist. 8(2):103–111.

Robbins, H. E. (1968). Estimating the Total Probability of the Unobserved Outcomes of
an Experiment. The Annals of Mathematical Statistics 39: 256–257. MR-0221695

Starr, N. (1979). Linear Estimation of the Probability of Discovering a New Species.
The Annals of Statistics 7: 644–652. MR-0527498

Stein, C. (1972) A bound for the error in the normal approximation to the distribution
of a sum of dependent random variables. Proc. Sixth Berkeley Symp. Math. Statist.
Prob. 2 Univ. of California Press. MR-0402873

Stein, C. (1986). Approximate computation of expectations. Institute of Mathematical
Statistics Lecture Notes—Monograph Series, 7. Institute of Mathematical Statistics,
Hayward, CA. MR-0882007

Thisted, R. and Efron, B. (1987). Did Shakespeare Write a Newly-discovered Poem?
Biometrika 74: 445–455. MR-0909350

Acknowledgments. We wish to thank the reviewer for comments that helped improve
our work.

EJP 18 (2013), paper 27.
Page 29/29

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=0221695
http://www.ams.org/mathscinet-getitem?mr=0527498
http://www.ams.org/mathscinet-getitem?mr=0402873
http://www.ams.org/mathscinet-getitem?mr=0882007
http://www.ams.org/mathscinet-getitem?mr=0909350
http://dx.doi.org/10.1214/EJP.v18-1983
http://ejp.ejpecp.org/

	Introduction
	Size Bias Coupling
	Auxiliary Results and Proof of Theorem 1.1
	Discussion

