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a continuity result and weak approximations
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Abstract

We consider a Stratonovich heat equation in (0, 1) with a nonlinear multiplicative
noise driven by a trace-class Wiener process. First, the equation is shown to have
a unique mild solution. Secondly, convolutional rough paths techniques are used to
provide an almost sure continuity result for the solution with respect to the solution of
the ’smooth’ equation obtained by replacing the noise with an absolutely continuous
process. This continuity result is then exploited to prove weak convergence results
based on Donsker and Kac-Stroock type approximations of the noise.
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1 Introduction and main results

The main motivation of the paper comes from [3], where the authors consider, for
some fixed T > 0, the stochastic heat equation

∂Y n

∂t
(t, x)− ∂2Y n

∂x2
(t, x) = θ̇n(t, x), (t, x) ∈ [0, T ]× [0, 1], (1.1)

with some initial data and Dirichlet boundary conditions, where the random fields
(θ̇n)n≥1 verify that the family of processes θn(t, x) :=

∫ t
0

∫ x
0
θ̇n(s, y) dyds converge in

law, in the space C([0, T ]× [0, 1]) of continuous functions, to the Brownian sheet. Then,
sufficient conditions on θn are provided such that Y n converges in law, as n → ∞, to
the mild solution Y of

∂Y

∂t
(t, x)− ∂2Y

∂x2
(t, x) = Ẇ (t, x), (t, x) ∈ [0, T ]× [0, 1],
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Stratonovich heat equation

where Ẇ (t, x) stands for the space-time white noise. Applications of this result include
the case of a Donsker type approximation, as well as a Kac-Stroock type approximation
in the plane.

Such diffusion approximation issues for stochastic PDEs have been extensively stud-
ied in the literature. Let us quote here Walsh [32], Manthey [20, 21], Tindel [30],
Carmona and Fouque [8], Florit and Nualart [12], just to mention but a few.

Now, following the line of [3], a natural question to be dealt with is to try to get
the same type of weak convergence in a non-additive situation, that is when the term
θ̇n(t, x) in (1.1) is replaced with f(Y n(t, x))θ̇n(t, x), for some sufficiently smooth func-
tion f : R → R. In this case, one expects that the limit equation is of Stratonovich
type, as it was the case in [8] and [12] (see also [2, 29] for examples of a similar be-
haviour). This phenomenon has been recently illustrated by Bal in [1] as well, for the
weak approximation of a linear parabolic equation in Rd with random potential given
by Y n(t, x)θ̇n(x).

Going back to our setting, and focusing first on what we expect to be our limit
equation, we should consider the Stratonovich heat equation

∂Y

∂t
(t, x)− ∂2Y

∂x2
(t, x) = f(Y (t, x)) ◦ Ẇ (t, x), (t, x) ∈ [0, T ]× [0, 1]. (1.2)

Unfortunately, a well-known drawback in this situation is that the solution admits only
very low regularity (see [31]), a major obstacle for our treatment of the non-linearity of
the problem. For this reason, we have chosen to restrict our attention to the case of a
trace-class noise. To be more specific, we will assume that Ẇ is the formal derivative of
a L2(0, 1)-valued Wiener process {Wt, t ∈ [0, T ]} with covariance operator Q satisfying
the following property:

Hypothesis 1.1. Let (ek)k≥1 be the basis of eigenfunctions for the Dirichlet Laplacian
∆ in L2(0, 1) given by ek(x) :=

√
2 sin(kπx), x ∈ [0, 1]. We assume that there exists

a sequence of non-negative real numbers (λk)k≥1 and a parameter η > 0 such that
Qek = λkek for every k ≥ 1 and

∑
k≥1(λkk

4η) < ∞. Without loss of generality, we

assume that η ∈ (0, 18 ).

In particular, for any fixed t ≥ 0, the process Wt can be expanded in L2(Ω;L2(0, 1))

as
Wt =

∑
k≥1

√
λkβ

k
t ek, (1.3)

where (βk)k≥1 is a family of independent Brownian motions. Note that the condition∑
k≥1(λk · k4η) < ∞ is only slightly stronger than the usual trace-class hypothesis∑
k≥1 λk < ∞, insofar as η can be chosen as small as one wishes. For instance, it

covers the case where Q = (Id−∆)−r with r > 1
2 .

Another change with respect to [3] lies in our formulation of the study: compared
to the random field approach in [3], here it has turned out to be more convenient to
use the Hilbert-space-valued setting of Da Prato and Zabczyk [9]. In particular, we are
interested in the mild form of equation (1.2), which is given by

Yt = Stψ +

∫ t

0

St−u(f(Yu) ◦ dWu), t ∈ [0, T ], (1.4)

where from now on, we will use the notation Yt(·) := Y (t, ·), ψ is some initial condition
and f : R → R is a smooth enough mapping. As usual, (St)t>0 denotes the strongly
continuous semigroup of operators generated by −∆.
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Stratonovich heat equation

A first part of the paper (Section 2) will be devoted to the interpretation of (1.4)
as a Stratonovich equation, and it will allow us to exhibit an existence and uniqueness
result for the solution. We should mention here that the stochastic heat equation in
the Stratonovich framework has already been studied in various settings, most of them
in the case of a linear multiplicative noise (see e.g. [6, 7, 17]). Once we have given a
full sense to (1.4), our strategy to study weak approximations of the solution could be
stated in the following loose form:

(a) We will first establish an almost sure continuity result (in some suitable space-time
topology) for the solution of (1.4) with respect to the solution of the ’smooth’ heat equa-
tion obtained by replacing W with an absolutely continuous process W̃ (see Theorem
1.2).
(b) Then, for two particular families of absolutely continuous processes approximating
W , we will rely on our continuity result to show convergence towards the solution in
some possibly different probability space, leading us to the expected weak convergence
(see Theorem 1.3).

Our strategy to compare the solution Y of (1.4) with ’smooth’ solutions is based
on a genuine rough-paths type expansion of the equation, which follows the ideas of
[16, 11, 10]. Rough-paths techniques have indeed proved to be very efficient as far as
approximation of non-linear systems in finite dimension is concerned (see [13, Chapter
17]), and it is therefore natural to address the same question in this infinite-dimensional
background. Note that the model given by (1.4) differs from those studied in [11, 10],
where only finite-dimensional noises are considered, forcing us to revise most of the
technical details behind this procedure (see Section 3).

In order to state the above-mentioned results with more details, we need to intro-
duce the spaces in which our random variables will take their values. First, as far as
the spatial regularity is concerned, the fractional Sobolev spaces must come into the
picture. Thus, for every α ∈ R and p ≥ 2, we will denote by Bα,p the fractional Sobolev
space of order α based on Lp(0, 1), that is

ϕ ∈ Bα,p ⇐⇒ (−∆)αϕ ∈ Lp(0, 1),

where ∆ stands for the Dirichlet Laplacian in L2(0, 1) (see e.g. [26] for a thorough
study of these spaces). For the sake of conciseness, we will write Bα for Bα,2 and B for
B0 = L2(0, 1) throughout the paper. We will also denote by B∞ the set of continuous
functions on [0, 1], endowed with the supremum norm.

Of course, we will also have to deal with the time regularity of our processes. So,
for any subinterval I ⊂ [0, T ] and any Banach space V , we define C0(I;V ) as the space
of continuous functions y : I → V and set

N [y; C0(I;V )] := sup
t∈I
‖yt‖V .

Moreover, for any λ > 0, we introduce the space Cλ(I;V ) of λ-Hölder continuous V -
valued functions endowed with the seminorm

N [y; Cλ(I;V )] := sup
s<t∈I

‖yt − ys‖V
|t− s|λ

. (1.5)

Note that in the case where I = [0, T ], we will often write Cλ(V ) for Cλ([0, T ];V ).
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Stratonovich heat equation

Now, consider any process W̃ defined on the same probability space as W and with
absolutely continuous paths in Bη,2p, for every integer p ≥ 1 (recall that η has been de-

fined in Hypothesis 1.1). Then, let {Ỹt, t ∈ [0, T ]} be the unique solution of the Riemann-
Lebesgue equation (considered in a pathwise sense):

Ỹt = Stψ̃ +

∫ t

0

St−u(f(Ỹu) · dW̃u), t ∈ [0, T ], (1.6)

where ψ̃ ∈ B. As evoked earlier, our first main result will consist in comparing such a
solution Ỹ with the solution Y of (1.4). This result can be stated as follows.

Theorem 1.2. Assume that Hypothesis 1.1 holds true for W and some parameter η > 0,
and let f : R → R be a function of class C3, bounded with bounded derivatives. In
addition, pick γ ∈ ( 1

2 ,
1
2 + η) and assume that the initial condition ψ (resp. ψ̃) in (1.4)

(resp. in (1.6)) belongs to Bγ . Then there exist ε > 0 and p ≥ 1 such that

N [Y − Ỹ ; C0(Bγ)] ≤ Fε,p
(
‖ψ‖Bγ , ‖ψ̃‖Bγ ,N [W ; C 1

2−ε(Bη,2p)],N [W̃ ; C 1
2−ε(Bη,2p)]

)
{
‖ψ − ψ̃‖Bγ +N [W − W̃ ; C 1

2−ε(Bη,2p)]
}
, (1.7)

for some deterministic function Fε,p : (R+)4 → R+ bounded on bounded sets.

The topologies involved in this statement are directly inherited from our rough-paths
analysis of the equation, and their relevance should therefore become clear through
the lines of Section 3 (see in particular the proof of the central Proposition 3.10). Note
that this bound certainly remains valid with respect to some Hölder norm (in time)
for the left-hand side of (1.7), as our arguments will suggest it. However, due to the
technicality of the rough-paths procedure, we have preferred to focus on the behaviour
of the supremum norm (see also Remark 3.13).

Our next step will consist in applying the above Theorem 1.2 - on some possibly
larger probability space - to two particular families of absolutely continuous processes
that approximate W , so as to retrieve weak convergence results for the solution. To
define these approximation processes, we will make use of the following additional no-
tation. Namely, on a probability space (Ω,F , P ), given a sequence (Xk)k≥1 of centered
i.i.d processes admitting moments of any order, we set, for every t ≥ 0,

W(X ·)t :=
∑
k≥1

√
λkX

k
t ek.

Thanks to our forthcoming Proposition 4.3, we know that W(X ·) is indeed well-defined
as a process on (Ω,F , P ) with values in Bη,2p, for all p ≥ 1. Let us also specify that, given
a sequence (βn)n≥1 of real-valued processes, we will henceforth denote by (βn,·)n≥1 =

(βn,k)n,k≥1 a generic sequence of independent copies of (βn)n≥1 (defined on a possibly
larger probability space).

The two families of approximations at the core of our study can now be introduced
as follows (we fix T = 1 for the sake of clarity):

(i) The Donsker approximation Wn := W(Sn,·), where Sn is a sequence of appropriately
rescaled random walks. To be more specific, let (Zj)j≥1 be a family of i.i.d random
variables with mean zero, unit variance and admitting moments of any order. Then, for
each n ∈ N, set

Snt := n−1/2
{ i−1∑
j=1

Zj +
t− (i− 1)/n

1/n
Zi

}
if t ∈

[ i− 1

n
,
i

n

]
, with i ∈ {1, . . . , n}. (1.8)
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Stratonovich heat equation

Recall that, by Donsker Invariance Principle (see e.g. [19, Thm. 4.20]), Sn is known to
converge in law to the standard Brownian motion in C0([0, 1];R), as n→∞.

(ii) The Kac-Stroock approximation Wn := W(θn,·), where θn stands for the classical
Kac-Stroock approximation of the (one-dimensional) Brownian motion. Precisely, intro-
duce a standard Poisson process N and a Bernoulli variable ζ independent of N , with
P (ζ = 1) = 1/2. Then, set

θnt :=
√
n

∫ t

0

(−1)ζ+N(ns)ds. (1.9)

Here again, the sequence (θn)n≥1 thus defined converges in law in C0([0, 1];R), as n →
∞, to a standard Brownian motion (see e.g [18, 24]).

Of course, the one-dimensional weak convergence of Sn (resp. θn) towards the
Brownian motion is a priori not sufficient for us to apply Theorem 1.2. Our aim is to
turn this one-dimensional weak convergence into an almost sure convergence result
for W(Sn,·) (resp. W(θn,·)) with respect to the topology involved in (1.7), and this will
appeal in particular to Skorokhod embedding arguments (see Section 4). Together with
Theorem 1.2, the strategy ends up with the following statement.

Theorem 1.3. Under the hypotheses of Theorem 1.2, fix an initial condition ψ = ψ̃ ∈
Bγ , and denote by Y n the (Riemann-Lebesgue) solution of (1.6) associated with either
the Donsker approximation Wn = W(Sn,·) or the Kac-Stroock approximation Wn =

W(θn,·). Then, as n→∞, Y n converges in law to Y in the space C0(Bγ).

The paper is organized as follows. Section 2 is devoted to a few preliminaries on
the theoretical study of the Stratonovich heat equation (1.2). The rough-paths type
analysis of this equation is performed in Section 3, and it will lead us to the proof
of our continuity result Theorem 1.2. In Section 4, we will tackle the approximation
issue for the above-defined Donsker and Kac-Stroock processes by exhibiting a general
convergence criterion (see Proposition 4.5), which will entail Theorem 1.3. Eventually,
we have added an appendix with material on fractional Sobolev spaces and the proof of
a technical result needed in Section 3.4.

Remark 1.4. At first sight, the reader familiar with rough-paths type continuity results
may be surprised at the absence of some ‘Lévy-area’ term in our bound (1.7). Other-
wise stated, the convergence of an approximation Wn towards W (with respect to some
appropriate topology) is sufficient to guarantee the convergence of the associated so-
lution. In fact, on this particular point, the situation is very similar to the case of a
one-dimensional SDE with so-called commuting vector fields, i.e.,

dYt = b(Yt) dt+
∑n

i=1
σi(Yt) ◦ dBit with σ′i(x)σj(x) = σ′j(x)σi(x) for all i, j = 1, . . . , n.

(1.10)
It is a well-known fact (see for instance [28]) that under this commuting assumption,
the solution Y of (1.10) appears as a continuous functional of the sole noise B (that
is, no need for any Lévy-area component). In a certain way, Equation (1.2) fits the
above pattern. Indeed, for fixed x ∈ (0, 1), the noisy perturbation can be written as∑∞
i=0[
√
λi ei(x)f(Yt(x))]◦dβit, i.e., we (morally) deal with n =∞ and σi(·) =

√
λiei(x)f(·)

in (1.10). So, at least at this heuristic level, our continuity result (1.7) becomes quite
natural. In a more specific way, we will see that due to the commuting property, the
Lévy-area term arising from the rough-paths analysis of (1.2) can be easily reduced to
some continuous functional of W (Lemma 3.9).
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Stratonovich heat equation

Remark 1.5. As we shall see it in Section 3, our proof of Theorem 1.2 heavily relies
on the properties of the fractional Sobolev spaces Bα,p, which we have recalled in the
appendix. Unfortunately, many of these properties become much more restrictive as
soon as the underlying space dimension is larger than 2, as illustrated by the classi-
cal Sobolev embeddings. This accounts for our choice to stick to a one-dimension heat
equation. Note however that our considerations on the theoretical study of (1.4) (Sec-
tion 2) could be easily extended to a multidimensional setting.

Remark 1.6. The results in this paper remain actually valid for any operator A of the
form A = −∂x(a · ∂x) + c, where c ≥ 0 and a : [0, 1] → R is a continuously differentiable
function. Indeed, as explained in [10, Section 2.1], such an operator A also generates
an analytic semigroup of contractions and one can identify the domains D(Aαp ) of its
fractional powers with the spaces Bα,p, which is sufficient to follow the lines of our
reasoning.

Unless otherwise stated, any constant c or C appearing in our computations below is
understood as a generic constant which might change from line to line without further
mention.

2 The Stratonovich integral

Recall that we are interested in the following mild equation:

Yt = Stψ +

∫ t

0

St−u(f(Yu) ◦ dWu), t ∈ [0, T ], ψ ∈ B, (2.1)

where (St)t≥0 denotes the strongly continuous semigroup of operators generated by
−∆ with Dirichlet boundary conditions, and W is assumed to satisfy Hypothesis 1.1.

The integral appearing in (2.1) is thus understood in some Stratonovich sense, an
interpretation to be clarified in a convolutional setting, which is the main purpose of this
first section. Once endowed with this interpretation, it turns out that (2.1) reduces to a
common mild Itô equation with an additional drift term, and accordingly the existence
and uniqueness of Y can be derived from well-known results (see Section 2.2).

Note that the following regularity assumption on f will prevail throughout the sec-
tion.

Hypothesis 2.1. The function f : R → R is bounded, of class C2 and with bounded
derivatives.

2.1 The Stratonovich integral

In order to interpret
∫ t
0
St−u(f(Yu) ◦ dWu), we restrict our attention to a particu-

lar class of processes Y . Namely, we assume that, on some filtered probability space
(Ω,F , (Ft)t≥0, P ), {Yt, t ∈ [0, T ]} is the unique B-valued mild solution of the following
equation:

dYt −∆Ytdt = V 1
t dt+ V 2

t dWt, Y0 = ψ ∈ B, (2.2)

for some Ft-adapted random fields {V it , t ∈ [0, T ]}, i = 1, 2, with continuous paths in B
(recall that B := L2(0, 1)). Moreover, we assume that

sup
t≤T

E[‖V 2
t ‖2B] < +∞. (2.3)

In fact, such a process Y is explicitly given (see e.g. [9]) by

Yt = Stψ +

∫ t

0

St−sV
1
s ds+

∫ t

0

St−s
(
V 2
s · dWs

)
. (2.4)
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Stratonovich heat equation

Now, a natural idea to define the integral in (2.1) in some Stratonovich sense would be
the following: introduce the kernel Gt−s(x, y) of St−s and, with the representation (1.3)
of W in mind, set[∫ t

0

St−s (f(Ys) ◦ dWs)

]
(x) ” = ”

∞∑
j=1

√
λj

(∫ t

0

〈Gt−s(x, ∗)f(Ys), ej〉B ◦ dβjs
)
,

where the symbol ∗ denotes the space variable and each integral∫ t

0

〈Gt−s(x, ∗) · f(Ys), ej〉B ◦ dβjs

is interpreted in the (classical) Stratonovich sense. Nevertheless, it is a well-known fact
that the process Y defined by (2.4) is not always a B-valued semimartingale (in other
words, Y is not always a strong solution of (2.4), see e.g. [9, Sec. 5.6]), making the
definition of these integrals quite obscure at first sight.

To overcome this difficulty, we consider a standard semimartingale approximation
of Y : for every ε > 0, let Y ε be the unique (strong) solution of

dY εt −∆εY
ε
t dt = V 1

t dt+ V 2
t dWt, Y ε0 = ψ,

where

−∆ε :=
1

ε
(Id− (Id− ε∆)−1)

stands for the Yosida approximation of −∆. In particular, −∆ε defines a monotone and
bounded operator which converges pointwise to −∆ (see e.g. [4]). Then, for every fixed
ε > 0, Y ε is a semimartingale, and we have (see e.g. [9, Proposition 7.5])

lim
ε→0

sup
t≤T

E
[
‖Y εt − Yt‖2B

]
= 0. (2.5)

This extrinsic procedure will lead us to the following interpretation:

Proposition 2.2. With the above notations, the family of Stratonovich integrals defined
for all t ∈ [0, T ], x ∈ (0, 1) by[∫ t

0

St−s (f(Y εs ) ◦ dWs)

]
(x) := lim

u↗t

∞∑
j=1

√
λj

(∫ u

0

〈Gt−s(x, ∗) · f(Y εs ), ej〉B ◦ dβjs
)
, (2.6)

where the latter limit is considered in L2(Ω), converges in L1(Ω; C0([0, T ];B)) as ε tends
to 0. Its limit, that we denote by

∫ ·
0
S·−s (f(Ys) ◦ dWs), satisfies the relation∫ t

0

St−s (f(Ys) ◦ dWs) =

∫ t

0

St−s (f(Ys) · dWs) +

∫ t

0

St−s
(
V 2
s · f ′(Ys) · P

)
ds, (2.7)

where P (ξ) := 1
2

∑∞
k=1 λkek(ξ)2 and the notation

∫ t
0
St−s (f(Ys) · dWs) refers to the (usual)

Itô integral.

Thus, the Stratonovich integral in (2.1) will henceforth be understood as in the latter
proposition, in the class of processes Y satisfying an equation of the form (2.2). Note
that the relation (2.7) provides us with a familiar decomposition for the Stratonovich
integral as the sum of an Itô integral and a trace term, and it must be compared with
the decomposition for the (standard) Stratonovich integral.
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Stratonovich heat equation

As a first step in the proof of Proposition 2.2, observe that the two terms in the
right-hand side of (2.7) are indeed well-defined processes in L2(Ω;B). This is a straight-
forward consequence of the boundedness of f, f ′, the trace-class assumption on W , and
the fact that P defines a uniformly bounded function.

We point out that, in the definition (2.6), we first restrict the integral to (0, u) with
u < t in order to avoid the singularity in the derivative of the kernel G. This will be
clarified in the proof of the next lemma.

Lemma 2.3. With the above notations, we have that, for all u ∈ (0, t),

∞∑
j=1

√
λj

(∫ u

0

〈Gt−s(x, ∗) · f(Y εs ), ej〉B ◦ dβjs
)

(2.8)

=

[∫ u

0

St−s (f(Y εs ) · dWs)

]
(x) +

∫ u

0

[St−s(f
′(Y εs ) · V 2

s · P )](x) ds.

Proof. For any fixed (u, x) ∈ (0, t) × (0, 1) and j ∈ N, the process s 7→ 〈Gt−s(x, ∗) ·
f(Y εs ), ej〉B, s ∈ [0, u], defines a (real-valued) semimartingale. Hence, we can use Itô’s
formula to assert that

〈Gt−s(x, ∗) · f(Y εs ), ej〉B = 〈Gt(x, ∗) · f(ψ), ej〉B +

∫ s

0

〈∂tGt−r(x, ∗) · f(Y εr ), ej〉B dr

+

∫ s

0

〈Gt−r(x, ∗)
{

(∆εY
ε
r + V 1

r ) · f ′(Y εr ) +
1

2
V 2
r · f ′′(Y εr )

}
, ej〉B dr

+

∞∑
k=1

√
λk

∫ s

0

〈Gt−r(x, ∗) · f ′(Y εr ) · V 2
r · ek, ej〉B dβkr . (2.9)

The hypotheses on f and V i, and the fact that s ≤ u < t, guarantee that all terms on the
right-hand side above are well-defined. More precisely, using the spectral decomposi-
tion of G given by

Gt−r(x, y) =

∞∑
k=1

e−k
2π2(t−r)ek(x)ek(y),

one proves that, P -a.s.,∫ s

0

〈∂tGt−r(x, ∗) · f(Y εr ), ej〉B dr ≤ C
∞∑
k=1

(
e−k

2π2(t−s) − e−k
2π2t

)
,

and the latter is finite since s ∈ (0, t). As far as the second pathwise integral on the
right-hand side of (2.9) is concerned, we have, for instance,

E

[∣∣∣∣∫ s

0

〈Gt−r(x, ∗) ·∆εY
ε
r · f ′(Y εr ), ej〉B dr

∣∣∣∣2
]
≤ C E

[∫ s

0

∫ 1

0

Gt−r(x, y)|[∆εY
ε
r ](y)|2 dydr

]
≤ C

(
sup
r≤T

E[‖Y εr ‖2B]
)∫ s

0

1√
t− r

dr < +∞.

Here, we have used the fact that 0 ≤ Gt−r(x, y) ≤ (2π(t − r))−1/2 e−
(x−y)2
2(t−r) . Similarly,

one easily proves that the last term in (2.9) is a well-defined square-integrable random
variable.

Plugging the expression (2.9) in (2.8) and using the definition of the (standard)
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Stratonovich integral (see e.g. formula (3.9) in [19, p. 156]), we end up with

∞∑
j=1

√
λj

(∫ u

0

〈Gt−s(x, ∗) · f(Y εs ), ej〉B ◦ dβjs
)

=

∞∑
j=1

√
λj

(∫ u

0

〈Gt−s(x, ∗) · f(Y εs ), ej〉B dβjs
)

+
1

2

∞∑
j=1

λj

∫ u

0

〈Gt−s(x, ∗) · f ′(Y εs ) · V 2
s · ej , ej〉B ds

=

[∫ u

0

St−s (f(Y εs ) · dWs)

]
(x) +

∫ u

0

[
St−s(f

′(Y εs ) · V 2
s · P )

]
(x) ds,

which concludes the proof.

We can now go back to our main statement.

Proof of Proposition 2.2. First, owing to the previous lemma, we have that the limit on
the right-hand side of (2.6) equals to[∫ t

0

St−s (f(Y εs ) · dWs)

]
(x) +

∫ t

0

[St−s(f
′(Y εs ) · V 2

s · P )](x) ds.

This can be proved using the bounded convergence theorem. Hence, the proof reduces
to the two assertions:

lim
ε→0

sup
t≤T

E

[ ∥∥∥∥∫ t

0

St−s (f(Y εs ) · dWs)−
∫ t

0

St−s (f(Ys) · dWs)

∥∥∥∥
B

]
= 0. (2.10)

and

lim
ε→0

sup
t≤T

E

[ ∥∥∥∥∫ t

0

St−s(f
′(Y εs ) · V 2

s · P )ds−
∫ t

0

St−s(f
′(Ys) · V 2

s · P )ds

∥∥∥∥
B

]
= 0. (2.11)

Let us first deal with (2.10). By the isometry property of the stochastic integral, the
boundedness of St−s and the assumptions on f , we have:

E

[ ∥∥∥∥∫ t

0

St−s (f(Y εs ) · dWs)−
∫ t

0

St−s (f(Ys) · dWs)

∥∥∥∥2
B

]
= E

[ ∫ t

0

∞∑
k=1

λk‖St−s([f(Y εs )− f(Ys)]ek)‖2B ds
]

≤
∞∑
k=1

λk E

[ ∫ T

0

∫ 1

0

|f(Y ε(s, y))− f(Y (s, y))|2|ek(y)|2 dyds
]

≤ C
∞∑
k=1

λk sup
t≤T

E
[
‖Y εt − Yt‖2B

]
≤ C sup

t≤T
E
[
‖Y εt − Yt‖2B

]
,

upon recalling that
∑∞
k=1 λk <∞.

In order to prove (2.11), we use the Sobolev embedding L1(0, 1) ⊂ B− 1
4−ε

and the
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assumptions on f and V 2. In fact, we have

E

[∥∥∥ ∫ t

0

St−s
(
[f ′(Y εs )− f ′(Ys)] · V 2

s · P
)
ds
∥∥∥
B

]
(2.12)

≤ C ‖P‖B∞
∫ t

0

|t− s|−
1
4−εE

[
‖[f ′(Y εs )− f ′(Ys)] · V 2

s ‖L1

]
ds

≤ C ‖P‖B∞
∫ t

0

|t− s|−
1
4−εE

[
‖[f ′(Y εs )− f ′(Ys)]‖B‖V 2

s ‖B
]
ds

≤ C
(

sup
t≤T

E[‖Y εt − Yt‖2B]1/2
)(

sup
t≤T

E[‖V 2
t ‖2B]1/2

)
(recall that ‖·‖B∞ refers to the supremum norm on [0, 1]). Therefore, by the assumptions
on V 2, the convergence (2.5) guarantees that (2.10) and (2.11) hold, and this lets us
conclude the proof.

2.2 Existence and uniqueness of solution

With the notations of the previous section, consider the following mild (Itô) equation:

Yt = Stψ +

∫ t

0

St−s (f(Ys) · dWs) +

∫ t

0

St−s(f
′(Ys) · f(Ys) · P ) ds, (2.13)

where we recall that P (ξ) =
∑∞
k=1 λkek(ξ)2. Hypotheses 1.1 and 2.1 allow us to apply

standard methods and guarantee that this equation admits a unique L2(Ω;B)-valued
solution Y (see [9]). In particular, we observe that Y solves an equation of the form
(2.2) with V 1

t = f ′(Yt) · f(Yt) · P and V 2
t = f(Yt) and these random fields fulfill the

assumptions specified in the previous section. Thus, for all t ∈ [0, T ], we can define the
Stratonovich integral

∫ t
0
St−s (f(Ys) ◦ dWs) through Proposition 2.2 and we know that∫ t

0

St−s (f(Ys) ◦ dWs) =

∫ t

0

St−s (f(Ys) · dWs) +

∫ t

0

St−s(f
′(Ys) · f(Ys) · P )ds,

which yields that Y is also a solution of (2.1).

Conversely, due to (2.7), it is readily checked that any solution of (2.1) in the class
of processes satisfying an equation of the form (2.2) is also a solution of (2.13) (use
the uniqueness of V 1, V 2 in (2.4)). This provides us with the following existence and
uniqueness result.

Theorem 2.4. Assume that Hypotheses 1.1 and 2.1 are both satisfied and that ψ ∈ B.
Then, there exists a unique B-valued process {Yt, t ∈ [0, T ]} which solves

Yt = Stψ +

∫ t

0

St−u(f(Yu) ◦ dWu), t ∈ [0, T ].

Moreover, Y has a version with continuous paths and it holds that supt≤T E[‖Yt‖2B] <∞.

3 A rough-paths type analysis of the equation

Let us now turn to the proof of Theorem 1.2. As announced in the Introduction, our
strategy is based on a rough-paths type expansion of the equation. Accordingly, a few
ingredients taken from the so-called convolutional rough paths theory, that is rough
paths theory adapted to mild evolution equation, must be introduced in the first place.
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3.1 Tools from (convolutional) rough paths theory

We gather here some preliminary material borrowed from [16] (see also [11, 10]).
As underlined in the latter references, a key point towards a fruitful pathwise analysis
of (1.4) lies in the following elementary observation: due to the semigroup property
St+t′ = St · St′ , it holds that, for any s < t,

Yt − Ys =

∫ t

s

St−u(f(Yu) ◦ dWu) +

∫ s

0

[
St−u − Ss−u

]
(f(Yu) ◦ dWu)

=

∫ t

s

St−u (f(Yu) ◦ dWu) + atsYs, where ats := St−s − Id .

Otherwise stated, by setting (δ̂Y )ts := (Yt− Ys)− atsYs, the equation (1.4) can be equiv-
alently written in the convenient form:

Y0 = ψ, (δ̂Y )ts =

∫ t

s

St−u (f(Yu) ◦ dWu) , 0 ≤ s ≤ t ≤ 1. (3.1)

This should be compared with the behaviour of solutions to standard (stochastic) differ-
ential equations: if Xt = a+

∫ t
0
σ(Xu) dBu, then (δX)ts := Xt−Xs =

∫ t
s
σ(Xu) dBu. Then,

in a rough-paths setting, we are naturally led to extend the definition of δ̂ to processes
with 2 variables, as follows:

Notation 3.1. For all processes y : [0, T ] → B and z : S2 → B, where S2 := {(s, t) ∈
[0, T ]2 : s ≤ t} denotes the two-dimensional simplex, we set, for s ≤ u ≤ t ∈ [0, T ]:

(δy)ts := yt − ys, (δ̂y)ts := (δy)ts − atsys = yt − St−sys, (3.2)

(δ̂z)tus := zts − ztu − St−uzus. (3.3)

To make the notations (3.2)-(3.3) even more legitimate in this convolutional context,
let us point out the following algebraic properties:

Proposition 3.2. For any y : [0, T ]→ B, it holds:

(i) Telescopic sum: δ̂(δ̂y)tus = 0 and (δ̂y)ts =
∑n−1
i=0 St−ti+1(δ̂y)ti+1ti for any partition

{s = t0 < t1 < . . . < tn = t} of an interval [s, t] of [0, T ].

(ii) Chasles relation: if Jts :=
∫ t
s
St−u (yu · dWu), then δ̂J = 0.

Both points (i) and (ii) are straighforward consequences of the semigroup property.
Now, in accordance with the new expression (3.1) for the equation, a δ̂-version of the
classical Hölder norm must come into the picture. To this end, fix a subinterval I ⊂ [0, T ]

and a Banach space V . Then, if y : I → V and λ > 0, set

N [y; Ĉλ(I;V )] := sup
s<t∈I

‖(δ̂y)ts‖V
|t− s|λ

, (3.4)

and define Ĉλ(I;V ) as the set of processes y : I → V such that N [y; Ĉλ(I;V )] <∞.

As we will see it in the sequel, a proper control for the expansion of
∫ t
s
St−u(f(Yu) ◦

dWu) also requires the extension of both definitions (1.5) and (3.4) to processes with 2
or 3 variables. Precisely, if z : S2 → V and h : S3 → V , where S3 := {(t, u, s) ∈ [0, T ]3 :

s ≤ u ≤ t}, we set

N [z; Cλ2 (I;V )] := sup
s<t∈I

‖zts‖V
|t− s|λ

, N [h; Cλ3 (I;V )] := sup
s<u<t∈I

‖htus‖V
|t− s|λ

, (3.5)
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and we define Cλ2 (I;V ) (resp. Cλ3 (I;V )) along the same lines as Ĉλ(I;V ). Observe for
instance that if y ∈ Cλ2 (I;L(V,W )) and z ∈ Cβ2 (I;V ), then the process h defined as
htus = ytuzus (s ≤ u ≤ t ∈ I) belongs to Cλ+β3 (I;W ).

Note that when I = [0, T ], we will more simply write Cλk (V ) := Cλk (I;V ) for k ∈
{1, 2, 3}. Besides, from now on, we use the following convenient notation for products
of processes.

Notation 3.3. If g : Sn → L(V,W ) and h : Sm →W (with n,m ∈ {1, 2, 3}), we define the
product gh : Sn+m−1 →W by the formula

(gh)t1...tm+n−1
:= gt1...tnhtn...tn+m−1

. (3.6)

With this convention, it is readily checked that if g : S2 → L(Bκ,Bα) and h : [0, T ] →
Bκ, then δ̂(gh) : S3 → Bα obeys the rule:

δ̂(gh) = (δ̂g)h− g(δh). (3.7)

To end up with this toolbox, let us report what may be seen as the cornerstone re-
sult of the convolutional rough paths theory, namely the existence of (some kind of)
an inverse operator for δ̂, denoted by Λ̂, and which will play a prominent role in our
forthcoming decomposition (3.9). In brief, this operator allows us to get both a nice
expression and a sharp estimate for the regular terms, i.e., the terms with Hölder reg-
ularity strictly larger than 1, that arise from the expansion of

∫ t
s
St−u(f(Yu) ◦ dWu) (see

in particular the proof of Lemma 3.12).

Theorem 3.4. Fix an interval I ⊂ [0, T ], a parameter κ ≥ 0 and let µ > 1. For any
h ∈ Cµ3 (I;B) ∩ Im δ̂, there exists a unique element

Λ̂h ∈ ∩α∈[0,µ)Cµ−α2 (I;Bα)

such that δ̂(Λ̂h) = h. Moreover, Λ̂h satisfies the following contraction property: for all
α ∈ [0, µ),

N [Λ̂h; Cµ−α2 (I;Bα)] ≤ cα,µN [h; Cµ3 (I;B)]. (3.8)

The proof of this result can be found in [16, Theorem 3.5].

3.2 A rough-paths type expansion of the solution

We are now ready to settle our reasoning, which applies to a smooth enough vector
field f :

Hypothesis 3.5. The function f : R → R in (3.1) is of class C3, bounded and with
bounded derivatives.

Our main task will actually consist in establishing the following pathwise decompo-
sition for the solution Y to (3.1):

Theorem 3.6. Assume that both Hypotheses 1.1 and 3.5 hold true. Fix γ ∈ ( 1
2 ,

1
2 + η)

and assume that ψ ∈ Bγ . Then the δ̂-variations of the solution Y to (3.1) can be expanded
as

(δ̂Y )ts =

∫ t

s

St−u(f(Yu) ◦ dWu) = LWts (f(Ys)) + LWW
ts (f(Ys) · f ′(Ys)) + Λ̂ts

(
RY
)
, (3.9)
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where we have set, for all s < u < t,

LWts (ϕ) :=

∫ t

s

St−u(ϕ · dWu), (3.10)

LWW
ts (ϕ) :=

∫ t

s

St−u (ϕ · (δW )us · dWu) +

∫ t

s

St−u (ϕ · P ) du, (3.11)

and

RYtus := −δ̂
(
LW f(Y ) + LWW

(
f(Y ) · f ′(Y )

))
tus
. (3.12)

The theorem must be read as follows: in the expansion of
∫ t
s
St−u(f(Yu) ◦ dWu), we

can exhibit a main term, namely

LWts (f(Ys)) + LWW
ts (f(Ys) · f ′(Ys)),

and a residual term Λ̂ts
(
RY
)

with Hölder regularity strictly larger than 1, in the sense
of Theorem 3.4 (take α = 0 in (3.8)). Besides, from the decomposition (3.9), we can
somehow conclude that the whole dynamics induced by W is "encoded" through the
two (stochastic) operator-valued processes LW and LWW . So, before we turn to the
proof of (3.9), let us elaborate on the properties of these two processes.

3.3 The couple (LW , LWW )

At this point, we consider LWts and LWW
ts as stochastic linear operators acting on

the space of smooth functions ϕ. The following (straightforward) relation accounts for
the algebraic behaviour of the couple (LW , LWW ): it is the convolutional analog of the
classical Chen’s relation between a process and its Lévy area (see [15]).

Proposition 3.7. The processes LW and LWW obey the following algebraic rules: For
all s < u < t and all smooth function ϕ,

(δ̂LW )tus(ϕ) = 0 , (δ̂LWW )tus(ϕ) = LWtu (ϕ · (δW )us). (3.13)

Now, it matters to identify the regularity properties of LW and LWW as 2-variables
processes. A first clue in this direction is given by the following (a.s.) regularity result
for the noise W itself.

Lemma 3.8. Under Hypothesis 1.1, one has (a.s.) W ∈ C 1
2−ε(Bη,2p) for every integer

p ≥ 1 and every small ε > 0.

Proof. By using our forthcoming Proposition 4.3, we deduce that

E
[
‖(δW )ts‖2pqBη,2p

]
≤ Cp,qE

[
|(δβ)ts|2pq

]
≤ Cp,q |t− s|pq ,

for all q ≥ 1, and the result is now a straightforward consequence of the Garsia-
Rodemich-Rumsey Lemma 6.1 (take δ∗ = δ and R = δW in the latter statement).

Our second ingredient towards the regularity properties of (LW , LWW ) relies on
two successive observations. First, due to their relative simplicity, the two expressions
(3.10)-(3.11) can be integrated by parts. Then, owing to the some obvious commuting
properties, we can turn LWW into an easy-to-handle functional of δW . This is what we
propose to detail in the proof of the following Lemma.
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Lemma 3.9. For every smooth function ϕ and all s < t ∈ [0, T ], the following formulas
hold true (a.s.):

LWts (ϕ) = St−s(ϕ · (δW )ts)−
∫ t

s

∆St−u(ϕ · (δW )tu) du, (3.14)

LWW
ts (ϕ) =

1

2

{
St−s(ϕ · (δW )2ts)−

∫ t

s

∆St−u
(
ϕ ·
[
(δW )2tu + 2(δW )tu · (δW )us

])
du

}
.

(3.15)

Proof. With the expansion (1.3) in mind, it is easily checked, by setting

WN
t :=

N∑
i=1

√
λiβ

i
tei,

that LWts (ϕ) = limN→∞
∑N
i=1

∫ t
s
St−u(ϕ · dWN

u ) and∫ t

s

St−u(ϕ · (δW )us · dWu) = lim
N→∞

∫ t

s

St−u(ϕ · (δWN )us · dWN
u ),

where the limits are taken in L2(Ω,B). The proof then reduces to applications of Itô’s
formula and we only elaborate on (3.15). For fixed i, j ∈ {1, . . . , N}, apply Itô’s formula
to the (random) function F i,js,t : [s, t]× R× R→ B defined by

F i,js,t (u, x, y) := St−u(ϕ · ei · ej)
[
(x− βis)(y − βjs)− (δβi)ts(δβ

j)ts
]

so as to deduce

0 = F i,js,t (t, β
i
t , β

j
t ) = F i,js,t (s, β

i
s, β

j
s)−

∫ t

s

∆St−u(ϕ·ei·ej)
[
(δβi)us(δβ

j)us−(δβi)ts(δβ
j)ts
]
du

+

∫ t

s

St−u(ϕ·ei·ej)(δβi)us dβju+

∫ t

s

St−u(ϕ·ei·ej)(δβj)us dβiu+1{i=j}

∫ t

s

St−u(ϕ·ei·ej) du.

By taking the sum over i, j, we deduce the formula

St−s(ϕ · (δWN )2ts)−
∫ t

s

∆St−u
(
ϕ · [(δWN )2ts − (δWN )2us]

)
du

= 2

∫ t

s

St−u(ϕ · (δWN )us · dWN
u ) +

∫ t

s

St−u
(
ϕ ·
( N∑
i=1

λie
2
i

))
and by passing to the limit (in L2(Ω,B)), we get

LWW
ts (ϕ) =

1

2

{
St−s(ϕ · (δW )2ts) +

∫ t

s

∆St−u
(
ϕ · [(δW )2ts − (δW )2us]

)
du

}
.

Formula (3.15) immediately follows.

We are now in a position to extend both LWts and LWW
ts to larger classes of functions

ϕ and retrieve the following (a.s.) bounds, which will be at the core of our identification
procedure:
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Proposition 3.10. Under the hypotheses of Theorem 3.6, for any small ε > 0, there
exists ε̃ > 0 and p ≥ 1 such that (almost surely)

N [LW ; C
1
2−ε
2 (L(B,B))] +N [LW ; C(

1
2−γ+η)−ε

2 (L(B1/2,Bγ))] +N [LW ; C
1
4−ε
2 (L(B∞,B∞))]

≤ cε,ε̃,pN [W ; C 1
2−ε̃(Bη,2p)], (3.16)

N [LWW ; C1−ε2 (L(B,B))] +N [LWW ; C(1−γ+η)−ε2 (L(B1/2,Bγ))]

+N [LWW ; C
3
4−ε
2 (L(B∞,B∞))] ≤ cε,ε̃,pN [W ; C 1

2−ε̃(Bη,2p)]2, (3.17)

for some constant cε,ε̃,p.

Note here how important the assumption γ < 1
2 + η in Theorem 3.6 to ensure that

( 1
2 − γ + η)− ε > 0 for any small enough ε > 0.

Proof. In fact, thanks to the representation formulas (3.14)-(3.15) and the pathwise
regularity of W (Lemma 3.8), all of these bounds can be derived from the classical
properties of the fractional Sobolev spaces (see Appendix A). For instance, owing to
(5.3), one has, for any p ≥ 1 and α ≥ 1

4p ,

‖ϕ · (δW )ts‖B−α ≤ cα,p‖(δW )ts‖L2p(0,1)‖ϕ‖B, (3.18)

so that for any ε̃ small enough,

‖St−s(ϕ · (δW )ts)‖B ≤ cα,p |t− s|−α ‖(δW )ts‖L2p(0,1)‖ϕ‖B (use (5.1))

≤ cα,p,ε̃ |t− s|
1
2−ε̃−αN [W ; C 1

2−ε̃(Bη,2p)] ‖ϕ‖B.

In the same way,

‖∆St−u(ϕ · (δW )tu‖B ≤ cα,p |t− s|−1−α ‖(δW )ts‖L2p(0,1)‖ϕ‖B (use (5.1))

≤ cα,p,ε |t− s|(
1
2−ε̃−α)−1N [W ; C 1

2−ε̃(Bη,2p)] ‖ϕ‖B.

By taking α small enough, i.e., p large enough, we get the expected bound, namely

N [LW ; C
1
2−ε
2 (L(B,B))] ≤ cε,ε̃,pN [W ; C 1

2−ε̃(Bη,2p)].

The other estimates for LW can be proved along the same lines. As far as LWW is
concerned, observe for instance that if ε > 0 is small enough, then one has

‖∆St−u(ϕ · (δW )tu · (δW )us)‖Bγ
≤ c |t− u|(η−γ)−1 ‖ϕ · (δW )tu · (δW )us‖Bη
≤ c |t− u|(η−γ)−1 ‖(δW )tu · (δW )us‖Bη‖ϕ‖B1/2

(use (5.4))

≤ c |t− u|(η−γ)−1 ‖(δW )tu‖Bη,4‖(δW )us‖Bη,4‖ϕ‖B1/2
(use (5.5))

≤ cε |t− u|(
1
2+η−γ−ε̃)−1 |u− s|

1
2−ε̃N [W ; C 1

2−ε̃(Bη,4)]2‖ϕ‖B1/2
,

which entails that

N [LWW ; C(1−γ+η)−ε2 (L(B1/2,Bγ))] ≤ cε,ε̃,pN [W ; C 1
2−ε̃(Bη,4)]2.

The (analogous) proofs for the other bounds are left to the reader.
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3.4 Proof of Theorem 3.6

First, we need to justify that the right-hand side of the decomposition (3.9) is well-
defined. This will rely (among others) on the following a priori controls for the solution
Y . For the sake of clarity, we have postponed the proof of this statement to Appendix B.

Lemma 3.11. Under the hypotheses of Theorem 3.6, one has (almost surely)

Y ∈ Ĉ2η(B∞) ∩ C0(Bγ), (3.19)

KY := δ̂Y − LW f(Y ) ∈ C
1
2+η
2 (B). (3.20)

Recall that according to our convention (3.6), the definition of KY in (3.20) must be
understood as KY

ts := (δ̂Y )ts − LWts (f(Ys)) for every s < t ∈ [0, T ].

Lemma 3.12. Under the hypotheses of Theorem 3.6, let Z be the process given by
Z0 = ψ and

(δ̂Z)ts = LWts (f(Ys)) + LWW
ts (f(Ys) · f ′(Ys)) + Λ̂ts

(
RY
)
. (3.21)

Then, almost surely, Z is well-defined as an element of Ĉ2η(B∞) ∩ C0(Bγ), and there
exists a constant λ > 0 such that for any subinterval I = [`1, `2] ⊂ [0, T ], one has

N [Z; Ĉ2η(I;B∞)] +N [Z; C0(I;Bγ)] ≤ ‖Z`1‖Bγ + cW,f |I|λN [Y ;Q(I)], (3.22)

where we have set

N [Y ;Q(I)] := N [Y ; Ĉ2η(I;B∞)] +N [Y ; C0(I;Bγ)] +N [KY ; C
1
2+η
2 (I;B)]

Proof. First, according to Theorem 3.4, we need to justify that RY ∈ Cµ3 (B) for some
µ > 1. To this end, expand R using the algebraic rules (3.7) and (3.19), which gives

RYtus = LWtuNus + LWW
tu δ(f(Y ) · f ′(Y ))us, (3.23)

with Nus := δ(f(Y ))us − (δW )us · f(Ys) · f ′(Ys). Thanks to (3.17) and (3.19), it is readily
checked that LWW δ(f(Y ) · f ′(Y )) ∈ C1+2η−ε

3 (B) for any small ε > 0, since

‖δ(f(Y ) · f ′(Y ))us‖B ≤ c ‖(δY )us‖B ≤ c {‖(δ̂Y )us‖B + ‖ausYs‖B}
≤ c {|u− s|2ηN [Y ; C2η(B∞)] + |u− s|γN [Y ; C0(Bγ)]},

where we have used (5.2) to get the last inequality (recall that ats := St−s − Id).

Then, as far as LWN is concerned, let us expand N using standard differential calculus,
which provides us with the expression

Nus =

∫ 1

0

dr f ′(Ys + r(δY )us) ·
{
KY
us + ausYs + LaWus (f(Ys))

}
+

∫ 1

0

dr [f ′(Ys + r(δY )us)− f ′(Ys)] · (δW )us · f(Ys), (3.24)

where the additional operator-valued process LaW is defined by

LaWts (ϕ) :=

∫ t

s

atu(ϕ · dWu) = ats(ϕ · (δW )ts)−
∫ t

s

∆St−u(ϕ · (δW )tu)du.

Now, since LW ∈ C
1
2−ε
2 (L(B,B)), it is sufficient to prove that N ∈ C

1
2+ε
2 (B) for some small

ε > 0. But, with the expansion (3.24) in hand, this becomes an easy consequence of the
a priori controls given by Lemma 3.11, together with the regularity property:

N [LaW ; C(
1
2+η)−ε

2 (L(B1/2,B))] ≤ cε,ε̃,pN [W ; C 1
2−ε̃(Bη,2p)],
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derived from (5.4). Note in particular how important the assumption γ > 1/2, insofar
as, by (5.2),

‖f ′(Ys + r(δY )us) · (ausYs)‖B ≤ Cf‖ausYs‖B ≤ C|u− s|γ N [Y ; C0(Bγ)].

We are thus in a position to apply Λ̂ to RY , and so Z is properly defined through
(3.21). The regularity of Z and the bound (3.22) are immediate consequences of (3.16)-
(3.17) and the contraction property (3.8) of Λ̂. The details are left to the reader.

Remark 3.13. Although not optimal, the two regularity results (3.19) and (3.20) are
thus sufficient for us to prove that the right-hand side of the decomposition (3.9) is
indeed well-defined. We also retrieve an important stability phenomenon here: Y and
Z both belong to the same space Ĉ2η(B∞) ∩ C0(Bγ). A posteriori, this accounts for our
choice in favor of this particular topology.

We can eventually proceed to prove Theorem 3.6.

Proof of Theorem 3.6. We need to identify the increments of Y with those of the process
Z defined in Lemma 3.12. To do so, we naturally rely on some expansion of the right-
hand side of (2.13). Precisely, we have that∫ t

s

St−u(f(Yu) · dWu) +

∫ t

s

St−u(P · f(Yu) · f ′(Yu)) du

= LWts (f(Ys)) + LWW
ts (f(Ys) · f ′(Ys)) + JYts ,

with

JYts :=

∫ t

s

St−u(P · δ(f(Y ) · f ′(Y ))us) du+

∫ t

s

St−u(NY
us · dWu), (3.25)

where the process NY
ts = δ(f(Y ))ts − (δW )ts · f(Ys) · f ′(Ys) has already been considered

in the proof of Lemma 3.12. Therefore, with this notation, it holds that

δ̂(Z − Y ) = Λ̂ts(R
Y )− JYts .

Now, by the contraction property (3.8), we know that Λ̂(RY ) ∈ Cµ1

2 (B) for some µ1 >

1. Besides, with the same ingredients as in the proof of Lemma 3.11 (Burkholder-
Davis-Gundy inequality plus Lemma 6.1, see Appendix B), we can easily lean on the
expansion (3.24) of N to prove that JY ∈ Cµ2

2 (B) for some µ2 > 1 (note that δ̂JY = RY ).
Consequently, δ̂(Z−Y ) ∈ Cµ2 (B) with µ = inf(µ1, µ2) > 1, and this entails that δ̂(Z−Y ) =

0. Indeed, for any partition P[s,t] = {s = t1 < . . . < tn = t} of [s, t], one has, due to the
telescopic sum property reported in Proposition 3.2,

‖δ̂(Z − Y )ts‖B ≤
∑
i

‖δ̂(Z − Y )ti+1ti‖B ≤ c
∑
i

|ti+1 − ti|µ ≤ |P[s,t]|µ−1 |t− s| ,

and we conclude by letting the mesh |P[s,t]| := maxi |ti+1 − ti| tend to 0.

As a straightforward consequence of the decomposition (3.9), we can exhibit an
almost sure bound for Y in terms of W . Indeed, by plugging the estimate (3.22) back
into the equation, we deduce that for any subinterval I = [`1, `2] ⊂ [0, T ],

N [Y ; Ĉ2η(I;B∞)] +N [Y ; C0(I;Bγ)] ≤ ‖Y`1‖Bγ + CW |I|λN [Y ;Q(I)]

for some constant λ > 0, and similar estimates for KY = LWW (f(Y ) · f ′(Y )) + Λ̂(RY )

finally show that
N [Y ;Q(I)] ≤ ‖Y`1‖Bγ + CW |I|λN [Y ;Q(I)].

At this point, a basic patching argument easily leads us to the following statement:
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Corollary 3.14. Under the hypotheses of Theorem 3.6, there exist ε > 0 and p ≥ 1 such
that

N [Y ;Q([0, T ])] ≤ Gε,p
(
‖ψ‖Bγ ,N [W ; C 1

2−ε(Bη,2p)]
)

(3.26)

for some deterministic function Gε,p : (R+)2 → R+ bounded on bounded sets.

3.5 Comparison with smooth solutions

The previous considerations will allow us to prove our continuity result (Theorem
1.2) and for this purpose, we first go back to the case where the driving noise is an
absolutely continuous process W̃ (with values in Bη,2p), assumingly defined on the same
probability space as W . In this situation, our mild equation is naturally understood in a
pathwise sense as a classical (Riemann-Lebesgue) mild equation, i.e.,

Ỹt = Stψ̃ +

∫ t

0

St−u(f(Ỹu) · dW̃u) = Stψ̃ +

∫ t

0

St−u(f(Yu) · W̃ ′u) du, (3.27)

and the (pathwise) existence and uniqueness of the solution Ỹ follows from standard
PDE results. The key step towards a comparison between Y and Ỹ lies in the following
result, which points out the similarity between the couple (LW , LWW ) at the core of the

previous considerations and the couple (LW̃ , LW̃W̃ ) constructed from W̃ :

Lemma 3.15. Define the operator-valued processes LW̃ and LW̃W̃ in the classical
Riemann-Lebesgue sense as

LW̃ts (ϕ) :=

∫ t

s

St−u(ϕ · dW̃u) , LW̃W̃
ts (ϕ) :=

∫ t

s

St−u

(
ϕ · (δW̃ )us · dW̃u

)
, (3.28)

for every smooth function ϕ. Then both formulas (3.14) and (3.15) remain valid when
substituting W̃ for W , and accordingly the bounds (3.16) and (3.17) hold true for W̃ as
well.

Proof. It suffices to replace the use of Itô’s formula in the proof of Lemma 3.9 with
standard integration by parts. Indeed, as an absolutely continuous process, W̃ obeys
the rules of standard differential calculus and one has for instance

W̃2
ts :=

∫ t

s

(δW̃ )us · dW̃u =
1

2
(δW̃ )2ts.

Consequently, it holds that

LW̃W̃
ts ϕ =

∫ t

s

St−u(ϕ · du(W̃2
us))

=

∫ t

s

St−u(ϕ · du(W̃2
us − W̃2

ts))

=
1

2
St−u(ϕ · (δW̃ )2ts)−

1

2

∫ t

s

∆St−u(ϕ · [(δW̃ )2ts − (δW̃ )2us])du

=
1

2
St−u(ϕ · (δW̃ )2ts)−

1

2

∫ t

s

∆St−u(ϕ ·
[
(δW̃ )2us + 2(δW̃ )tu · (δW̃ )us

]
) du,

which precisely fits the pattern of (3.15).
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Another consequence of the similarity between (LW , LWW ) and (LW̃ , LW̃W̃ ) through
the two formulas (3.14) and (3.15) is a set of (readily-checked) Lipschitz-type bounds:
with the notations of Proposition 3.10, one has, for some polynomial expression c

W,W̃
,

N [LW − LW̃ ; C
1
2−ε
2 (L(B,B))] ≤ c

W,W̃
N [W − W̃ ; C 1

2−ε̃(Bη,2p)], (3.29)

N [LWW − LW̃W̃ ; C1−ε2 (L(B,B))] ≤ c
W,W̃

N [W − W̃ ; C 1
2−ε̃(Bη,2p)], (3.30)

and this bound remains valid for all of the other topologies involved in Proposition 3.10.

Then, as far as the solution Ỹ is concerned, note that

(δ̂Ỹ )ts = LW̃ts f(Ỹs) + LW̃W̃
ts (f(Ỹs) · f ′(Ys)) + J Ỹts

with J Ỹts :=
∫ t
s
St−u

([
δf(Ỹ )us − (δW̃ )us · f(Ys) · f ′(Ys)

]
· dW̃u

)
, and it is obvious in this

(absolutely continuous) situation that J Ỹ ∈ Cµ2 (B) for some µ > 1. Therefore, we can
easily follow the lines of our previous identification procedure (see the proofs of Lemma
3.12 and Theorem 3.6) in order to exhibit a similar formula for the δ̂-variations of Ỹ :

Lemma 3.16. Under the hypotheses of Theorem 1.2, assume that ψ̃ ∈ Bγ . Then the

δ̂-variations of the solution Ỹ to (3.27) can be expanded as

(δ̂Ỹ )ts = LW̃ts (f(Ỹs)) + LW̃W̃
ts (f(Ỹs) · f ′(Ỹs)) + Λ̂ts

(
RỸ
)
, (3.31)

where RỸtus := −δ̂
(
LW̃ f(Ỹ ) + LW̃W̃

(
f(Ỹ ) · f ′(Ỹ )

))
tus

. In particular, the bound (3.26)

remains valid for Ỹ when replacing ψ (resp. W ) with ψ̃ (resp. W̃ ).

With these identifications in hand, the proof of Theorem 1.2 becomes a matter of a
standard rough-paths argument, and we only sketch out the main steps of the procedure
(see e.g. the proof of [10, Lemma 5.2] for further details on the computations).

Proof of Theorem 1.2. In order to compare Y with Ỹ , we can now rely on their respec-
tive decompositions (3.9) and (3.31). By setting g := ff ′, we get that

δ̂(Y − Ỹ )ts =
{[
LWts − LW̃ts

]
f(Ys) +

[
LWW
ts − LW̃W̃

ts

]
(g(Ys)

}
+
{
LW̃ts

[
f(Ys)− f(Ỹs)

]
+ LW̃W̃

ts

[
g(Ys)− g(Ỹs)

]}
+ Λ̂ts

(
RY −RỸ

)
, (3.32)

with a similar splitting for RY −RỸ (based on the expansion (3.24)). Now, as in Lemma
3.12, we consider the following appropriate topology:

N [Y − Ỹ ;Q(I)] := N [Y − Ỹ ; Ĉ2η(I;B∞)] +N [Y − Ỹ ; C0(I;Bγ)] +N [KY −K Ỹ ; C
1
2+η
2 (I;B)].

By using the decomposition (3.32) and the bounds (3.29)-(3.30), standard differential
calculus shows that for any subinterval I = [`1, `2] of [0, T ],

N [Y − Ỹ ;Q(I)]

≤ CW,W̃ ,ψ,ψ̃

{
‖Y`1 − Ỹ`1‖Bγ +N [W − W̃ ; C 1

2−ε(Bη,2p)] + |I|λN [Y − Ỹ ;Q(I)]
}
,

for some constant λ > 0. As in Corollary 3.14, we can then rely on an elementary
patching argument to reach the global bound (1.7).
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Remark 3.17. The above strategy sheds new light on the classical Itô-Stratonovich
correction phenomenon arising in the approximation of stochastic heat equations. In-
deed, on the one hand, it emphasizes that the convergence of Ỹ towards Y reduces

to the convergence of (LW̃ , LW̃W̃ ) towards (LW , LWW ), and on the other, continuous
bounds such as (3.30) clearly highlight the relevance of the Stratonovich interpretation
of LWW in this context. In a way, the correction phenomenon is therefore more directly
observed through the decomposition (3.11) of LWW as the sum of an Itô integral and a
trace term.

4 Approximations in law

We now aim to prove our approximation result, that is Theorem 1.3. Thus, from now
on, we assume that the hypotheses in Theorem 1.3 are all satisfied. Recall that the
approximation processes involved in this statement, namely the Donsker and the Kac-
Stroock approximations, have been specified in the Introduction (see (1.8) and (1.9)),
as well as the notations W and βn,·. Besides, in this part of the paper we take T = 1 for
the sake of simplicity.

4.1 Preliminary results

As a first step towards Theorem 1.3, we need to check that the processes we have
constructed via W are indeed well-defined. To do so, we will make use of the following
bound.

Lemma 4.1. Fix n ≥ 1. Let X(n)
1 , . . . , X

(n)
n be independent centered random variables

with moments of any order and fn : {1, . . . , n} → R. Then for every r ≥ 1, there exists a
constant Cr which only depends on r such that

E

[∣∣ n∑
i=1

fn(i)X
(n)
i

∣∣2r] ≤ Cr( n∑
i=1

fn(i)2
)r
·
(

sup
1≤i≤n

E
[
|X(n)

i |
2r
])
.

This inequality can be easily deduced from the following result, which is clear for
r = 1 and was proved by Rosenthal for r > 1 (see [25, Thm. 3]).

Theorem 4.2. Let Y1, . . . , Yn be independent centered random variables satisfying
E
[
|Yi|2r

]
<∞, where r ≥ 1. Then, there exists a constant Cr such that

E

[∣∣ n∑
i=1

Yi
∣∣2r] ≤ Cr max

{ n∑
i=1

E|Yi|2r,
( n∑
i=1

E|Yi|2
)r}

.

The transition from real-valued to Bη,2p-valued processes will be ensured by the
following result.

Proposition 4.3. Let (Xk)k≥1 be a sequence of centered i.i.d. random variables on
some probability space (Ω,F , P ). Assume that each Xi has moments of any order, and
consider a sequence (λk)k≥1 of positive numbers such that

∑
k≥1 λk k

4η < ∞ for some

(fixed) η > 0. Then, for every p, q ≥ 1, the random series of functions
∑
k

√
λkXkek

converges in L2pq(Ω,Bη,2p) to an element X which satisfies

E
[
‖X‖2pqBη,2p

]
≤ Cp,q,λ,ηE

[
|X1|2pq

]
, (4.1)

for some constant Cp,q,λ,η which only depends on p, q and
∑
k≥1 λk k

4η.
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Proof. Set Xn :=
∑n
k=1

√
λkXkek and observe that ‖Xm −Xn‖Bη,2p = ‖X(m,n),η‖L2p(0,1),

where we have set X(m,n),η(ξ) :=
∑m
k=n+1 k

2η
√
λkXkek(ξ). Then, by Jensen’s inequality,

E
[
‖X(m,n),η‖2pqL2p(0,1)

]
= E

[(∫ 1

0

dξ |X(m,n),η(ξ)|2p
)q]
≤
∫ 1

0

dξ E
[
|X(m,n),η(ξ)|2pq

]
,

and thanks to Lemma 4.1, we get

E
[
‖X(m,n),η‖2pqL2p(0,1)

]
≤ Cp,qE

[
|X1|2pq

] ∫ 1

0

dξ

( m∑
k=n+1

λk k
4η ek(ξ)2

)pq
≤ Cp,qE

[
|X1|2pq

]( m∑
k=n+1

λk k
4η

)pq
(4.2)

due to the uniform bound ‖ek‖B∞ ≤
√

2. In particular, E
[
‖Xm −Xn‖2pqBη,2p

]
tends to zero

as both m and n tend to infinity, so that Xn converges in L2pq(Ω,Bη,2p). The bound (4.1)
can of course be derived from (4.2).

In particular, due to Hypothesis 1.1, we can conclude that Wn = W(Sn,·) and Wn =

W(θn,·) are indeed well-defined processes with values in Bη,2p. Let us now get a little
bit closer to the assumptions of Theorem 1.2 by checking that in both cases, Wn admits
an absolutely continuous version.

Lemma 4.4. For any fixed n ≥ 1, both the Donsker approximation Wn = W(Sn,·) and
the Kac-Stroock approximation Wn = W(θn,·) have an absolutely continuous version
with values in Bη,2p, for all p ≥ 1.

Proof. Since the (deterministic) approximation grid for Sn,k does not depend on k, it is
easily seen that

W(Sn,·)t = W(Sn,·) i
n

+ n ·
(
t− i

n

)
·
{
W(Sn,·) i+1

n
−W(Sn,·) i

n

}
if t ∈

[ i
n
,
i+ 1

n

]
.

In particular, W(Sn,·) is a piecewise linear process (with values in Bη,2p) and accordingly
it is absolutely continuous.

As far as the Kac-Stroock approximation is concerned, first we can see that it has a
continuous version with values in Bη,2p. Indeed, applying Proposition 4.3,

E
[∥∥δ(W(θn,·))ts

∥∥2pq
Bη,2p

]
≤ C E

[∣∣δ(θn)ts
∣∣2pq]

= C E
[∣∣∣ ∫ t

s

√
n (−1)ζ+N(nu)du

∣∣∣2pq] ≤ Cnpq|t− s|2pq.
For the sake of clarity, we will also denote by W(θn,·) this continuous version. To prove
the existence of an absolutely continuous version, we will see that with probability 1,

W(θn,·)t =

∫ t

0

W(θ̇n,·)s ds, for any t ∈ [0, 1], (4.3)

where θ̇nt :=
√
n ·(−1)ζ+N(nt). Indeed, thanks to Proposition 4.3, W(θ̇n,·)t is well-defined

for every t ∈ [0, 1] as an element of L2p(Ω,Bη,2p) and

E

[ ∫ 1

0

‖W(θ̇n,·)s‖Bη,2pds
]
≤
∫ 1

0

(
E
[
‖W(θ̇n,·)s‖2pBη,2p

]) 1
2p

ds ≤ Cp

∫ 1

0

(
E
[
|θ̇ns |2p

]) 1
2p

ds < ∞.
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As a consequence W(θ̇n,·) is (a.s.) Bochner-integrable. Moreover, for each t ∈ [0, 1],

W(θn,·)t = lim
N→∞

N∑
k=1

√
λk θ

n,k
t ek = lim

N→∞

∫ t

0

( N∑
k=1

√
λk θ̇

n,k
s ek

)
ds in L2p(Ω,Bη,2p)

and

E

[∥∥∥ ∫ t

0

( N∑
k=1

√
λk θ̇

n,k
s ek

)
ds−

∫ t

0

W(θ̇n,·)s ds
∥∥∥2p
Bη,2p

]
≤
∫ 1

0

E
[∥∥ ∞∑

k=N+1

√
λk θ̇

n,k
s ek

∥∥2p
Bη,2p

]
ds

≤ Cpq
(

sup
s∈[0,1]

E
[
|θ̇ns |2pq

])( ∞∑
k=N+1

λk k
4η
)
,

by similar arguments as in the proof of Proposition 4.3. Since the last expression tends
to 0 as N →∞, we obtain that for each t ∈ [0, 1]

W(θn,·)t =

∫ t

0

W(θ̇n,·)s ds a.s.

Thus, since {W(θn,·)t, t ∈ [0, 1]} and {
∫ t
0
W(θ̇n,·)s ds, t ∈ [0, 1]} are both continuous

processes, we can conclude that

P
{
W(θn,·)t =

∫ t

0

W(θ̇n,·)s ds, ∀t ∈ [0, 1]
}

= 1.

4.2 A general convergence criterion

One of our key ingredients to prove Theorem 1.3 via Theorem 1.2 lies in the fol-
lowing statement, which puts forward sufficient conditions for an approximation of the
noise (defined on the same probability space) to converge with respect to the topology
involved in (1.7).

Proposition 4.5. Let (βn)n≥1 be a sequence of centered processes and β a Brownian
motion, all defined on a same probability space (Ω,F , P ), and such that the following
two conditions are satisfied:

(i) For every integer p ≥ 1, there exists a constant Cp such that for all s, t ∈ [0, 1] and
all n ≥ 1,

E
[
|βnt − βns |2p

]
≤ Cp |t− s|p .

(ii) For every integer p ≥ 1, there exists a constant Cp such that for all n ≥ 1,

sup
t∈[0,1]

E
[
|βnt − βt|2p

]
≤ Cpn−νp,

for some fixed parameter ν > 0.

Then if we consider independent copies (βn,k)k≥1 (resp. (βk)k≥1) of βn (resp. β) on a
same probability space, we have that, for any integer p ≥ 1 and any ε > 0,

N [W(βn,·)−W(β·); C 1
2−ε(Bη,2p)] −→

n→∞
0 a.s.

Let us first see how to combine the above conditions (i) and (ii) so as to exhibit
convergent bounds in Hölder topology.
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Lemma 4.6. Under the hypotheses of Proposition 4.5, for all integers n, p ≥ 1, all
ε ∈ (0, 1) and s < t ∈ [0, 1], one has

E
[
|δ(βn − β)ts|2p

]
≤ Cp

|t− s|(1−ε)p

npεν
,

for some constant Cp which only depends on p.

Proof. If |t− s| ≤ n−ν , then due to the condition (i), it holds that

E
[
|δ(βn − β)ts|2p

]
≤ Cp

{
E
[
|βnt − βns |2p

]
+ E

[
βt − βs|2p

]}
≤ Cp |t− s|p ≤ Cp

|t− s|(1−ε)p

nνεp
.

On the other hand, if |t− s| > n−ν , one has, thanks to the condition (ii),

E
[
|δ(βn − β)ts|2p

]
≤ Cp sup

t∈[0,1]
E
[
|βnt − βt|2p

]
≤ Cp n−νp ≤ Cp

|t− s|(1−ε)p

nνε
.

Proof of Proposition 4.5. By using successively Proposition 4.3 and Lemma 4.6, we get,
for any q ≥ 1,

E
[
‖δ
(
W(βn,·)−W(β.)

)
ts
‖2pqBη,2p

]
≤ Cp,q,η E

[
|δ(βn − β)ts|2pq

]
≤ Cp,q,η

|t− s|(1−ε)pq

npqνε
.

We are thus in a position to apply the Garsia-Rodemich-Rumsey Lemma 6.1 (with δ∗ = δ)
and assert that, for q large enough,

E
[
N [W(βn,·)−W(β·); C 1

2−ε(Bη,2p)]2pq
]

≤ Cp,q,η

∫∫
[0,T ]2

E
[
‖δ
(
W(βn,·)−W(β·)

)
ts
‖2pqBη,2p

]
|t− s|2pq(

1
2−ε)+2

dsdt

≤ Cp,q,η n
−εpqν

∫∫
[0,T ]2

|t− s|pqε−2 dsdt ≤ Cp,q,η n
−εpqν .

As a result, it holds that

P
(
N [W(βn,·)−W(β·); C 1

2−ε(Bη,2p)] > n−εν/4
)
≤ Cp,q,η n−εpqν/2,

which, thanks to the Borell-Cantelli Lemma, leads us to the conclusion, that is

N [W(βn,·)−W(β·); C 1
2−ε(Bη,2p)]→ 0 a.s.

as n tends to infinity.

Example: As an immediate illustration of Proposition 4.5, let us consider here the
Wong-Zakai approximation of a given noise W satisfying Hypothesis 1.1. Precisely, set

Wn
t := W i

n
+ n ·

(
t− i

n

)
·
{
W i+1

n
−W i

n

}
for t ∈

[ i
n
,
i+ 1

n

]
,

and denote by Y n the solution of the equation

Y nt = Stψ +

∫ t

0

St−u(f(Y nu ) · dWn
u ),
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understood in the classical Riemann-Lebesgue sense. Note that Wn can be equivalently
described as follows: with the expansion (1.3) of W in mind, i.e. W = W(β·), we have
that Wn = W(βn,·), where, for each k ≥ 1, βn,k stands for the linear interpolation of βk

with mesh 1
n . Therefore, it suffices to check that the conditions (i) and (ii) in Proposition

4.5 are satisfied by βn := βn,1, which is a matter of elementary computations (it can be
also seen as a particular case of the forthcoming Proposition 4.8).

Together with Theorem 1.2, we retrieve the following almost sure approximation
result:

Proposition 4.7. Under the hypotheses of Theorem 1.2, let Y n be the Wong-Zakai
approximation of (1.4) with mesh 1

n and initial condition ψ. Then, as n → ∞, one has
N [Y − Y n; C0(Bγ)]→ 0 a.s.

This almost sure result in a non-linear situation is closely related to those of [5] or
[2], where Wong-Zakaï approximations for some parabolic type equations have been
considered. We also note that convergence in law for this type of approximations in the
framework of stochastic evolution equations has been studied in [29].

Now, let us turn to the proof of the weak approximation results of Theorem 1.3, and
which successively involve the Donsker approximation βn = Sn and the Kac-Stroock
approximation βn = θn. In both cases, we wish to exploit the criterion of Proposition
4.5, which naturally leads us to the following 2-step procedure:

Step 1: Show that Condition (i) is satisfied, i.e., supnE
[
|βnt − βns |2p

]
≤ Cp |t− s|p.

Step 2: Find a probability space (Ω̄, F̄ , P̄ ), a sequence β̄n and a Brownian motion β̄,
both defined on (Ω̄, F̄ , P̄ ), such that β̄n ∼ βn and supt∈[0,1] Ē

[
|β̄nt − β̄t|2p

]
≤ Cpn

−νp for
some fixed parameter ν > 0.

Once these two conditions have been checked, the proof of the weak convergence
Y n → Y in C0(Bγ) becomes a straightforward consequence of Theorem 1.2 and Propo-
sition 4.5, since W(β̄n,·) ∼W(βn,·) and accordingly, if Ȳ n denotes the solution of (1.6)
associated with W̄n := W(β̄n,·), it holds that Ȳ n ∼ Y n.

Note that for both approximations Sn and θn, the result in Step 2 will be derived
from a Skorokhod embedding argument (see [27]). In the Donsker situation (Proposition
4.9), this relies on a classical strategy towards the celebrated invariance principles
(see [22, Section 5.3]). In the Kac-Stroock situation (Proposition 4.11), we will take
advantage of an identification result due to Griego, Heath and Ruiz-Moncayo (see [14]).

4.3 Donsker approximation

Here, we proceed to tackle the above 2-step procedure for the Donsker approxima-
tion Sn.

Step 1 (Donsker case):

Proposition 4.8. For every p ≥ 1, there exists a positive constant Cp such that, for all
0 ≤ s < t ≤ 1,

sup
n∈N

E
[
|Snt − Sns |2p

]
≤ Cp|t− s|p. (4.4)

Proof. First, note that Sn can also be expressed as

Snt = n1/2
n∑
i=1

(∫ t

0

1[ i−1
n , in ](u) du

)
Zi.
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Then, by Lemma 4.1, we have

E
[
|Snt − Sns |2p

]
= npE

[∣∣∣∣ n∑
i=1

(∫ t

s

1[ i−1
n , in ](u) du

)
Zi

∣∣∣∣2p]

≤ Cp npE
[
|Z1|2p

]( n∑
i=1

(∫ t

s

1[ i−1
n , in ](u) du

)2)p
≤ Cp np

(
max

i=1,...,n

{∫ t

s

1[ i−1
n , in ](u) du

})p( n∑
i=1

∫ t

s

1[ i−1
n , in ](u) du

)p
≤ Cp|t− s|p.

Step 2 (Donsker case):

Proposition 4.9. Let (Zi)i∈N be a sequence of i.i.d. centered random variables with
unit variance. Then, there exists a probability space (Ω̄, F̄ , P̄ ), a Brownian motion β̄

defined on it and, for each n ≥ 1, a family of independent random variables (Z̄
(n)
i )i=1,...,n

with the same law as Zi, such that the following is satisfied. Set

S̄nt := n−1/2
{ i−1∑
j=1

Z̄
(n)
j +

t− (i− 1)/n

1/n
Z̄

(n)
i

}
if t ∈

[ i− 1

n
,
i

n

]
, with i ∈ {1, . . . , n}.

Then, for every integer p ≥ 1,

sup
t∈[0,1]

E
[
|β̄(t)− S̄nt |2p

]
≤ Cpn−p/4.

Proof. As mentioned earlier, it is based on a general Skorokhod embedding theorem
(see [27, p. 163]), which, in our particular situation, can be stated as follows : there
exists a probability space (Ω̄, F̄ , P̄ ), a Brownian motion β̄ defined on it and, for each

n ∈ N, a sequence {τ (n)i }i=1,...,n of independent and positive random variables such that
the random vector (

β̄
(
τ
(n)
1

)
, β̄
(
τ
(n)
1 + τ

(n)
2

)
, . . . , β̄

(
τ
(n)
1 + · · ·+ τ (n)n

))
has the same law as( 1√

n
Z1,

1√
n

(
Z1 + Z2

)
, . . . ,

1√
n

(
Z1 + · · ·+ Zn

))
.

Moreover, it holds that E
[
τ
(n)
i

]
= E

[
(Z1/

√
n)2
]

= 1
n and

E
[
|τ (n)i |

m
]
≤ CmE

[( 1√
n
Zi

)2m]
≤ Cm
nm

, for any m ∈ N.

Set Tn0 := 0 and T (n)
i :=

∑i
j=1 τ

(n)
j for i ≥ 1. With this notation, we can infer that

β̄
(
T

(n)
i

)
− β̄

(
T

(n)
i−1
)
∼ 1√

n
Zi.

We define now
Z̄

(n)
i =

√
n
{
β̄
(
T

(n)
i

)
− β̄

(
T

(n)
i−1
)}
∼ Zi

and

S̄nt = n−1/2
{ i−1∑
j=1

Z̄
(n)
j +

t− (i− 1)/n

1/n
Z̄

(n)
i

}
if t ∈

[ i− 1

n
,
i

n

]
.
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Observe that, if t ∈
[
i−1
n , in

]
,

S̄nt = β̄
(
T

(n)
i−1
)

+
t− (i− 1)/n

1/n

{
β̄
(
T

(n)
i

)
− β̄

(
T

(n)
i−1
)}
,

and hence, for t ∈
[
i−1
n , in

]
, we have that

E
[∣∣β̄(t)− S̄nt

∣∣2p] ≤ CpE
[∣∣β̄(t)− β̄

(
T

(n)
i−1
)∣∣2p]+ CpE

[∣∣ 1√
n
Zi
∣∣2p]

≤ CpE
[∣∣β̄(t)− β̄

(
T

(n)
i−1
)∣∣2p]+ Cpn

−p.

Thus, we only need to bound the first term in the latter expression, and to this end, we
will use the following decomposition:

E
[∣∣β̄(t)− β̄

(
T

(n)
i−1
)∣∣2p] = An1 +An2 ,

with

An1 = E
[∣∣β̄(t)− β̄

(
T

(n)
i−1
)∣∣2p1{|t−T (n)

i−1|≤n−1/4}

]
and

An2 = E
[∣∣β̄(t)− β̄

(
T

(n)
i−1
)∣∣2p1{|t−T (n)

i−1|>n−1/4}

]
.

On the one hand, the maximal inequality for Brownian motion yields

An1 ≤ E
[

max
s∈[(t−n−1/4)∨0, t]

|β̄(s)− β̄(t)|2p
]

+ E
[

max
s∈[t, (t+n−1/4)∧1]

|β̄(s)− β̄(t)|2p
]

≤ 2E
[

max
h∈[0,n−1/4]

|β̄(h)|2p
]
≤ CpE

[
|β̄(n−1/4)|2p

]
≤ Cpn−p/4. (4.5)

On the other hand, by Cauchy-Schwarz inequality, we have

An2 ≤ Cp
{
E
[
β̄
(
T

(n)
i−1
)4p]

+ E
[
β̄
(
t
)4p]}1/2{

P
(∣∣t− T (n)

i−1
∣∣ > n−1/4

)}1/2

(4.6)

Note that, by Lemma 4.1,

E
[
β̄
(
T

(n)
i−1
)4p]

= E
[( 1√

n

(
Z1 + . . .+ Zi

))4p]
≤ Cpn−2pi2p ≤ Cp.

Thus, in order to estimate the term An2 , we only need to study the probability appearing
in (4.6). To do so, observe first that since t ∈ [ i−1n , in ], we have, for n such that 1

2 n
−1/4 >

1
n (that is, for n ≥ 3),

P
(∣∣t− T (n)

i−1
∣∣ > n−1/4

)
≤ P

(∣∣T (n)
i−1 −

i− 1

n

∣∣ > 1

2
n−1/4

)
. (4.7)

Then, using again Lemma 4.1, we get

P
(∣∣T (n)

i−1 −
i− 1

n

∣∣ > 1

2
n−1/4

)
≤ Cp n

p/2E

[( i−1∑
j=1

{
τ
(n)
j − 1

n

})2p]
≤ Cp n

p/2ipn−2p ≤ Cpn
−p/2. (4.8)

Therefore, An2 ≤ Cp n−p/4, which concludes the proof.
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4.4 Kac-Stroock approximation

Along the same lines as in the Donsker case, we proceed now to analyze the Kac-
Stroock approximations based on θn.

Step 1 (Kac-Stroock case):

Proposition 4.10. For every integer p ≥ 1, there exists a positive constant Cp such
that, for all 0 ≤ s < t ≤ 1,

sup
n∈N

E
[
|θnt − θns |2p

]
≤ Cp|t− s|p. (4.9)

Proof. We have that

E
[
|θnt − θns |2p

]
= E

[(√
n

∫ t

s

(−1)ζ+N(nu)du
)2p]

= npE

[(∫ t

s

(−1)N(nu)du
)2p]

= Cpn
pE
[ ∫ t

s

· · ·
∫ t

s

(−1)N(nu
1
)+N(nu

2
)+···+N(nu

2p
)du1 · · · du2p

]
= Cpn

pE
[ ∫ t

s

· · ·
∫ t

s

1{u1<u2<···<u2p}(−1)N(nu
1
)+N(nu

2
)+···+N(nu

2p
)du1 · · · du2p

]
,

where in the latter equality we have used the symmetry of the integrand. Taking into
account that the two possible values of random variable (−1)N(nu

1
)+···+N(nu

2p
) only de-

pend on the fact that the exponent is even or odd, we can write the latter expression
above as

Cpn
p
[ ∫ t

s

· · ·
∫ t

s

1{u1<u2<···<u2p}E
(

(−1)
∑p
i=1N(nu

2i
)−N(nu

2i−1
)
)
du1 · · · du2p

]
. (4.10)

Using that for u1 < u2 < · · · < u2p, the random variables N(nu
2i

) − N(nu
2i−1

) are
independent with Poisson distribution of parameter n(u2i − u2i−1), we have that (4.10)
is equal to

Cpn
p
[ ∫ t

s

· · ·
∫ t

s

1{u1<u2<···<u2p}e
−2n
[∑p

i=1(u2i
−u

2i−1
)
]
du1 · · · du2p

]
.

This term can be bounded by

Cpn
p
[ ∫ t

s

· · ·
∫ t

s

1{u1<u2} · · ·1{u2q−1<u2p}e
−2n
[∑p

i=1(u2i
−u

2i−1
)
]
du1 · · · du2p

]
.

= Cpn
p
(∫ t

s

∫ u2

s

e−2n(u2−u1)du1 du2

)p
= Cpn

p
(∫ t

s

1

2n
(1− e−2n(u2−s))du2

)p
≤ Cp(t− s)p.

This concludes the proof.

Step 2 (Kac-Stroock case):

Proposition 4.11. There exists a probability space (Ω̄, F̄ , P̄ ), a Brownian motion β̄

defined on it and, for each n ∈ N, a process θ̄n with the same law as θn in (1.9) such
that, for any ν ∈ (0, 14 ) and any p ∈ N,

sup
t∈[0,1]

E
[
|β̄(t)− θ̄n(t)|2p

]
≤ Cp,ν n−pν , (4.11)

for some constant Cp,ν .
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Proof. First of all, it is clear that we can suppose p(1/4 − ν) ≥ 1 (otherwise, we can
use Jensen’s inequality). Then, following the lines of [14, Section 2], we consider a
probability space (Ω̄, F̄ , P̄ ) with the following mutually independent objects defined on
it:

(i) a Brownian motion β̄,

(ii) for each n ∈ N, a sequence of independent random variables {ξ(n)i , i ∈ N} such

that ξ(n)i has an exponential distribution with parameter 2
√
n,

(iii) a sequence {ki, i ∈ N} of independent random variables such that P{ki = 1} =

P{ki = −1} = 1/2.

The i.i.d. random variables k1ξ
(n)
1 , k2ξ

(n)
2 , . . . , verify E

[
kiξ

(n)
i

]
= 0 and E

[(
kiξ

(n)
i

)2]
= 1

2n .
Therefore, with the same result of Skorokhod as the one quoted in the proof of Lemma
4.9 (see [27, p. 163]), there exists a sequence of independent positive random variables
τ
(n)
1 , τ

(n)
2 . . . , such that β̄(τ

(n)
1 ), β̄(τ

(n)
1 + τ

(n)
2 ) . . . have the same law as k1ξ

(n)
1 , k1ξ

(n)
1 +

k2ξ
(n)
2 . . . , respectively. Moreover, it holds that

E
[
τ
(n)
i

]
= E

[(
kiξ

(n)
i

)2]
=

1

2n
,

and, for each m ∈ N,

E
[
|τ (n)i |

m
]
≤ CmE

[
|kiξ(n)i |

2m
]
≤ Cm
nm

.

Set T (n)
i :=

∑i
j=1 τ

(n)
j and define

τ̃
(n)
i := n−1/2

∣∣β̄(T (n)
i

)
− β̄

(
T

(n)
i−1
)∣∣ , T̃

(n)
i :=

i∑
j=1

τ̃
(n)
j .

Then, let θ̄n = {θ̄n(t), t ≥ 0} be a piecewise linear process given on the grid T̃ (n)
1 , T̃

(n)
2 , . . .

by

θ̄n(T̃
(n)
i ) := β̄(T

(n)
i ) ∼

i∑
j=1

kjξ
(n)
j ,

and θ̄n(0) = 0. The τ̃ (n)i ’s are independent random variables exponentially distributed
with parameter 2n, and it is proved in [14] that the process θ̄n thus defined has the
same law as θn.

Now, to show (4.11), we decompose the term E
[
|β̄(t) − θ̄n(t)|2p

]
as the sum of the

following two terms:

En1 := E
[
|β̄(t)− θ̄n(t)|2p 1{t∈[0,T̃ (n)

8n ]}

]
and

En2 := E
[
|β̄(t)− θ̄n(t)|2p 1{t>T̃ (n)

8n }

]
.

Let us first study En1 . If t belongs to An` :=
[
T̃

(n)
`−1, T̃

(n)
`

)
for some ` = 1, . . . , 8n, we have

that

θ̄n(t)− β̄(t) = β̄
(
T

(n)
`−1
)
− β̄(t) +

t− T̃ (n)
`−1

τ̃
(n)
`

{
β̄
(
T

(n)
`

)
− β̄

(
T

(n)
`−1
)}
.
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So

En1 =

8n∑
`=1

E
[
|β̄(t)− θ̄n(t)|2p1{t∈An` }

]
≤ Cp

8n∑
`=1

E
[
|β̄(T

(n)
`−1)− β̄(t)|2p1{t∈An` }

]
+ Cp

8n∑
`=1

E
[
|β̄(T

(n)
` )− β̄(T

(n)
`−1)|2p1{t∈An` }

]
≤ Cp

8n∑
`=1

E
[
|β̄(T

(n)
`−1)− β̄(t)|2p1{t∈An` }

]
+ Cp n

1−p, (4.12)

where, for the last inequality, we have used the fact that β̄(T
(n)
` )− β̄(T

(n)
`−1) ∼ k1ξ1. Now,

for any fixed ` ∈ {1, . . . , 8n}, write

E
[
|β̄(T

(n)
`−1)− β̄(t)|2p1{t∈An` }

]
= E

[
|β̄(T

(n)
`−1)− β̄(t)|2p1{t∈An` }1{|t−T (n)

`−1|≤n−1/4}

]
+ E

[
|β̄(T

(n)
`−1)− β̄(t)|2p1{t∈An` }1{|t−T (n)

`−1|>n−1/4}

]
. (4.13)

The first term in (4.13) can be bounded with the same argument as in the proof of
Proposition 4.9 (see (4.5)), which gives

E
[
|β̄(T

(n)
`−1)− β̄(t)|2p1{t∈An` }1{|t−T (n)

`−1|≤n−1/4}

]
≤ Cp n−p/4.

As far as the second term in (4.13) is concerned, we have

E
[
|β̄(T

(n)
`−1)− β̄(t)|2p1{t∈An` }1{|t−T (n)

`−1|>n−1/4}

]
≤
{
E
[
|β̄(t)− β̄(T

(n)
`−1)|4p

]}1/2{
P̄
(
t ∈ An` , |t− T

(n)
`−1| > n−1/4

)}1/2

, (4.14)

and since

E
[∣∣β̄(T (n)

`−1
)∣∣4p] = E

[∣∣ `−1∑
j=1

kjξ
(n)
j

∣∣4p] ≤ Cpn2pE[∣∣k1ξ(n)1

∣∣4p] ≤ Cp,
we only have to focus on the probability appearing in (4.14). To do so, let us notice that

P̄
(
t ∈ An` , |t− T

(n)
`−1| > n−1/4

)
≤ P̄

(
|t− T̃ (n)

`−1| ≤ τ̃
n
` , |t− T

(n)
`−1| > n−1/4

)
≤ P̄

(
|t− T̃ (n)

`−1| ≤ τ̃
n
` , τ̃

(n)
` ≤ 1

2
n−1/4, |t− T (n)

`−1| > n−1/4
)

+ P̄
(
τ̃
(n)
` >

1

2
n−1/4

)
≤ P̄

(
|t− T̃ (n)

`−1| ≤
1

2
n−1/4, |t− T (n)

`−1| > n−1/4
)

+ Cp n
−3p/2

≤ P̄
(
|T (n)
`−1 − T̃

(n)
`−1| >

1

2
n−1/4

)
+ Cp n

−3p/2.

Then

P̄
(
|T (n)
`−1−T̃

(n)
`−1| >

1

2
n−1/4

)
≤ Cp np/2

{
E
[∣∣T (n)

`−1−
l − 1

2n

∣∣2p]+E[∣∣T̃ (n)
`−1−

l − 1

2n

∣∣2p]} ≤ Cp n−p/2,
where we have used the same argument as in (4.8) to get the last bound. Going back
to (4.12), we deduce that En1 ≤ Cp nn

−p/4 ≤ Cp n
−νp, since p is assumed to satisfy

p( 1
4 − ν) ≥ 1.
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Eventually, we must deal with En2 . In fact, we have that

En2 ≤
{
E
[∣∣θ̄n(t)− β̄(t)

∣∣4p]}1/2{
P
(
t > T̃

(n)
8n

)}1/2

≤ Cp
{
P
(
t >

8n∑
j=1

τ̃
(n)
j

)}1/2

,

where we have used Lemma 4.10. If we denote by Nn a Poisson process with intensity
2n, we can write

P
(
t >

8n∑
j=1

τ̃
(n)
j

)
≤ P

(
1 >

8n∑
j=1

τ̃
(n)
j

)
≤ P

(
Nn(1) ≥ 8n

)
,

because the τ̃
(n)
j ’s are independent random variables exponentially distributed with

parameter 2n. The latter probability can be bounded by using Stirling’s inequality,
as follows:

P
(
Nn(1) ≥ 8n

)
=

∞∑
k=8n

e−2n
(2n)k

k!
≤ C e−2n

∞∑
k=8n

(2n)k

√
2πk

(
k
e

)k
= C e−2n

∞∑
k=8n

(2en

k

)k 1√
2πk

≤ C e−2n
∞∑

k=8n

(e
4

)k
≤ Ce−2n.

This lets us conclude the proof.

5 Appendix A: fractional Sobolev spaces

We gather here some classical properties of the fractional Sobolev spaces (Bα,p)α∈R,p∈N,
which are extensively used throughout the paper. We recall the notations Bα for Bα,2
and B for B0. Let us first label the following well-known regularizing properties of the
semigroup (see [23]).

Proposition 5.1. Fix two parameters λ < α ∈ R. Then, for every ϕ ∈ Bλ and t > 0,

‖Stϕ‖Bα ≤ c t−(α−λ)‖ϕ‖Bλ , ‖∆Stϕ‖Bα ≤ c t−1−(α−λ)‖ϕ‖Bλ . (5.1)

and for every ψ ∈ Bα,

‖Stψ − ψ‖Bλ ≤ c tα−λ‖ψ‖Bα , ‖∆Stψ‖Bλ ≤ c t−1+(α−λ)‖ψ‖Bα . (5.2)

The next results are taken from the exhaustive book [26] on fractional Sobolev
spaces. With the notations of the latter reference, our space Bα,p (α ∈ R, p ∈ N) corre-
sponds to F 2α

p,2. Let us first report some properties regarding pointwise multiplication of
functions. Due to the multiplicative perturbation in (1.4), it is indeed natural that these
results should intervene at some point. In the statement, the notation E · F ⊂ G must
be understood as ‖ϕ · ψ‖G ≤ c ‖ϕ‖E‖ψ‖F for every ϕ ∈ E,ψ ∈ F .

Proposition 5.2. The following properties hold true:

1. ([26, Section 2.4.4]) One has

Lr(0, 1) ⊂ B−α if α ≥ 1

2r
− 1

4
, (5.3)

and in particular:

Lp(0, 1) · B ⊂ B−α if α ≥ 1

2p
.
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2. ([26, Section 4.6.1]) Let α1 < α2 be such that α1 + α2 > 0 and α2 >
1
4 . Then

Bα1
· Bα2

⊂ Bα1
. (5.4)

In particular, Bα is an algebra as soon as α > 1
4 .

3. ([26, Section 4.8.2]) Let α ≥ 0 and p1, p2, p ≥ 2 be such that 2α < 1
pi

(i ∈ {1, 2})
and 1

p1
+ 1

p2
= 1

p . Then
Bα,p1 · Bα,p2 ⊂ Bα,p. (5.5)

Let us also label here the classical Sobolev embedding

Bα,p ⊂ B∞ if 2α >
1

p
, (5.6)

which yields in particular:

Bα ⊂ B∞ as soon as α >
1

4
. (5.7)

Finally, in order to handle the non-linearity in (1.4), we resort at some point to
the following stability result for composition of functions (see [26, Section 5.3.6]): if
f : R → R is differentiable with bounded derivative, then for every α ∈ [0, 12 ] and
ϕ ∈ Bα,

‖f(ϕ)‖Bα ≤ cf {1 + ‖ϕ‖Bα} . (5.8)

Here, f is also understood as its associated Nemytskii operator, i.e., f(ϕ)(ξ) := f(ϕ(ξ)).

6 Appendix B: A priori estimates on the solution

It only remains to prove the two a priori controls (3.19) and (3.20) for the solution
Y of (1.4) (or equivalently (3.1)). To do so, we will rely on the following result, taken
from [11, Lemma 6.5], and which extends the classical Garsia-Rodemich-Rumsey in
two directions: 1) it covers the case of δ̂-variations and 2) it applies to more general
processes defined on the 2-dimensional simplex S2 = {(t, s) ∈ [0, T ]2 : t ≥ s}.

Lemma 6.1. Let δ∗ = δ or δ̂. For every α, β ≥ 0 and p, q ≥ 1, there exists a constant c
such that, for any R : S2 → Bα,p,

N [R; Cβ2 ([0, T ];Bα,p)] ≤ c
{
Uβ+ 2

q ,q,α,p
(R) +N [δ∗R; Cβ3 ([0, T ];Bα,p]

}
,

where

Uβ,q,α,p(R) =

[∫
0≤u<v≤T

(
‖Rvu‖Bα,p
|v − u|β

)q
dudv

]1/q
.

Proof of Lemma 3.11. In both cases, we will resort to the previous Lemma, which es-
sentially reduces the problem to moment estimates. Thus, the following Burkholder-
Davis-Gundy type inequality (borrowed from [9, Lemma 7.7]) naturally comes into play:
for every α ≥ 0, one has, by setting U0 := Q1/2(B),

E
[∥∥∥ ∫ t

s

St−u(f(Yu) · dWu)
∥∥∥2q
Bα

]
≤ cq

(∫ t

s

E
[
‖St−u(f(Yu) · ∗)‖2qHS(U0,Bα)

] 1
q

du
)q
, (6.1)

where the notation HS(U0,Bα) refers to the space of Hilbert-Schmidt operators defined
on U0 and taking values in Bα. Note also that the family (λkek) defines an orthonormal
basis of U0 and accordingly

‖St−u(f(Yu) · ∗)‖HS(U0,Bα) =
(∑

k

λk‖St−u(f(Yu) · ek)‖2Bα
)1/2

. (6.2)
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Now, to show that Y ∈ Ĉ2η(B∞), observe first that for every q ≥ 1 and any small ε > 0,

E
[
‖(δ̂Y )ts‖2qB∞

]
≤ cq E

[
‖(δ̂Y )ts‖2qB 1

4
+ε

]
≤ cq

{
E
[∥∥ ∫ t

s

St−u(f(Yu) ·dWu)
∥∥2q
B 1

4
+ε

]
+E

[( ∫ t

s

‖St−u(P · f(Yu) · f ′(Yu))‖B 1
4
+ε
du
)2q]}

.

(6.3)

The second summand in (6.3) is trivially bounded by cp |t− s|2q(
3
4−ε) since

‖St−u(P · f(Yu) · f ′(Yu))‖B 1
4
+ε
≤ c |t− u|−

1
4−ε ‖P · f(Yu) · f ′(Yu)‖B ≤ c |t− u|−

1
4−ε .

As far as the first summand in (6.3) is concerned, observe that∑
k

λk‖St−u(f(Yu) · ek)‖2B 1
4
+ε
≤ c

∑
k

λk |t− u|−
1
2−2ε ‖f(Yu) · ek‖B ≤ c |t− u|−

1
2−2ε ,

which, owing to (6.1) and (6.2), entails that

E
[∥∥ ∫ t

s

St−u(f(Yu) · dWu)
∥∥2q
B 1

4
+ε

]
≤ cq |t− s|(

1
2−2ε)q .

Going back to (6.3), we are in a position to apply Lemma 6.1 and assert that Y ∈
Ĉ 1

4−(B∞) ⊂ Ĉ2η(B∞) (we recall that η is assumed to belong to (0, 18 )). Note that since

ψ ∈ Bγ , these computations also prove that supt∈[0,T ]E
[
‖Yt‖2qB 1

4
+ε

]
< ∞ for ε > 0 small

enough, which will be used in the sequel.

In order to show that Y ∈ C0(Bγ), let us write, like in (6.3),

E
[
‖(δ̂Y )ts‖2qBγ

]
≤ cq

{
E
[∥∥ ∫ t

s

St−u(f(Yu) · dWu)
∥∥2q
Bγ

]
+ E

[( ∫ t

s

‖St−u(P · f(Yu) · f ′(Yu))‖Bγdu
)2q]}

≤ cq

{
E
[∥∥ ∫ t

s

St−u(f(Yu) · dWu)
∥∥2q
Bγ

]
+
(∫ t

s

|t− u|−γ du
)2q}

. (6.4)

Then one has successively

E
[
‖St−u(f(Yu) · ∗)‖2qHS(U0,Bγ)

]
= E

[(∑
k

λk‖St−u(f(Yu) · ek)‖2Bγ
)q]

≤ cq |t− u|−2q(γ−η)E
[(∑

k

λk‖f(Yu) · ek‖2Bη
)q]

≤ cq |t− u|−2q(γ−η)E
[(∑

k

λk‖f(Yu)‖2B 1
4
+ε
‖ek‖2Bη

)q]
(use (5.4))

≤ cq |t− u|−2q(γ−η)
(∑

k

(λk · k4η)
)q{

1 + sup
t∈[0,T ]

E
[
‖Yt‖2qB 1

4
+ε

]}
(use (5.8)),

with 2(γ − η) < 1 and
∑
k(λk · k4η) < ∞. Thanks to (6.1) and (6.2), we can go back to

(6.4) and deduce that E
[
‖(δ̂Y )ts‖2qBγ

]
≤ cq |t− s|2qε for some small ε > 0. Since ψ ∈ Bγ ,

this proves in particular that Y ∈ C0(Bγ).

Let us now turn to KY and notice first that δ̂KY = LW δf(Y ), so

‖(δ̂KY )tus‖B ≤ ‖LWtu‖L(B,B)‖δ(f(Y ))us‖B
≤ cW,f |t− u|

1
2−η ‖(δY )us‖B (use (3.16))

≤ cW,f |t− u|
1
2−η

{
‖(δ̂Y )us‖B + ‖ausYs‖B

}
≤ cW,f

{
|t− s|

1
2+ηN [Y ; Ĉ2η(B∞)] + |t− s|

1
2−η+γ N [Y ; C0(Bγ)]

}
.
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Besides, since

KY
ts =

∫ t

s

St−u(δ(f(Y ))us · dWu) +

∫ t

s

St−u(P · f(Yu) · f ′(Yu)) du,

it is easy to check that E
[
‖KY

ts‖
2q
B

]
≤ cq |t− s|(1+4η)q (use (6.1) and (6.2) as above). We

are thus in a position to apply Lemma 6.1 and conclude that KY ∈ C
1
2+η
2 (B).
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