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Abstract

The objective of this paper is the study of the equilibrium behavior of a population on
the hierarchical group 25 consisting of families of individuals undergoing critical branching
random walk and in addition these families also develop according to a critical branching
process. Strong transience of the random walk guarantees existence of an equilibrium
for this two-level branching system. In the limit N — oo (called the hierarchical mean
field limit), the equilibrium aggregated populations in a nested sequence of balls BéN) of
hierarchical radius ¢ converge to a backward Markov chain on R,. This limiting Markov
chain can be explicitly represented in terms of a cascade of subordinators which in turn
makes possible a description of the genealogy of the population.
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1 Introduction

Spatial branching processes involve two basic mechanisms, spatial migration and branching.
These two mechanisms act in opposite directions: the branching causes fluctuations of the local
population densities which are counteracted by the smoothing effect of the migration, and a
transient migration is needed to sustain an equilibrium of a geographically extended population
where each individual has an offspring of mean one. Multilevel branching systems (see, e.g.
[DH], [GHW], [Wu]) involve branching, that is death and replication, at a collective level. For
example, in two-level branching systems both individuals and families (that is, collections
of individuals that trace back to a common ancestor in the individual branching) reproduce
independently. In such systems, the fluctuations of the population densities are substantially
enhanced compared to systems with branching on the individual level only, and in two-level
branching systems a strongly transient migration is needed to sustain an equilibrium. It is
well known that Euclidean random walks are transient if and only if the dimension is bigger
than 2, and strongly transient if and only if the dimension is bigger than 4. In this sense, 2
is the critical dimension for one-level branching systems, and 4 is the critical dimension for
two-level branching systems.
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In the present paper, we will focus on spatial models with a hierarchical (or ultrametric)
geographical structure (NN islands (blocks of radius one) per archipelago (blocks of radius
2), N blocks of radius ¢ per block of radius ¢ + 1, ¢ > 1, cf. [SF]). The migration process
then is modelled by so called hierarchical random walks: at a certain rate depending on /,
an individual jumps to a randomly chosen island in distance £. This ultrametric structure
leads to a separation of time scales as N — oo, and makes the models particularly suitable
for a thorough analysis of equilibrium states and cluster formation. It turns out that in the
hierarchichal mean field limit (with order of N individuals per island and N — oo) there is
a separation of time scales in which the population densities in the blocks of different radii
evolve. For a block of radius ¢, the natural time scale turns out to be N* in the case of
one-level branching (see [DG2]) and N¥/? in the case of two-level branching. On this time
scale, the population density in a block of radius ¢ performs, as N — oo, a process whose
fluctuations are governed by the branching and whose drift is given by a flow of emigration
and immigration from the surrounding block. For a sequence of nested blocks, this leads to
a hierarchy of branching equilibria whose structure we describe in the next subsection. For
the case of two-level branching, the convergence of the population densities in nested blocks
towards this hierarchy as N — oo is stated in Theorem 2.4.1 and proved in section 5.

Generically, in our hierarchical model the migration process that sustains an equilibrium
is at the border to recurrence in the case of one-level branching, and at the border to weak
transience in the case of two-level branching, as N — oo. In this sense, the hierarchical
one-level branching equilibria studied in [DG2] correspond to a situation “near dimension
27, and the hierarchical two-level branching equilibria studied in our paper correspond to a
situation “near dimension 4”. Dimension 4 is of considerable interest because it serves as
a critical dimension not only for the two-level branching systems studied in this paper but
also for a number of phenomena in statistical physics including the large scale fluctuations of
ferromagnetic models at the critical temperature.

The structures of the family clusters in equilibrium can be best understood in terms of the
genealogy of the branching system, see [DP1, DP2, StW]). We will describe the genealogy of
the equilibrium population in the mean-field limit using a cascade of subordinators.

2 Overview

2.1 Hierarchies of one—and two—level Feller branching diffusions

Consider a large population whose size is fluctuating because of critical reproduction, and
which is subject to emigration of individuals and immigration from a surrounding (still larger)
reservoir of individuals. The immigration rate is given by the population density in the
environment, which fluctuates on a slower time scale. Now consider an infinite hierarchy of
such populations Py, £ = 1,2, .., where Pyy1 acts as an environment for Py, and think of an
equilibrium situation. We will study two situations where there is a sequence of time scales
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such that, in the limit of large local population sizes, on the time scale associated with P, the
population density (g1 of Pesq1 remains constant, and given (y41 = a, the dynamics of the
population density (; of Py is of the form

dCe(t) = dMy(t) — co(Ce(t) — a) dt. (2.1.1)

Here ¢ is a positive constant which describes the migration intensity into and out of Py, and
My is a martingale describing the fluctuations of (.

In subsection 2.2.3 we will describe a situation in which the martingale M, has quadratic
variation

d(M) (1) = Golt)dt, (2.1.2)

hence in this case (2.1.1) specializes to

dCe(t) = /Ce(t)dWy(t) — co(Co(t) — a) dt, (2.1.3)

where Wy, Wa, ... are independent Wiener processes. For each ¢ (2.1.3) is the stochastic dif-
ferential equation of a subcritical Feller branching diffusion with immigration ([AN, EK]).

Later on, we will consider a dynamics of the population density (, which is again of the
form (2.1.1) but where the fluctuations are governed by a “family structure” of the population.
More precisely, the martingale M, has quadratic variation

d(My)(t) = ( /(O )aﬂ@(t, x)dx> dt. (2.1.4)

where &;(t, ) measures the rescaled number of families of size z within Py. The link between
the population density (;(¢) and the density &,(t, x) of family sizes is given by

G(t) = /( | el (2.1.5)

The form (2.1.4) of the fluctuations of (; indicates that we are dealing with Feller branching
diffusions of families rather than individuals. This family branching shows up in the dynamics
which is described by an absolutely continuous measure-valued process with density &,(t, x)
satisfying the stochastic partial differential equation (SPDE)

fg (t, ) = \/E(t, ) Wy(t)(x) + G*&o(t, ) — (—%x@(t,x} +a(56(3:)> (2.1.6)

with ¢ = ¢, where G* is the adjoint of the generator G of a critical Feller branching diffusion
given by
82

1
“r=5"p2"

(2.1.7)
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W is space-time white noise and 4} is the derivative (in the sense of Schwartz distributions) of
the d-function at 0. We will show existence and (weak) uniqueness of the solution to (2.1.6)
in Proposition 3.2.1 and paragraph 3.2.3. An equivalent formulation of (2.1.6) is

(€0 1) = (VEAWOS) + 560"~ (€0,ar) ~ alim(Zo. f)) - 19

where 6, is the Dirac measure in ¢, and f : (0, 00) — R has bounded first and second derivatives
with f(z) < const z. Note that the first term in (2.1.6) (and (2.1.8)) comes from the familiy
branching, the second comes from the individual branching, and the “mean reversion” term
comes from the individual emigration and the immigration of infinitesimally small families.

In addition, (2.1.6) shows that the sizes of the single families develop independently accord-
ing to individual subcritical Feller branching diffusions. We will therefore call &y, £ = 1,2, .. .,
a hierarchy of two-level branching diffusions.

Two-level branching diffusions have been introduced by Dawson and Hochberg [DH] as
superprocesses over Feller branching diffusions, where all mass accumulating in 0 is removed.
Therefore, these processes take their values in the measures on (0,00). In fact, it turns out
that for t > 0 they have absolutely continuous states. In our context, in addition to the set-up
of [DH], there is a “continuous immigration of small families”. We will see how this fits into
the framework of immigration processes from the boundary studied in Li and Shiga [LS]. For
general background on superprocesses and related stochastic partial differential equations, see
[D] and [DP2].

The hierarchies of branching equilibria considered in our paper are motivated through a
spatial picture which we describe for the case of (2.1.2) (“one-level branching”) in subsection
2.2.3 and for the case of (2.1.4) (“two-level branching”) in subsection 2.4. The case of a
hierarchy of one-level branching systems was studied by Dawson and Greven [DG1, DG2] in
the context of super-random walks (or interacting Feller branching diffusions).

For any given 6§ > 0 (which in the geographical model will play the role of a “global
population density”) we will construct the hierarchy

NG NG AN Neot (2.1.9)

in terms of an entrance law for a backward Markov chain where the conditional law of {, given
Ce+1 = a is an equilibrium state of (2.1.1). More precisely, in subsection 4.1 we will show the
following result.

Proposition 2.1.1 Let (¢;)e>1 be a sequence of positive numbers, and let us distinguish two
cases:

a) Assume ), c[l < o0. Fora>0,f€N, let Hél)(a, .) be the equilibrium distribution of
(2.1.3).

b) Assume ), 622 <oo. Fora> 0,4 €N and c = cy, let {4 be an equilibrium state of

(2.1.6), and Héz) (a,.) be the distribution of f(o 00) x&p qo(z)de.

321



In both cases, for every 0 > 0 the backward Markov chain with transition probability
P(¢e € AlGe1 = a) = y(a, A),
where 11 is either TIY) or H(2), has a unique entrance law {Cg}g:m,zl satisfying
E¢; = (2.1.10)

and
lim ¢! =0 a.s. (2.1.11)

J—00

2.1.1 A cascade of subordinators

To work out parallels between the one- and two-level branching situations described in sub-
sections 2.2.3 and 2.4, and to discuss aspects relevant for the genealogy of the hierarchical
branching equilibria, we write IIy(a,.) for the equilibrium distribution of (2.1.1) in the two
cases (2.1.2) and (2.1.4) (which correspond to cases a) and b) in Proposition 2.1.1).

In both cases the parameter a enters as a factor into the immigration rate of a continuous
state branching process, hence (a1 + ag,.) = (a1, .) * [g(ag,.). Therefore the Ily(a,.) are
infinitely divisible distributions on (0,00) and there exist subordinators (that is, processes
with stationary independent non-negative increments) Sy(a) , a > 0, such that

L(Se(a)) =y(a,.). (2.1.12)

We will see in subsection 6.2 that in case a) the Sy are Gamma processes.

In both cases, the Lévy-Khinchin decomposition (see [K2|, Chapt. 15) S¢(a) = >, H;
describes (asymptotically as N — oo) the partitioning of the equilibrium population in BEN)
into subpopulations stemming from one and the same immigrant into B§N>, given that the
population density of the surrounding block Blgfl) is a. Recall from (2.1.1) and Proposition
2.1.1 that

/:cHg(a,d:U) = a. (2.1.13)

Therefore,
ES¢(a) = a. (2.1.14)

Let us denote (in either of the two cases) the Lévy measure of Sy by uy, and the second
moment of py by my. Assume that Si,S9,... are independent. An iteration of the Lévy-
Khinchin representation (which can be interpreted in terms of the genealogy of the branching
hierarchy, see subsection 4.3) will show that the Lévy measure of the iterated subordinator
Se(Se+1(. .. Sj—1)) has second moment my+...+m;_; (see subsection 4.5). We will show that
mg = 1/2¢; in the one-level case, and my; = 1/4c7 in the two-level case (see Remarks 6.2.3 and
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3.2.7). Hence the transience condition (2.2.4) in the one-level case, and the strong transience
condition (2.3.4) in the two-level case, is equivalent to the summability condition

> my < o0, (2.1.15)
/=1

Under this summability condition we will prove in subsection 4.2 that for each 8 > 0 the limit
in distribution
¢ = d-jlirgo Se(Ses1---Sj-1(0))), (2.1.16)

exists, has expectation 6 and defines an entrance law with respect to (IIs(a,.)). In particular
one has

¢ =" Su(Ses1---8j-a(¢))), G> ¢ (2.1.17)

For each j > ¢ this gives a decomposition of Cg, which asymptotically as N — oo, stands for

the partitioning of the equilibrium population CéN’g) in BéN) into subpopulations stemming
from one and the same immigrant into BJ(JE

2.1.2 Genealogy

In Section 4.3 we develop a genealogy of the jumps occurring in the cascade of subordinators.
The idea is that given a jump of Spy1(+) at time ¢; there will be a set of jumps of Sy(-) that occur
in the time interval (Sp41(ti—), Se+1(t;)) and these level £ jumps will be said to be descendants
of the level (/+1) jump. In [BLG], continuum flows of subordinators are constructed and the
corresponding genealogy of jumps is considered. In subsections 4.3, 4.4 and 4.6 we use this idea
to develop the full genealogical structure of the population associated with the entrance law.
This leads to a decomposition of the population into a countable collection of subpopulations
of individuals having a common ancestor. For the case of critical individual branching this
was done in [DG2], for the two-level branching case this is new. We will work out the parallels
between the two cases in a general framework, which also sheds some new light on the results
of [DG2].

Intuitively this genealogy describes the limiting genealogical structure of the spatial branch-
ing equilibria with hierarchical geographic structure described in the Introduction as the pa-
rameter N — oo and the analogue of the “clan decomposition” of the equilibrium of super-
Brownian motion (e.g. [DP1]).

2.2 Hierarchical geography, random walks and branching equilibria
2.2.1 A class of random walks

In order to give a precise formulation for the spatial system we now describe the set €2 of sites
on which the spatial population lives. For fixed N € N; let 25 be the countably many leaves of
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a tree all of whose inner nodes have degree N+ 1. In other words, each node in depth £+1, ¢ =
0,1,..., has N successors in depth ¢ and one predecessor in depth /+2. For two sites y, z € Qpy,
their hierarchical distance dy(y, z) is defined as the depth of their closest common ancestor
in the tree. Note that dy is an ultrametric, that is, dy(y, z) < max{dny(y,z),dn(z, 2)}. We

define the individual migration on 2y as follows. Let q§N), qéN), ... be positive numbers with

Yo qéN) < 00. At rate qéN) the individual makes a jump of distance ¢ (i.e. , it waits for

)

an exponentially distributed time with parameter ), qéN and then jumps a distance j with

probability qj(-N)/ o qéN)), choosing its arrival site uniformly among all sites at a distance ¢
from its previous site.

The set Qn can be identified with the set of sequences in {0,1,..., N — 1} almost all of
whose entries are equal to zero. With component-wise addition mod N, Qx is a countable
Abelian group (the so called hierarchical group of order N'). Note that dx(y, z) is translation
invariant; it will be written as |y — z|. The migration specified above is a (continuous time)
random walk on Qp called hierarchical random walk. Hierarchical random walks, in particular
their transience and recurrence properties, are studied in [DGW2], [DGW3].

2.2.2 A system of branching random walks

We now introduce a system of branching random walks on Q. This is given by a system
of particles undergoing symmetric random walks with migration rates qéN) together with
branching. Branching and migration are assumed independent. We specify the branching
mechanism as simply as possible: after a unit exponential time, an individual, independently
of all the others, either is removed or splits into two, each case with probability 1/2.
Remark 2.2.1 [LMW], [Gr] Assume that the migration rates qéN) are such that the individual
random walk is transient. Then, for each 0 > 0, there exists a unique branching equilibrium
with a mean number of 0 individuals per site. This equilibrium is of Poisson type, i.e. the
equilibrium population ® is the superposition ® =Y. ®; of a Poisson system ), 0a, of families
(each family consists of a collection of individuals which in a historical picture can be traced
back to a common ancestor).

2.2.3 The hierarchical mean-field limit of a branching equilibrium “near dimen-
sion two”

Now consider, for a large N, the total number Z éN) (t) of individuals in a closed ball BéN) of

radius ¢ at time t. Assume that the individual rate of immigration into and emigration from
BlgN) is given by
N _
g = ceN 7, (2.2.1)
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where the ¢, do not depend on N and satisfy

lim sup e (2.2.2)
l Cy

Note that BéN) has N’ elements, and look at the time evolution of the population density
(or block mean) AEN) (t) = ZéN) (t)N~* in BéN) at time scale tN*. This corresponds to the
classical Feller branching diffusion approximation ([EK], Thm. 1.3 on p. 388).
We will call a random walk on Qy with jump rates qéN) of the form (2.2.1) a (1, (¢¢), )
(

random walk. The following proposition results from combining (3.2.11) and (3.2.15) in
[DGW2].

Proposition 2.2.2 Consider a (1, (¢¢), N)-random walk on Qn with rates given by (2.2.1).
Assume that

lim sup — el o N (2.2.3)
¢ Ce

Then the random walk is transient if and only if

Zczl < 00. (2.2.4)
14

Now assume that (c;) satisfies (2.2.2). Then for each N > limsup, ‘Zl because of Propo-
sition 2.2.2 and Remark 2.2.1 there is an equilibrium for the system of (1, (¢/), N)-branching
random walks with mean 6 for each # > 0 . We now consider the corresponding equilibrium
population densities AgN) in BéN), ¢ =1,2,... (where here and below (BlgN)) denotes a se-
quence of nested balls of radii £ in Qx). In order to identify the limit as N — oo of this
sequence of population densities we must consider the dynamics of AEN) in its natural time
scale N*. Let us first discuss on a heuristic level why, in the limit N — oo, the drift term on

(N)

the r.h.s. of (2.1.1) arises on the time scale N for the population density in B, . Because of
the ultrametric structure of 2y, an individual in B éN) has to make a jump of size > ¢+ 1 in
(N)

order to leave B, ’. Because of (2.2.1) and (2.2.2), for NV large, jumps of size > £+ 1 happen
rarely compared to jumps of size £ + 1 (since g1 = o(q+1) as N — oo for k > 1). Hence
the individual emigration rate from BéN on time scale N is ¢; (asymptotically as N — o0).

(N) (N)
+1

that is relevant for large N. An individual in Be It \ B necessarily has to jump a distance

Concerning immigration into B, "/, again because of (2.2. 1) it is only the environment in B

¢+ 1 in order to make it into B, (N) , and on average every (N — 1)-st of these jumps will take

the individual into BEN) (note that B(N) is N times as large as B(SN)). Since the block mean

l+1
Agﬁ does not change on the time scale N as N — oo, the total immigration rate into BEN)

on this time scale is (asymptotically as N — oo) of the order

N N
Zngrl) qe+)/N (NZHAEH) /N—CAz(ngiNe (2.2.5)
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This suggests that the limiting dynamics of the population densities AEN), in their natural

time scales, as N — oo is given by (2.1.1) with a = Aéﬂ\g. The separation of time scales on
balls of different radii that underlies the previous discussion is a feature of the hierarchical
random walks, which is due to the ultrametric structure of Qx (see [DGW2]). This is also
explained in more detail in Remark 2.3.4 below.

Instead of branching particle systems, Dawson and Greven [DG2] consider super-random
walks (or so-called interacting Feller diffusions) on Qy. Note also that the definition of the
random walk in [DG2] is slightly different but asymptotically equivalent as N — oo to the one
used in this paper. In [DG2] the sites to which a jump is made are chosen with uniform distri-
bution on a ball rather than on a sphere. However, the “interior” of the ball is asymptotically
negligible as compared to the sphere as IV goes to infinity.

A particle system analogue of Theorem 4(b) of [DG2] is the following, which we state
without proof.

Proposition 2.2.3 Consider a sequence (c¢) satisfiying conditions (2.2.4) and (2.2.2) for
transience. For N large enough such that (2.2.3) is met, let the individual migration process
be a (1,(ce), N)-random walk. For 6 > 0 let ZéN’e) (t) denote the total number of individuals
in BéN) at time t and AEN’G) (t) :== ZéN’e) (t)YN—¢ be the population density at time t in BéN) in
the Poisson type branching equilibrium population on Qn with mean number 0 of individuals
per site (see Remark 2.2.1). Let {Cg} be the entrance law provided by Proposition 2.1.1, case

a). Then
(AN (0) ey = {Yeen as N — oo,

where => denotes weak convergence of finite dimensional distributions.

Let us now explain in which sense transient (1, (¢¢), V)-random walks can be interpreted
as random walks “near dimension 2”.

Definition 2.2.4 [DGW2] Let Z be an irreducible transient random walk on a countable
Abelian group I'. Its degree of transience is defined by

v :=sup{n > 0:EgL" < oo}, (2.2.6)
where L is the last exit time of Z from 0 € I

Expressed in more analytic terms, the degree of transience of Z is

[e.e]
v =sup{n >0: / t"p:(0,0) dt < oo},
1

where p; is the transition probability of Z [DGW2, SaW].

For simple symmetric random walk on the d-dimensional lattice Z, it is well-known that
dimension 2 is the borderline for transience. For d > 2, the degree of transience is d/2 — 1,
since the rate of decay of the transition probability is p;(0,0) ~ const.t~%2.
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Remark 2.2.5 [DGW2] a) Let 0 < ¢ < N. Then the (1,(ct), N)-random walk on Qp is
transient if and only if ¢ > 1. In this case its degree of transience is logc/(log N — logc).
Thus for fized c the transient (1,(c'), N)-random walks on Qx have degrees of transience
O(1/log N) and therefore asymptotically as N — oo, can be viewed as analogues of random
walks “near (Euclidean) dimension 2.

b) Assume that (cg) satisfies conditions (2.2.4) and (2.2.2), and put ¢ ;== limsup cp11/c¢ >
1. Then, for all N > c the (1, (cp), N)-random walk on Q is transient with degree of transience
in the interval [0,logc/(log N —log c)].

Since certain properties of systems of branching random walks such as persistence and
structure of occupation time fluctuations depend only on the degree of transience of the
random walks, branching populations whose migration process is a hierarchical random walk
can give insight into the behavior of a larger class of branching populations whose random
walks have the same degree of transience.

2.3 Two-level branching systems in a hierarchical geography
2.3.1 Strongly transient migration

Whereas the situation described in subsection 2.2.3 gives an analogue to a situation “near
dimension 2”7, our main focus later on will be on the analogue to a situation “near dimension
4”. In this context we will consider the (stronger) mass fluctuations induced by a critical
reproduction of whole families (of mutually related individuals), together with a (stronger)
smoothing caused by a strongly transient migration.

Definition 2.3.1 An irreducible random walk Z on a countable Abelian group I' is called
strongly transient if
EoL < o0 (2.3.1)

where L denotes the last exit time of Z from 0. A transient random walk with EqL = oo is
called weakly transient.

Note that strong transience is equivalent to

/ 120, 0)dt < oo,
1

and a necessary condition is that the degree of transience be equal to or greater than 1
[DGW2]. Moreover, as mentioned above simple symmetric d-dimensional random walk has
degree of transience d/2 — 1, and it is strongly transient iff d > 4.

In order to introduce a family of strongly transient random walks on € 5 we replace (2.2.1)

by

327



) = eeN~U2, (2.3.2)

where the ¢, do not depend on N and satisfy (2.2.2). We will call a random walk on Qy with
(N)

jump rates ¢,” * of the form (2.3.2) a (2, (¢;), N)-random walk.
Proposition 2.3.2 [DGW2] Consider a (2, (cg), N)-random walk on Qn with rates given by
(2.3.2). Assume that

limsup <L < N1/2, (2.3.3)
l Ce

Then the random walk is strongly transient if and only if

D e? < oo (2.3.4)
¢

Remark 2.3.3 [DGW2/ a) Let 0 < ¢ < N'/2. Then the (2,(c*), N)-random walk on Qy is
strongly transient if and only if ¢ > 1. In this case its degree of transience is

log N +2logc
log N —2logc’

Thus for fized c the strongly transient (2, (ct), N)-random walks have degree of transience
1+0(1/log N) and therefore asymptotically as N — oo can be viewed as analogues of random
walks “near (Euclidean) dimension 4.

b) Assume that (c;) satisfies conditions (2.3.4) and (2.2.2), and put ¢ := limsup cp41/ce >
1. Then, for all N > c? the (2, (c¢), N)-random walk on Qy is strongly transient with degree
of transience in the interval [1, (log N + 2logc)/(log N — 2logc)].

Remark 2.3.4 The natural time scale for the strongly transient (2, (c*), N)-random walk in

BéN) is NY/2. More precisely, as shown in [DGW2], asymptotically as N — oo for this random

walk on the time scale N2 only the migrations within the ball BéN) and the surrounding ball

Béfl) are relevant. Similarly, this occurs for the transient (1,(c%), N)-random walk in time
scale N (see [DGW2] for details). This effect is basic for the limiting hierarchy of branching

equilibria obtained in this paper.

2.3.2 Two-level branching equilibria

A main objective of this paper is to study two-level branching systems for a migration which is
on the border between strong and weak transience — recall that a strongly transient migration
is required for the existence of a branching equilibrium. Thus, for Euclidean random walks,
d = 4 is the critical dimension for a two-level branching system in the same way as dimension
d = 2 is the critical dimension for a one- level branching system.
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We are going to study two-level branching systems on 2. Consider a system of (2, (¢g), N)-
random walks on Qu such that (cg) satisfies the conditions (2.3.3) and (2.3.4) for strong
transience, and recall from Remark 2.2.5 that these random walks are close to the border
to weak transience at least for large N if (¢;) does not grow superexponentially. Introduce,
in addition to the individual branching and migration, a family branching: independently of
everything else, after each family ®; at rate one either vanishes or reproduces resulting in two
identical copies ®},®”, each case with probability 1/2. After a reproduction event ®; and @/
evolve as independent one level branching systems. This creates the basic two-level branching
system W) () which is started with the family system at time ¢ given by WV (¢5) = > i 0w,
described in Remark 2.2.1.

The following result is the analogue for two-level branching systems on €2y of the proposi-
ton in [GHW], p. 537. The latter is formulated for R¢ as space of positions; its proof carries
over to {2 in an obvious way.

Proposition 2.3.5 Assume that

(i) the random walk on Qpn is strongly transient and

(i) W) (tg) = 3", 6o, where {®;} corresponds to the family decomposition of an equilibrium
state for the one-level branching random walk with mean number 6 of individuals per site.
Then as tg — —oo, the two-level branching system \I/(N)(()) converges in distribution to a
translation invariant equilibrium \I’(N’e)(O) with a mean number 0 of individuals per site.

Remark 2.3.6 The notation W) (t) and WN-9)(t) will be used throughout to denote the two-
level branching system and the equilibrium process with mean 6, respectively.

Remark 2.3.7 Greven and Hochberg [GH] have obtained more general conditions under which
the convergence to equilibrium as in Proposition 2.3.5 occurs as well as conditions under which
it fails.

Now we consider a system of (2, (c¢), N) random walks with (¢;) satisfying conditions

Ce+1

2
(2.3.4) and (2.2.2) for strong transience. Then for each N > (lim supy 7) because of

Propositions 2.3.2 and 2.3.5 there is a two-level branching equilibrium %) (¢) with a mean
number of # individuals per site for each § > 0. A main objective of this paper is to study
the equilibrium structure that arises in the limit as N — oo of the corresponding sequence of

family structures in the blocks BlgN).

2.4 The hierarchical mean-field limit of a two-level branching equilibrium
“near dimension four”

2.4.1 Local normalized family-size process

Let, for fixed N, UV:0) ().t € R, be the equilibrium process of the two-level branching system

as provided by Proposition 2.3.5. Denote the number of families in ¥ (V-9 (¢) having j indi-
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viduals in BéN) by néN’e) (t,7) and write HéN’a) ) =2, néN’Q) (t,7)6; for the local family-size

process. For each fixed ¢, H éN’e) (0) is a random measure on N which describes the population
of equilibrium family sizes in the block BéN). We note that the process {H éN’e) (t) hter can
be viewed as a branching Markov chain on Z, with instantaneous killing at 0, the Markov
chain on Z4 being a standard subcritical binary branching process with immigration. Note
that . jnéN’e) (t,5) = ZéN’e) (t), the number of individuals in BéN) at time ¢ . Now consider
the equilibrium normalized family size process defined by

néN,é’) (t) = ZN—Z/%gNﬂ) (tNe/Q,j)cst—e/% (2.4.1)
J

In other words, for 0 < a < b < o0,
"0 (1) (a,b) = N2 (NY2t, N*?(a,b)). (2.4.2)

)

Note that the natural time scale in which to observe the subpopulation in BéN in this case is

N2 and not N* as was the case for one-level branching (see Remark 2.3.4).

For each ¢, N and t, néN’e) (t) is a random measure on (0,00). More precisely, we take

as state space the set M'(0,00) of Radon measures p on (0,00) that satisfy the condition
[ zp(dz) < co. (Note that we do not keep track of families of size 0.)

The corresponding normalized population mass in BéN) (the “radius ¢ block average”) is
given by

0 = [an™ ey = SNV G) = NN, (24)

and in terms of WN-9)(¢):

0 =57 [N wE N d, (244)
z€QN,|z|<L

2.4.2 Convergence theorem

We now state our main result that makes precise the sense in which the entrance law described
in section 2.1 approximates the two-level spatial equilibrium in Qy obtained in Proposition
2.3.5 when the parameter N — oo and the random walk satisfies (2.3.4).

Theorem 2.4.1 (Hierarchical mean-field limit) Consider a sequence (¢g) satisfying conditions
(2.2.2) and (2.3.4) for strong transience of the (2,(cp), N)-random walk. For fited N € N

obeying (2.3.8), and a sequence of nested blocks BéN) in Qn, let {gLEN’g) (0)}een be the radius
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¢ block averages (defined in (2.4.3)) of an equilibrium two-level branching system with an
expected number 0 of particles per site. Let {Cg}geN be the entrance law provided by Proposition
2.1.1, case b). Then

{ngN’G) (0)}een = {Cg}geN as N — oo.

The proof of this result is based on the spatial ergodic theorem for the equilibrium random
field on Qx obtained in section 5.1, a separation of time scales property derived in section 5.2
and a diffusion limit theorem for the family size processes {néN’e) (t)} as N — oo obtained in
section 5.3. Using these results the proof of Theorem 2.4.1 is given in section 5.4.

3 Super subcritical Feller branching

In this section we continue the investigation of diffusion limits of two-level branching popu-
lations without geographical structure, which were introduced in [DH]. In our case, these are
superprocesses whose basic process is a subcritical Feller branching diffusion killed at 0 (this
killing corresponds to the removal of void families). With a view towards the application to
the hierarchically structured geographical model, we will concentrate in subsection 3.1 on an
initial condition of many small families, which in the diffusion limit corresponds (on a heuris-
tic level) to an intial condition cody. In subsection 3.2.1 we investigate time stationary super
subcritical Feller branching processes which arise as diffusion limits of two-level branching
populations with a high-rate immigration of individuals. The simplest situation is to think
of each immigrant individual founding a new family; in the diffusion limit this leads to super
subcritical Feller branching diffusions with immigration of codg at a constant rate (abbreviated
by SSFBI). Again with a view towards the geographical model, we will consider the situation
where (only) every once in a while a newly immigrated individual belongs to an already ex-
isting family. If this happens relatively rarely, then the diffusion limit remains to be SSFBI,
see Proposition 3.2.1 and Corollary 3.2.2.

3.1 Diffusion limit of two-level branching particle systems

For ¢ > 0 and & > 0, consider the M'(0, c0)-valued family-size process {H¢(t,dx)} of a two-
level branching particle system (without geographical structure) with branching rates equal
to 1/e at both levels and subcritical at the individual level with subcriticality parameter ec.
(An example is the local family size process H éN’e) (defined in subsection 2.4.1) run at time
scale NY/2 and with immigration suppressed; here, ¢ = ¢y and e = N~/ 2)

Consider the rescaled family-size process

T (1 (21, 2)) := eHE(t, (212, 22/€)), t > 0. (3.1.1)
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Proposition 3.1.1 Let 7°(t) be as in (3.1.1). Assume that 7°(0) = e[£]0; =) where a >0
and x > 0 are fized. Then
(a) as e — 0,

{77 () =0 = {&(t) }e=0 (3.1.2)

in the sense of weak convergence of M¢([0,00))-valued cadlag processes, and &(t) is the M ([0, 00))-
valued superprocess starting in £(0) = ady, whose motion is the subcritical Feller branching
process with generator G, given by

1 92 9]
acting on functions
f € C3([0,00)) = {f € C*([0,00)) : lim f(x) =0, f(0) =0}.

(Here M{([0,00)) denotes the space of finite measures on [0,00).)
(b) The law of the process (t) is uniquely determined by the Laplace functional as follows:

Eos, <exp<— W, dy>>) = e~ [ Vif) €0.a)

= exp(—au(t,z)), (3.1.4)

f
R+

where Vi f(x) = u(t, x) is the unique solution of the non-linear p.d.e.

ou(t, x)
ot

1
=Geu(t,z) — §u(t, )2, (3.1.5)

u(0,z) = f(x).
Proof This is essentially Theorem 4.1 of [DH].

Remark As an application of (3.1.4) and (3.1.5) we obtain the compact support property of &
appearing in Proposition 3.1.1. Assume that £(0) has compact support and let R; denote the
range of £(s) up to time ¢. Then following the method of Iscoe as in Theorem 1.8 of [LS] or
Theorem A of [DLM] one can show that R; is bounded almost surely. This involves showing
(as in [DLM]) that for ¢ > 0 the equation

5%z~ Yo T3
ou
0 pr— — pr—

has for any « > 0 a blow-up at some finite x.
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3.1.1 Evolution equation and entrance law

In Proposition 3.2.1 we will prove an extension of Proposition 3.1.1 which includes immigra-
tion. In this subsection we obtain some properties of the solution of the evolution equation
that will be used there.

Let

C1(0,00) :={f € C(0,00), lergO f(x) =0, |f(x)] < const - x} (3.1.6)

and (7;) be the semigroup of the Feller branching diffusion with subcriticality parameter c,
absorbed at zero.
Let Vi f be the solution of

0 ok 0
VS = S Vf s Vif — (G VoS = . (317

Lemma 3.1.2 Let f € C1(0,00), f > 0. Then fort >0, Vif(x) is differentiable at zero and

/f mtdy——//Vf Y) ks (dy) ds (3.1.8)

where k¢ is the (T;)-entrance law given by (6.2.16) in the Appendiz.

Proof. First note if f € C (0, 00) then V; f(x) < T f(x) so that V; maps C; (0, o0) into itself.
Using the evolution form of (3.1.7),

lim YL E) _ i, /() 1 /t i Te=s(Vaf)2(E)
0

€l0 € €l0 5 2 €l0 €

(3.1.9)

The result then follows from (6.2.17). =

Proposition 3.1.3 Let £°(t),t > 0 denote the super subcritical Feller branching diffusion
(without immigration) process starting in €10, at time 0. Then as ¢ — 0, &5 converges in
the sense of weak convergence of M'(0,00)-valued continuous processes on the time interval
[to, 00) for all tg > 0 to a measure-valued diffusion £° where, for all t > 0, £°(t) is an infinitely
divisible random measure with Laplace functional given by

Eexp (—(€°(t), ) = exp (=(Vif)'(0)) - (3.1.10)
Proof. Because V;f(0) = 0 we have
Boxp (~(€(0), /) = lmBexp (~(€(0),1) (3.1.11)

= lgﬁ)lEafl(ssexp(—@(t),f))

_ Efgexp(*e_l(‘/%f)(ﬁ))

= limexp (=7 (i)() = (Vif)(0))
= exp (—(Vif)'(0)) .
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Remark 3.1.4 Since £°(t) is infinitely divisible, its Laplace transform must be of the form

Eexp (—(€°(t), f)) = exp <— /(1 — e‘<m’f>)Kt(dm)> . feCi((0,00)). (3.1.12)

for some uniquely determined measure Ky on M (0, 00), the space of Radon measures on (0, 00).
The measure Ky is the canonical measure of £°(t).

We can now put these results into the framework of [LS].
A crucial property of the entrance law (k¢) given by (6.2.15), which follows immediately
by partial integration from the density (6.2.16), is given by the following lemma.

Lemma 3.1.5 For all bounded continuously differentiable functions g on [0, c0) with g(0) = 0,
o

%i_r)r[l) g(z)k¢(z)dz = ¢'(0). (3.1.13)
0

We fix a strictly positive function p € D(G.) with

1
p(x) = for z € (0, 5], p(x) =1 for x > 1. (3.1.14)

Note that such a p meets condition [A] in [LS]. We take as state space M, := {u € M(0,00) :

[ pl@)ulde) < oc}.
Following [LS] we put

C,(0,00) :={f € C(0,00) : | f| < constp, xh_{& f(z) =0}, (3.1.15)
D,(G.) :=={f € D(G,) : f, Gef € C,(0,00)} (3.1.16)

and ~
Kot (g) = lg% ; g(z)ke(z)dz, g€ D,(G,). (3.1.17)

Combining (3.1.10), (3.1.12), (3.1.13) and (3.1.17) we obtain
/(1 — MmN K (dm) = (Vi) (0) = ke (Vif),  f € C1((0, 00)), (3.1.18)

where V; f is the solution of (3.1.7).
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3.2 Super subcritical Feller branching diffusion with individual immigra-
tion

3.2.1 Diffusion limit with immigration

We now extend Proposition 3.1.1 to include immigration, taking a fixed to as origin of time.
Since in our application the population from which the immigrants come is structured into
families that undergo family branching we incorporate multitype immigration and label the
set of possible families of immigrants by I := [0, 1].

Let M'(Ix(0,00)) denote the set of Radon measures p on I x (0, 00) satisfying f[X(O,oo) zp(dy,dr) <
oo. We denote the single atom measure corresponding to one individual of type y; € I by
Oy 1-
Consider the M!(I x (0, 00))-valued family-size process {H$(t, dy, dz)}+,<; with branching
rates equal to 1/e at both levels, critical at the family level and subcritical at the individual
level with subcriticality parameter ec (i.e. a mean offspring number of 1 — ec per branching
event), and with immigration of individuals of type y;, € I, given by dyz 1, k € N, at rate

€
k°

cas /e? with >, a5 = a and lim._gsup,a; = 0. (The motivation for this comes from our
geographical model, we will see in Section 5 that this setting corresponds to the situation
where the surrounding population, which serves as the source of immigration, is thought to
have a frozen family structure.) Consider the rescaled process {n7(t)}<¢ defined by

1 22

it {ye} x (21,22)) = eH7 (t {yp} x (5 ) (3.2.1)

started at time ty with the measure

07 (to) = > Hi(Yks 52)0yz e
k,j

a° = E agOye e

Proposition 3.2.1 Assume that as e — 0, n5(to) = po € M(I x (0,00)) and a°(dy, dz) —
a(dy)dp(dzx) in the sense of weak convergence of finite measures on I x [0,00), where « is a
nonatomic measure whose total mass a = a(I) plays the role of the overall immigration rate.
Then as € — 0,

and let

07t ) o<t = {€1(8) o<t

in the sense of weak convergence of M*(I x (0, 00))-valued cadlag processes on the time interval
[to, 00), where {£1(t)} is the measure-valued diffusion with generator

GF (1) = f'({1 ) (1, Ged) + 5" ({1, 6)) s, %) (3.2.2)
(s 9))e [ G2 (y, @) |o—ocr(dy),
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G. is the operator given by (3.1.8) and D(®) denotes the class of functions of the form

g;f(;()(u)) = f({u,¢)) where f € C}R) and ¢ is a continuous function on I x (0,00) with
Y,T
Ox?

bounded and continuous on I x [0,00) and |sup, ¢(y,z)| < const - (z A 1).

Proof. 77 is given by a pregenerator &° acting on the class of bounded continuous functions
F on M*(I x (0,00)) given by

G F(p) =) o Flutedye) - Fu)] (3.2.3)

) 00 Ji(Yk, J€
+§(1 —ec) Z Z[F(“ — 0y, je T €0y, (j+1)e) — F(M)]%
k

1 00 ]M Yy 7j€
e S et By - Fo )
k

Here the first term comes from the immigration, the second and third from the critical branch-
ing at the family level and the fourth and fifth from the subcritical branching at the individual
level with subcriticality parameter ¢ > 0.

For F' € D(®), &°F takes the form

51 (1) (3.2.4)
= 30 SR 0) + 2000, 9) — £ ({ps )]

k

)+ eolyr,32)) — F({p, )T

N =
is

— ey, ) — £ (o)) )

c2

!
?

'M8

Il
i

DO | =

J
00

+ 1 —e0) Y D If( — e9(yr, je) + by, (j + 1)) — f({1, )]

k j=1

]M(y/m ]5)
'752
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o0

+ %(1 +ec) Z Lf (i, &) — ed(yr, je) +ed(yr, (7 — 1)e))) — f({i, #))]
ko j=
1Yk, je)
g2 '

—

Tightness of the family {n7}o<c<1 is proved by a standard argument as in [Wu] or [DZ].
Using a Taylor expansion for the functions f and ¢ it can be verified that as ¢ — 0, for
Fry € D(8), & Ffy(p) — GFfy. For example, if 37, - pu(yf, je)dys jo =e—0 p(dy,dz),
[ [xp(dy,dz) < oo and |¢(y,x)| < const - (z A 1), then applying Taylor’s formula with
remainder to the second and third terms leads to

%f” %j:(b(ykajg):u’(ykajg) %J:¢2(yk7j5)ﬂ(yk715)

3
—i—%”f’””oo - const <sup M) Z((j€)3 A 1)y, je)

T -
k,j

)

— o ) o ).

By Lemma 3.2.4 below, we obtain bounds on the third moments uniform in €. Using this and
the tightness it follows that any limit point of the laws of the family {77} satisfies the martin-
gale problem associated to the generator &. Finally a standard argument (e.g. [DP2], proof
of Theorem 1.1) shows that any solution of this martingale problem has Laplace functional
given by

By exp (~ [ f(u)éi(t,dy.dz) (3.25)

:exp(—/\/tf(y,x)uo(dy,da:) —C/Ot/[%%_sf(y,:r)‘x_oa(dy) ds),

where V;f is given by the unique solution of the nonlinear p.d.e.

0 1 02 0 1 5
avtf— §$@V¥f—0$£‘4€f— §(V7tf) ) (3.2.6)
Vof = f € Cf (I x (0,00)).

Therefore there is a unique limit point and the proof is complete. m
For fixed ¢ > 0, a > 0 and arbitrary atomless measure o on I = [0, 1] with total mass a,
let &1(t, dy, dz) be as in Proposition 3.2.1. Consider the marginal process

E(t,dr) := /I&(t,dy,da:). (3.2.7)
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We call £(t) a super subcritical Feller branching diffusion with individual immigration (SSFBI)
with initial state pu(dx) = [; po(dy, dz) (and parameters a, ¢). The expression for the Laplace
functional (3.2.5) (with f only a function of x) shows that this coincides with the so-called
immigration process with immigration rate ac corresponding to the entrance law Ky (given
by (6.2.12) in the Appendix) and starting from zero measure at time 0. The existence of a
superprocess with immigration corresponding to an entrance law was first established by [LS]
(Thm. 1.1). The resulting Laplace transform of £(¢) with zero initial measure is given by

Bexp (~(6(0.1) = oxp (—ac [ mor(Vif)ds) . JECO00. (29
see (3.1.18).

Corollary 3.2.2 (a) The random measure

B(t,dy) == /(0 )x&(t,dy,dx):z:bk(t)éyk

k

is a purely atomic finite random measure on I in which the atoms by (t)d,, correspond to the
aggregated mass at time t coming from immigrants of family type yi € 1.

(b) For the corresponding family of stationary processes {77 (t) }+tcr, the random measures 77 (0)
converge to the equilibrium for the process with generator & given by (3.2.2). The equilibrium
random measure, £ has Laplace functional

Eexp (—(£%, /}) = exp (—ac I /io+(st)ds>  Fein.00). (3.2.9)

Proof. (a) The random measure (3(t,dy) on I has independent increments and no fixed atoms
and is therefore purely atomic (see [K], Chapt. 7).

(b) Given ty < 0, n7(0) can be decomposed into two parts - one coming from the initial value at
to and one from the immigration in the interval (¢o,0). From Proposition 3.2.1 it follows that
the immigration parts converge (in the sense of weak convergence of probability measures on
the space of cadlag functions D([to, 0], M (I x (0,00))) to the diffusion limit with immigration,
that is the process with generator &. Next note that for each € > 0 the contribution to the
aggregated measure at time 0 from the state at time tg is stochastically decreasing to zero
due to the subcriticality and the contribution from immigration on (¢o,0) is stochastically
increasing as tg | —oo. Moreover, using the moment bounds from Lemma 3.2.4, it follows
that the family of random measures 75(0) is tight. Therefore we have convergence to £7(0),
the equilibrium state for the process with generator &. The representation for the Laplace
functional of £* follows by letting ¢ — oo in (3.2.8). m

338



Remark 3.2.3 1. Corollary 3.2.2 (a) implies that for all § > 0, asymptotically as e — 0 only
a finite number of immigrant families contribute all but § of the mass. Fach atom corresponds
to an excursion from zero for the SSFBI process and consists of descendants of only one
immagrant family. In fact, we will see that asymptotically at the particle level each immigrant
family corresponds to the descendants of one immigrating particle.

2. Note that the assumption n5(to) = u € M*(I x (0,00)) in Proposition 3.2.1 puts
constraints not only on the aggregated mass but also on the family structure of the population.
To understand what happens if this condition is not satisfied consider n5(ty) = Zaiéggi with
Yo azxy = 0 butinfy a7 — oo ase — 0. In this case at times t > to, n7(t) — 0 due to ultimate
extinction of the critical family level branching. This observation is used below to prove by

contradiction that the equilibrium populations in BéN) are asymptotically composed of families

of size O(N*/?).

3. Similarly, if the immigration mechanism is such that it feeds a few large families rather
than giving small new families a chance, then in the time stationary process the family branch-
ing makes everything extinct as € — 0.

3.2.2 Moments

The following lemma was used in the proof of Corollary 3.2.2 and will also be needed below.
For the ease of notation we put ty = 0, otherwise we would have to replace t by t — £.

Lemma 3.2.4 Fort >0, let n°(t,dx) := [;n(t,dy,dx), where nf is as in (3.2.1). Let
mya(t) = E [0 (1), a)F] Gk e,

M (t) = E((rf (t), 2) (1 (t), %)),
and o:(1) denote a term that is uniformly bounded in € and converges to 0 as e — 0, and 6(t)
denote a term that is uniformly bounded in t > 0, and 6(t) converges exponentially fast to 0
as t — oo, and |6(t)| < const -t for smallt > 0. Then
(¢)

mi1(t) =a(l — e ) + e_Ctml,l(O),

0
maq(t) = %[1 — 27 4 72 4 mg 1 (0)e 2 + Llcl< )(e_Ct )
+€?a(1 - 672@5)7

m371(t) = + 05(1) =+ 5(t),

a
2c2
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ma(t) = 2+ o:(1) +o(t),

4 3
(b)

my2(t) = m1,2(0)6_2°t

+4%2 {1—4e= + 2cte™ + Se_w}

+a? {1 — 2 + e_QCt}

0
+m1712( ) {e—ct — cte— + 2acle—Ct _ g—2ct _ 2a026—2ct}
C
0
+m2761( ) t —20t {a 20t }
+4£(3a — 2™ + 2ate > +de” (—a+ my1(0)) + ae” > — dmy 1 (0)e ),
Cc
3a ~
ma(t) = Tock +o-(1) +o(t),
M . a (]/2
(1) 4—C3—|—2—+05(1)—|—0(t),
3a 2
m1,3(t) = ﬁ‘f‘ +12—4+05(1)—|—0(t).

Proof. The proof is obtained by applying the martingale problem with the generator given
by (3.2.3) and (3.2.4) to functions of the form F(u) = f({u, ®)) or F(u) = f({i, d1), (11, P2))
to derive the following moment equations:

dle (t)

i =ca —cmy (1),

5

dt

dm3,1 (t)
dt

dm4 1 (t)

5

dt

d t
Ll() =my1(t) — 2eme 1 (t) + cae,

= cag® + 3ma1(t) — 3ems 1 (t) 4 o01(e),
= cac® + 6ms 1(t) — dema 1 (t) 4 o01(e),

=ma1(t) — 2cmy2(t) + (2ca +e)my 1 (t) + £2ca,

) = Cam271(t) + ms 1( )+m1 2( )* BCM(t) +01(8),
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———% =my,1(t) — demaa(t) + 01(e),

dm 3(t)
dt
Note that the coefficients of the 01 () terms only contain moments lower in the hierarchy and

hence are asymptotically negligible. The results were obtained by solving this linear system
using MAPLE. m

= 3camy 2(t) + 3M(t) — 3cmq 3(t) + o1(e).

Remark 3.2.5 In the case in which we replace the constant immigration rate a by a random
function of time a(-) the expression for mj 2(t) becomes

mLQ(t) = m172(0)6726t (3.2.10)

m1.1(0
+ 11( ){efct Cefct_’_262aefct_672ct_2a026720t}

_/ ki(t, s) s)ds—i—/ot /082 ka(t, s2, s1)a(s1)a(s2)ds1dss
—1—05(1)~/0 ks(t, s)a(s)ds,

where k;i(t,-), i =1,2,3 are bounded non-negative kernels satisfying
t t 2
sup/ ki(t,s)ds < o0, i = 1,3, sup/ / ko(t, s2,51)ds1dss < 00 (3.2.11)
t Jo t Jo Jo

and o(1) — 0 as € — 0.

3.2.3 SPDE representation

Let £ be an SSFBI process starting from zero measure at time 0 as in subsection 3.2.1; recall
that the Laplace transform of £(t) is given by (3.2.8). By an argument similar to that of
[LS] (Thm. 1.2) it follows that there is a unique orthogonal martingale measure M (ds dzx) on
[0,00) x (0,00) having quadratic variation measure (M)(dsdzx) = ds&(s,dx) such that

(€0, 1) — (€0, 1) (32.12)
/ [(&(s),Gef) +ackor (f ds+/ /0 M(dsdz), f€ D,(Ge).

Proceeding as in the proof of Theorem 1.7 of [LS] and tracing the arguments of [KS] one infers
that £(¢) has absolutely continuous states, that is, £(¢, dx) = £(t, x)dx, and that one can define
a time-space white noise Wy(x) on an extension of the original probability space such that

M (ds dz) = \/€(s, x) W,(z)ds dz. (3.2.13)
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Moreover, £(t, z) is almost surely jointly continuous in (¢, z) € [0, 00) x (0, 00) and is a solution
of the SPDE (3.2.18) below. Note however that in contrast to [LS], £(¢,x) does not have a
finite limit as « | 0. Indeed, putting

Zi(z) = /0 /O Pr—s(y> )M (ds, dy), (3.2.14)

where p is the transition density of the ¢-FBD process (see section 6.2 in the Appendix), we
obtain as in [LS] ((4.10), (4.11)):

t
E(t,x) = Zy(z) + / acks(x)ds, x> 0. (3.2.15)
0
From (6.2.16) we obtain
! 2 -2
/0 acks(z)ds = % exp <1 — jit) . (3.2.16)

Thus, IE(fg1 £(t,x)dx) = C(t,e)|loge| where C(t, ) is uniformly bounded away from 0, and

Var < /6 1 g(t,x)dx>
_E [/Ot /Ooo f(s,y)M(ds,dy)r
-z t |7 stsareana

! -2
f(s,y):/ pi—s(y, v)dr < %/\1, and E{(s,y) < %exp<l_:is),

where

where we have used a stochastic Fubini theorem (cf. [IW] Chapt. 3, Lemma 4.1).
Therefore

1
Var (/ &(t, x)dw) < Ci(t) + Ca(t)|log e
)
for some positive constants C1(t), C2(t). We then obtain for any 6 > 0

"

1 oge
/ ¢(t, z)dx — C(t)] logs|‘ > 6C(t)|loge> < Cl((fs)czijétg)f)f | (3.2.17)
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and therefore fal &(t,x)dz converges in probability to oo as € — 0. Since f; &(t,x)dx is
monotone in ¢ this convergence must be a.s. , and thus £(¢, ) is a.s. unbounded as x — 0.

Finally, recalling (3.1.13) and (3.2.13), we see that (3.2.12) is the integral form of the
SPDE

%ﬁ(t,x) = VE(t, ) Wi(z) + GEE(t, ) — cady(x). (3.2.18)

Let us comment on the meaning of the three terms on the right hand side of (3.2.18) viewed
as the limiting family size process as N — oo in a ball BéN). The first one comes from
the family branching, the second one incorporates the individual branching and individual

emigration at rate ¢ = ¢4 from BéN) (recall that G. is the generator of a c-subcritical Feller

branching diffusion), and the third term describes immigration of small families into BEN)
from the surrounding medium at a large rate. In fact, ¢, can be viewed as the limit as ¢ — 0
of a large number 1/¢ of small families of size ¢; note that (1/¢)d. converges to —d, in the
sense of Schwartz distributions on the smooth functions vanishing at 0.

Since any solution of (3.2.18) satisfies the martingale problem with generator (3.2.2), weak
uniqueness follows from Proposition 3.2.1; however, as in the case of [KS] it is an open question
whether strong uniqueness holds.

The total (or aggregated) population size

¢(t) :/ x(t,x)dx (3.2.19)
(0,00)
solves the equation
d¢(t) = \// x2£(t, x)dx dWy — ¢(¢(t) — a) dt, (3.2.20)
(0,00)

which is a one-dimensional projection of equation (3.2.18). Note that the process ¢ is not
Markov.

3.2.4 Equilibrium canonical moments

As t — oo, the SSFBI process £(t) with parameters ¢ and a converges in distribution to the
infinitely divisible equilibrium random measure £%, cf. Corollary 3.2.2. Writing

o= /( - w€%(dz) (3.2.21)
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for the “aggregation” of %, and v, for the canonical measure of (?, we obtain from (3.2.8)
and (3.1.18):

V(b ba]) = c/ (b, b)) Ko (dm)dt, 0 < by < bo, (3.2.22)
0
According to Lemma 3.2.4, ¢ has first and second moments
1
E[¢] =a, E[((Y)?]=a <a + 4c2> : (3.2.23)

Definition 3.2.6 Let us write U, for the size-biasing of v. (cf. subsection 6.1).

Because of the well-known relations (cf. Remark 4.5.2)

4 = xv.(dx), 2] = a a zU.(dx
E[?] = /(O,OO) (dz), E[(c)?) E[C]<E[C]+ /(Om) (d >)

we obtain immediately from (3.2.23):
Remark 3.2.7 a) f(o o) TVe(dz) =1
b) f(o,oo) 2 (dz) = 7.

Remark 3.2.8 We also note that infinitely many immigrant families contribute to (*. This
follows from

vc(0,00) = 00. (3.2.24)
To see this note that from (3.2.22) and (3.1.12),

vc(0,00) = c/ (—log P(£2 = 0))dt.
0
For § >0, x >0 let fs(x) = £ AN1. Recalling (3.1.7) and (3.1.10) note that

P(&9 = 0) = lim lim V1)<,

0—o00 e—0
Then by a simple modification of [DH](6.10), for any 6 >0 and 6 > 1

lim Vi(015)(c) > e ' lim Tifsle) > et /00 ki(x)dz.
& g 5

e—0 e—0

Therefore by (6.2.16)

o0

vc(0,00) > clim et(/ ki(x)dx)dt = oo.
510 Jo s
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4 The genealogy of jumps in a cascade of subordinators

In this section we will carry out the program outlined in Subsection 2.1.1 to obtain a rep-
resentation for the sequence {Cg} in terms of a cascade of subordinators and then use this
representation to obtain a genealogical description of the population.

4.1 Propagation of equilibria

In the preceding section we encountered the equilibrium distribution for an R-valued process
¢(t), whose dynamics is given by (3.2.20). A simpler situation is the one corresponding to
one-level branching where we have the equilibrium, (% of

dC(t) = /CRYAW (1) — c(C(t) — a)dt, (4.1.1)

recall subsection 2.1. In this section we will derive structural results which are common to
both situations. We therefore denote the equilibrium states of (4.1.1) and (3.2.20) by the same
symbol (%.

In both situations the dynamics has two parameters a and ¢, and the equilibrium dis-
tribution is infinitely divisible with expectation a. Therefore as in (2.1.12) this equilibrium
distribution has a representation as

L(¢) = L(5(a)), (4.1.2)

where S(7),7 > 0, is a subordinator with ES(7) =7, 7 > 0.

Let us denote the Lévy measure of S by p, and note that p has expectation 1. Note that
p = v, (defined in subsection 3.2.4) if ¢ follows the dynamics (3.2.20), and p = v, (given by
(6.2.14)) if ¢ follows the dynamics (4.1.1).

S(a) has a Lévy-Khinchin representation as a Poissonian superposition

S(a) =" > i (4.1.3)

:Ti<a

where ) ; 6(+, 4,y is a Poisson population on R x (0, 00) with intensity measure dr u(dy). Since
by (6.2.14), resp. (3.2.24),
1(0,00) = oo (4.1.4)

in the two cases, P(S(a) = 0) = 0 if @ > 0 and S(-) has infinitely many jumps in any open
interval.

Since ¢ is a Poisson superposition of immigrant clusters (recall (3.2.22) and (6.2.13)), the
representation (4.1.3) has a genealogical interpretation: the summands y; measure the size of
those parts of (¢ which trace back to one and the same immigrant.

Our aim in this section is to study the hierarchy (2.1.1) into which (4.1.1) and (3.2.20)
are embedded. In both situations, the parameters of the hierarchy are a sequence (c¢)e=1,2,...
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of positive numbers. Recall that, for different levels ¢ in the hierarchy, the dynamics of (,(t)
run at separated time scales, and the equilibrium state (y11 at level £ + 1 acts as (random)
parameter a for the dynamics at level . Instead of one Lévy measure pu, we now have a
sequence of Lévy measures (i) ( which is either (v,) or (v,)).

In this way we obtain a Markovian dynamics which transports the equilibria down the
levels:

given (p11 = a, (y is infinitely divisible with canonical measure ap. (4.1.5)

Since p has expectation 1, ({;) constitutes a backward martingale. We now turn to the
following problems:

a) Find a condition on (ug) which guarantees the existence of an entrance law, denoted by
Cg, for (¢y) starting in 6 > 0 “at level c0” and having constant expectation 6.

b) Describe the “branching genealogy” underlying such an entrance law.

We will answer these questions in the next subsections. Later on, we will give a relation
with the asymptotics of the genealogy of the equilibrium branching populations on Qy as
N — oo.

4.2 An entrance law from infinity

Let Sk, k = 1,2,... be independent subordinators with Lévy measures pi. We denote the
second moment of u by myg. For j > £ define the random variables

S3(a) = Se(Seqa (- (Sj-1(a)))), (4.2.1)
and write ITy(a,.) for the distribution of Sy(a), £ =1,2,..., a > 0.
Proposition 4.2.1 If
ka < 00 (4.2.2)
k=1
then, for each 6 > 0, the sequence of processes
(S]_1(8), 5]_5(6),.... $3(60), 57(9))

converges as j — 0o (component-wise) in probability to a sequence

(-3, ¢1)
which obeys
Sg(CgH) =Y a.s. for all 0 (4.2.3)
and
th ) =10 as. (4.2.4)
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In particular, the distributions my = E(Cg) are an entrance law for the backward Markov chain
with probability transition function

P(¢e € AlG1 = a) = y(a, A), (4.2.5)
and they are its unique entrance law with the property
T = 0g as £ — oo. (4.2.6)
Proof. Since Si(a) is infinitely divisible with canonical measure au, we have
Var(Si(a)) = amy,.
Hence we obtain

Var(S;"%(a)) = Var[E[Sk(Sk+1(a))|Skr1(a)]] + E[Var[Sy(Sk+1(a))[Sk+1(a)]]
a(My41 + my).

In the same way we get for all j > k > £:
Var(Si(a)) =a(mj_1 + ... +my) (4.2.7)

and
E(S)(a) — SF(a))? = a(mj_1 + .. + my).

Thus, due to (4.2.2), for fixed ¢ the sequence (S7(6));s¢ is Cauchy in L?. We define
¢¢ = L% lim SJ(6). (4.2.8)
j—o0

Since a +— Sy(a) is continuous in L', we have

Su(¢l) = Se(Jim 7,,(0)) = lim S7(0) = ¢/ as., (4.2.9)

which proves (4.2.3) and, a fortiori, implies (4.2.5). From (4.2.8) and (4.2.7) it is clear that

Var ¢ = Gka.
k=t

Since ]E(g = 6, this together with (4.2.2) implies that ng converges to 6 in probability as
¢ — 00. Moreover, since because of (4.2.3) Cg is a backwards martingale, this convergence is
even a.s., and we have (4.2.4).
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It remains to show the claimed uniqueness statement. For this let (7;) be an entrance
law for (II;) obeying (4.2.6), and let X, k = 1,2, ... be random variables, independent of the
subordinators Sy, with

E(X]) = 7.

From the entrance law property of (7) and the definition of (II) we have for all j > ¢
T = L(S)(X;)). (4.2.10)
On the other hand we have by monotonicity of 7 — SZ (7):
E|S}(X;) - 57(9)] < E|X; - 0].

From this, the claimed identity 7, = £(¢?) follows by Markov’s inequality together with (4.2.8)
and (4.2.10). m

Proof of Proposition 2.1.1
Recall that with the notation of Proposition 2.1.1, Hél)(a,.) = ,C(Sél)(a)) and Hf)(a7 ) =
L(S f) (a)), where S él) and S l@ are subordinators with Lévy measures v, and vy, respectively.
From Remark 6.2.3 we have that the second moment of 7, equals 1/(2¢), and Remark 3.2.7

shows that the second moment of vy, equals 1/(4c?). The proof of Proposition 2.1.1 is thus
immediate from Proposition 4.2.1.

4.3 The genealogy of jumps in an iteration of subordinators

The composition of subordinators gives rise to a “genealogy” of their jumps. To illustrate
this, consider the two subordinators S, So, where

S1(b) = D (Su(ts) = Sa(ti—)),

t;<b

Sa(a) = Y (Sa(ma) = Sa(7—)).

Then .
Si(Sa(a)) = > (S1(ti) — S1(ti—))-

™m<a  So(Tn—)<t; <S2(Tn)

In this way, the jumps of S are coagulated into families of jumps stemming from one and the
same jump of So.
Iterating this, we obtain from the flow property (4.2.3) that

= > (Sin)-Si(ri-)) as. (4.3.1)

Ti€[0,¢7]
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where {7;} is the set of all points in [0, Cf] in which 7 — SZ (7) has a jump. The representation
(4.3.1) induces a partition of [0, ¢f] which we denote by %, .. Note that for fixed ¢ the P,
are coalescing (i.e. becoming coarser) as j increases.

The sequence of coalescing partitions B; ¢ induces a graph &, as follows: The set of nodes
of & is the union (J;5,{j} x P, For n € &, we call its first component the level of n. For
two nodes ny = (j1, 1), no = (j2, I2) of &, we say that n; is an ancestor of ng if j; > jo and
I, C I, and we say that n; is the parent of ngy if ny is the ancestor of ne with j; = jo + 1. The
(directed) edges of &, then are all the parent-child pairs in &, x ;. Say that two nodes in &,
are related if they have a common ancestor. Then by construction of the sequence (;,) each
equivalence class of By is a tree, i.e. a directed connected graph without cycles. Therefore, & is
a forest, i.e. a union of pairwise disconnected trees. Finally, we label each node of &, with the
length of the subinterval of [0, Cg] to which it corresponds, thus arriving at the random labelled
forest §¢ which we associate with the random sequence of coalescing partitions *B; ¢, and which
encodes the genealogy of the jumps of the process (..., Cg , 410 ) constructed in Proposition 4.2.1.

Intuitively, viewing [0, Cg | as a continuum of individuals, this means that two individuals
ay, ag € [0, Cg] belong to the same element of ‘B, if and only if they descend from a common
ancestor (or equivalently, from one subordinator jump) at some level less or equal than j. Fur-
thermore two individuals aq, as € [0, Qg ] belong to the same element of the minimal partition
Poo, if and only if they descend from a common ancestor at any level higher than ¢. Using
the independent increments property in 6, (4.1.4) and (4.2.9) it can be shown that there are
countably many distinct elements in B, each corresponding to an infinite tree. Therefore
we have a decomposition of the equilibrium population into a countable set of subpopulations
each consisting of individuals having a common ancestor.

4.4 The genealogy in the hierarchichal mean field limit

With the special choice of (Sy) described at the beginning of this section, we have all reasons
to conjecture that the random labelled forests §, defined in the previous subsection describe
the genealogy of the (one- or two-level) branching population in equilibrium as N — oo.

To make this more precise, consider a fixed sequence BéN), { =1,2,... of nested balls in

Qn, and let PéN) be that part of the equilibrium population which lives in BéN) . (Here and

below we suppress the notation of § > 0 which we keep fixed.) Fix N and ¢ for the moment.

For two individuals I, Is in PéN) and j > ¢ we say that

I ~j I

)

if I; and Iy have a common ancestor in BJ(.N . This induces a partition on PéN) which we
denote by ‘BE.JZ). The sequence 2]35.]2[), j=4L,0+1,...is coalescing, and we can associate with it a

labelled forest SEN) in the same way as we associated §, with B;, in the previous subsection,
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the only difference being that now we label the nodes of SEN) by the cardinalities of their
corresponding sub-populations of PéN), divided by N¥.
Our main result (Theorem 2.4.1) suggests to conjecture that, in a suitable topology,

SI(ZN) — §r as N — oo.

4.5 Size-biasing iterated subordinators

With a view towards the genealogy of a sampled individual (see subsection 4.6) we will now
prove a representation of the size-biasing of £(S}(a)), where SJ is the composition of subordi-
nators defined in (4.2.1). To this purpose we first consider a single subordinator S evaluated
at a random argument.

Proposition 4.5.1 Let S(7),7 > 0, be a subordinator with Lévy measure denoted by p, and
let A be an Ry -valued random variable independent of S and with finite expectation. Then the
size-biasing of L(S(A)) arises as the distribution of S(A) +Y, where L(A) is the size-biasing
of L(A), L(Y) is the size-biasing of p, and A and Y are independent.

Proof. We write I1,,, for the distribution of a Poisson point configuration on R with intensity
measure 7u. Then

L(S(7)) = L-((V,idr, ),

where
L (V) =11,

Writing ¢ for the distribution of A, we thus have

E(S(A» = £0(<\IjaidR+>)v (451)
where

Lo () = / I, (o (dr).

Our task is to compute the size-biasing of L,((¥,idr, )) with s(y)) = (¥,idg, ), cf. Definition
6.1.1. To this end let us first compute the size-biasing of L,(¥) with (1,idg, ), and then
project. It follows from Corollary 6.1.4 in the Appendix that the size-biasing of L,(¥) with
(¥,idg, ) is L(® + &y ), where

L(P) = /Hm(.)6(dr),

¢ is the size-biasing of o, E(Y) is the size-biasing of y, and ® and Y are independent. Con-
sequently, the size-biasing of L,((V,idr,)) with (¢,idgr, ) is

L((® + dy,idr, ) = L(S(A) +Y)),
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where E(A) = 6, and S, A and YV are independent. Together with (4.5.1) this proves the
claim. m

Remark 4.5.2 For deterministic A, Proposition 4.5.1 renders the well-known fact that the
size-biasing of an infinitely divisible distribution m on Ry is the convolution of m with the
size-biasing of the canonical measure of m.

Corollary 4.5.3 Let S’Z (a) be the iteration of subordinators defined in (4.2.1), where the S
are independent subordinators with Lévy measures py,. Then the size-biasing of £(S}(a)) arises
as the distribution of §g(a) defined by

Si(a) = Si(a) + ST (Y1) + ST (Vo) 4 oo + S (Vi) + V4, (4.5.2)

where E(Yk) is the size-biasing of uy, 55 is distributed as Sf and all random variables occurring
on the r.h.s. of (4.5.2) are independent.

Proof. For ¢ = j—1, Proposition 4.5.1 shows that the size-biasing of E(Sj;l(a)) = L(Sj-1(a))

arises as the distribution of
Sj-1(a) +Yj-1,

where both summands are independent. One more application of Proposition 4.5.1 thus gives
that the size-biasing of 5(5’;72(&)) = E(Sj,g(ngl(a)) arises as the distribution of

Sj-2(Sj-1(a) + Yj—1) + Yjo
which due to the independence of S;_;(a) and }Afj,l equals in distribution to
Sj-2(Sj-1(a)) + 8} _5(Yj-1) + Vj2,

S}_Z being an independent copy of S;_».
Iterating the argument we arrive at our assertion. m

Remark 4.5.4 As before, let us denote the second moment of uy (or equivalently the first
moment of Yi) by my. From (4.5.2) it follows that

7j—1
ES!(a) = a + Z mg. (4.5.3)
k=t

Hence the summability of the my is a sufficient condition for tightness of the §é (a).

We now turn to the entrance law constructed in Proposition 4.2.1.
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Corollary 4.5.5 From (4.2.8) and Corollary 4.5.3 we obtain that the size-biasing of E(CE)
arises as the distribution of

¢ =Y+ ST (Yoyr) + S (YVega) + o+ &, (4.5.4)

where the random variables i}k; and 55 are as in Corollary 4.5.2, and all random variables
occurring on the right hand side of (4.5.4) are independent.

We can go one step further and study the genealogical relationships underlying the repre-
sentation (4.5.4).

To this purpose, let us study the branching dynamics on the “populations of jumps”
induced by the composition of the subordinators Sy, resuming the reasoning of subsection 4.3.
For each k we consider a branching dynamics which takes a counting measure ¢ on R into
a random counting measure ®;_; in the following way: If ¢, = .. 1,, Oy, then

Dy = Z v;,

i€y,

where VU, is a Poisson counting measure on R} with intensity measure y;pux—1, and the ¥; are
independent.

Now fix two levels j,¢ € N with j > /. Starting with ¢; = d,, and iterating the branching
dynamics from level j down to level ¢, we construct a random path of counting measures on
R, which we denote by

(0as @;_l(a), .., ®)(a)) =: H)(a).
By keeping track which atom in @i_l(a) stems from which atom in @i (a), we can enrich the
history H, Z (a) to a tree Téj (a), each of whose nodes is marked by a non-negative real number.
For example, if ®;(a) = ;¢ 0y, j > k > £, then the set of nodes of T}(a) at level k

corresponds to the index set i, and y; is the mark (or “size”) of the node with index i. We
write

s(T} (@) = (®}(a), idg,)
for the total size of the tree Tej(a) at level £, and note that

s(T} (a)) =7 45(a),

where Sg (a) is defined in (4.2.1). Proceeding in a similar way as in the proof of Corollary
4.5.3 we obtain a “spinal decomposition” of the size-biased tree, which we state here without
proof.
Proposition 4.5.6 The size-biasing of ﬁ(Téj(a)) with 5(T£j(a)) arises as the distribution of
the superposition of T} (a) and

(9,

7j—1

s O ®F (Vi) RF(VR)), k=G =1, =24

352



where L’(ffk) is the size-biasing of u, Tg (a), Yj_l, ..., Yy are independent, and given f’j_l, LY,
the @,’f(Yk), k > r, are independent.

Under the assumption (4.2.2) of summability of the second moments of ux, & € N, the
size-biasing of the random labelled forest F* = Sz (constructed in subsection 4.3) with respect
to its “ size” 5(FY) = ¢ arises as the independent superposition of §J and TKOQC&H, where
T, is constructed as follows:

First build a “spine” (... Yoo, Y1, ffg), and given the spine, superimpose independently
the trees Tek(f/k), k> ¢

4.6 The genealogy of relatives of a sampled individual

In subsection 4.3 we fixed a ball (or ¢-block) B éN) from the beginning. Now we take a different
viewpoint and think of an individual sampled from the equilibrium population within a union
of many #-blocks in 2 from the beginning. Denote the chosen individual by I, and the ¢-block
by By. Recall that for large N the total number of individuals in an ¢-block is approximately
distributed like N*(, (see Theorem 2.4.1), we see that the number of individuals in the chosen
block is approximately distributed like N eég , where E(ég ) is the size-biasing of £((g ).

The block By sits in a nested sequence of blocks of levels ¢ + 1,¢ + 2, ... which we denote
by B@Jrl,Bngg, ... Consider the population P, of all those individuals in B, which have an
ancestral family in common with the individual I. The population Py can be decomposed in
a natural way according to its immigration history into the Bj, j=> L.

For j > ¢, denote by 735 the subpopulation of all those individuals in Py that have some
common ancestor with / who lived in Bj but none who lived in Bj_l. In other words, 755
consists of all those individuals J which obey J ~; I but not J ~;_1 I.

In this way we obtain a decomposition of Py according to the hierarchical distance of
the (geographlcally) closest ancestors common with the chosen individual I: for j > £, the
subpopulation 774 consists of those individuals in B, whose geographically closest common
ancestor with I has hierarchical distance j from I. ‘

The size (i.e. the total number of individuals) of ﬁg is approximately distributed as

Nesgil(f/jfl) f— NKSZ(SZ—l e (SJ*Q(?_}fl)))

1

and thus has approximate expectation N*; t Hence the summability condition (4.2.2)

j 1
(which corresponds to the condition for transwnce resp. strong transience of the hierarchi-

cal random walk) amounts precisely to an expected finite number of relatives of the chosen
individual in the block By.
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5 The hierarchical mean field limit of two-level branching sys-
tems in equilibrium

In this section we investigate the two-level branching equilibrium ¥:¢)(0) described in Propo-
sition 2.3.5 and its limiting behavior as N — oco. We assume that the underlying random walk
is a (2, (c¢), N)-random walk on Qxy and (c¢) satisfies the strong transience conditions (2.3.3)

and (2.3.4). Recall that (BéN)) denotes a sequence of nested blocks in Qp.
We will see in Lemma 5.2.1 that in equilibrium, asymptotically as N — oo, W0 (0)
(N)

consists of the order of N2 families in B,
of N2 individuals.

, a typical such family having a random multiple

5.1 A spatial ergodic theorem

In this subsection we first collect some basic facts about the two-level branching systems
TN (t) on Qn which were introduced in section 2.2.6 and their equilibria. The main result
will be a spatial ergodic theorem for the aggregated equilibria; this will also be an ingredient
in the proof of Theorem 2.4.1.

Let M.(2x) \ {0} denote the space of non-zero counting measures on Qy such that finite
sets have finite measure, and let M (M (Qn)\ {0}) be the set of measures v on M.(Qn)\ {0}
such that fM \o} w(B)v(du) < oo if B is a finite set. Then let M} (M.(Qx) \ {0}) denote

the subspace of counting measures in M (M.(Qx) \ {0}). The set M.(Qx) \ {0} carries a
complete separable metric p which generates the restriction of the vague topology on M.(2x)
to M.(Qn) \ {0} and makes a subset of M.(Qx) bounded if and only if it is contained in
{p|p(B) > 0 for some finite B C Qn}, see [MKM] Proposition 3.3.2. The set M (M.(Qn) \
{0}) is equipped with the topology generated by v — ch(QN)\{O} w(B)v(dp), where B is a
finite subset of Qu, and v — [ F(u)v(du), where F : M.(Qn) \ {0} — R is continuous,
bounded and with p-bounded support.
We can represent WV)(¢) as a cadlag Markov process with state space M} (M.(Qy) \
{o}) On MHM.(2x) \ {0}), we consider the class of functions D(&?N) = {H(v) =
h ([ F(p)v(dp))} with F(u) = f({u, ¢)) where ¢ has finite support and h, f are continu-
ous functions on R with bounded second derivatives. We also define

0F(p) _ d 5 F(p) 0
= —F T —0 =
ou(x)  de (1 +200)le=g pu(x)ou(y)  Oe10e9

F(p+e10, + 526y)|51:52:0‘

Then U is the unique solution to the martingale problem given by the generator

&N H(v) (5.1.1)
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v(dn) ([ F(uyw(dp)
= 3 e f rov
oF ad c 52F
5#((5)) (g::l Z\?lj/g (A () — M(@)) + W%M(m)]

+ [ Plrldm) P ow(an)

where

ik () = ﬁ S uly).

yEQN:dn (y,x) <k

Proposition 2.3.5 establishes the existence of a non-trivial equilibrium ¥®-#) that is spa-
tially homogeneous (that is, with law invariant under translations in Qy) and mean 6. The

equilibrium random field {1/J§3N’0) (t)}zeqy is defined by

w00 = [ (¥ 1, dp). (5.1.2)

This gives the total number of individuals at site x irrespective of their family memberships.

Recall that {ne (t dx)} defined in (2.4.1) describes the equilibrium normalized family
(N)

size process in the block B, "’ with mean number 6 individuals per site.

Also recall that the normalized equilibrium population mass in BéN)

(2.4.3),(2.4.4))

is given by (see

0 = e de) = 5 3 w0
xEB(N)
1
= e > / ()TN (N2 dy). (5.1.3)
aceBEN>

Lemma 5.1.1 Let G denote the Green operator (defined by (5.1.9)) of the (2,(c;), N)-
random walk with (c¢;) satisfying condition (2.3.4) for strong transience, and write, for @1, s :
QN - R+)

(1,020 = Y pr(@)pa().

JJEQN
Then

P1{x)P21Y
(¢1,GNep2) < const Z # (5.1.4)
7yEQN

355



and

oo

1

<¢1,G?Vg02>§const Z v1(x) Z —2 (5.1.5)
z,YyEQN =| -7

where the constants do not depend on N. Hence

(1, GNpa) < const(L, 1)(1, pa), (5.1.6)
{1, GRrp2) < const(L, p1)(L, ).

Proof. The transition probability p;(z,y) of the (2, (¢;), N)-random walk is given by

—h(.N) t 00 _h(.mt

e lz—yl e i
Pil@,9) = Oojpy - Vo + (N -1 Y (5.18)
j=lz—yl+1

where the th) are positive numbers (depending on N) such that
h( ) >const———, j>1
( )/ 2’ -

(see [DGW2], subsection 3.1). Hence

Gyl / Zpta:y (5.1.9)
NoDY e > .I'N

and then (5.1.4) follows.
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Similarly (see [DGW2])

- 1
SIN=DY e) Y —mws
(V)
v eyl NI ()
o] Nj_l
Sconst(N—l)Zgo(y) Z NiZ
Y J=lz—yl+1 i—1
— 1
<conth<p(y) Z 2
y j=lz—y| 7

and (5.1.5) follows. m

Remark 5.1.2 In [DGW2] the exponential waiting time of the hierarchical random walk has
parameter 1, whereas here this parameter is ), qéN), see subsection 2.2.1. In the present case,

o0 qéN) = Z(;io ﬁ =: Ly. This amounts to a time change t — Lyt in the calculations
(N)

above, which produces LNhj

in place of th) and does not change the results of Lemma 5.1.1
(assuming co > 0).

The following is the analogue of [DGW1](2.3.3).
Proposition 5.1.3 Under the conditions of Lemma 5.1.1, the first and second moments of
(lENﬁ) (0) are given by
NG
B¢ (0) =6

and
(N,0) 2 2 1 2
E (¢¥7(0)) = 0%+ (e, pe) + (ones Guowe) + 7lone Ghone))  (5.110)

where pno(x) = ﬁlB(m (z) and Gy is the Green operator of the (strongly transient) (2, (c¢), N)-
14
random walk.

Corollary 5.1.4 If the (2, (cj), N)-random walk satisfies conditions (2.2.2) and (2.5.4), then
for each ¢

(a)
sup E((¢M(0))?) < co. (5.1.11)
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(b)
Var(C(N’G) (0)) =0 asl — ¢ (5.1.12)

uniformly in N.

Proof. (a) follows immediately from Proposition 5.1.3 and Lemma 5.1.1.
(b) From Proposition 5.1.3

1
Var(¢(0) = 0({enas o) + {one Grone) + Jlona Crowe))- (5.1.13)

We will show that each of the three terms on the r.h.s. of (5.1.13) converges to 0 as £ — oo
uniformly in N. First (on e, o) < 7 — 0 as £ — oo uniformly in N.
We have from (5.1.4) and using the ultrametric property of | - |,

1 1
(o, Grnong) < const 57 Z Nlz—yl/2
|z, ly|<e
1 ' 1
< constW N+ Z N2

w#y, lz|<|y| <L

1 ' N2k
< Constw N +2Nk/2

1 ; NWE+1)3/2 _ pr3/2
= constW N2 1
< 1 1
const N£+W — 0 asf — o0

uniformly in N, and from (5.1.5), again using the ultrametric property,

1
(N0, GRoN) <Const Z Z =
]

\xl ly|<€ j=|z—y|

<COH8tﬁ NEZ 2 Z Z

i=0 G zy, |z|<|y|<L j=ly] J

1
<constW Ne—i-ZN%Z
=k J
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1 ¢ 1 2%
<constW N —}—Z—QZN

(e.9]
1
< const— N+ Z ?NQ(]M)
j=1 "7
-1 9]
1 1 1 1
= const N7 + 2 N + Z =z (5.1.14)
j=1 "7 j=t 3

The first term goes to zero as £ — oo, the second term goes to zero as £ — oo by dominated
convergence, and clearly the last term goes to zero as £ — oo. Therefore

(oNe, GRpng) — 0 as £ — oo uniformly in N. (5.1.15)
]
Remark 5.1.5 (a)
= 1
Jim_ Var(¢(N Z = (5.1.16)
4
(b)
11 1
<g0Ng,GNcpNg) < const W e +Zc—2 . (5.1.17)
=t

Corollary 5.1.6 Consider the “exterior function”

. - Cl+k—1
ON ext(T) = kzl Wlfﬁgfﬁ (). (5.1.18)
Then
2
B[ 3 envole) [ u@®00,dp)
TEQN
o 2
Co+k—1 (N0
= (Z = <§+k)(0>> <o (5.1.19)
k=1

uniformly in N.
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Proof. As in Proposition 5.1.3, (from [DGW1], comment 2.3.5)

2

B 3 envonla) [ v 00,dp) (5.1.20)

zeQN

= 02<17 @N,K,ext>2 + 9(<90N,E,exta @N,K,ext)
1
3 (N £.ext) GRNON pext))-

We will prove that each term on the r.h.s. of (5.1.20) is bounded uniformly in N.

+H(PN text: GNON text) +

Co+k—1
(1,@N,€,ext> = Z NE+2k—1

c {+k

l+k—1 n—1

Z NE+2k—1 Z —- LN
Co+k—1 Cltk—1 Atk

S Z NE+2k—1 + Z N+2k— 1N

<constz Hk !

< 00 unlformly in N.

Then, from (5.1.6) the terms (@ ¢ ext, GNPON fext) and (PN ¢.exts G%V@N,Z,ext) are bounded uni-
formly in N and since ¢y ext has a uniform bound in N as well, using (2.2.2) we see that
(PN Lext, PN Lext) 1S also bounded uniformly in N (with N > supcpt1/c,). m

Theorem 5.1.7 (Spatial ergodic theorem) The pointwise ergodic theorem holds on Qp,
that is,

lim ¢V (0) =6 a.s. (5.1.21)

Jj—o0

Proof. First note that the equilibrium random field {w(NH }zeqy defined by (5.1.2) is invari-

ant under the action of the group Quy, and E( Q(CNH) = 0. Moreover by (5.1.12) the spatial
N0 N6 .
averages Cé )(0) = ﬁ zxeBéN) wg(g )(O) satisfy
tim Var(¢* ) (0) =,

so that the convergence in probability follows. To complete the proof note that Qn is an

amenable group and the collection of balls {BEN)}geN is a tempered Fglner sequence. The a.s.
pointwise convergence then follows by [Lin](Theorem 1.2). =
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5.2 Reduction to two successive scales
In the section we show that the analysis of the multiscale behavior can be reduced to the case

of two successive scales.

5.2.1 The equilibrium family size process

Let {gLEN’g) (t), t € R}y=_ 21 denote the collection of equilibrium block average processes in
the nested sequence of blocks BéN) (see (5.1.3)).

Lemma 5.2.1 The fized time marginal distributions {QEN’Q) (0)} at time t =0 satisfy:

(a) For each ¢ € N the family {CEN’G)(O)}NeN is tight and every limit point has expected value
0.
(b) The family-size constraint

E [ / mgN@(o,dx)} < const (5.2.1)
K K

1s satisfied for a suitable constant not depending on K >0 and N > 2.

Proof. (a) follows immediately from Corollary 5.1.4.

(b) Let @ (z) = ﬁlBéw) (x). Then

E |:/ :CﬁéN’e)(Ovdx)] < iE |:/ x27]§N’9)(07d$):|
K K 1o
1 o N6

< ZE { /0 % )<o,da:>]

11 N

~ KN [ / (B2 ((Ldu)]
1

— eV | [l )P 0. )|
N2 N Ny, LN N

= = [l el) + 5 (@l Ghel) | (by [DGW1](2:3.1))
Nt/2 1

< 7 const <N€ + —N5/2> (by the proof of Corollary 5.1.4)
const

- K

Remark 5.2.2 Part (b) of the Lemma 5.2.1 implies that asymptotically the restriction of
TN9(0) to the ball BéN) consists of families of size O(N*/?) or smaller.
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5.2.2 Distant immigrants

In order to establish that there is a unique limit law and to identify it we now return to
the dynamical picture. In the next lemma we show that the expected contribution to the

(N)

equilibrium population in a ball B,

outside the ball Béfl) and the descendants of the population in the ball BEN) in the distant

past are both negligible.

coming from immigrants who immigrate directly from

Lemma 5.2.3 (a) Let {(éf};f) (0)} denote the contribution to the equilibrium block average in

the ball BéN) at time 0 coming from individuals immigrating directly from (Béfl) ). Then

(N,0) < const
E <C€,ext (0)> = N% .

(b) The expected mass to enter Béfl) from (Béfl)) in a time interval of length N*/? is O(N1/2)

(¢) The expected contribution to the population in the ball Bé ) at time 0 from the descendants
of individuals alive at time to is of order O(e=°™l) as ty — —oo.

Proof. (a) To verify this, we first note that the total number of individuals to immigrate
from Béﬁg with & > 2 to BéN) in the time interval [—N%/2t, —N*/2(t + dt)) is of the order

(QNG)( )N“k) x ( Co+k—1 < dtNY/2

1
NeEDR) X NE
(V)

where the first factor is the number of particles in B, ;, the second factor is the rate of
migration of each of these particles to a point chosen randomly in Béflz, the third factor is

the probability this point falls in the tagged ball BéN) and the last factor is the length of the
(N)

time period. Recalling that the mass process in B, ’ is subcritical with parameter —7, the

NE/20
expected total mass at time 0 coming from immigration from outside B éfl) in the time interval
[-NY2T,0), T > 0, is of the order

Cltk— c NG
Z/T N l—: 1 1/2 X N'xe ZtE(Cthrk (—t))dt (5.2.2)

< const X N2’

uniformly in 7" and ¢, where we have used the assumption (2.2.2). Therefore the expected mass
(normalized by ﬁ) at time 0 in BlEN) that immigrated during the time interval [N*/2ty,0)
directly from outside Béfl) is O(N_%) as N — oo.

(b) and (c) follow from a first moment calculation.

[
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5.3 Diffusion limit of the family size process in two spatial scales

In this section we consider the asymptotic (as N — oo) time development of the population

(N)

occupying By, | and in particular the subpopulation obtained by considering individuals that

occupy a tagged ball BEN) in the natural time scale for the population in BéN)

(N)

that the initial family size processes in B, | satisfy the family size constraint of Lemma 5.2.1.
As aresult of the previous lemma, asymptotically as N — oo and tg — —oo the equilibrium

(N)

population in BéN) consists of the descendants of immigrants coming from B, | during the

and assuming

time interval (—N—/2ty, 0] (recall Remark 2.3.4). Another key point is that, as we verify below,
)

in this time interval the family size process in B, (v 41 Is asymptotically constant. Moreover from

(N)

o1 is structured

Lemma 5.2.1 all but an arbitrarily small proportion of the population in B
into O(N*+1D/2) families containing O(N¢*+1)/2) individuals.
We next show that in the N¥2-time scale the total population structure in the ball B

is essentially constant.

(N)
l+1

Lemma 5.3.1 Let{ éfle)(s)} be the equilibrium normalized process (see (5.1.3)) in its natural

time scale NH1/2,
For tg =to(N) < 0 such that Jlf[—oll <c,
2

P( sup |cVO (N —1/2t>—c§ff’<N-1/2to>|>K>

to<t<0
const
where const does not depend on ty and N, and o(1) converges to 0 as N — oo.

Proof. Recall that (V) (¢) is characterized as the unique solution of the martingale problem
with generator (5.1.1). Applying the generator to the function F(v) = [(u, %13(1\'))”@#),
441

it follows that {My1(¢)}+,<t<0, defined by

My q1(t) = CzN 0)( ) - Ctgfie) (o)
C —
S () - (06 as
0 k=1

is a martingale.
Then

P( sup VO (N2 - (YO —1/2to>r>K)

to<t<0
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<r(f,

€ 0 - 9) K
5t (@ - ) s )
k=1

N1 /2
K
+P sup  |Mpp(t)] > 5 |- (5.3.2)
i St<0

2
Recall from Corollary 5.1.4 that E (ClEN’e) (t)) is bounded uniformly in NV and ¢. Let

= 1> st (228 = (0(9) |

k=1

and note that by Corollary 5.1.6 E(g%(s)) is uniformly bounded in s and N. Then

0
P (/ w0 gn(s)ds > %)

2
const , to o 1 0
- K2 (N1/2) E to /to gN(S)dS
172 Y s
const, to o | 1 0 9
< s | o [, Elan(5))ds
K2 "NV? N1/ Nt10/2

const < to )2
< — | —— .
=2 \N12

Next we note that by Lemma 3.2.4(b) and Remark 3.2.5 (with ¢ = %) we get for tg <t < 0

N, N,0) = Cot+k (N
E<[Ctg+1 (t) Ce+1 tg+1 ZNk 1Clg+1—2k:() a('))
k=1
_ (m2€—205+1(t—t0) _ m2)

+ ;n‘{cul(t —tg)ecrilt=to) 4 e=2eenat=to) 4 o(t — ¢g)e} | aem o1 (t=to)

Coi1
—e~Cce1(t=to) 4 (t —to) CH ce—cer1(t= to)}
1 t S2
+—5— k:l(s t)a / / ko(t, s2, s1)a(s1)a(s2)ds1dsy
C£+1 to Jto

To(1) / Ra(t, 5)s(s)ds,

to
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where k;(t,-) ¢ = 1,3 and ks(t, -, -) are bounded non-negative kernels that satisfy (3.2.11) and
o(1) converges to 0 as N — oo. Using Corollary 5.1.4 we conclude that

0 _ 0 _ t—t 1
B (G (V720 — (O R) < const Ul o) )

We now apply the L?-martingale inequality,

K
P swp [Meni(®)] > S| Meri(to/NY?) =0

to
iz St=0

1
K <‘MZ+1(0)‘2‘Mf+1(t0/N1/2) = 0)

const |to] 1

= FW OI(N)-

IN

Before stating the main result we introduce the required spaces of measures and functions.
Let M™% denote the set of Radon measures on [0, 00) x (0, 00) such that fooi Jo" yulda, dy) +

Jor yn({0},dy) < coand [¥ [F zp(de, dy) < oo. Thenlet MTHH = {y e MTE . [P yu({0},dy) =
0}. Let CT%2 denote the space of continuous functions on [0, 00) x (0, 00) with bounded first
and second partial derivatives and which satisfy |¢(z,y)| < const|z A 1|.

Proposition 5.3.2 Let ¢ be fized and consider the M ™™ -valued process

1
(N) (4. - - (N.0) (/2
YW (t;dx, dy) = N2 /1 L5V J5 ) v (N4t dv).
{ 72 Edm,N(£+1)/2€dy}

Assume that N
YW (tg; dae, dy) =" 1191 (dy)do(da).
Then
YN (¢ dx, dy) =g 110+ (dy)do(dx)  for all t > to,

and {Nl/Qy(N) (t;dx,dy)ly>0}tto<t<o  converges weakly as N — — oo to the
MTEF valued diffusion {n(t)}i,<i<o with generator &, defined as follows. Let F(ug) = f({11e,¢))
with o € CTL2. Then
SF(ue) = F' (e, ) 1aes G0 + 5" (pae ) pes 7) (5.3.4)
+F (e 9)ee [ G (@, 9)|o=oyif (dy)

where Gg) denotes the application of the operator G., to the x variable. That is, n(t) is a
two-level branching process with constant multitype immigration source with immigration from
zero of type y at rate given by yuy 4 (dy) and total immigration rate of [~ yug. (dy) .
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Proof. The proof is a refinement of the proof of Proposition 3.2.1. We begin by noting
that Lemma 5.2.3 implies that asymptotically as N — oo the contribution of immigrants into

(N)

B[Efl) from Bé +,2, k > 2 is negligible. Moreover the contribution of immigrants into B, | from

B( 2) in the time scale N2 is also asymptotically negligible. Therefore in the time scale N*/2
(N)

we can restrict attentlon to the population in B, ;. More precisely, asymptotically as N — oo
the population Cg =[[aN 1/2y)(N (t, dz,dy)1,~o consists of descendants of immigrants

entering from Béﬂ) in the time interval [N*/?to(N),0] provided that we take to(N) — —oo.
As in the proof of Proposition 3.2.1 a standard argument yields the tightness of the
processes {CéN’g) (t) }to<t<o and {Céivie) (N=Y2t)},<t<0- The tightness in C([to, 0], MTL+) of
N/2YN)()1,+¢ is also obtained as in the proof of Proposition 3.2.1. One difference is the
presence of additional terms in the expressions for the moments. However these expressions
tend to zero as N — oc.
A first moment calculation shows that the expected contribution of individuals who leave

BEN) and then re-immigrate is O(%) and therefore asymptotically negligible. This means that

(N)

we can treat the population in B, in the time interval [tg, 0] as a two-level branching system
critical at the family level and subcritical at the individual level with subcriticality parameter

(N)

c¢ and with immigration of 1nd1v1duals from B, ;. Moreover by Lemma 5.3.1 the source

of immigrant individuals CZ 1 (t) is asymptotically constant in the time interval (¢o(N),0)
provided that

)| _,
N2
as N — oo.
The main difference from the proof of Proposition 3.2.1 is that we cannot assume that each

(N)

immigrant belongs to a different family. Since the individuals immigrating into B,

()
/+1

structure in the ball BY). The reason for this is that in principle an individual immigrating

/41
into BéN) could be a member of a Béfl)—family already represented in BéN)

not be viewed as the founder of an independent family in BéN). Part of the argument below
is to verify that this effect is negligible.

come

from families in B, ; subject to family branching, it is necessary to keep track of the family

and then could

By the family size constraint at time tp (see Lemma 5.2.1(b)), the population in Béﬂ)

consists of a collection of families whose sizes are O(N‘*1/2). We index these families at
time to by i € N with masses y; N +1)/2,

Recall from section 2.3.2 that W(V:0)(¢) = > ¥i(t,-) where ¢;(t,-) is a counting measure
on )y corresponding to the spatial distribution of the family indexed by j at time ¢. We now
give a precise formulation to the time development of the families simultaneously in B é +1) and
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BéN). To each family 1; and ¢t € R we associate a couple (z;(t),y;(t)) where
oy e B (B
%()*W7 1 = TN@ED2

Then
y(N) (t’ d(L‘, dy) = &2 Z 5(%(]\715/215)’%(1\[4/225)) (d[l?, dy),

where g9 = N-(+1)/2, Also, let gg = ]{/’7 €1 = N%/2
(N)

By assumptlon the family size distribution in B, | at time o, asymptotically as N — oo,
is given by p° with [yu®(dy) < cc.
It suffices to show that for ¢t > tg, as N — oo

YO s, dy)1 oy, = 1 (dy)do(d) (5.3.5)
YN (t; dz, dy)1zs0) = 0 (5.3.6)
(VN6 ezt = {00 ezt (5.3.7)

where Y&V) (t) is the renormalized family measure given by
YO (tydr,dy) = NYRYO(tde,dy)Lissg)

and where 7(t) is a M7 *-valued diffusion with generator &,.
To verify (5.3.5), first using Lemma 5.2.3 and Proposition 3.2.1 we can verify that

sup // 1Ay y(N (t;dx,dy) — yw )(tg,dx dy)| — 0 in probability.

tO»

Moreover

// N1/2y(N)(t;dx7dy)<N1/4// aNV2YWN (4 da, dy).
N—1/4 0

Therefore by the tightness of [ [ a(NY2YW) (. dz, dy)1{,~0)) and {Cé(ivie)}, as N — oo,

// y(N)(l Ay)(t;dx,dy) — 0 in probability
N—1/4
and (5.3.5) and (5.3.6) follow.

We now turn to the proof of (5.3.7). In order to implement the rescaling we introduce the
class of functions of the form

F(p)=f // (2, y)u(de, dy)) 62290%111

367



where
~1/2
o(@,y) = 5 Lsoyeele,y) e (W -ty
We assume that ||, |W\, |0e41] are bounded, C2, and |y (z, y)| < const -z for x > 0 and
|pes1(y)| < const -y for y > 0.
Now define

pe(da, dy) = N'2p(da, dy)1 -0y
and note that

/@(wvy)u(drv,dy) = /w(x,y)uz(dx,dy)+/<pe+1(x,y)1{x<Ng}u(dx,dy)-

The generator of YV) acting on F is given by
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M F(u)

N‘224—1
cgo Y D o) +ea(pe(Gr + Den, faga) — e(Gier, fog2)) — ({11, ))]
J1=0 j2>j1
(J2 — j1)ean(jier, jog2)
&3
cgo Yy > [FUm @) +er(pe((Gr + Ders jaga) — pelfier, jaga)) — F (1, )]
j1>N2£ZI j2>jl
(J2 — j1)eap(jie, jog2)
e
3O D [l )+ exeliner, o)) — Fifp o) L0520
J1=0j2>j1

LS 3 )~ explier ) — F({p o) M)

£1€2
%(1 —e1e) » Y

J1=1j2271
Jip(jier, jag2)

Lf s ) — e1pe(drer, jag2) + e1pe((J1 + V)er, (J2 + Dea)) — f({1, 9))] "

St Y

J1=1j220

(i 9) — er0e(inen, jaea) + exge((n — Der, (G — 1)ea))) — F((, o)) 21 U1EL J282)

€1€2

£1€2

Lf s ) — e20011(J2€2) + e200011((J2 — 1)e2))) — f({1, )] "

1 o0 o0
5 2 X
SN 261 G221
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) — f(w’@)]jzﬂ(jl&,jzt?z)

Lf (s ) — 100161, J2€2) + €100(d1€1, (J2 + 1)e2 -

I VD

261 jo>ja

Ji>N

17 p0) — expeliner, foea) + expeliner, G = Dea)) = Fl{p o) 2AIEL ),
We give a brief explanation of these terms.

(N)

1. This term corresponds to the migration into B,

N)

of individuals from families currently

minimally occupying Bé . Asymptotically as N — oo, this is

0
cef'({p, / /— ,9)) Y tevr(dz, dy),
of (s, 0)) 0el/ (55 20@y) Yy pesa( )
whose limit (by (5.3.5)) is

of (o)) [ o )lomo)y s (d)

2. The second term is similar to the first except that here only families having more than

(N)

minimal mass in B,’ appear. In the limit N — oo we have asymptotically

cof' ({1 ) / /axw NI/Q pre,n (dz, dy) (5.3.8)

Sczlf’((mw))lsupl—xw(w y)l

1/8 N1/8
(] s 3 7

< co f' (s, )] Sup\a—w(ﬂc Y|

(/] _yunld.dy) + N 1/8/ / epn (. dy)
y>

= o(1) + O(5:775) (539

since [ [ _o [ @ pen(dr,dy) = O(1).
3. and 4. These two terms arise from the family level branching. If |ps(z,y)| < const - z,
then asymptotically they yield

ﬁf”(w 80>)//902(x,y)u(dx,dy)
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2N1/2 // /~L7 //906-1—1 dl‘ dy)
—1/4
(s / / o1(y)pe(x, y)pu(de, dy)
(s ) / 2,y el da, dy).

5. and 6. This corresponds to the critical birth and death of individuals in BéN). The
limiting term is
f/(<:u’7 S05>)<:u‘7 Gg)@[%

where GS) denotes the application of the operator G, to the x variable.

(N)

7. and 8. These terms correspond to the birth and death of individuals in B, | in families
that do not or sparsely occupy BéN). Asymptotically we obtain
1 0*

iz (s o)) ya—wam(y)).

9. and 10. These terms correspond to the birth and death of individuals in B éfl) in families
(N)

which have at least a minimal number of members in BZ
the proof of (5.3.5),

I, 90>)/

x>

. Asymptotically we obtain from

1 0? 1
~i7a e (d, dy)ya pve(@y) = 0573

1/4 N1/ )

Collecting the limiting terms as N — oo, we obtain &) F (1) — &,F (1) where

G F (1) = f'((u, >><w,aﬁe>w> L7 (g, 00)) s 92) (5.3.10)
1 (s pe))ee [ B2 (2, y) |om oyug+1(dy)

We conclude that for any limit point of the probability laws of Y&

t

Fo(t) - [ ®Fla(s)ds
to

is a martingale where F' € C(MTE) is defined by F(u) = f({p, o)+ (1, @e11)) and f, ¢, and

@41 satisfy the same conditions as above. But then for 0 < a < b < oo, n(t, dz, (a, b)) satisfies

with the martingale problem of the two-level branching diffusion with constant multitype

immigration source with immigration from 0 of type y € (a,b) at rate given by yu! 1 (dy)

and total immigration rate of fab yug. 1 (dy) (recall Proposition 3.2.1) which is well posed and
determines a M!((0, oo)-valued diffusion process. This completes the proof of the proposition.
[
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5.4 The limiting multiscale transition function

The main result of the section is the identification of the limiting multiscale structure, which
serves to complete the proof of Theorem 2.4.1.

Theorem 5.4.1 Fizj > 1 and (7,4 > 0. Conditioned on ((-N’e)(()) = C*(N) and provided that

j+1 j+1 2
C;(:Y) — C;H as N — oo, then the normalized equilibrium masses {CéN’e)(O)}g:jH’j,mJ m a

sequence of nested blocks {BEN)}g:LW,jH converge as N — oo in distribution to the backward
Markov chain {(,}o=j41,j,..1 with transition kernel

P(G € AlGe1 = a) =TT (0, 4),
where Hf) is as in Proposition 2.1.1'b), and (;1 = (7, 4.

Proof. The principal step in proving this is given by Proposition 5.3.2. Then to verify
)

that the limiting equilibrium distribution as N — oo of QSN’Q) conditioned on Céfl’e = a is

given by Hf) (a,dx) we then follow the argument in Corollary 3.2.2(b). The convergence of

{CE(O)}g:j+17j7...’0 to the Markov chain then follows by recursion and the continuity of the
mappings a — Hf) (a,dz).

|

Combining Theorem 5.4.1 with the spatial ergodic theorem (Theorem 5.1.7) and Propo-
sition 2.1.1 b), we see that the interchange of the limits N — oo and j — oo is justified and
completes the proof of Theorem 2.4.1.

5.5 The particle level picture

In the previous section the main result is obtained using the convergence of the solutions of the

appropriate sequence of martingale problems. Some additional understanding of the limiting
() (N)

process can be obtained by examining the particle picture in both B, ; and B, which we
now briefly sketch in an informal way. First note that the change in the population in Béfl)

(N)

due to movement of particles between B,, | and its exterior in time scale N /2 has expected

value o(+) and therefore is negligible.

For the moment we fix 9 < 0 and consider the contributions to CéN’e)(O) coming from
immigrants arriving in the interval [toN*/2,0). Next we recall that by (5.2.1) all but O(%) of

_1:71) at time 0 is contained in families with sizes in (0, K N ¢*1)/2). Therefore

we can subdivide the population at time 0 into O(N (e+1)/ 2) independent subpopulations of

size O(N (e+1)/ 2) where if necessary we group together smaller families to form subpopulations

of size O(N+1)/2) (This ensures independent level two branching in B éN) for clusters coming

the population in B§
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from distinct families in this subdivision.) Since the families undergo critical branching these
are the descendants of O(N'/2) ancestral families at time toN%? and in the time interval
(toN*/2,0) these undergo binary branching with ny(s) branches at time sN%2. Now consider

a single family in Béivl) containing O(N“+1/2) individuals. By the analogue of Lemma 5.3.1

the normalized population size of this family is constant in the time scale N ¢/2,
We subdivide the interval [N*/2ty,0) into M (€ N) subintervals of equal length LtoN 2,

Let t;, := %to and consider an interval (tk+1N£/2, tkNe/Q). Recall that the rate of migration

of individuals into BéN) from B is ceN~/2. Therefore in the time interval the number of

{41
individuals to immigrate into the ball BéN) from a family of size mN¢+1)/2 in Béfl) is Poisson

with mean

cy 1
mN D2 x Ne/z((tk — try1)N/?) x ~
= cymi(ty, — tyyq ) NED/2, (5.5.1)

Now consider the question of which of these have descendants alive in BéN) at time zero. Let

U := min{s : ny(s) =2}. In order to determine this recall that from the structure of the
genealogy of the critical branching cluster (see e.g. [Du],[F]) the random variable U is uniform
distributed on [0, 1]. Moreover the probability that an initial individual produces a non-empty
set of descendants in a time interval of length U|ty|N t/2 is asymptotically as N — oo

ZCee—CgUtk

NK/Q(]- _ e—CgUtk) ’

(see e.g. [AN](Chapt. 3)). Therefore the probability that any of the O(N¢~1/2) immigrants
arriving from a family of size N+1D/2 in [ty i N¥/2 t;, N/?) have descendants alive at time 0
is no larger than

2cée—Cgu0(N)tk

N1/2(1 _ e—CZUO(N)tk)

+ P(U < ug(N))

for any 0 < ug(N) < 1. Again by ([Du],[F]) the number of (family) branches ny(tx) at time
tx NY/? converges in distribution as N — oo for each of the O(N'/2) ancestral families and
the family trees from the different ancestral families are independent. Choosing ug(N) — 0
such that N'/2uy(N) — oo we conclude that there is a Poisson [with mean of order O((t; —
tpe1)e” )] number of individuals who immigrate in (N*/2to, N%/2t;] producing descendants
at time 0, and these all come from different branching trees.

Therefore the population at time zero coming from immigrants arriving in (N¢/2ty, N*/t;,)
is asymptotically composed of O(1) two-level families each originating from one individual and
these all come from different independent subpopulations in Béfl). In particular the expected
mass coming from clusters containing two or more immigrants from the same subpopulation
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in Béfl) is O(ﬁ) Each two-level cluster coming from an immigrating individual develops

by two-level branching, namely, family level branching inherited from the family branching
in Béfl) and subcritical individual level branching in BéN). Finally, in both cases the total

(N)

migration rate of individuals into BEN) from B, | is

(X (NI N x (eN—02) x N1 = N2 (N4 2)

(N)

where on the left hand side the first factor is the number of particles in B the second

0417
is the individual migration rate to a point chosen randomly in Béfl) and the last factor is

the probability that the tagged ball is chosen. Therefore, asymptotically as N — oo, the
population at time zero consists of clusters of descendants of individuals that immigrate into
BéN) during the time interval (—oo, 0] at rate ¢, N/ QQéfie) (N*/2ty) and subsequently undergo
two-level branching. In the limit N — oo these clusters correspond to the jumps of the
subordinator Sy(-) defined in section 4.2.

Remark 5.5.1 One can also gain some understanding of the convergence to equilibrium from
a spatially homogeneous initial population (more general than that addressed in Proposition
2.8.5) with intensity 0 > 0. Two ingredients are involved in the convergence to an equilibrium
with intensity 6. The first is the strong transience condition on the random walk. The other
feature is the structure of the local family sizes. We see from the above that the property that the

contribution of families in Béfl) containing a number of individuals larger than O(N(€+1)/2)

to the equilibrium population in BEN) 15 asymptotically negligible and this property is then

inherited by BéN). Howewver if the initial family sizes are too large this iteration can degenerate

due to the family level critical branching and the limiting population is locally degenerate. For
a more detailed analysis of this phenomenon, see [GHJ.

6 Appendix

6.1 Size-biasing and Palm distributions

Definition 6.1.1 If w is a measure on some measurable space M, and s is a nonnegative
measurable function on M with 0 < 5§ := [s(z)7(dz) < oo, then we call the probability
measure T given by

(dz) == f%W(dz)

the size-biasing of m with respect to s. (Here, we think of s(z) as measuring the size of the
object z.)
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Remark 6.1.2 a) An example of size-biasing which is important in our context arises as
follows. Let m = L(n) be the distribution of a random measure n (on some Polish space E,
say). Denote the intensity measure of n by A, and fix a nonnegative measurable function f on E
with 0 < (X, f) < co. Define the size of a measure m on E by s(m) := [ f(z)m(dz) = (m, f),
and denote by 7y the size-biasing of w(dm) with (m, f).

b) Assuming that X is locally finite, choosing f = 1p where B is a ball in E, and let-
ting B shrink gives the family of Palm distributions 7y, x € S. Formally, these arise as the
disintegration of the measure mw(dm)m(dz) with respect to its second marginal En, that is

EG(n){n,h) = /h(x)G(m)wx(dm))\(dx). (6.1.1)

See [K], chapter 10, for more background; there, a random measure whose distribution is the
size-biasing of (L(n))(dm) with (m, f) is denoted by ny.

¢) The following fact ([K], formula (10.6)) is immediate from (6.1.1):

The size-biasing w¢ of w(dm) with (m, f) is

ﬁ/f(m)wx(.)A(da:) — Eng, (6.1.2)

where X is a random element in E whose distribution is the size-biasing of A with f.

d) If in the just described situation E consists of one element only, then the finite random
measures on E are Ry -valued random variables. When speaking of the size-biasing of a mea-
sure m on Ry without specifying the size function, we always mean the size-biasing of 7(dx)
with x.

Let us write Il for the distribution of a Poisson random counting measure on F with
intensity measure A. It is well known (see e.g. [K], beginning of chapter 11) that the Palm
distributions of ITy arise as the distributions of ® + 0, © € E, where £L(®) = II,.

Now let o be a probability measure on Ry with m, := [ 70(dr) € (0,00), and write

I, ) = /HT)\U(dT)

for the mized Poisson distribution with mixing measure o.
The following lemma, whose proof we include for convenience, is part of a characterization
theorem ([K], Theorem 11.5) of mixed Poisson processes.

Lemma 6.1.3 The Palm distributions of 11, \ arise as the distributions of ® 4+ 0., x € F,
where L(®) =115 x, and & is the size-biasing of o.

375



Proof. Using the above mentioned form of the Palm distributions of II.y, we obtain for all
nonnegative measurable h and G defined on E and M.(F), the space of locally finite counting
measures on F, respectively:

[ewiwnna@) = [ [ ni@o) (6.1.3)
. / / A2 )h(2)G () + 8,) T (dib)or(d7)
- / moA(dz)h(z) / Gl +5x)nﬂ(d¢)mim(d7).

Corollary 6.1.4 Assume 0 < (A, h) < oco. Then the size-biasing of Il \(d) with (¢, h)
arises as the distribution of ® + ¢, where L(®) = [IL\6(dT), L(X) is the size-biasing of A
with h, and ® and X are independent.

Proof. This can be seen either by combining Remark 6.1.2 ¢) and Lemma 6.1.3, or by dividing
(6.1.3) through E, z(¥, h) = me(\,h). =

6.2 Subcritical Feller branching

Let us fix ¢ > 0. In the following, X will denote a c-subcritical Feller branching diffusion
(c-FBD) process. In other words, X is an [0, co)-valued diffusion process satisfying

dXt =\ Xt th - CXtdt (621)

where W; is Brownian motion. For € > 0, let X® be the ¢-FBD process starting in € at time
0.

From well-known results on Galton-Watson processes conditioned to survival [AN, Ge| and
cluster sizes in continuous-state branching processes [D], one expects that the conditional law
L(X7| X7 > 0) converges to an exponential distribution as ¢ — 0. The following calculation
verifies this and identifies the parameter.

The Laplace functional of X7 is given by

E(e M) = 70N X >0, (6.2.2)
where v = v(t, \) is the solution of
t, A 1
QA ot ) — R, 1), 0(0,0) = A (6.2.3)
ot 2
The solution of (6.2.3) is given by
IM\ece ¢t
u(t, \) = « (6.2.4)

A1 —e ) +2¢
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Combining (6.2.2) and (6.2.4) one obtains by a straightforward calculation

-9 —ct
P(X; #0) =1—exp (*1 - > ; (6.2.5)
—e
EX; =ce ™ £>0 (6.2.6)

and
2c

A1 —e) +2¢

lim E(e X | X5 #£0) = (6.2.7)
£—
Writing Exp(u) for the exponential distribution with parameter u, we obtain immediately:

Lemma 6.2.1 Fizt > 0.

a)

2c
L(X7|X; > 0) = Exp (ﬁ> as € — 0. (6.2.8)
b)
_ 2ce~¢t
e I]PJ[XtE > 0] — 1—76_615 as € — 0. (629)
For € > 0, let
N. ‘
Xe=> X, (6.2.10)
i=1
where N, is a Poisson(¢~!)-random variable and X!, X%2 ... are independent copies of X¢.

The following lemma is an easy consequence of Lemma 6.2.1.

Lemma 6.2.2 Fixzt > 0. Then - B
Xi= X ase — 0, (6.2.11)

where X} is infinitely divisible with canonical measure

2ce~ 2c

Let us now define the measure
oo
Ve i= c/ ks ds. (6.2.13)
0

An elementary calculation based on (6.2.12) and (6.2.13) shows that

1
Ye(dz) = 2¢=e72“dz, x> 0. (6.2.14)
x
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This identifies 7, as the canonical measure of the Gamma(2c, 2¢)-distribution, and goes along
with the well-known fact that the equilibrium distribution of (4.1.1) is the Gamma(2ca, 2c¢)-
distribution. We note that =, is the Lévy measure of the Gamma subordinator S(7), 7 > 0,
with scale parameter 2c and ES(1) = 1. The following is obvious from (6.2.14):

Remark 6.2.3 a) [;° zv.(dz) = 1.
b) [o° 2?ye(dz) = 1/2c.

Finally we consider the semigroup (7}) be the semigroup of the c-FBD process. Recalling
(6.2.8), (6.2.9) and (6.2.12), the (T})-entrance law (k) from 0 is given by

1 1
ke = lim =67} = lim —£(XF; X5 #£0), ¢ >0, (6.2.15)
e—0¢ e—0¢

where (X§) is the ¢-FBD-process starting in € at time 0. Because of (6.2.12), k;(dx) has
density

2 ,—ct
ke(x) = %exp (—%) , x € (0,00). (6.2.16)
Then for f € C1((0,00)) and t > 0,
d
20|, = lm 2T = [ @) (6.2.17)
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