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Abstract

A regenerative composition structure is a sequence of ordered partitions derived
from the range of a subordinator by a natural sampling procedure. In this paper, we
extend previous studies [1, 8, 12] on the asymptotics of the number of blocks Kn in
the composition of integer n, in the case when the Lévy measure of the subordinator
has a property of slow variation at 0. Using tools from the renewal theory the limit
laws for Kn are obtained in terms of integrals involving the Brownian motion or
stable processes. In other words, the limit laws are either normal or other stable
distributions, depending on the behavior of the tail of Lévy measure at ∞. Similar
results are also derived for the number of singleton blocks.
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1 Introduction

Let S := (S(t))t≥0 be a subordinator (i.e. an increasing Lévy process) with S(0) = 0,
zero drift, no killing and a nonzero Lévy measure ν on R+. The closed range R of
the process S is a regenerative subset of R+ of zero Lebesgue measure. The range R
splits the positive halfline in infinitely many disjoint component intervals that form an
open set (0,∞)\R. These component intervals, further called gaps, are associated with
jumps of S. Let E1, . . . , En be a sample drawn independently of S from the standard
exponential distribution. Each sample point Ej falls in the generic gap (a, b) with prob-
ability e−a − e−b. A gap is said to be occupied if it contains at least one of n sample
points. The sequence of positive occupancy numbers of the gaps, recorded in the natu-
ral order of the gaps, is a composition (ordered partition) Cn of integer n. The number
Kn counting the blocks of the composition is equal to the number of gaps occupied by
at least one sample point, and the number Kn,r counting the blocks of size r is the num-
ber of gaps occupied by exactly r out of n sample points, so that Kn =

∑n
r=1Kn,r and

n =
∑n
r=1 rKn,r.

∗Queen Mary University of London, United Kingdom. E-mail: a.gnedin@qmul.ac.uk
†National T. Shevchenko University of Kiev, Ukraine. E-mail: iksan@univ.kiev.ua

http://ejp.ejpecp.org/
http://dx.doi.org/10.1214/EJP.v17-2002
mailto:a.gnedin@qmul.ac.uk
mailto:iksan@univ.kiev.ua


Regenerative compositions in the case of slow variation

The sequence of random compositions (Cn)n∈N derived in this way has the following
two recursive properties. The first property of sampling consistency is a form of ex-
changeability: removing a randomly chosen sample point from the first n points maps
Cn in a distributional copy of Cn−1. This property is obvious from the construction and
exchangeability, because removing a random point has the same effect as restricting
to n − 1 points E1, . . . , En−1. The second property is specific for regenerative R. Con-
sider composition Cn of size n and suppose it occurs that the first part, which is the
number of sample points in the leftmost occupied gap, is some m < n, then deleting
this part yields a composition on n−m remaining points which is a distributional copy
of Cn−m. This property is a combinatorial counterpart of the regenerative property of
R, therefore sequences (Cn)n∈N are called regenerative composition structures [11]. In
particular, for suitable choice of ν the construction generates an ordered version of the
familiar Ewens-Pitman two-parameter partition structure [11].

The regenerative composition structures appear in a variety of contexts related to
partition-valued processes and random discrete distributions (see [7] for a survey). To
bring the construction of compositions in a more conventional context we may consider
a random distribution function F (t) = 1− exp(−S(t)) on positive reals, also known as a
neutral to the right prior [18]. Since F has atoms, an independent n-sample from the
distribution (defined conditionally given F ) will have clusters of repeated values, thus
we may define a composition Cn by recording the multiplicities in the order of increase
of the values represented in the sample.

Limit distributions for Kn (properly centered and normalized) were studied under
various assumptions on S. When the Lévy measure ν is finite, the process S is compound
Poisson, and R is the discrete set of atoms of a renewal point process. A characteristic
feature of this case is that almost all of the gaps within [0, S(log n)] are occupied, and
these give a dominating contribution to Kn. In the compound Poisson case there is a
rather complete theory [6, 8, 10] surveyed in [9].

In the case of infinite Lévy measure the asymptotic behaviour of Kn is related to that
of the tail ν[x,∞) as x→ 0; concrete results for infinite ν have been obtained under the
assumption of regular variation. If ν[x,∞) varies regularly at 0 with positive index, both
Kn and Kn,1 may be normalized by the same constant (no centering required) to entail
convergence to multiples of the same random variable, which may be represented as
the exponential functional of a subordinator [13]. This case is relatively easy, because
the number of occupied gaps within the partial range in [S(t1), S(t2)] is of the same
order of growth, as n→∞, for every time interval 0 ≤ t1 < t2 ≤ ∞.

The case of infinite Lévy measure with ν[x,∞) slowly varying at 0 is much more del-
icate, because the occupied gaps do not occur that uniformly as in the case of regular
variation with positive index, nor the primitive gap-counting works: unlike the com-
pound Poisson case, R has topology of a Cantor set. Each EKn,r is then of the order
of growth smaller than that of EKn, and the convergence of Kn and Kn,r’s requires
nontrivial centering. Normal limits were shown in [12] in the special case of subordina-
tors which, like the gamma subordinators, have ν[x,∞) of logarithmic growth as x→ 0.
Normal limits for Kn for wider families of slowly varying functions were obtained in [1]
under the assumption that the subordinator has finite variance and the Laplace expo-
nent of S satisfies certain smoothness and growth conditions. It turned that the case of
slow variation required a further division, with qualitatively different scaling functions
in each subcase [1].

The method of [1] relied on linearization of the compensator process for the number
of occupied gaps contained in [0, S(t)], and application of the functional central limit
theorem for S. In this paper we develop a different approach to the asymptotics of Kn

in the case of ν[x,∞) slowly varying at 0. As in [1], we analyse the compensator process,
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Regenerative compositions in the case of slow variation

but instead of linearizing it, apply the renewal theory and functional limit theorems for
the first passage times process, that is random function inverse to S. This gives a
big technical advantage, enabling us to simplify arguments and to increase generality.
The class of slowly varying functions covered in this paper will be larger than that
in [1, 12]. In particular, we will omit the assumption of finite variance of S and find
conditions on the Lévy measure ν to guarantee a weak convergence of Kn to the normal
or some other stable distributions. A similar approach, with a discrete-time version of
the compensator will be applied also in the case of finite Lévy measure, leading to
known asymptotics [6, 8, 10] in a more compact way. We shall also identify the limit
distribution for Kn,1 in terms of an integral involving a random process corresponding
to the limit law of Kn. With some additional effort, our approach to the limit laws of
Kn,1 could be extended to Kn,r for all r ≥ 1, but to avoid technical complications we
do not pursue this extension here, as our main focus is the development of the new
method.

2 Preliminaries

As in much of the previous work, it will be convenient to poissonize the occupancy
model, that is to replace the exponential sample E1, . . . , En of fixed size n by atoms of
an inhomogeneous Poisson process (πt(x))x≥0, which is independent of S and has the
intensity measure λt(dx) = te−xdx on R+. The total number of atoms, πt := πt(∞), has
then the Poisson distribution with mean t. We will use the notation K(t) := Kπt

for the
number of gaps occupied by at least one atom of the Poisson process, and K(t, r) for
the number of gaps occupied by exactly r such atoms.

Introduce

Φ(t) :=

∫
[0,∞)

(
1− exp{−t(1− e−x)}

)
ν(dx), t > 0.

By Proposition 2.1 of [1] the increasing process (A(t, u))u∈[0,∞] defined by

A(t, u) :=

∫
[0, u]

Φ
(
te−S(v)

)
dv

is the compensator of the increasing process which counts the number of gaps in
[0, S(u)] \ R, that are occupied by at least one atom of the Poisson sample. Similarly,
one can check that

A(r)(t, u) :=

∫
[0, u]

Φ(r)
(
te−S(v)

) (te−S(v))r

r!
dv,

where Φ(r) denotes the rth derivative of Φ, is the compensator of the increasing process
which counts the number of gaps in [0, S(u)] \ R that contain exactly r Poisson atoms.

The asymptotics of K(t) and K(t, 1) for large t is closely related to the terminal
values of the compensators

A(t) := A(t,∞) =

∫
[0,∞)

Φ(te−S(v))dv =

∫
[0,∞)

Φ(te−s) dT (s) (2.1)

and

A(1)(t) := A(1)(t,∞) =

∫
[0,∞)

Φ′(te−S(v))te−S(v) dv, (2.2)

where
T (s) := inf{t ≥ 0 : S(t) > s}, s ≥ 0

is the passage time of S through level s.
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Regenerative compositions in the case of slow variation

Like in many other models of allocating ‘balls’ in ‘boxes’ with random probabilities
of ‘boxes’, the variability of Kn has two sources: the randomness of R, and the random-
ness involved in drawing a sample conditionally givenR. For regenerative compositions
it has been shown, in various forms, that the first factor of variability has a dominant
role. See, for instance, [8] for the compound Poisson case. We shall confirm the phe-
nomenon in the case of slow variation by showing that A(n) absorbs a dominant part
of the variability, to the extent that A(n) and Kn, normalized and centered by the same
constants, have the same limiting distributions.

Throughout we shall assume that the function Φ satisfies one of the following three
conditions:
Condition A:

ϕ(t) := Φ(et) ∼ tβL1(t), t→∞,

for some β ∈ [0,∞) and some function L1 slowly varying at ∞. For β = 0 we assume
lim
t→∞

L1(t) =∞.

Condition B: ϕ(t) belongs to de Haan’s class Γ, i.e., there exists a measurable function
h : R→ (0,∞) called the auxiliary function of ϕ such that

lim
t→∞

ϕ(t− uh(t))

ϕ(t)
= e−u for all u ∈ R and lim

t→∞
h(t) =∞.

Condition C: ϕ(t) is a bounded function, which holds if and only if the Lévy measure ν
is finite, i.e. S is a compound Poisson process.

Let

Φ̂(t) :=

∫ ∞
0

(1− e−tx)ν(dx)

denote the conventional Laplace exponent of S. Then

Φ(t) ∼ Φ̂(t), t→∞.

Therefore, conditions A, B and C can be equivalently formulated with Φ̂ in place of
Φ. Either of the conditions implies that Φ is a function slowly varying at ∞, hence by
Karamata’s Tauberian theorem

ν[x,∞] ∼ Φ(1/x), x→ 0. (2.3)

It should be noted that there are slowly varying functions which satisfy neither of
the conditions A, B and C, for instance functions which behave like

Φ(t) ∼ exp

(∫ t

2

| sinu|
log u

du

)
, t→∞.

However, functions that are not covered by one of the conditions A, B and C are rather
exceptional. The case β = 0 of Condition A covers the functions called in [1] ‘slowly
growing’, and the case 0 < β <∞ ‘moderately growing’.

The rest of the paper is organized as follows. In Section 3 we consider the case of
infinite ν when one of the conditions A or B holds, and derive the limit distributions
for Kn and Kn,1. In Section 4 we give a simplified treatment of the much studied case
[6, 10, 8] when ν is a finite measure, that is Condition C holds. Finally, some auxiliary
facts are collected in the Appendix.
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Regenerative compositions in the case of slow variation

3 Subordinators with infinite Lévy measure

3.1 Convergence of Kn

Our first main result concerns ‘slowly growing’ or ‘moderately growing’ functions
Φ of slow variation, behaving like e.g. Φ(t) ∼ (logk t)

β(logm t)
δ, for some β > 0, δ ≥ 0,

k ∈ N, m ∈ N0, where logi x denotes the i-fold iteration of the natural logarithm.
Introduce the moments of S(1)

s2 := VarS(1) =

∫
[0,∞)

x2ν(dx), m := ES(1) =

∫
[0,∞)

xν(dx).

Note that m <∞ under the assumptions of all the subsequent theorems.

Theorem 3.1. Suppose Condition A holds.
(a) Suppose s2 <∞. If β > 0 then

Kn − m−1
∫

[1, n]
y−1Φ(y)dy√

s2m−3 log nΦ(n)

d→ β

∫
[0,1]

Z(1− y)yβ−1dy, n→∞,

where
(
Z(y)

)
y∈[0,1]

is the Brownian motion, and if β = 0 then the limiting random vari-

able is Z(1).
(b) Suppose s2 =∞ and ∫ x

0

y2ν(dy) ∼ L(x), x→∞,

for some L slowly varying at∞. Let c(x) be any positive function satisfying lim
x→∞

xL(c(x))/c2(x) =

1. If β > 0 then

Kn − m−1
∫

[1, n]
y−1Φ(y)dy

m−3/2c(log n)Φ(n)

d→ β

∫
[0,1]

Z(1− y)yβ−1dy, n→∞,

where (Z(y))y∈[0,1] is the Brownian motion, and if β = 0 then the limiting random vari-
able is Z(1).
(c) Suppose

ν[x,∞] ∼ x−αL(x), x→∞, (3.1)

for some L slowly varying at∞ and α ∈ (1, 2). Let c(x) be any positive function satisfying
lim
x→∞

xL(c(x))/cα(x) = 1. If β > 0 then

Kn − m−1
∫

[1, n]
y−1Φ(y)dy

m−(α+1)/αc(log n)Φ(n)

d→ β

∫
[0,1]

Z(1− y)yβ−1dy, n→∞,

where
(
Z(y)

)
y∈[0,1]

is the α-stable Lévy process such that Z(1) has characteristic func-
tion

u 7→ exp{−|u|αΓ(1− α)(cos(πα/2) + i sin(πα/2) sgn(u))}, u ∈ R, (3.2)

and if β = 0 then the limiting random variable is Z(1).

Remark 3.2. Set J := β
∫

[0,1]
Z(1− y)yβ−1dy. By Lemma 5.1,

logE exp(itJ) =

∫
[0, 1]

logE exp(it(1− x)βZ(1))dx.

Hence J
d
= (αβ + 1)−1/αZ(1) where the case α = 2 corresponds to parts (a) and (b) of

Theorem 3.1.
In the definition of constants Φ can be replaced by the Laplace exponent Φ̂, since

the difference between the functions vanishes at∞ (see [13] Lemma A.1 or [1] Lemma
2.3).
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Regenerative compositions in the case of slow variation

Proof. Under the assumptions of part (a) we denote by Z(·) the Brownian motion and
set g(t) :=

√
s2m−3t, under the assumptions of part (b) we denote by Z(·) the Brownian

motion and set g(t) := m−3/2c(t) and under the assumptions of part (c) we denote by
Z(·) the α-stable Lévy process such that Z(1) has characteristic function (3.2), and set
g(t) := m−1−1/αc(t).

For later use we note that g varies regularly at ∞ with index 1/α, where α = 2

corresponds to the cases (a) and (b). This follows from Theorem 1.5.12 in [4] which is
a result on asymptotic inverses of regularly varying functions. Further we note that in
the cases (b) and (c) g(x) grows faster than

√
x. In the latter case, this follows trivially

from the regular variation of g with index 1/α, α ∈ (1, 2). In the former case, we have∫
[0, x]

y2ν(dy) ∼ L(x), where lim
x→∞

L(x) = ∞, and c(x) satisfies lim
x→∞

xL(c(x))
c2(x) = 1. Since

lim
x→∞

L(c(x)) =∞ we infer lim
x→∞

x
c2(x) = 0.

Step 1: We first investigate convergence in distribution of, properly normalized and
centered, A(t), as t → ∞. Recalling the notation ϕ(t) = Φ(et), representation (2.1) can
be rewritten using integration by parts for the Lebesgue-Stieltjes integral as follows

A(et)− ϕ(0)T (t) =

∫
[0, t]

T (t− z)dϕ(z) +

∫
[t,∞)

ϕ(t− z)dT (z) =: A1(t) +A2(t).

Now we want to look at the asymptotic behavior of A2(t), as t → ∞. Since Φ′(0) < ∞
(this is equivalent to the characteristic property

∫
[0,∞)

min(y, 1)ν(dy) < ∞ which holds

for every Lévy measure ν), the function ϕ(t) is integrable on (−∞, 0], which together
with its monotonicity ensures that it is directly Riemann integrable on (−∞, 0]. There-
fore, by the key renewal theorem

EA2(t) = E

∫
[t,∞)

ϕ(t− z)dT (z) → m−1

∫
(−∞, 0]

ϕ(z)dz <∞, t→∞. (3.3)

Case β > 0. It is known (see Theorem 2a in [3]) that

Wt(·) :=
T (t·)− m−1(t·)

g(t)
⇒ Z(·), t→∞, (3.4)

in D[0,∞) in the Skorohod M1-topology. In particular,

T (t)− m−1t

g(t)ϕ(t)

P→ 0, t→∞. (3.5)

To apply Lemma 5.3 takeXt = Wt and let Yt and Y be random variables with distribution
functions P{Yt ≤ y} = ϕ(ty)

ϕ(t) =: ut(y) and P{Y ≤ y} = yβ =: u(y), 0 ≤ y ≤ 1. Then, as
t→∞,

A1(t)− m−1
∫

[0, t]
(t− z)dϕ(z)

g(t)ϕ(t)
=

∫
[0,1]

Wt(1− y)dut(y)

d→
∫

[0,1]

Z(1− y)du(y)

= β

∫
[0,1]

Z(1− y)yβ−1dy = J.

Recalling (3.3) and (3.5) we obtain

A(et)− m−1

(∫
[0, t]

(t− z)dϕ(z) + ϕ(0)t

)
g(t)ϕ(t)

d→ J. (3.6)
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Regenerative compositions in the case of slow variation

Noting that ∫
[1, et]

y−1Φ(y)dy =

∫
[0, t]

ϕ(y)dy =

∫
[0, t]

(t− z)dϕ(z) + ϕ(0)t

and replacing in (3.6) et by t concludes the proof of Step 1 in the case β > 0.
Case β = 0. We have, for ε ∈ (0, 1)

A1(t)− m−1
∫

[0, t]
(t− z)dϕ(z)

g(t)ϕ(t)
=

∫
[0, ε]

Wt(1− y)dϕ(ty)

ϕ(t)
(3.7)

+

∫
[ε, 1]

Wt(1− y)dϕ(ty)

ϕ(t)

=: J1(t, ε) + J2(t, ε).

We first show that
lim
ε↓0

lim
t→∞

J1(t, ε) = Z(1) in distribution. (3.8)

To this end, we use the bounds

inf
y∈[0,ε]

Wt(1− y)
ϕ(εt)− ϕ(0)

ϕ(t)
≤ J1(t, ε) ≤ sup

y∈[0,ε]

Wt(1− y)
ϕ(εt)

ϕ(t)
.

Recall that the function h1 : D[0,∞)→ R defined by h1(x) := sup
y∈[0,ε]

x(y) isM1-continuous

(see Section 13.4 in [19]). Hence, in view of (3.4) we conclude that, as t→∞, the right-
hand side converges in distribution to sup

y∈[0,ε]

Z(1 − y). This further converges to Z(1)

on letting ε ↓ 0. A similar argument applies to the left-hand side, and (3.8) has been
proved.

Using the inequality

inf
y∈[ε,1]

Wt(1− y)
ϕ(t)− ϕ(εt)

ϕ(t)
≤ J2(t, ε) ≤ sup

y∈[ε,1]

Wt(1− y)
ϕ(t)− ϕ(εt)

ϕ(t)

and arguing in much the same way as above we conclude that lim
t→∞

J2(t, ε) = 0 in distri-

bution. This together with (3.3) allows us to conclude that

A(et)− m−1

(∫
[0, t]

(t− z)dϕ(z) + ϕ(0)t

)
g(t)ϕ(t)

d→ Z(1). (3.9)

Replacing in this relation et by t completes the proof of Step 1 in the case β = 0.
Step 2: Now we argue that the same convergence in distribution holds with A(t) re-
placed by K(t). In other words, we will prove that

A(t)−K(t)

g(log t)Φ(t)

P→ 0, t→∞.

Since in the cases (b) and (c) g(x) grows faster than
√
x (see the beginning of the proof)

it suffices to show that
A(t)−K(t)√

log tΦ(t)

P→ 0, t→∞. (3.10)

By Lemma 2.6 in [1],

E
(
A(t)−K(t)

)2 ∼ m−1

∫
[1, t]

u−1Φ(u)du, t→∞. (3.11)
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Regenerative compositions in the case of slow variation

Hence

E

(
A(t)−K(t)√

log tΦ(t)

)2

∼

∫
[1, t]

u−1Φ(u)du

m log tΦ2(t)
≤ log tΦ(t)

m log tΦ2(t)
=

1

mΦ(t)
,

and (3.10) follows by Chebyshev’s inequality.
Step 3: The last step is ‘depoissonization’, i.e. passing from the Poisson process to
the original fixed-n exponential sample. Since K(t) is nondecreasing, this is easy, and
the proof is omitted (see the proof of Theorem 3.5 where the depoissonization is imple-
mented for a non-monotone function).

Our second main result concerns ‘fast’ functions of slow variation Φ, which grow
faster than any power of log t, for instance Φ(t) ∼ exp(γ logδ t) for some γ > 0 and
δ ∈ (0, 1).

Theorem 3.3. Suppose Condition B holds.
(a) Under the assumption of part (a) of Theorem 3.1

Kn − m−1
∫

[1, n]
y−1Φ(y)dy√

s2m−3 log nΦ(n)

d→
∫

[0,∞)

Z(y)e−ydy, n→∞,

where (Z(y))y≥0 is the Brownian motion.
(b) Under the assumptions of part (b) of Theorem 3.1

Kn − m−1
∫

[1, n]
y−1Φ(y)dy

m−3/2c(log n)Φ(n)

d→
∫

[0,∞)

Z(y)e−ydy, n→∞,

where
(
Z(y)

)
y≥0

is the Brownian motion.
(c) Under the assumptions of part (c) of Theorem 3.1

Kn − m−1
∫

[1, n]
y−1Φ(y)dy

m−(α+1)/αc(log n)Φ(n)

d→
∫

[0,∞)

Z(y)e−ydy, n→∞,

where
(
Z(y)

)
y≥0

is the α-stable Lévy process such that Z(1) has characteristic function
(3.2).

Remark 3.4. Set K :=
∫

[0,∞)
Z(u)e−udu. By Lemma 5.1,

logE exp(itK) =

∫
[0,∞)

logE exp(ite−xZ(1))dx.

Hence K
d
= α−1/αZ(1) where the case α = 2 corresponds to parts (a) and (b) of Theorem

3.3.

Proof. We use the same notation as in the proof of Theorem 3.1. We will only show that

A(et)− m−1

(∫
[0, t]

(t− z)dϕ(z) + ϕ(0)t

)
g(h(t))ϕ(t)

d→ K =

∫
[0,∞)

Z(u)e−udu, (3.12)

the rest of the proof being the same as in Theorem 3.1. For any fixed a > 0, we have

A1(t)− m−1
∫

[0, t]
(t− z)dϕ(z)

g(h(t))ϕ(t)
= −

∫
[0, a]

Wh(t)(y)dvt(y) (3.13)

−
∫

[a, t/h(t)]

Wh(t)(y)dvt(y)

=: J3(t, a) + J4(t, a),
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Regenerative compositions in the case of slow variation

where vt(u) := ϕ(t−yh(t))
ϕ(t) . To apply Lemma 5.3 we take Xt = Wh(t) and let Yt and Y be

random variables with P{Yt > u} = vt(u) and P{Y > u} = e−u. Then

J3(t, a) := −
∫

[0, a]

Wh(t)(y)dvt(y)
d→
∫

[0, a]

Z(y)e−ydy, t→∞.

Hence lim
a→∞

lim
t→∞

J3(t, a) = K in distribution.

Now we intend to show that, for any c > 0,

lim
a→∞

lim sup
t→∞

P{|J4(t, a)| > c} = 0. (3.14)

By Theorem 1.2 in [16], for any δ > 0 there exists t0 > 0 such that

E
∣∣T (t)− m−1t

∣∣
g(t)

≤ E|Z(1)|+ δ

whenever t ≥ t0. Hence, for t such that ah(t) ≥ t0 and some ε ∈ (0, 1− 1/α),

E|J4(t, a)| ≤
∫

[ah(t),∞)

E|T (y)− m−1y|
g(y)

g(y)

g(h(t))
d(−vt(y/h(t)))

≤
(
E|Z(1)|+ δ

) ∫
[a,∞)

g(yh(t))

g(h(t))
d(−vt(y))

≤
(
E|Z(1)|+ δ

)
constEη

1/α+ε
t 1{ηt>a}, (3.15)

where in the third line the Potter’s bound (Theorem 1.5.6 in [4]) has been utilized (recall
that the regular variation of g was discussed at the beginning of the proof of Theorem
3.1), and ηt is a random variable with P{ηt > y} = vt(y). By Corollary 3.10.5 in [4],
the auxiliary function h is unique up to the asymptotic equivalence and can be taken
h(t) =

∫
[0, t]

ϕ(y)dy/ϕ(t). With such h we have

Eηt =

∫
[0,∞)

vt(y)dy =
1

h(t)

∫
[0,t]

ϕ(y)dy

ϕ(t)
+

1

h(t)ϕ(t)

∫
[0,1]

Φ(y)

y
dy → 1, t→∞. (3.16)

Note that the integral in the second term is finite in view of Φ′(0) < ∞ (the latter
finiteness was discussed in Step 1 of the proof of Theorem 3.1).

Now (3.16) implies that the family (η
1/α+ε
t )t≥0 is uniformly integrable, and (3.14)

follows from (3.15) and Markov’s inequality. From this we conclude that the left-hand
side of (3.13) converges in distribution to K. This together with (3.3) and (3.5) proves
(3.12).

3.2 Convergence of Kn,1

We shall prove next convergence in distribution for the number of singleton blocks
Kn,1. Two cases, when Condition A and Condition B holds, respectively, are treated in
Theorem 3.5 and Theorem 3.7.

Theorem 3.5. Assume that the function t 7→ tΦ′(t) is nondecreasing and that Condition
A holds with β ≥ 1.
Under the assumptions of part (a) of Theorem 3.1 we have1: if β > 1 then

Kn,1 − m−1Φ(n)

nΦ′(n)
√
s2m−3 log n

d→ (β − 1)

∫
[0,1]

Z(1− y)yβ−2dy, n→∞,

1Suppose β > 1. According to Remark 3.2, (β−1)
∫
[0, 1] Z(1−y)y

β−2dy
d
= (α(β−1)+1)−1/αZ(1), where

the case α = 2 corresponds to parts (a) and (b) of Theorem 3.5.
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Regenerative compositions in the case of slow variation

where (Z(y))y∈[0,1] is the Brownian motion, and if β = 1 and lim
n→∞

L1(n) = ∞ then the

limiting random variable is Z(1).
Under the assumptions of part (b) of Theorem 3.1 we have: if β > 1 then

Kn,1 − m−1Φ(n)

m−3/2nΦ′(n)c(log n)

d→ (β − 1)

∫
[0,1]

Z(1− y)yβ−2dy, n→∞,

where (Z(y))y∈[0,1] is the Brownian motion, and if β = 1 then the limiting random vari-
able is Z(1).
Under the assumptions of part (c) of Theorem 3.1 we have: if β > 1 then

Kn,1 − m−1Φ(n)

m−1−1/αnΦ′(n)c(log n)

d→ (β − 1)

∫
[0,1]

Z(1− y)yβ−2dy, n→∞,

where (Z(y))y∈[0,1] is the α-stable Lévy process such that Z(1) has characteristic func-
tion (3.2), and if β = 1 then the limiting random variable is Z(1).

Remark 3.6. Theorem 3.5 does not cover one interesting case when s2 < ∞ and
Φ(x) ∼ c log x, as x→∞, where c > 0 is a constant. We conjecture that

Kn,1 − m−1Φ(n)

c log1/2 n

d→ (s2m−3)1/2V1 + (mc)−1/2V2, n→∞,

where V1 and V2 are independent random variables with the standard normal distribu-
tion. In combination with the proof of Theorem 3.5 this would follow once we could
show that

K(t, 1)−A(1)(t)

c log1/2 t

d→ (m c)−1/2V2, t→∞.

However, we have not been able to work it out.

Proof. Using (2.2) we have

A(1)(et) =

∫
[0,∞)

ϕ′(t− y)dT (y) =

∫
[0, t]

+

∫
[t,∞)

=: A
(1)
1 (t) +A

(1)
2 (t).

The function ϕ′ is nonnegative and integrable on (−∞, 0], and the function e−yϕ′(y) is
nonincreasing on R. This implies that ϕ′ is directly Riemann integrable on (−∞, 0] (see,
for instance, the proof of Corollary 2.17 in [5]). Therefore, by the key renewal theorem,
as t→∞,

EA
(1)
2 (t)→ m−1

∫
(−∞, 0]

ϕ′(y)dy = Φ(1)/m <∞. (3.17)

Now convergence in distribution of A(1)(t) with the same centering and normalization
as asserted for Kn,1 (and n replaced by the continuous variable t) follows along the
same lines as in the proof of Theorem 3.1 for A(t).

Arguing in the same way as in the proof of Lemma 2.6 in [1] we conclude that

E(K(t, 1)−A(1)(t))2 = EA(1)(t).

Hence, according to (3.17) and Proposition 5.4,

E(K(t, 1)−A(1)(t))2 ∼ m−1Φ(t), t→∞.

The function ϕ′ is nondecreasing since tΦ′(t) was assumed such, hence by the monotone
density theorem (Theorem 1.7.2 in [4]) we conclude that, as t→∞,

ϕ(t)

(ϕ′(t))2t
∼ tβL1(t)

β2t2β−2L2
1(t)t

=
1

β2

1

tβ−1L1(t)
.

EJP 17 (2012), paper 77.
Page 10/19

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2002
http://ejp.ejpecp.org/


Regenerative compositions in the case of slow variation

This converges to zero whenever β > 1 or β = 1 and lim
t→∞

L1(t) = ∞. Therefore, by

Chebyshev’s inequality

K(t, 1)−A(1)(t)

tΦ′(t)
√

log t

P→ 0, t→∞.

Since the normalization tΦ′(t)
√

log t exhibits the slowest growth among the three nor-
malizations arising in the theorem (see the beginning of the proof of Theorem 3.1 for
explanation), under the current assumption we conclude that convergence in distribu-
tion as stated in the theorem holds with Kn,1 replaced by K(t, 1) and the normalizing
sequences replaced by the normalizing functions.

Now we shall discuss the remaining case s2 = ∞, β = 1 and lim
t→∞

L1(t) = c ∈ (0,∞)

(note that in view of the monotonicity assumption on ϕ′ and the relation ϕ′(t) ∼ L1(t),
the limit of L1 must exist). The normalization qn, say, claimed for Kn,1 grows not slower
than nΦ′(n) log1/2 nL2(n) for some L2 slowly varying at ∞ with lim

n→∞
L2(n) = ∞. Then,

Chebyshev’s inequality implies

K(n, 1)−A(1)(n)

qn

P→ 0, n→∞.

This proves that the asserted convergence in distribution holds with Kn,1 replaced by
K(t, 1) in this case too.

It remains to depoissonize. Let (tk, xk) be the atoms of a planar Poisson point process
in the positive quadrant with the intensity measure given by e−xdtdx. The process
(Xt)t≥0 with Xt :=

∑
tk≤t xk is a compound Poisson process with unit intensity and

jumps having the standard exponential distribution. Now, with z ≥ 0 fixed, πz can be
identified with the number of jumps of (Xt) occurring before time z, which implies that
(πz)z≥0 is a homogeneous Poisson process with unit intensity. Denote by (Tn)n∈N its
arrival times. We already know that

K(t, 1)− r(t)
d(t)

d→ X, t→∞ (3.18)

for r(t) := m−1Φ(t), the case-dependent normalizing function d(t) and the case-dependent
random variable X. Since K(Tn, 1) = Kn,1 it suffices to check that

K(Tn, 1)− r(n)

d(n)

d→ X, n→∞.

In the subsequent computations we will use arbitrary but fixed x ∈ R. Given such x
we will choose n0 ∈ N such that the sequence (n+x

√
n)n≥n0

is nondecreasing and every
its element is not smaller than one, and the sequence (n − x

√
n)n≥n0

is nonnegative.
Also, we will choose t0 ∈ (0,∞) such that t ± x

√
t ≥ 0 for t ≥ t0. With this notation all

the relations that follow will be considered either for t ≥ t0 or n ≥ n0.
The function d(t) is slowly varying, which implies that the convergence lim

t→∞
d(ty)
d(t) = 1

holds locally uniformly in y. In particular,

lim
t→∞

d(t± x
√
t)

d(t)
= 1. (3.19)

The function r(t) has the following property

lim
t→∞

r(t± x
√
t)− r(t)

d(t)
= 0. (3.20)
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Indeed, the function t 7→ Φ′(t) is nonincreasing, and using the mean value theorem we
conclude that

r(t+ x
√
t)− r(t)

d(t)
≤ m−1x

√
tΦ′(t)

tΦ′(t)
o(1),

r(t)− r(t− x
√
t)

d(t)
≤ m−1x

√
tΦ′(t− x

√
t)

tΦ′(t)
o(1).

By the monotone density theorem (Theorem 1.7.2 in [4]), the function Φ′(t) is regularly

varying at ∞ with index −1. Hence lim
t→∞

Φ′(t−x
√
t)

Φ′(t) = 1, and the right-hand side of the

last inequality tends to zero, as t→∞.
Now (3.19) and (3.20) ensure that (3.18) is equivalent to

K(t± x
√
t, 1)− r(t)

d(t)

d→ X, t→∞. (3.21)

We will need the following observation

K(t+ x
√
t)−K(t− x

√
t)

d(t)

P→ 0, t→∞, (3.22)

which can be proved as follows. Since K(t) is nondecreasing it suffices to show that the
expectation of the left-hand side converges to zero. To this end, write

E

(
K(t+ x

√
t)−K(t− x

√
t)

)
= E

∫
[0,∞)

(
ϕ
(

log(t+ x
√
t)− y

)
− ϕ

(
log(t− x

√
t)− y

))
dT (y)

= E

∫
[0, log(t+x

√
t)]

(
ϕ
(

log(t+ x
√
t)− y

)
− ϕ

(
log(t− x

√
t)− y

))
dT (y) +O(1)

≤ log

(
t+ x

√
t

t− x
√
t

)
E

∫
[0, log(t+x

√
t)]

ϕ′
(

log(t+ x
√
t)− y

)
dT (y) +O(1)

∼ 2x√
t
E

∫
[0, log(t+x

√
t)]

ϕ′
(

log(t+ x
√
t)− y

)
dT (y)

∼ 2x

m
√
t

∫
[0, log(t+x

√
t)]

ϕ′(y)dy ∼ 2x

m
√
t
Φ(t+ x

√
t) ∼ 2x

m
√
t
Φ(t), t→∞.

Here the third line is a consequence of the key renewal theorem (see the paragraph
preceding formula (3.17) for more details). The fourth line follows from the mean value
theorem and the monotonicity of ϕ′. While Proposition 5.4 justifies the first asymptotic
equivalence in the sixth line of the last display, the last equivalence in that line is implied
by the slow variation of Φ (see the sentence preceding (3.19) for the explanation). Now

(3.22) follows from the last asymptotic relation and the observation lim
t→∞

tΦ′(t)
Φ(t)

√
t = ∞,

the latter being trivial as the first factor is slowly varying.
Set Dn(x) := {|Tn − n| > x

√
n}. Since K(t) and L(t) := K(t) − K(t, 1) are nonde-

creasing, we have, for any ε > 0,

P

{
K(Tn, 1)−K(n− x

√
n, 1)

d(n)
> 2ε

}
= P

{
K(Tn)− L(Tn)−K(n− x

√
n, 1)

d(n)
> 2ε

}
= P

{
. . . 1Dc

n(x) + . . . 1Dn(x) > 2ε
}

≤ P

{
K(n+ x

√
n)− L(n− x

√
n)−K(n− x

√
n, 1)

d(n)
> ε

}
+ P

{
. . . 1Dn(x) > ε

}
≤ P

{
K(n+ x

√
n)−K(n− x

√
n)

d(n)
> ε

}
+ P

(
Dn(x)

)
.
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Hence, by (3.22) and the central limit theorem

lim sup
n→∞

P

{
K(Tn, 1)−K(n− x

√
n, 1)

a(n)
> 2ε

}
≤ P

{
|N (0, 1)| > x

}
, (3.23)

where N (0, 1) denotes a random variable with the standard normal distribution. Since
the law of X is continuous, we conclude that, for any y ∈ R and any ε > 0,

lim sup
n→∞

P

{
K(Tn, 1)− r(n)

d(n)
> y

}
≤ lim sup

n→∞
P

{
K(Tn, 1)−K(n− x

√
n, 1)

d(n)
> 2ε

}
+ lim

n→∞
P

{
K(n− x

√
n, 1)− r(n)

d(n)
> y − 2ε

}
(3.21),(3.23)
≤ P

{
|N (0, 1)| > x

}
+ P

{
X > y − 2ε

}
.

Letting now x→∞ and then ε ↓ 0 gives

lim sup
n→∞

P

{
K(Tn, 1)− r(n)

d(n)
> y

}
≤ P

{
X > y

}
.

Arguing similarly we infer

lim sup
n→∞

P

{
K(n+ x

√
n, 1)−K(Tn, 1)

d(n)
> 2ε

}
≤ P

{
|N (0, 1)| > x

}
(3.24)

and then

lim inf
n→∞

P

{
K(Tn, 1)− r(n)

d(n)
> y

}
≥ lim

n→∞
P

{
K(n+ x

√
n, 1)− r(n)

d(n)
> y + 2ε

}
− lim sup

n→∞
P

{
K(n+ x

√
n, 1)−K(Tn, 1)

d(n)
> 2ε

}
(3.21),(3.24)
≥ P

{
X > y + 2ε

}
− P

{
|N (0, 1)| > x

}
.

Letting x→∞ and then ε ↓ 0 we arrive at

lim inf
n→∞

P

{
K(Tn, 1)− r(n)

d(n)
> y

}
≥ P

{
X > y

}
.

The proof is complete.

Theorem 3.7. Assume that the function t 7→ tΦ′(t) is nondecreasing and that Condition
B holds.
Under the assumptions of part (a) of Theorem 3.32

Kn,1 − m−1Φ(n)

nΦ′(n)
√
s2m−3h(log n)

d→
∫

[0,∞)

Z(y)e−ydy, n→∞,

where (Z(y))y≥0 is the Brownian motion.
Under the assumptions of part (b) of Theorem 3.3

Kn,1 − m−1Φ(n)

m−3/2nΦ′(n)c(h(log n))

d→
∫

[0,∞)

Z(y)e−ydy, n→∞,

where (Z(y))y≥0 is the Brownian motion.

2See Remark 3.4 for the identification of the laws of
∫
[0,∞) Z(y)e

−ydy.
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Under the assumptions of part (c) of Theorem 3.3

Kn,1 − m−1Φ(n)

m−1−1/αnΦ′(n)c(h(log n))

d→
∫

[0,∞)

Z(y)e−ydy, n→∞,

where (Z(y))y≥0 is the α-stable Lévy process such that Z(1) has characteristic function
(3.2).

Proof. By Theorem 3.10.11 in [4] ϕ′ belongs to de Haan’s class Γ. For later use, note
that this implies

lim
t→∞

ϕ′(t) =∞. (3.25)

By Corollary 3.10.7 in [4] one can take h as the auxiliary function of ϕ′. With this
at hand the proof of convergence in distribution of A(1)(t) with the same centering and
normalization as claimed for Kn,1 (but with discrete argument n replaced by continuous
argument t) literally repeats the proof of Theorem 3.3, thus omitted.

The next step is to prove that

K(t, 1)−A(1)(t)

d(t)

P→ 0, t→∞,

where, depending on the context, d(t) equals either

const tΦ′(t)
√
h(log t) or const tΦ′(t)c(h(log t)).

Since the function tΦ′(t)
√
h(log t) grows slower than the other one it suffices to prove

that
K(t, 1)−A(1)(t)

tΦ′(t)
√
h(log t)

P→ 0, t→∞. (3.26)

From the proof of Theorem 3.5 we know that

E(K(t, 1)−A(1)(t))2 ∼ m−1Φ(t), t→∞.

By Corollary 3.10.5 in [4],

h(t) ∼ ϕ(t)

ϕ′(t)
, t→∞.

Therefore, using (3.25) at the last step,

ϕ(t)

(ϕ′(t))2h(t)
∼ 1

ϕ′(t)
→ 0, t→∞,

and relation (3.26) follows by Chebyshev’s inequality.
By Lemma 5.2, the functions d(t) are slowly varying at∞. Keeping this in mind, the

depoissonization step runs exactly the same route as in the proof of Theorem 3.5.

4 The compound Poisson case

In this section we assume that S is a compound Poisson process whose Lévy measure
ν is a probability measure. This does not reduce generality, since the range R is not
affected by the normalization of ν. Let − logW1, − logW2, . . . (where 0 < Wj < 1 a.s.)
be the sizes of the consecutive jumps of S, which are independent random variables
with distribution ν. Define a zero-delayed random walk (Rk)k≥0 with such increments
− logWk. In these terms, the Laplace exponent of S is Φ̂(t) = 1− Ee−t(1−W1).

The argument exploited in Section 3 extends smoothly when the variance of S(1) is
infinite. Otherwise the problem arises that the terminal value A(n) of the compensator
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does not absorb enough of the variability of Kn. The continuous-time compensator
process carries extra variability coming from the exponential waiting times between the
jumps of S. Without going into details we only mention that the excessive variability is
seen from the asymptotics

E
(
K(t)−A(t)

)2 ∼ m−1 log t, t→∞, (4.1)

where m = ES(1) = E| logW1|.
To circumvent the complication we note that in the case of finite Lévy measure the

setting is intrinsically discrete-time, hence it is natural to replace T (y) in (2.1) by

ρ(y) := inf{k ∈ N0 : Rk > y}

and to consider a discrete-time compensator. Denote by Ck the event that the interval
[Rk−1, Rk] is occupied by at least one point of the Poisson process (πt(u))u≥0. Then
K(t) =

∑
k≥1 1Ck

, and we define the discrete-time compensator by

B(t) :=
∑
k≥1

P{Ck|Rk−1} =
∑
k≥1

Φ̂
(
te−Rk−1

)
=

∫
[0,∞)

Φ̂
(
te−y

)
dρ(y).

Indeed, P{Ck|Rk−1,Wk} = 1 − exp
(
− te−Rk−1(1 − Wk)

)
which entails P{Ck|Rk−1} =

Φ̂(te−Rk−1), thus justifying the second equality above. For the discrete-time compen-
sator we have

E(K(t)−B(t))2 =

∫
[0,∞)

Φ̂(te−y)(1− Φ̂(te−y))dEρ(y) = o(log t), t→∞,

which compared with (4.1) shows that B(t) approximates K(t) better than A(t) . Fur-
thermore, by the key renewal theorem the integral converges to

m−1

∫
[0,∞)

Φ̂(y)
(
1− Φ̂(y)

)
y−1dy

provided that
∫

[1,∞)

(
1 − Φ̂(y)

)
y−1dy < ∞, and by Proposition 5.4 it is asymptotic to

m−1
∫

[0, log t]

(
1− Φ̂(ey))dy otherwise. These findings allow us to simplify the proof of the

following result obtained previously in [8].

Theorem 4.1. (a) If σ2 = Var(logW ) <∞ then for

bn =
1

m

∫ n

1

Φ̂(z)

z
dz or bn =

1

m

∫ logn

0

P{| log(1−W )| ≤ z}dz, (4.2)

where m = ES(1) = E| logW |, and for

an =

√
σ2

m3
log n,

the limiting distribution of Kn−bn
an

is standard normal.
(b) If σ2 =∞ and ∫ x

0

y2ν(dy) ∼ L(x), x→∞,

for some L slowly varying at∞, then, with bn given in (4.2) and

an = m−3/2c(log n),
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where c(x) is any positive function satisfying lim
x→∞

xL(c(x))/c2(x) = 1, the limiting dis-

tribution of Kn−bn
an

is standard normal.
(c) If ν satisfies (3.1) then, with bn as in (4.2) and

an = m−1−1/αc(log n), (4.3)

where c(x) is any positive function satisfying lim
x→∞

xL(c(x))/cα(x) = 1, the limiting dis-

tribution of (Kn − bn)/an is the α-stable law with characteristic function (3.2).

Proof. Let g and Z be as defined at the beginning of the proof of Theorem 3.1. We only
give a proof of the poissonized version of the result, with Kn replaced by B(t). Recalling
the notation ϕ(y) = Φ(ey) and noting that ϕ is integrable in the neighborhood of −∞,
an appeal to Theorem 4.1 in [15] gives

B(et)− m−1
∫

[1, et]

(
Φ(y)/y

)
dy

g(t)
=

∫
[0,∞)

ϕ(t− y)dρ(y)− m−1
∫

[0, t]
ϕ(y)dy

g(t)

d→ Z(1), t→∞.

Lemma 5.5 with V = 1−W1 ensures that the centering

m−1

∫
[0, t]

ϕ(u)du = m−1

∫
[0, t]

(
1− E exp(−eu(1−W1))

)
du

can be safely replaced by

m−1

∫
[0, t]

P{| log(1−W )| ≤ u}du = m−1

∫
[0, t]

P{1−W ≥ e−u}du,

because the absolute value of their difference is O(1) and lim
t→∞

g(t) = ∞. Replacing et

by t completes the proof.

5 Appendix

The first auxiliary result concerns the laws of some Riemann integrals of the Lévy
processes.

Lemma 5.1. Let q be a Riemann integrable function on [0, 1] and (Z(y))y∈[0,1] a Lévy
process with g(t) := logE exp(itZ(1)). Then

E exp

(
it

∫
[0,1]

q(y)Z(y)dy

)
= exp

(∫
[0,1]

g

(
t

∫
[y,1]

q(z)dz

)
dy

)
, t ∈ R. (5.1)

Similarly, for q a directly Riemann integrable function on [0,∞) and (Z(y))y≥0 a Lévy
process it holds that

E exp

(
it

∫
[0,∞)

q(y)Z(y)dy

)
= exp

(∫
[0,∞)

g

(
t

∫
[y,∞)

q(z)dz

)
dy

)
, t ∈ R.

Proof. We only prove the first assertion. The integral in the left-hand side of (5.1) exists
as a Riemann integral and as such can be approximated by Riemann sums

n−1
n∑
k=1

q(k/n)Z(k/n) =

n∑
k=1

(
Z(k/n)− Z((k − 1)/n)

)(
n−1

n∑
j=k

q(j/n)

)

=:

n∑
k=1

(
Z(k/n)− Z((k − 1)/n)

)
ak,n =: In
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Since Z has independent and stationary increments, we conclude that

logE exp(itIn) = n−1
n∑
k=1

g(tak,n).

Letting n → ∞ we arrive at (5.1), by Lévy’s continuity theorem for characteristic func-
tions.

Lemma 5.2 collects some useful properties of the functions Φ satisfying Condition B.

Lemma 5.2. Suppose Condition B holds. Then the functions Φ(t) and h(log t) are slowly
varying at∞. The function t 7→ tΦ′(t) is slowly varying at∞, whenever it is nondecreas-
ing.

Proof. By Proposition 3.10.6 and Theorem 2.11.3 in [4], the function h(log t) is slowly
varying. As was already mentioned in the proof of Theorem 3.3, without loss of gen-
erality the auxiliary function h can be taken h(t) =

∫
[0,t]

ϕ(y)dy/ϕ(t). By the repre-
sentation theorem for slowly varying functions (Theorem 1.3.1 in [4]), the function
t 7→

∫
[0,log t]

ϕ(y)dy is slowly varying. Hence Φ(t) = ϕ(log t) is slowly varying as well.

By Theorem 3.10.11 and Corollary 3.10.7 in [4], ϕ′ belongs to de Haan’s class Γ

with the auxiliary function h1 such that h1(t) ∼ h(t), t → ∞. By Corollary 3.10.5 in
[4], tΦ′(t) ∼ Φ(t)/h(log t), t → ∞. Since both numerator and denominator are slowly
varying functions, the function t 7→ tΦ′(t) is slowly varying.

The following lemma was a basic ingredient in the proof of our main results (Theo-
rem 3.1 and the like).

Lemma 5.3. Assume that Xt(·) ⇒ X(·), as t → ∞, in D[0,∞) in the Skorohod M1 or

J1 topology. Assume also that, as t → ∞, Yt
d→ Y , where (Yt) is a family of nonneg-

ative random variables such that P{Yt = 0} may be positive, and Y has an absolutely
continuous distribution. Then, for a > 0,∫

[0, a]

Xt(u)P{Yt ∈ du} d→
∫

[0, a]

X(u)P{Y ∈ du}, t→∞.

Proof. It suffices to prove that

lim
t→∞

Eht(Yt) = Eh(Y ) (5.2)

whenever ht → h in D[0,∞) in the M1 or J1 topology, for the desired result then follows
by the continuous mapping theorem.
Since h restricted to [c, d] is in D[c, d] the set Dh of its discontinuities is at most count-
able. By Lemma 12.5.1 in [19], convergence in the M1 topology (hence in the J1 topol-
ogy) implies the local uniform convergence at all continuity points of the limit distribu-
tion. Hence

E := {y : there exists yt such that lim
t→∞

yt = y,but lim
n→∞

ht(yt) 6= h(y)} ⊆ Dh,

and we conclude that P{Y ∈ E} = 0. Now (5.2) follows by Theorem 5.5 in [2].

Proposition 5.4 is a slight extension of Theorem 4 in [17] and Lemma 5.4 in [14].

Proposition 5.4. Let v be a nonnegative function with lim
t→∞

∫
[0, t]

v(z)dz = ∞. Assume

further that v is either nondecreasing with

lim
t→∞

v(t)∫
[0, t]

v(z)dz
= 0,
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or nonincreasing. If m = ES(1) <∞ then∫
[0, t]

v(t− z)dET (z) ∼ m−1

∫
[0, t]

v(z)dz, t→∞, (5.3)

provided the subordinator S is nonarithmetic. The asymptotic relation holds with addi-
tional factor δ for S arithmetic subordinator with span δ > 0.

Sgibnev [17] and Iksanov [14] assumed that T (u) is the first passage time through
the level u by a random walk with nonnegative steps. The transition to the present
setting is easy in the view of ET (u) = EN∗(u) + δ0(u), where N∗(u) is the first passage
time through the level u by a zero-delayed random walk with the generic increment ξ
having the distribution

P{ξ ∈ dx} =

∫
[0,∞)

P{S(t) ∈ dx}e−tdt.

It is clear that if the law of S(1) is arithmetic with span δ > 0 (respectively, nonarith-
metic) then the same is true for the law of ξ.

The next lemma was used in the proof of Theorem 4.1.

Lemma 5.5. For x > 0 and a random variable V ∈ (0, 1),

−
∫

[0, 1]

1− e−y

y
dy ≤ f1(x)− f2(x) ≤

∫
[1,∞)

e−y

y
dy,

where

f1(x) :=

∫
[0, x]

E exp(−eyV )dy and f2(x) :=

∫
[0, x]

P{V < e−y}dy.

Proof. For fixed z > 0 define r(x) = x ∧ z, x ∈ R. This function is subadditive on [0,∞)

and nondecreasing. Hence, for x ≥ 0 and y ∈ R we have

r((x+ y)+) ≤ r(x+ y+) ≤ r(x) + r(y+) ≤ r(x) + y+

and

r((x+ y)+)− r(x) ≥ r(x− y−)− r(x)

= (r(x− y−)− r(x))1{x≤z} + (r(x− y−)− r(x))1{x>z, x−y−≤z}

= −y−1{x≤z} + (x− y− − z)1{x>z, x−y−≤z}
≥ −y−1{x≤z} − y−1{x>z, x−y−≤z}

≥ −y−.

Thus we have proved that, for x ≥ 0 and y ∈ R

− y− ≤ r((x+ y)+)− r(x) ≤ y+. (5.4)

Since f2(z) = E(| log V | ∧ z) and

f1(z) =

∫
[0, z]

P{E/V > ey}dy =

∫
[0, z]

P{| log V |+logE > y}dy = E((| log V |+logE)+∧z),

where E is a random variable with the standard exponential distribution which is inde-
pendent of V , (5.4) entails

−E log−E ≤ f1(z)− f2(z) ≤ E log+E.

The proof is complete.
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