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Abstract

This paper is devoted to the prediction problem in extreme value theory. Our main re-
sult is an explicit expression of the regular conditional distribution of a max-stable (or
max-infinitely divisible) process {η(t)}t∈T given observations {η(ti) = yi, 1 ≤ i ≤ k}.
Our starting point is the point process representation of max-infinitely divisible pro-
cesses by Giné, Hahn and Vatan (1990). We carefully analyze the structure of the
underlying point process, introduce the notions of extremal function, sub-extremal
function and hitting scenario associated to the constraints and derive the associated
distributions. This allows us to explicit the conditional distribution as a mixture over
all hitting scenarios compatible with the conditioning constraints. This formula ex-
tends a recent result by Wang and Stoev (2011) dealing with the case of spectrally
discrete max-stable random fields. This paper offers new tools and perspective for
prediction in extreme value theory together with numerous potential applications.
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1 Introduction

1.1 Motivations

Max-stable random fields turn out to be fundamental models for spatial extremes
since they arise as the the limit of rescaled maxima. More precisely, consider the
component-wise maxima

ηn(t) = max
1≤i≤n

Xi(t), t ∈ T,

of independent and identically distributed (i.i.d.) random fields {Xi(t)}t∈T , i ≥ 1. If the
random field ηn = {ηn(t)}t∈T converges in distribution, as n→∞, under suitable affine
normalization, then its limit η = {η(t)}t∈T is necessarily max-stable (see e.g. [7, 10]).
Therefore, max-stable random fields play a central role in extreme value theory, just
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Conditional distributions of max-i.d. processes

like Gaussian random fields do in the classical statistical theory based on the Central
Limit Theorem.

In this framework, the prediction problem arises as an important and long-standing
challenge in extreme value theory. Suppose that we already have a suitable max-
stable model for the dependence structure of a random field η = {η(t)}t∈T and that
the field is observed at some locations t1, . . . , tk ∈ T . How can we take benefit from
these observations and predict the random field η at other locations ? We are natu-
rally lead to consider the conditional distribution of {η(t)}t∈T given the observations
{η(ti) = yi, 1 ≤ i ≤ k}. A formal definition of the notion of regular conditional distribu-
tion is deferred to the Appendix A.2.

In the classical Gaussian framework, i.e., if η is a Gaussian random field, it is well
known that the corresponding conditional distribution remains Gaussian and simple
formulas give the conditional mean and covariance structure. This theory is strongly
linked with the theory of Hilbert spaces: the conditional expectation, for example, can
be obtained as the L2-projection of the random field η onto a suitable Gaussian sub-
space. In extreme value theory, the prediction problem turns out to be difficult. A
first approach by Davis and Resnick [4, 5] is based on a L1-metric between max-stable
variables and on a kind of projection onto max-stable spaces. To some extent, this work
mimics the corresponding L2-theory for Gaussian spaces. However, unlike the Gaussian
case wich is an exception, there is no clear relationship between the predictor obtained
by projection onto the max-stable space generated by the variables {η(ti), 1 ≤ i ≤ k}
and the conditional distributions of η with respect to these variables. A first major con-
tribution to the conditional distribution problem is the work by Wang and Stoev [12].
The authors consider max-linear random fields, a special class of max-stable random
fields with discrete spectral measure, and give an exact expression of the conditional
distributions as well as efficient algorithms. The max-linear structure plays an essential
role in their work and provides major simplifications since in this case η admits the
simple representation

η(t) =

q∨
j=1

Zjfj(t), t ∈ T,

where the symbol
∨

denotes the maximum, f1, . . . , fq are deterministic functions and
Z1, . . . , Zq are i.i.d. random variables with unit Fréchet distribution. The authors de-
termine the conditional distributions of (Zj)1≤j≤q given observations {η(ti) = yi, 1 ≤
i ≤ k}. Their result relies on the important notion of hitting scenario defined as the
subset of indices j ∈ [[1, q]] such that η(ti) = Zjf(ti) for some i ∈ [[1, k]], where, for n ≥ 1,
we note [[1, n]] = {1, . . . , n}. The conditional distribution of (Zj)1≤j≤q is expressed as a
mixture over all admissible hitting scenarios with minimal rank.

The purpose of the present paper is to propose a general theoretical framework for
conditional distributions in extreme value theory covering not only the whole class of
sample continuous max-stable random fields but also the class of sample continuous
max-infinitely divisible (max-i.d.) random fields (see Balkema and Resnick [1]). This
paper is mostly theoretical and establishes exact formulas for the conditional distribu-
tion of a max-i.d. continuous random field given its value at finitely many points. More
practical aspects of the theory such as sampling algorithm or application on real data
sets are presented in the subsequent paper [8]. There we obtain closed formulas for
Brown-Resnick processes and extremal Gaussian processes that are used in the study
of extremal rainfall or temperatures in Switzerland.

The motivations and applications come from spatial extreme value theory where the
max-stable case plays a central role. However, from the theoretical point of view, there
is no additional difficulty considering the more general framework of max-i.d. random
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Conditional distributions of max-i.d. processes

fields. Our starting point is the general representation by Giné, Hahn and Vatan [9]
of max-i.d. sample continuous random fields (see also de Haan [6] for the max-stable
case). It is possible to construct a Poisson random measure Φ =

∑N
i=1 δφi on the space

of continuous functions on T such that

η(t)
L
=

N∨
i=1

φi(t), t ∈ T.

Here the random variable N is equal to the total mass of Φ that may be finite or infinite

and
L
= stands for equality of probability laws (see Theorem 1.1 below for a precise

statement). We denote by [Φ] = {φi, 1 ≤ i ≤ N} the set of atoms of Φ. Clearly,
φ(t) ≤ η(t) for all t ∈ T and φ ∈ [Φ]. In view of the observations {η(ti) = yi, 1 ≤ i ≤ k},
we introduce the notion of extremal points: a function φ ∈ [Φ] is called extremal if
φ(ti) = η(ti) for some i ∈ [[1, k]], otherwise it is called sub-extremal. We show that under
some mild condition, one can define a random partition Θ = (θ1, . . . , θ`) of {t1, . . . , tk}
and extremal functions ϕ+

1 , . . . , ϕ
+
` ∈ [Φ] such that the point ti belongs to the component

θj if and only if ϕ+
j (ti) = η(ti). Using the terminology of Wang and Stoev [12], we

call hitting scenario a partition of {t1, · · · , tk} that reflects the way how the extremal
functions ϕ+

1 , . . . , ϕ
+
` hit the constraints ϕ+

j (ti) ≤ η(ti), 1 ≤ i ≤ k. The main results
of this paper are Theorems 3.2 and 3.3, where the conditional distribution of η given
{η(ti) = yi, 1 ≤ i ≤ k} is expressed as a mixture over all possible hitting scenarios.

The paper is structured as follows. In Section 2, the distribution of extremal and
sub-extremal functions is analyzed and a characterization of the hitting scenario distri-
bution is given. In Section 3, we focus on conditional distributions: we compute the
conditional distribution of the hitting scenario and extremal functions and then derive
the conditional distribution of η. Section 4 is devoted to examples: we specify our re-
sults in the simple case of a single conditioning point and consider max-stable models.
The proofs are collected in Section 5 and some technical details are postponed to an
appendix.

1.2 Preliminaries on max-i.d. processes

Let T be a compact metric space and C = C(T,R) be the space of continuous func-
tions on T endowed with the sup norm

‖f‖ = sup
t∈T
|f(t)|, f ∈ C.

Let (Ω,F ,P) be a probability space. A random process η = {η(t)}t∈T is said to be max-
i.d. on C if η has a version with continuous sample path and if, for each n ≥ 1, there
exist {ηni, 1 ≤ i ≤ n} i.i.d. sample continuous random fields on T such that

η
L
=

n∨
i=1

ηni,

where
∨

denotes pointwise maximum.
Giné, Hahn and Vatan (see [9] Theorem 2.4) give a representation of such processes

in terms of Poisson random measure. For any function f on T and set A ⊂ T , we note
f(A) = supt∈A f(t).

Theorem 1.1. (Giné, Hahn and Vatan [9])
Let h be the vertex function of a sample continuous max-i.d. process η defined by

h(t) = sup{x ∈ R; P(η(t) ≥ x) = 1} ∈ [−∞,∞), t ∈ T,
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Conditional distributions of max-i.d. processes

and define Ch = {f ∈ C; f 6= h, f ≥ h}. Under the condition that the vertex function
h is continuous, there exists a locally-finite Borel measure µ on Ch, such that if Φ is a
Poisson random measure Φ on Ch with intensity measure µ, then

{η(t)}t∈T
L
= {sup{h(t), φ(t);φ ∈ [Φ]}}t∈T (1.1)

where [Φ] denotes the set of atoms of Φ.
Furthermore, the following relations hold:

h(K) = sup{x ∈ R; P(η(K) ≥ x) = 1}, K ⊂ T closed, (1.2)

and
P [η(Ki) < xi, 1 ≤ i ≤ n] = exp[−µ (∪ni=1{f ∈ Ch; f(Ki) ≥ xi})], (1.3)

where n ∈ N, Ki ⊂ T closed and xi > h(Ki), 1 ≤ i ≤ n.

Theorem 1.1 provides an almost complete description of max-i.d. continuous random
processes, the only restriction being the continuity of the vertex function. Clearly, the
distribution of η is completely characterized by the vertex function h and the so called
exponent measure µ. If h > −∞, the random process η − h is continuous and max-i.d.
and its vertex function is identically equal to 0. If h(t) = −∞ at some point t ∈ T , we
may consider eη − eh which is max-i.d. with zero vertex function. Since the conditional
distribution of η is easily deduced from that of η−h (or eη− eh), we can assume without
loss of generality that h ≡ 0. The corresponding set C0 is the space of non-negative and
non-null continuous functions on T .

We need some more notations from point process theory (see Daley and Vere-Jones
[2, 3]). It will be convenient to introduce a measurable enumeration of the atoms of Φ

(see [3] Lemma 9.1.XIII). The total mass of Φ is noted N = Φ(C0). If µ(C0) <∞, N has
a Poisson distribution with mean µ(C0), otherwise N = +∞ almost surely (a.s.). One
can construct C0-valued random variables (φi)i≥1 such that Φ =

∑N
i=1 δφi .

Let Mp(C0) be the space of point measures M =
∑
i∈I δfi on C0 such that

{fi ∈ C0 : ‖fi‖ > ε} is finite for all ε > 0.

We endow Mp(C0) with the σ-algebraMp generated by the applications

M 7→M(A), A ⊂ C0 Borel set .

For M ∈ Mp(C0), let [M ] = {fi, i ∈ I} be the countable set of atoms of M . If M is
non-null, then for all t ∈ T , the set {f(t); f ∈ [M ]} is non empty and has finitely many
points in (ε,+∞) for all ε > 0 so that the maximum max{f(t); f ∈ [M ]} is reached. We
consider the function max(M) : T → [0,+∞) defined by

max(M)(t) = max{f(t); f ∈ [M ]}, t ∈ T,

with the convention that max(M) ≡ 0 if M = 0. By considering restrictions of the
measure M to sets {f ∈ C0; ‖f‖ > ε} and using uniform convergence, it is easy to show
that the function max(M) is continuous on T .

In Theorem 1.1 (with h ≡ 0), Equation (1.3) implies that the exponent measure µ

satisfies, for all ε > 0,
µ({f ∈ C0; ‖f‖ > ε}) <∞. (1.4)

Consequently, we have Φ ∈Mp(C0) almost surely and η
L
= max(Φ).

An illustration of Theorem 1.1 is given in Figure 1 with a representation of the
Poisson point measure Φ and of the corresponding maximum process η = max(Φ) in the
moving maximum max-stable model based on the Gaussian density function.
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Figure 1: A representation of the point process Φ (left) and of the associated maximum
process η = max(Φ) (right) in the moving maximum max-stable model based on the
Gaussian density function. Here T = [0, 5].

2 Extremal points and related distributions

In the sequel, η denotes a sample continuous max-i.d. random process with vertex
function h ≡ 0 and exponent measure µ on C0. On the same probability space, we
suppose that an Mp(C0)-valued Poisson random measure Φ =

∑N
i=1 δφi with intensity

measure µ is given and such that η = max(Φ).

2.1 Extremal and sub-extremal point measures

Let K ⊂ T be a closed subset of T . We introduce here the notion of K-extremal
points that will play a key role in this work. We use the following notations: if f1, f2 are
two functions defined (at least) on K, we write

f1 =K f2 if and only if ∀t ∈ K, f1(t) = f2(t),

f1 <K f2 if and only if ∀t ∈ K, f1(t) < f2(t),

f1 6<K f2 if and only if ∃t ∈ K, f1(t) ≥ f2(t).

Let M ∈ Mp(C0). An atom f ∈ [M ] is called K-sub-extremal if and only if f <K
max(M) and K-extremal otherwise. In words, a sub-extremal atom has no contribution
to the maximum max(M) on K.

Definition 2.1. Define the K-extremal random point measure Φ+
K and the K-sub-

extremal random point measure Φ−K by

Φ+
K =

N∑
i=1

1{φi 6<Kη}δφi and Φ−K =

N∑
i=1

1{φi<Kη}δφi .

Figure 2 provides an illustration of the definition. It should be noted that Φ+
K and Φ−K

are well defined measurable random point measures (see Lemma A.3 in Appendix A.3).
Furthermore, it is straightforward from the definition that

Φ = Φ+
K + Φ−K , max(Φ+

K) =K η and max(Φ−K) <K η.

Define the following measurable subsets of Mp(C0) (see Lemma A.4 in Appendix A.3):

C+
K =

{
M ∈Mp(C0); ∀f ∈ [M ], f 6<K max(M)

}
, (2.1)

C−K(g) =
{
M ∈Mp(C0); ∀f ∈ [M ], f <K g

}
, (2.2)

where g is any continuous function defined (at least) on K. Clearly, it always holds

Φ+
K ∈ C

+
K and Φ−K ∈ C

−
K(η).

The following theorem fully characterizes the joint distribution of (Φ+
K ,Φ

−
K) provided

that Φ+
K(C0) is almost surely finite. We note δ0 the Dirac mass at 0.
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Figure 2: Decomposition of the Poisson point measure Φ into the K-extremal point
measure Φ+

K (black) and the K-sub-extremal point measure Φ−K (grey). Left: K = [0, 5].
Right: K = {3} represented by a black square.

Theorem 2.2. For all measurable A,B ⊂Mp(C0),

P
[
(Φ+

K ,Φ
−
K) ∈ A×B, Φ+

K(C0) = 0
]

= exp[−µ(C0)] δ0(A) δ0(B),

and, for k ≥ 1,

P
[
(Φ+

K ,Φ
−
K) ∈ A×B, Φ+

K(C0) = k
]

=
1

k!

∫
Ck0

1{
∑k
i=1 δfi∈A∩C

+
K}
P
[
Φ ∈ B ∩ C−K

(
∨ki=1fi

)]
µ⊗k(df1, . . . , dfk).

We now focus on conditions ensuring Φ+
K(C0) to be a.s. finite.

Proposition 2.3.
The K-extremal point measure Φ+

K is a.s. finite if and only if one of the following condi-
tion holds:

(i) µ(C0) < +∞;

(ii) µ(C0) = +∞ and inf
t∈K

η(t) > 0 almost surely.

It should be noted that any simple max-stable random field (with unit Fréchet mar-
gins) satisfies condition (ii) above. See for example Corollary 3.4 in [9].

Remark 2.4. Using Theorem 2.2, it is easy to show that the distribution of (Φ+
K ,Φ

−
K)

has the following structure. Define the tail functional µ̄K by

µ̄K(g) = µ({f ∈ C0; f 6<K g})

for any continuous function g defined (at least) on K. Suppose that Φ+
K is finite almost

surely. Its distribution is then given by the so-called Janossy measures (see e.g. Daley
and Vere-Jones [2] section 5.3). The Janossy measure of order k of the K-extremal point
measure Φ+

K is given by

Jk(df1, . . . , dfk) = exp
[
−µ̄K

(
∨ki=1fi

)]
1{∑k

i=1 δfi∈C
+
K}µ

⊗k(df1, . . . , dfk).

Furthermore, given that Φ+
K =

∑k
i=1 δfi , the conditional distribution of Φ−K is equal to

the distribution of a Poisson random measure with measure intensity 1{f<K∨ki=1fi}µ(df).
These results are not used in the sequel and we omit their proof for the sake of brevity.

2.2 Extremal functions

Let t ∈ T . We denote by µt the measure on (0,+∞) defined by

µt(A) = µ({f ∈ C0; f(t) ∈ A}), A ⊂ (0,+∞) Borel set,
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and by µ̄t the associated tail function defined by

µ̄t(x) = µt([x,+∞)), x > 0.

Note that

P(η(t) < x) = exp(−µ({f ∈ C0; f(t) ≥ x})) = exp(−µ̄t(x)), x > 0. (2.3)

The following proposition states that, under a natural condition, there is almost surely a
unique {t}-extremal point in Φ. This extremal point will be referred to as the t-extremal
function and noted φ+

t .

Proposition 2.5. For t ∈ T , the following statements are equivalent:

(i) Φ+
{t}(C0) = 1 almost surely;

(ii) µ̄t(0+) = +∞ and µ̄t is continuous on (0,+∞);

(iii) the distribution of η(t) has no atom.

If these conditions are met, we define the t-extremal function φ+
t by the relation Φ+

{t} =

δφ+
t

a.s.. For all measurable A ⊂ C0 we have

P(φ+
t ∈ A) =

∫
A

exp[−µ̄t(f(t))]µ(df). (2.4)

An important class of processes satisfying the conditions of Proposition 2.5 is the
class of max-stable processes (see section 4.2 below).

2.3 Hitting scenarios

Proposition 2.5 gives the distribution of Φ+
K when K = {t} is reduced to a single

point. Going a step further, we consider the case when K is finite. In the sequel, we
suppose that the following assumption is satisfied:

(A) K = {t1, . . . , tk} is finite and,
for all t ∈ K, µ̄t is continuous and µ̄t(0+) = +∞.

According to Proposition 2.5, Assumption (A) holds true if and only if for all i ∈
{1, . . . , k}, the law of η(ti) has no atom . It is always satisfied in the max-stable case.
Roughly speaking, Assumption (A) ensures that the maximum η(t) = max(Φ)(t) is
uniquely reached for all t ∈ K. This will provide combinatorial simplifications. More
precisely, under Assumption (A), the event

ΩK =
⋂
t∈K
{Φ+
{t}(C0) = 1}

is of probability 1 and the extremal functions φ+
t1 , . . . , φ

+
tk

are well defined. In the next
definition, we introduce the notion of hitting scenario that reflects the way how these
extremal functions hit the maximum η on K.

Let PK be the set of partitions of K. It is convenient to think about K as an ordered
set, say t1 < · · · < tk. Then each partition τ can be written uniquely in the standard-
ized form τ = (τ1, . . . , τ`) where ` = `(τ) is the length of the partition, τ1 ⊂ K is the
component of t1, τ2 ⊂ K is the component containing min(K \ τ1) and so on. With this
convention, the components τ1, . . . , τ` of the partition are labeled so that

min τ1 < · · · < min τ`.
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Figure 3: Two realisations of the Poisson point measure Φ and of the corresponding
hitting scenario Θ and extremal functions ϕ+

1 , . . . , ϕ
+
`(Θ) with K = {t1, t2, t3, t4} repre-

sented by the black squares. Left: the hitting scenario is Θ = ({t1}, {t2}, {t3, t4}), the
extremal functions are ϕ+

1 = φ+
t1 , ϕ+

2 = φ+
t2 and ϕ+

3 = φ+
t3 = φ+

t4 . Right: the hitting
scenario is Θ = ({t1, t2}, {t3, t4}), the extremal functions (black) are ϕ+

1 = φ+
t1 = φ+

t2 and
ϕ+

2 = φ+
t3 = φ+

t4 .

Definition 2.6. Suppose that Assumption (A) is met. Define ∼ the (random) equiv-
alence relation on K = {t1, . . . , tk} by t ∼ t′ if and only if φ+

t = φ+
t′ . The partition

Θ = (θ1, . . . , θ`(Θ)) of K into equivalence classes is called the hitting scenario. For
j ∈ [[1, `(Θ)]], let ϕ+

j be the extremal function associated to the component θj , i.e., such

that ϕ+
j = φ+

t for all t ∈ θj .

We illustrate the definition with two examples in Figure 3. Clearly a point φ ∈ [Φ] is
K-extremal if and only if it is t-extremal for some t ∈ K, so that [Φ+

K ] = {φ+
t , t ∈ K}.

Furthermore, the random measure Φ+
K is almost surely simple, i.e. any atoms have a

simple multiplicity, otherwise the condition Φ+
{t}(C0) = 1 a.s. would not be satisfied for

some t ∈ K. These considerations entail that

Φ+
K =

`(Θ)∑
j=1

δϕ+
j
. (2.5)

In particular, the length `(Θ) of the hitting scenario is equal to Φ+
K(C0). Furthermore

the extremal functions satisfy

∀j ∈ [[1, `]], ∀t ∈ θj , ϕ+
j (t) >

∨
j′ 6=j

ϕ+
j′(t). (2.6)

The distribution of the hitting scenario and extremal functions is given by the fol-
lowing proposition. The proof relies on Theorem 2.2.

Proposition 2.7. Suppose Assumption (A) is met.
Then, for any partition τ = (τ1, . . . , τ`) ∈ PK , and any Borel sets A ⊂ C`0, B ⊂ Mp(C0),
we have

P[Θ = τ, (ϕ+
1 , . . . , ϕ

+
` ) ∈ A, Φ−K ∈ B] (2.7)

=

∫
A

1{∀j∈[[1,`]], fj>τj
∨
j′ 6=j fj′}P

[
Φ ∈ B ∩ C−K

(
∨`j=1fj

)]
µ⊗`(df1, . . . , df`).

3 Regular conditional distribution of max-id processes

We now focus on conditional distributions. We will need some notations.
If s = (s1, . . . , sl) ∈ T l and f ∈ C0, we note f(s) = (f(s1), . . . , f(sl)). Let µs be the

exponent measure of the max-i.d. random vector η(s), i.e. the measure on [0,+∞)l \ {0}
defined by

µs(A) = µ({f ∈ C0; f(s) ∈ A}), A ⊂ [0,+∞)l \ {0} Borel set.
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Define the corresponding tail function

µ̄s(x) = µ({f ∈ C0; f(s) 6< x}), x ∈ [0,+∞)l r {0}.

Let {Ps(x, df); x ∈ [0,+∞)l \ {0}} be a regular version of the conditional measure µ(df)

given f(s) = x (see Lemma A.2 in Appendix A.2). Then for any measurable function

F : [0,+∞)l × C0 → [0,+∞)

vanishing on {0} × C0, we have∫
C0

F (f(s), f)µ(df) =

∫
[0,+∞)l\{0}

∫
C0

F (x, f)Ps(x, df)µs(dx). (3.1)

Let t = (t1, . . . , tk) and y = (y1, . . . , yk) ∈ [0,+∞)k. Before considering the condi-
tional distribution of η with respect to η(t) = y, we give in the next theorem an explicit
expression of the distribution of η(t). We note K = {t1, . . . , tk}. For any non empty
L ⊂ K, we define L̃ = {i ∈ [[1, k]] : ti ∈ L} and set tL = (ti)i∈L̃, yL = (yi)i∈L̃ and
Lc = K r L.

Theorem 3.1. Suppose assumption (A) is satisfied. For τ ∈ PK , define the measure ντt
on [0,+∞)k by

ντt (C) = P(η(t) ∈ C; Θ = τ), C ⊂ [0,+∞)k Borel set.

Then,

ντt (dy) = exp[−µ̄t(y)]
⊗̀
j=1

{
Ptτj

(yτj , {f(tτcj ) < yτcj }) µtτj
(dyτj )

}
(3.2)

and the distribution νt of η(t) is equal to νt =
∑
τ∈PK ν

τ
t .

Under some extra regularity assumptions, one can even get an explicit density func-
tion for νt (see the section 4.3 on regular models below).

We are now ready to state our main result. In Theorem 3.2 below, we consider the
regular conditional distribution of the point process Φ with respect to η(t) = y. Then,
thanks to the relation η = max(Φ), we deduce easily in Corollary 3.3 below the regular
conditional distribution of η with respect to η(t) = y.

Recall that the point process has been decomposed into two parts: a hitting scenario
Θ together with extremal functions (ϕ+

1 , . . . , ϕ
+
`(Θ)) and a K-sub-extremal point process

Φ−K . Taking this decomposition into account, we introduce the following regular condi-
tional distributions:

πt(y, · ) = P[Θ ∈ · | η(t) = y]

Qt(y, τ, · ) = P[(ϕ+
j ) ∈ · | η(t) = y,Θ = τ ]

Rt(y, τ, (fj), · ) = P[Φ−K ∈ · | η(t) = y,Θ = τ, (ϕ+
j ) = (fj)].

We use here the short notations ` = `(τ), (ϕ+
j ) = (ϕ+

1 , . . . , ϕ
+
` ) and similarly (fj) =

(f1, . . . , f`). The following theorem provides explicit expressions for these regular con-
ditional distributions.

Theorem 3.2. Suppose assumption (A) is satisfied.
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1. For any τ ∈ PK , it holds νt(dy)-a.e.

πt(y, τ) =
dντt
dνt

(y) (3.3)

where νt and ντt are defined in Theorem 3.1 and dντt /dνt denotes the Radon-
Nikodym derivative of ντt w.r.t. νt.

2. It holds νt(dy)πt(y, dτ)-a.e.

Qt(y, τ, df1 · · · df`) =
⊗̀
j=1

{1{fj(tτc
j

)<yτc
j
}Ptτj

(yτj , dfj)

Ptτj
(yτj , {f(tτcj ) < yτcj })

}
. (3.4)

In words, conditionally on η(t) = y and Θ = τ , the extremal functions (ϕ+
1 , . . . , ϕ

+
` )

are independent and ϕ+
j follows the distribution Ptτj

(yτj , df) conditioned to the
constraint f(tτcj ) < yτcj .

3. Let C−t (y) = {M ∈Mp(C0); ∀f ∈ [M ], f(t) < y}. It holds a.e.

Rt(y, τ, (fj), B) ≡ Rt(y, B) =
P[Φ ∈ B ∩ C−t (y)]

P[Φ ∈ C−t (y)]
(3.5)

for any measurable B ∈ Mp(C0). In words, conditionally on η(t) = y, Φ−K is
independent of Θ and (ϕ+

1 , . . . , ϕ
+
`(Θ)) and has the same distribution as a Poisson

point measure with intensity 1{f(t)<y}µ(df).

We briefly comment on these formulas. The fact that the distribution Qt(y, τ, ·) in
Equation (3.4) factorizes into a tensorial product means that the extremal functions
ϕ+

1 , . . . , ϕ
+
` are independent conditionally on η(t) = y and Θ = τ . The fact that the

distribution Rt(y, τ, (fj), ·) in Equation (3.5) does not depend on τ and (fj) means that
conditionally on η(t) = y, Φ−K is independent of Θ and (ϕ+

1 , . . . , ϕ
+
`(Θ)). The distribution

Rt(y, ·) can be seen as the distribution of the Poisson point measure Φ conditioned to
lie in C−t (y), i.e., to have no atom in {f ∈ C0; f(t) 6< y}. It is equal to the distribution
of a Poisson point measure with intensity 1{f(t)<y}µ(df).

As a consequence of Theorem 3.2, we deduce the regular conditional distribution of
η with respect to η(t) = y.

Theorem 3.3. It holds νt(dy)-a.e.

P[η(s) < z | η(t) = y] = exp[−µ({f(s) 6< z, f(t) < y})]

×
∑
τ∈PK

πt(y, τ)
∏̀
j=1

Ptτj
(yτj , {f(tτcj ) < yτcj , f(s) < z})
Ptτj

(yτj , {f(tτcj ) < yτcj })

for any l ≥ 1, s ∈ T l and z ∈ [0,+∞)l.

Remark 3.4. The formulas in Theorems 3.2 and 3.3 are quite theoretical. It should be
noted that for Brown-Resnick processes or extremal Gaussian processes, explicit closed
expressions are available, see [8].

Remark 3.5. Let us mention that Theorem 3.2 suggests a three-step procedure for
sampling from the conditional distribution of η given η(t) = y:

1. Draw a random partition τ with distribution πt(y, ·).
2. Given τ = {τ1, . . . , τ`}, draw ` independent functions ψ1, . . . , ψ`, with ψj following

the distribution Ptτj
(yτj , df) conditioned on f(tτcj ) < yτcj .
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3. Independently of the above two steps, draw
∑
i∈I δφi a Poisson point measure on

C0 with intensity 1{f(t)<y}µ(df). It can be obtained from a Poisson point measure
with intensity µ(df) by removing those points not satisfying the constraint f(t) <

y.

Then, the random field

η̃(t) = max{ψ1(t), . . . , ψ`(t)} ∨max{φi(t), i ∈ I}, t ∈ T,

has the required conditional distribution. The issues and computational aspects of con-
ditional sampling are addressed in the paper [8]. In particular, a Monte-Carlo Markov
chain can be used in order to sample the random partition from the conditional distri-
bution πt(y, ·).

4 Specific cases

We apply in this section our general results to specific cases. More specific and
elaborate examples are considered in [8] where we obtain closed formulas for Brown-
Resnick processes and extremal Gaussian processes and consider applications to tem-
peratures and rainfall in Switzerland based on real data sets.

4.1 The case of a single conditioning point

It is worth noting that the case of a single conditioning point, i.e. k = 1, gives rise
to major simplifications. There exists indeed a unique partition of the set K = {t} so
that the notion of hitting scenario is irrelevant. Furthermore, there is a.s. a single
K-extremal function ϕ+

1 which is equal to the t-extremal function φ+
t . In this case,

Theorems 3.2 and 3.3 simplify into the following proposition.

Proposition 4.1. Let t ∈ T and suppose that conditions (i)-(iii) in Proposition 2.5 are
met. Then, conditionally on η(t) = y, φ+

t and Φ−{t} are independent; the conditional

distribution of φ+
t is equal to Pt(y, ·); the conditional distribution of Φ−{t} is equal to the

distribution of a Poisson point measure with intensity 1{f(t)<y}µ(df). Furthermore, for
l ≥ 1, s ∈ T l and z ∈ [0,+∞)l,

P[η(s) < z | η(t) = y]

= Pt(y, {f(s) < z}) exp[−µ({f(s) 6< z, f(t) < y})]. (4.1)

4.2 Max-stable models

We put the emphasis here on max-stable random fields. For convenience and without
loss of generality, we focus on simple max-stable random fields η, i.e., with standard unit
Fréchet margins

P(η(t) ≤ x) = exp[−x−1]1{x>0}, x ∈ R, t ∈ T.

A random field η is said to be simple max-stable if for any n ≥ 1,

η
L
= n−1

n∨
i=1

ηi

where {ηi, i ≥ 1} are i.i.d. copies of η. Any general max-stable random field can be
related to such a simple max-stable random field η by simple transformation of the
margins, see e.g. Corollary 3.6 in [9]. Furthermore, Corollary 4.5.6 in [7] states that η
can be represented as

{η(t)}t∈T
L
=
{∨
i≥1

ΓiYi(t)
}
t∈T

(4.2)
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where (Γi)i≥1 is the nonincreasing enumeration of the points of a Poisson point pro-
cess on (0,∞) with intensity x−2dx, (Yi)i≥1 is an i.i.d. sequence of continuous random
processes on T , independent of (Γi)i≥1 and such that

E[Y1(t)] = 1, t ∈ T, and E[‖Y1‖] <∞.

Since a continuous simple max-stable random field is max-i.d., it has a Poisson point
measure representation (1.1). The normalization to unit Fréchet margins entails that
the vertex function h is equal to 0 and that the exponent measure µ satifies, for all t ∈ T ,

µt(dy) = y−21{y>0}dy and µ̄t(y) = y−1, y > 0.

The correspondence between the two representations (1.1) and (4.2) is the following:
the point measure Φ =

∑
i≥1 δΓiYi is a Poisson point measure on C0 with intensity

µ(A) =

∫ ∞
0

E[1{rY1∈A}] r
−2dr, A ⊂ C0 Borel set,

The distribution of the Yi’s, denoted by σ, is called the spectral measure and is related
to the exponent measure µ by the relation

µ(A) =

∫ ∞
0

∫
C0

1{rf∈A} σ(df)r−2dr, A ⊂ C0 Borel set.

Taking into account this particular form of the exponent measure, we can relate the
kernel Pt(y, ·) to the spectral measure σ. For x ∈ R, we note (x)+ = max(x, 0).

Proposition 4.2. Let η be a continuous simple max-stable random field with spectral
measure σ and t ∈ T . The {t}-extremal function φ+

t has conditional distribution

P[φ+
t ∈ · | η(t) = y] = Pt(y, ·) =

∫
C0

1{ y
f(t)

f∈ · }f(t)σ(df).

Furthermore, for l ≥ 1, s ∈ T l and z ∈ [0,+∞)l,

P[η(s) < z | η(t) = y] (4.3)

= exp
[
−
∫
C0

(
∨li=1

f(si)

zi
− f(t)

y

)+

σ(df)
] ∫

C0

1{∨li=1
f(si)

zi
<
f(t)
y }

f(t)σ(df).

Equation (4.3) extends Lemma 3.4 in Weintraub [13] where only the bivariate case
l = 1 is considered. Note the author considers min-stability rather than max-stability;
the correspondence is straightforward since, if η is simple max-stable, then η−1 is min-
stable with exponential margins.

4.3 Regular models

We have considered so far the case of a single conditioning point which allows for
major simplifications. In the general case, there are several conditioning points and the
hitting scenario is non trivial. This introduces more complexity since the conditional
distribution is expressed as a mixture over any possible hitting scenarios and involves
an abstract Radon-Nikodym derivative. The framework of regular models can be helpful
to get more tractable formulas.

The exponent measure µ is said to be regular (with respect to the Lebesgue measure)
if for any l ≥ 1 and s ∈ T l with pairwise distinct components, the measure µs(dz) is
absolutely continuous with respect to the Lebesgue measure dz on [0,+∞)l. We denote
by hs the corresponding Radon-Nikodym derivative, i.e., µs(dz) = hs(z)dz.
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Under this assumption, we can reformulate Theorems 3.1 and 3.2. For example,
Equation (3.2) implies that the distribution νt of η(t) is absolutely continuous with re-
spect to the Lebesgue measure with density

dνt
dy

(y) = exp[−µ̄t(y)]
∑
τ∈PK

`(τ)∏
j=1

∫
{zj<yτc

j
}
h(tτj ,tτcj

)(yτj , zj)dzj .

Equation (3.3) giving the conditional distribution of the hitting scenario becomes

πt(y, τ) =

∏`(τ)
j=1

∫
{zj<yτc

j
} h(tτj ,tτcj

)(yτj , zj)dzj∑
τ ′∈PK

∏`(τ ′)
j=1

∫
{zj<yτ′

j
c} h(tτ′

j
,tτ′

j
c )(yτ ′j , zj)dzj

.

The conditional distribution of the extremal functions Qt(y, τ, ·) in Equation (3.4) is
based on the kernel Pt(y, df). Using the existence of a Radon-Nikodym derivative for
the finite dimensional margins of µ, we obtain

Pt(y, f(s) ∈ dz) =
h(t,s)(y, z)

ht(y)
dz.

This approach is exploited in [8] for Brown-Resnick max-stable processes. Indeed, the
model turns out to be regular.

5 Proofs

5.1 Proof of Theorem 2.2 and Proposition 2.3

For the proof of Theorem 2.2, we need the following lemma giving a useful charac-
terization of the K-extremal random point measure. If M1,M2 ∈ Mp(C0) are such that
M2 −M1 ∈Mp(C0), we call M1 a sub-point measure of M2.

Lemma 5.1. The K-extremal point measure Φ+
K is the unique sub-point measure Φ̃ of

Φ such that

Φ̃ ∈ C+
K and Φ− Φ̃ ∈ C−K(max(Φ̃)).

Proof of Lemma 5.1: First the condition Φ− Φ̃ ∈ C−K(max(Φ̃)) implies

max(Φ− Φ̃) <K max(Φ̃) and max(Φ̃) =K max(Φ).

Let f ∈ [Φ − Φ̃]. The condition Φ − Φ̃ ∈ C−K(max(Φ̃)) implies f <K max(Φ̃). Since Φ̃

is a sub-point measure of Φ, max(Φ̃) ≤ max(Φ) so that f <K max(Φ) and f is K-sub-
extremal in Φ.
Conversely for f ∈ [Φ̃], the condition Φ̃ ∈ C+

K implies the existence of t0 ∈ K such that
f(t0) = max(Φ̃)(t0). Hence f(t0) = max(Φ)(t0) and f is K-extremal in Φ.

Proof of Theorem 2.2 : First note that Φ+
K(C0) = 0 if and only if Φ = 0. This occurs

with probability exp[−µ(C0)] and in this case Φ+
K = Φ−K = 0. The first claim follows.

Next, let k ≥ 1. According to Lemma 5.1, Φ+
K(C0) = k if and only if there exists a

k-tuplet (φ1, . . . , φk) ∈ [Φ]k such that

k∑
i=1

δφi ∈ C+
K and Φ−

k∑
i=1

δφi ∈ C−K
(
∨ki=1φi

)
.
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When this holds, the k-tuplet (φ1, . . . , φk) is unique up to a permutation of the coordi-
nates and we have

k∑
i=1

δφi = Φ+
K and Φ−

k∑
i=1

δφi = Φ−K .

Hence the sum∫
Ck0

1{∑k
i=1 δφi∈A∩C

+
K , Φ−

∑k
i=1 δφi∈C

−
K(∨ki=1φi)} Φ(dφ1) · · ·

(
Φ−

k−1∑
j=1

δφj
)
(dφk)

is equal to k!1{(Φ+
K ,Φ

−
K)∈A×B} if Φ+

K(C0) = k and 0 otherwise. Using this and Slyvniak’s
formula (see Appendix A.1), we get

k!P
[
(Φ+

K ,Φ
−
K) ∈ A×B, Φ+

K(C0) = k
]

= E
[ ∫

Ck0

1{∑k
i=1 δφi∈A∩C

+
K , Φ−

∑k
i=1 δφi∈B∩C

−
K(∨ki=1φi)}

Φ(dφ1) · · ·
(
Φ−

k−1∑
j=1

δφj
)
(dφk)

]
=

∫
Ck0

1{
∑k
i=1 δfi∈A∩C

+
K}
P
[
Φ ∈ B ∩ C−K

(
∨ki=1fi

)]
µ⊗k(df1, . . . , dfk).

This proves Theorem 2.2.

Proof of Proposition 2.3: In the case µ(C0) < +∞, Φ and a fortiori Φ+
K are a.s. finite.

Suppose now µ(C0) = +∞, so that Φ is a.s. infinite. If inft∈K η(t) = 0, then there is
t0 ∈ K such that η(t0) = 0 (recall η is continuous and K compact). This implies that
φ(t0) = 0 for all φ ∈ [Φ] and hence Φ+

K = Φ is infinite. If inft∈K η(t) = ε > 0, then the
support of Φ+

K is included in the set {f ∈ C0; f(K) ≥ ε}. From the definition of Mp(C0),
this set contains only a finite number of atoms of Φ so that Φ+

K must be finite.

5.2 Proof of Propositions 2.5 and 2.7

Proof of Proposition 2.5: According to equation (2.3), for all x > 0,

P[η(t) = x] = exp[−µ̄t(x+)]− exp[−µ̄t(x)],

and P[η(t) = 0] = exp[−µ̄t(0+)]. The equivalence between (ii) and (iii) follows.
The equivalence between (i) and (ii) is a consequence of Theorem 2.2 with K = {t},
k = 1 and A = B = Mp(C0): we get

P[Φ+
{t}(C0) = 1] =

∫
C0

1{δf∈C+
{t}}

P[Φ ∈ C−{t}(f)]µ(df)

=

∫
[0,+∞)

exp[−µ̄t(y)]µt(dy).

It remains to prove that this probability is equal to 1 if and only if (ii) is satisfied. To this
aim, we compute

P[Φ+
{t}(C0) = 1] =

∫
(0,+∞)2

e−x1{x≥µ̄t(y)} dxµt(dy) (5.1)

=

∫
(0,+∞)

e−xµt(Ax) dx,
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where Ax = {y > 0 : µ̄t(y) ≤ x}. Since µ̄t is càg-làd, non-increasing and tends to ∞ at
0, Ax = (inf Ax,∞) 6= ∅ for all x > 0. Furthermore using equation (5.1) and the fact
that µt(Ax) ≤ x, we get that P[Φ+

{t}(C0) = 1] = 1 if and only if µt(Ax) = x for all x > 0.
We see easily that this is equivalent to condition (ii) and this completes the equivalence
between (i) and (ii).

We now prove Equation (2.4). Assuming that conditions (i)-(iii) are met, it holds

P(φ+
t ∈ A) = P[Φ+

{t} ∈ Ã, Φ+
{t}(C0) = 1]

with Ã = {δf , f ∈ A}. Theorem 2.2 with K = {t}, k = 1 and B = Mp(C0) entails

P(φ+
t ∈ A) =

∫
C0

1{δf∈Ã∩C+
{t}}

P[Φ ∩ C−{t}(f)]µ(df)

=

∫
C0

1{f∈A} exp[−µ̄t(f(t))]µ(df).

This proves Equation (2.4).

Proof of Proposition 2.7: First note that the inequalities (2.6) characterize the hit-
ting scenario. Let τ = (τ1, . . . , τ`) ∈ PK and define the sets

C̃τ =
{

(f1, . . . , f`) ∈ C`0; ∀j ∈ [[1, `]], fj >τj
∨
j′ 6=j

fj′
}
.

and

Cτ =
{∑̀
j=1

δfj ∈Mp(C0); (f1, . . . , f`) ∈ C̃τ
}
.

Note that Cτ ⊂ C+
K and that Θ = τ if and only if Φ+

K ∈ Cτ .
Furthermore, Θ = τ and (ϕ+

1 , . . . , ϕ
+
` ) ∈ A if and only if Φ+

K ∈ Aτ with

Aτ =
{∑̀
j=1

δfj ∈Mp(C0); (f1, . . . , f`) ∈ Cτ ∩A
}
.

Hence the following events are equal

{Θ = τ, (ϕ+
1 , . . . , ϕ

+
` ) ∈ A, Φ−K ∈ B} = {Φ+

K ∈ Aτ , Φ−K ∈ B, Φ+
K(C0) = `}

and Theorem 2.2 implies

P[Θ = τ, (ϕ+
1 , . . . , ϕ

+
` ) ∈ A, Φ−K ∈ B]

=
1

`!

∫
C`0

1{
∑`
j=1 δfj∈Aτ}

P
[
Φ ∈ B ∩ C−K

(
∨`j=1fj

)]
µ⊗`(df1, . . . , df`). (5.2)

Finally,
∑`
j=1 δfj ∈ Aτ if and only if there exists a permutation σ of [[1, `]] such that

(fσ(1), . . . , fσ(`)) ∈ A∩ C̃τ . Such a permutation is unique and this proves the equivalence
of Equations (2.7) and (5.2).

5.3 Proofs of Theorems 3.1, 3.2 and 3.3

Proof of Theorems 3.1 and 3.2: Note that η(t) can be expressed in terms of the
hitting scenario and the extremal function as follows. For τ ∈ PK , define the mapping
Γτ : C`0 → [0,+∞)k by

Γτ (f1, . . . , f`) = (y1, . . . , yk) with yi = fj(ti) if ti ∈ τj .
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Definition (2.6) entails that for all t ∈ θj , η(t) = ϕ+
j (t). This can be rewritten as η(t) =

ΓΘ(φ+
1 , . . . , φ

+
` ). Using this, the probability

P (τ,A,B,C) = P[Θ = τ, (ϕ+
1
, . . . , ϕ+

`
) ∈ A, Φ−K ∈ B, η(t) ∈ C]

can be computed thanks to Proposition 2.7:

P (τ,A,B,C)

= P[Θ = τ, (ϕ+
1
, . . . , ϕ+

`
) ∈ A ∩ Γ−1

τ (C), Φ−K ∈ B, η(t) ∈ C]

=

∫
A∩Γ−1

τ (C)

1{∀j∈[[1,`]], fj>τj
∨
j′ 6=j fj′}P

[
Φ ∈ B ∩ C−K

(
∨`j=1fj

)]
µ⊗`(df1, . . . , df`).

Now for each j ∈ [[1, `]], we condition the measure µ(dfj) with respect to fj(tτj ): Equa-
tion (3.1) entails

P (τ,A,B,C) (5.3)

=

∫
C

∫
A

1{∀j∈[[1,`]], fj>τj
∨
j′ 6=j fj′}P

[
Φ ∈ B ∩ C−K

(
∨`j=1fj

)]
⊗`j=1

{
Ptτj

(yτj , dfj)µtτj
(dyτj )

}
=

∫
C

∫
A

1{∀j∈[[1,`]], fj(tτc
j

)<yτc
j
}P[Φ ∈ B ∩ C−t (y)]

⊗`j=1

{
Ptτj

(yτj , dfj)µtτj
(dyτj )

}
.

In the last equality, we use the fact that fj(tτj ) = yτj a.s. under Ptτj
(yτj , dfj), whence

{
∀j ∈ [[1, `]], fj >τj ∨j′ 6=jfj′

}
=

{
∀j ∈ [[1, `]], fj <τcj ∨j′ 6=jfj′

}
=

{
∀j ∈ [[1, `]], fj(tτcj ) < yτcj

}
and C−K(∨`j=1fj) = C−t (y).

We now prove Theorem 3.1. Setting A = C`0 and B = Mp(C0) in Equation (5.3), we
obtain

P[Θ = τ, η(t) ∈ C]

=

∫
C

∫
C`0

1{∀j∈[[1,`]], fj(tτc
j

)<yτc
j
}P[Φ ∈ C−t (y)] ⊗`j=1

{
Ptτj

(yτj , dfj)µtτj
(dyτj )

}
.

Using the fact that P[Φ ∈ C−t (y)] = exp[−µ̄t(y)] and performing integration with respect
to ⊗`j=1Ptτj

(yτj , dfj), we obtain Equation (3.2) and this proves Theorem 3.1.
We now consider Theorem 3.2. Combining Equations (3.2)-(3.5) together with Equa-

tion (5.3), we get

P[Θ = τ, (ϕ+
1
, . . . , ϕ+

`
) ∈ A, Φ−K ∈ B, η(t) ∈ C]

=

∫
C

∫
A

P[Φ ∈ B ∩ C−t (y)]

P[Φ ∈ C−t (y)]
Qt(y, τ, df1 · · · df`)ντt (dy)

=

∫
C

∫
A

Rt(y, τ, (fj), B)Qt(y, τ, df1 · · · df`)πt(y, τ)νt(dy). (5.4)

In particular, with A = C`0 and B = Mp(C0), we obtain the relation

P[Θ = τ, η(t) ∈ C] =

∫
C

πt(y, τ)νt(dy)
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characterizing the regular conditional distributionP[Θ = τ | η(t) = y] (see Appendix A.2).
This proves that Equation (3.3) provides the regular conditional distribution P[Θ = τ |
η(t) = y]. Similarly, Equation (5.4) entails that the regular conditional distributions
P[(ϕ+

j ) ∈ · | η(t) = y,Θ = τ ] and P[Φ−K ∈ · | η(t) = y,Θ = τ, (ϕ+
j ) = (fj)] are given

respectively by Qt(y, τ, ·) in Equation (3.4) and Rt(y, τ, (fj), ·) in Equation (3.5).

Proof of Theorem 3.3: Remark that

{η(s) < z} = {(Φ+
K ,Φ

−
K) ∈ C−s (z)× C−s (z)}

=
⋃

τ∈PK

{Θ = τ, ϕ+
1 (s) < z, . . . , ϕ+

` (s) < z,Φ−K ∈ C
−
s (z)}

where C−s (z) is defined in Theorem 3.2. Using this, Theorem 3.2 entails

P[η(s) < z | η(t) = y]

=
∑
τ∈PK

P[Θ = τ, ϕ+
1 (s) < z, . . . , ϕ+

` (s) < z,Φ−K ∈ C
−
s (z) | η(t) = y]

=
∑
τ∈PK

πt(y, τ)Qt(y, τ, {f(s) < z}`)Rt(y, C
−
s (z)).

The result follows since

Qt(y, τ, {f(s) < z}`) =
∏̀
j=1

Ptτj
(yτj , {f(tτcj ) < yτcj , f(s) < z})
Ptτj

(yτj , {f(tτcj ) < yτcj })

and

Rt(y, C
−
s (bz)) =

P[Φ ∈ C−s (z) ∩ C−t (y)]

P[Φ ∈ C−t (y)]

=
exp[−µ({f(s) 6< z or f(t) 6< y})]

exp[−µ({f(t) 6< y})]
= exp[−µ({f(s) 6< z, f(t) < y})].

5.4 Proof of Propositions 4.1 and 4.2

Proof of Proposition 4.1: This is a straightforward application of Theorem 3.2 and
3.3. Take into account that when K = {t}, PK is reduced to a unique partition of size
` = 1 so that Θ = {t} and ϕ+

1 = φ+
t .

Proof of Proposition 4.2: According to Proposition 4.1, P[φ+
t ∈ · | η(t) = y] is equal

toPt(y, ·). For any measurable A ⊂ C0 and B ⊂ (0,+∞), we compute∫
B

∫
C0

1{ y
f(t)

f∈A}f(t)σ(df)µt(dy)

=

∫ ∞
0

∫
C0

∫
C0

1{ rg(t)
f(t)

f∈A}1{rg(t)∈B}f(t)σ(df)r−2drσ(dg)

=

∫
C0

∫ ∞
0

1{rf∈A}1{rf(t)∈B} r
−2drσ(df)

=

∫
C0

1{f∈A}1{f(t)∈B} µ(df)
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The second equality follows from the change of variable r̃ = rg(t)/f(t) together with
the relation

∫
C0
g(t)σ(dg) = 1. This proves that

Pt(y,A) =

∫
C0

1{ y
f(t)

f∈A}f(t)σ(df).

According to Equation (4.1)

P[η(s) < z | η(t) = y] = Pt(y, {f(s) < z}) exp[−µ({f(s) 6< z, f(t) < y})].

We have

Pt(y, {f(s) < z}) =

∫
C0

1{ y
f(t)

f(s)<z}f(t)σ(df)

=

∫
C0

1{∨li=1
f(si)

zi
<
f(t)
y }

f(t)σ(df)

and

µ({f(s) 6< z, f(t) < y}) =

∫ ∞
0

∫
C0

1{rf(s)6<z, rf(t)<y}r
−2drσ(df)

=

∫ ∞
0

∫
C0

1{ min
1≤i≤l

zi
f(si)

≤r< y
f(t)
}r
−2drσ(df)

=

∫
C0

(
∨li=1

f(si)

zi
− f(t)

y

)+

σ(df).

This proves Equation (4.3).

A Auxiliary results

A.1 Slyvniak’s formula

Palm Theory deals with conditional distribution for point processes. We recall here
one of the most famous formula of Palm theory, known as Slyvniak’s Theorem. This will
be the main tool in our computations. For a general reference on Poisson point pro-
cesses, Palm theory and their applications, the reader is invited to refer to the mono-
graph [11] by Stoyan, Kendall and Mecke.

Let Mp(C0) be the set of locally-finite point measures N on C0 endowed with the
σ-algebra generated by the family of mappings

N 7→ N(A), A ⊂ C0 Borel set.

Theorem A.1 (Slyvniak’s Formula).
Let Φ be a Poisson point process on C0 with intensity measure µ. For any measurable
function F : Ck0 ×Mp(C0)→ [0,+∞),

E
[ ∫

Ck0

F
(
φ1, . . . , φk,Φ−

k∑
i=1

δφi

)
Φ(dφ1) (Φ− δφ1

)(dφ2) · · ·
(

Φ−
k−1∑
j=1

δφj

)
(dφk)

]
=

∫
Ck0

E[F (f1, . . . , fk,Φ)]µ⊗k(df1, . . . , dfk).

A.2 Regular conditional distribution

We recall here briefly the notion of regular conditional probability (see e.g. Propo-
sition A1.5.III in Daley and Vere-Jones [2]). Let (Y,G) be a complete separable metric
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space with its associated σ-algebra of Borel sets, (X ,F) an arbitrary measurable space,
and π a probability measure on the product space (X × Y,F ⊗ G). Let πX denote the
X -marginal of π, i.e. πX (A) = π(A × Y) for any A ∈ F . Then there exists a family of
kernels K(x,B) such that

- K(x, ·) is a probability measure on (Y,G) for any fixed x ∈ X ;

- K(·, B) is an F -measurable function on X for each fixed B ∈ G;

- π(A×B) =
∫
A
K(x,B)πX (dx) for any A ∈ F and B ∈ G.

These three properties define the notion of regular conditional probability. When π is
the joint distribution of the random variable (X,Y ), we may write K(x, ·) = P(Y ∈ ·|X =

x).
The existence of the regular conditional probability relies on the assumption that

Y is a complete and separable metric space. Furthermore, for any F ⊗ G-measurable
non-negative function f on X × Y , it follows that∫

X×Y
f(x, y)π(dx, dy) =

∫
X

∫
Y
f(x, y)K(x, dy)πX (dx).

The following Lemma states the existence of the kernel

{Ps(x, df); x ∈ [0,+∞)l \ {0}}

satisfying Equation (3.1). This is not straightforward since the measure µ is not a prob-
ability measure and may be infinite.

Lemma A.2. The regular version of the conditional measure µ(df) with respect to
f(s) ∈ [0,+∞)l \ {0} exists. It is denoted by {Ps(x, df); x ∈ [0,+∞)l \ {0}} and sat-
isfies Equation (3.1).

Proof : Let | · | denote a norm on [0,+∞)l. Define A = {f ∈ C0; f(s) 6= 0} and, for
i ≥ 0, Ai = {f ∈ C0; (i + 1)−1 ≤ |f(s)| < i−1} with the convention 0−1 = +∞. Clearly,
A is equal to the disjoint union of the Ai’s. We note µi(·) = µ(· ∩ Ai) the measure on
the complete and separable space C0 ∪ {0}. Equation (1.4) ensures that µi is a finite
measure (and hence a probability measure up to a normalization constant) and there
exists a regular conditional probability kernel P is(x, df) with respect to f(s) = x. We
obtain, for all F : [0,+∞)l × C0,∫

Ai

F (f(s), f)µ(df) =

∫
Ãi

∫
C0

F (x, f)P is(x, df)µs(dx),

where Ãi = {x ∈ [0,+∞)k; (i + 1)−1 ≤ |x| < i−1}. Let us define Ps(x, df) a probability
measure on C0 by

Ps(x, df) =
∑
i≥1

1{x∈Ãi}P
i
s(x, df).

If F vanishes on {0} × C0, we obtain∫
C0

F (f(s), f)µ(df) =
∑
i≥0

∫
Ai

F (f(s), f)µ(df)

=
∑
i≥0

∫
Ãi

∫
C0

F (x, f)P is(x, df)µs(dx)

=

∫
[0,+∞)k\{0}

∫
C0

F (x, f)Ps(x, df)µs(dx).

This proves Equation (3.1).
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A.3 Measurability properties

Lemma A.3. Φ+
K and Φ−K are measurable from (Ω,F ,P) to (Mp(C0),Mp).

Proof : From Definition 2.1, it is enough to prove that that the events {φi <K η} ∈ F
and {φi 6<K η} are F -measurable. Let K0 be a dense countable subset of K and note
that φ <K η if and only if there is some rational ε > 0 so that φ(t) < η(t) − ε for all
t ∈ K0. Hence, for all n ∈ N ∪ {+∞},

{φi <K η ; N = n} =
⋃
ε>0

⋂
t∈K0

{N = n ; φi(t) < η(t)− ε}

=
⋃
ε>0

⋂
t∈K0

⋃
j≤n

{N = n ; φi(t) < φj(t)− ε} (A.1)

and {φi <K η} =
⋃∞
n=0{φi <K η ; N = n} ∈ F . Note the union over ε is countable since

ε is taken rational.

Lemma A.4. The set C+
K and C−K(g) are measurable in (Mp(C0),Mp).

Proof : Let g be a continuous function defined at least on K and consider the Borel
set

A = {f ∈ C0; f 6<K g} ⊂ C0.

The set C−K(g) defined by Equation (2.2) is equal to

C−K(g) = {M ∈Mp(C0); M(A) = 0}

and isMp-measurable.
In order to prove the measurability of C+

K defined by Equation (2.1), we introduce a
measurable enumeration of the atoms of a point measure M (see Lemma 9.1.XIII in
Daley and Vere-Jones [3]). One can construct measurable applications

κ : Mp(C0)→ N ∪ {∞} and ψi : Mp(C0)→ C0, i ≥ 1,

such that

M =

κ(M)∑
i=1

δψi(M), M ∈Mp(C0).

A point measure M does not lie in C+
K if and only if it has a K-subsextremal atom.

Hence,

Mp(C0) \ C+
K =

+∞⋃
k=0

k⋃
i=1

{κ(M) = k; ψi(M) <K max(M)}.

Similar computations as in Equation (A.1) entail

{κ(M) = k; ψi(M) <K max(M)} =
⋃
ε>0

⋂
t∈K0

⋃
j≤k

{κ = k ; ψi(t) < ψj(t)− ε},

whence C+
K isMp-measurable.
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