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Abstract

TheKolmogorov (1934)diffusionis the two-dimensional diffusion gen-
erated by real Brownian motionB and its time integral

∫
B d t. In this paper

we construct successful co-adapted couplings for iterated Kolmogorov dif-
fusions defined by adding iterated time integrals

∫ ∫
B ds d t, . . . as further

components to the original Kolmogorov diffusion. A Laplace-transform ar-
gument shows it is not possible successfully to couple all iterated time in-
tegrals at once; however we give an explicit construction of a successful
co-adapted coupling method for(B,

∫
B d t,

∫ ∫
B ds d t); and a more im-

plicit construction of a successful co-adapted coupling method which works
for finite sets of iterated time integrals.
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1 Introduction

The Kolmogorov (1934)diffusion is the two-dimensional diffusion generated by
real Brownian motionB and its time integral

∫
B d t. Analytic studies of distri-

bution and winding rate about(0, 0) have been carried out byMcKean (1963).
More recent workers (Lachal 1997; Khoshnevisan and Shi 1998; Groeneboom,
Jongbloed, and Wellner 1999; Chen and Li 2003) have considered growth asymp-
totics, distribution under conditioning, and small ball probabilities.Ben Arous
et al. (1995)showed that(B,

∫
B d t) can be successfullycoupled co-adaptedly,

meaning that for any two different starting points(a1, a2) and(b1, b2) it is possible
to construct random processes(A,

∫
A d t) and(B,

∫
B d t) begun at(a1, a2) and

(b1, b2) respectively, adapted to the same filtration and such thatA andB are real
Brownian motions with respect to this filtration, whichcouple successfullyin the
sense thatAT = BT anda2 +

∫ T

0
A d t = b2 +

∫ T

0
B d t for some random but finite

timeT . Theiterated Kolmogorov diffusionis obtained by adding (perhaps a finite
number of) further iterated time integrals

∫ ∫
B ds d t, . . . as components, and the

object of this note is to study its coupling properties.
There are many different kinds of coupling:co-adaptedor Markovian cou-

pling as described above,co-adapted time-changed coupling, which relaxes the
filtration requirements to permit random time-changes (an example is to be found
in Kendall 1994); non-adapted coupling, which lifts the filtration requirement;
and finallyshift-coupling, which relaxes the coupling requirement to permit cou-
pling up to a random time (Aldous and Thorisson 1993). Elementary martingale
arguments show a diffusion cannot be successfully coupled if there exist non-
trivial bounded functions which are parabolic (space-time harmonic) with respect
to the diffusion; more generally a diffusion cannot be successfully shift-coupled if
there exist non-trivial bounded functions which are harmonic. The converse state-
ments are also true: absence of non-constant parabolic functions means there exist
successful non-adapted couplings (Griffeath 1975; Goldstein 1979), and absence
of non-constant harmonic functions means there exist successful shift-couplings
(Aldous and Thorisson 1993).

Co-adapted couplings are generally less powerful than non-adapted couplings,
but can provide significant links to mathematical notions such as curvature. For
exampleKendall (1986)describes a co-adapted coupling construction for Brown-
ian motion on Cartan-Hadamard manifolds of negative curvature bounded above
away from zero, and shows that there is no successful co-adapted coupling. If
it could be shown in this case that successful non-adapted coupling implied ex-
istence of a successful co-adapted coupling, then one could use the link with
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parabolic functions to deduce that all such manifolds must support non-constant
bounded parabolic functions; this question from Riemannian geometry is cur-
rently open! Furthermore, it is typically much easier to construct co-adapted cou-
plings when they do exist; a matter of major significance when using coupling
to explore convergence of a Markov chain to equilibrium (when using Markov
chains as components of approximate counting algorithms as expounded inJer-
rum 2003; or when implementing Coupling from the Past as inPropp and Wilson
1996). Burdzy and Kendall (2000)explore the difference between non-adapted
and co-adapted couplings; see alsoHayes and Vigoda (2003), who describe a
non-adapted variation on an adapted coupling which provides better bounds for
mixing in a particular graph algorithm.

In this paper we extend the results ofBen Arous et al. (1995)for (B,
∫

B d t),
giving an explicit construction for a successful co-adapted coupling at the level of
the twice-iterated time integral (Theorem 3.5). We also give an implicit construc-
tion for successful co-adapted couplings for higher-order iterated Kolmogorov
diffusions (Theorem 5.14), and note that it is impossible successfully to couple all
iterated time integrals simultaneously (Theorem 6.1).

Acknowledgements: this work was supported by the EPSRC through an
earmarked studentship for CJP. We are grateful to Dr Jon Warren and to Dr
Sigurd Assing for helpful discussions.
Part of this work was carried out while the first author was visiting the Insti-
tute for Mathematical Sciences, National University of Singapore in 2004.
The visit was supported by the Institute.
Finally, we are grateful to a referee, who asked an astute question which led
to a substantial strengthening of the results of this paper.

2 Parabolic functions and harmonic functions

We begin by sketching some general mathematical considerations. It is possible
to derive information about the existence or otherwise of couplings from analytic
considerations, albeit in a rather non-constructive fashion. The existence of a suc-
cessful non-adapted coupling is known to be equivalent to the nonexistence of
non-constant parabolic functions (Griffeath 1975; Goldstein 1979). The same is
true if we replace “non-adapted coupling” and “parabolic” by “shift-coupling” and
“harmonic” (Aldous and Thorisson 1993). (These papers consider the discrete-
time case: the technical issue of moving to continuous time is dealt with for ex-
ample inThorisson 2000.)

384



In general it is known that manifolds which are (for example) unimodular solv-
able Lie groups will not carry non-constant bounded harmonic functions (Lyons
and Sullivan 1984; Kăımanovich 1986; Leeb 1993). The iterated Kolmogorov
diffusion can be viewed as a Brownian motion on a nilpotent Lie group, so we can
deduce the existence of successfulshift-couplingsfor the iterated Kolmogorov
diffusion.

We are concerned here with successful couplings rather than successful shift-
couplings, corresponding to parabolic functions rather than harmonic functions.
HoweverCranston and Wang (2000,§3, Remark 3)show that a parabolic Harnack
inequality holds for left-invariant diffusions on unimodular Lie groups (and there-
fore successful shift-couplings exist for such diffusions if and only if successful
non-adapted couplings exist). It suffices to indicate how the iterated Kolmogorov
diffusion can be viewed as such a diffusion. We outline the required steps.

First observe that there is a homomorphism of the semigroup of pathsB under
concatenation into the quotientgroupwhich identifies paths with the same time-
length and the same endpoints and iterated time integrals up to ordern. The
resulting group is graded by a degree defined inductively by time-integration,
and is nilpotent with this grading. It is a Lie group, since it can be coordi-
natized smoothly byt, Bt, and n iterated integrals of the form

∫ t

0
B du, . . . ,∫ t

0
. . .

∫ v

0
B dw . . . du; evolution of B generates the required left-invariant dif-

fusion. Nilpotent Lie groups are unimodular (Corwin and Greenleaf 1990), so the
Cranston and Wang (2000)work applies.

Thus at a rather abstract and indirect level we know it is possible to construct
successful non-adapted couplings for the iterated Kolmogorov diffusion. However
in the following we will show how to construct successfulco-adapted couplings;
while our general construction (§5) is not completely explicit, nevertheless it is
much more direct than the above, as well as possessing the useful co-adapted
property.

3 Explicit co-adapted coupling
for the twice-iterated Kolmogorov diffusion

We now describe a constructive approach to successfulco-adaptedcoupling of
Brownian motion and its first two iterated integrals:B,

∫
B d t and

∫ ∫
B ds d t.

In later sections we will show how to deal with higher-order iterated integrals.
We use the conventional probabilistic language of “eventAn happens eventu-
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ally in n” to mean, almost surelyAn occurs for all but finitely manyn (in measure-
theoretic terms this corresponds to the assertion that the event

⋃
n

⋂
m≥n An has

null complement).

3.1 Case of first integral

Coupling of the first two iterated integrals is based on theBen Arous et al. (1995)
coupling construction for(B,

∫
B d t); we begin with a brief description of this in

order to establish notation.

Figure 1:Plots of (a) two coupled Brownian motionsA andB, (b) the difference
W = B−A = B(0)−A(0)+

∫
(J−1) dA. The coupling controlJ switches be-

tween values+1 (“synchronous coupling”) and−1 (“reflection coupling”). In the
figure, switches to fixed periods ofJ = +1 are triggered by successive crossings
of ±1 by W .

Co-adapted couplings are built on two co-adapted Brownian motionsA and
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B begun at different locationsA(0) andB(0): we shall suppose they are related
by a stochastic integralB = B(0) +

∫
J dA, whereJ is a piece-wise constant

±1-valued adapted random function. The coupling is defined by specifyingJ :

W = B − A = B(0)− A(0) +

∫
(J − 1) dA , (1)

so thatW is constant on intervals whereJ = 1 (holding intervals), and evolves as
Brownian motion run at rate4 on intervals whereJ = −1 (intervals in whichW
is run atfull rate). The coupling is illustrated inFigure 1.

So our coupling problem is reduced to a stochastic control problem: how
should one choose adaptedJ so as to controlW andV = V (0) +

∫
W d t to

hit zero simultaneously?
We start by noting that the trajectory(W,V ) breaks up intohalf-cyclesac-

cording to successive alternate visits to the positive and negative rays of the axis
V = 0. (We can assumeV (0) = 0 without loss of generality; we can manipu-
lateW andV to this end using an initial phase of controls!) We adopt a control
strategy as follows: if thenth half-cycle begins atW = ±an for an > 0 then we
compute a levelbn depending onan, with bn ≤ an ≤ κbn for some fixedκ > 1,
and run this half-cycle ofW at full rate (J = −1) until W hits∓bn or the half-
cycle ends. IfW hits∓bn before the end of the half-cycle then we start a holding
interval (J = 1) until V hits zero, so concluding the half-cycle. Setan+1 to be the
absolute value ofW at the end of the half-cycle. We will call the holding interval
theFall of the half-cycle and will refer to the initial component as theBrownian
componentor BrC. The construction is illustrated inFigure 2.

With appropriate choices for thean andbn, it can be shown that this control
forces(W,V ) almost surely to converge to(0, 0) in finite time. To see this, note
the following. By the reflection principle applied to a Brownian motionB begun
at0,

P [BrC duration ≥ tn] ≤ P [2|B(tn)| ≤ an + bn] ≤ an + bn√
2πtn

. (2)

Simple dynamical arguments allow us to control the duration of the Fall:

Fall duration ≤ maxV duringBrC
bn

≤ (BrC duration)× (maxW duringBrC)

bn

,

(3)
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Figure 2:Illustration of two half-cycles for the casebn = an/2, κ = 2, labelling
Fall andBrC for first half-cycle.

which we can combine with the following (forxn > 0):

P [(maxW duringBrC ) ≥ xn] = P [2B + an hitsxn before− bn]

=
an + bn

an + bn + xn

.
(4)

We now use a Borel-Cantelli argument to deduce that

Duration of half-cyclen ≤
(

1 +
xn

bn

)
tn (5)

for all sufficiently largen, so long as
∑

n

an√
tn

< ∞ ,
∑

n

1

1 + xn/(2an)
< ∞ . (6)

(Bear in mind, we have stipulated thatbn ≤ an ≤ κbn.) Now this convergence is
ensured by setting

√
tn = xn = ann

1+α for someα > 0, in which case we obtain

Duration of half-cyclen ≤
(

1 +
κxn

an

)
tn ≤ (

1 + κn1+α
)
a2

nn2+2α .

(7)
If we arrange foran ≤ κ/n2+β then the sum of this overn converges, since we
can chooseα < 2β/3. Thus we have proved the following, which is a trivial
generalization ofBen Arous et al. (1995, Theorem 2.1):
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Theorem 3.1 Suppose the evolution of(W,
∫

W d t) is divided into half-cycles as
described above: if thenth half-cycle begins atW = ±an, then it is run at full rate
till W hits∓bn and then allowed to fall to the conclusion of the half-cycle. (The
fall phase is omitted if the half-cycle concludes beforeW hits∓bn.) Our control
consists of choosing thebn; so long asan/κ ≤ bn ≤ min{an, 1/n

2+β} for all
sufficiently largen for some constantsκ andβ > 0 , then(W,

∫
W d t) converges

to (0, 0) in finite time.

Remark 3.2 By definition of an we knowan ≤ bn−1 ≤ 1/(n − 1)2+β, so it is
feasible to choosebn such thatan/κ ≤ bn ≤ min{an, 1/n

2+β} for all largen.

Remark 3.3 Note thatan is determined by the location ofW at the end of half-
cyclen− 1.

Remark 3.4We can assume the initial conditionsW0 = 1, V0 = 0 (otherwise we
can run the diffusion at full rate tillV hits zero, as can be shown to happen almost
surely, then re-scale accordingly). It then suffices to setbn = min{an, 1/(n +
1)2+β}. However this is not the only option; for exampleBen Arous et al. (1995)
usebn = an/2. Note, in either case we findan+1 ≤ bn ≤ an ≤ κbn for κ = 2.

3.2 Controlling two iterated integrals

Inspection of the above control strategy reveals some flexibility which was not
exploited byBen Arous et al. (1995); in thenth half-cycle there is a timeTn at
which W first hits0, and we may thenhold W = 0 constant (by settingJ = 1)
and so delay for a timeCn, without altering eitherW or V =

∫
W d t. We may

chooseCn as we wish without jeopardizing convergence of(W,V ) to (0, 0). This
flexibility allows us to consider controllingU =

∫ ∫
W ds d t as follows: we hold

atTn for a duration long enough to forceU , V to have the same sign:

Cn = max

{
0,
− ∫ ∫

W ds d t∫
W d t

}
= max

{
0,−U

V

}
. (8)

The event[V (Tn) = 0] turns out to be of probability zero, since it can only happen
if Tn occurs at the very start of the half-cycle, which in turn happens only ifW hits
zero exactly at the end of the previous half-cycle; that this is a null event will be a
weak consequence of thelower bound at Inequality (16)below. The construction
is illustrated inFigure 3.

Supposean ≤ κ/n2+β as in the previous subsection. If we can show that∑
n Cn < ∞ then this strategy results in(W,V ) tending to(0, 0) in finite timeζ,
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Figure 3: Two consecutive half-cycles for the casebn = an/2, together with a
graph ofU against time. The disks signify time points at which there is an option
to hold the diffusion to allowU to change sign if required.

with U hitting zero in infinitely many half-cycles accumulating atζ and therefore
also converging to0 at ζ. To fix notation, let us supposeW is positive at the start
of the half-cycle in question. This ensuresV > 0 at timeTn. So the issue at
hand is to controlCn by determining what makes−U = − ∫ ∫

W ds d t large,
and what makesV =

∫
W d t small at timeTn.

Consider−U at timeTn. At the start of the half-cycle we knowV = 0 and
W = an, so subsequent contributions make−U more negative and need not detain
us. At the start of theprevioushalf-cycleU will be non-negative. Consequently
an upper bound for−U at timeTn is given by

(Duration of half-cyclen− 1)2

2
×(−minimum value ofW over half-cyclen− 1) ,

thus (given the work of§3.1) we may suppose that, eventually inn, at timeTn the
quantity−U is bounded above by

1

2

((
1 +

xn−1

bn−1

)
tn−1

)2

× xn−1 =
1

2

(
1 + κ(n− 1)1+α

)2
a5

n−1(n− 1)5+5α .

(9)
Now apply a Borel-Cantelli argument and the reflection principle to show that

eventually inn the Brownian component takes time at leasta2
n/(4n

2+2α) in travel-
ling from an to an/2. We deduce almost surely for all sufficiently largen at time
Tn it must be the case thatV =

∫
W d t exceeds

(an/2)× time to move froman to an/2 ≥ a3
n

8n2+2α
, (10)
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ThusCn is bounded above, eventually inn, by

4
(
1 + κ(n− 1)1+α

)2
(n− 1)5+5αn2+2α ×

(
an−1

an

)3

a2
n−1 . (11)

This leads to the crux of the argument; we need an eventual upper bound on the
ratioan−1/an.

First note that thelower bound of Inequality (10), applied to the(n−1)st cycle,
shows that eventually inn

−
∫ Tn−1

W d t ≥ a3
n−1

8(n− 1)2+2α
. (12)

So it suffices to obtain a suitable lower bound onan, the value ofW at the end of
half-cyclen−1, in terms of− ∫ Tn−1 W d t and holding eventually inn. Moreover
we may ignore theFall component of half-cyclen− 1 so long as the lower bound
is smaller thanbn−1, and treatW over the whole of this half-cycle as a Brownian
motion of rate4.

We now introduce a discontinuous time-change based on the continuous (but
non-monotonic) additive functionalV (t) =

∫
W ds: condition on

∫ Tn−1 W d t =
−un−1 and set

σ(u) = inf {s ≥ 0 : V (Tn + s)− V (Tn) > u− un−1}
for 0 ≤ u ≤ un−1. We setZ̃(u) = W (σ(u) and use standard time-change
arguments to show du = W (σ(u)) dσ so dσ/ du = 1/W (σ(u)) = 1/Z̃(u).
Consequently, on time intervals throughout whichZ̃ > 0,

d Z̃(u) =
2√
Z̃

dB̃ whenZ̃ > 0 (13)

for a new standard Brownian motioñB. The time-changed process̃Z is illustrated
in Figure 4. Note thatZ̃ must be non-negative.

A nonlinear transformation of scaleZ = Z̃3/2/3 produces a Bessel(4
3
) pro-

cessZ in time intervals throughout which̃Z (equivalentlyZ) is positive: by It̂o’s
formula the stochastic differential equation

dZ = d

(
1

3
Z̃3/2

)
=

1

2
Z̃1/2 d Z̃ +

1

8

1√
Z̃

(d Z̃)2

= dB̃ +
1

6

1

Z
du ,
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Figure 4: Discontinuous time-change for W based onV =
∫

W d t. The effect
of the time-change is to delete the loops extending intoW > 0, and to continue
deletion till V =

∫
W d t re-attains its minimum, thus generating discontinuities

(some of which are indicated in the figure by small dots on theV -axis) in the
time-changed process̃Z, which follows the red /dark trajectory.

holds in intervals for whichZ > 0.
Now observe that the zero-set{u : Z(u) = 0} is almost surely a null-set.

For certainly the Brownian zero-set{t : W (t) = 0} is almost surely null, and
{V (t) : W (t) = 0} is then almost surely null by Sard’s lemma, sinceV is aC1

function with derivativeW (indeed this is an easy exercise in this simple context).
But {u : Z(u) = 0} = {u : Z̃(u) = 0} is a subset of{V (t) : W (t) = 0}.

Because{u : Z(u) = 0} is almost surely a null-set, it follows that the stochas-
tic integral

B(u) =

∫ u

0

I [Z > 0] dB̃ (14)

(usingEquation (13)to constructB̃ whenZ > 0) defines a Brownian motion.
Furthermore we can apply limiting arguments to write

Z = B +
1

6

∫
I [Z > 0]

1

Z
du + H (15)

whereH is the non-decreasing pure jump process

H(u) =
∑
v≤u

1

3
(W (σ(u))−W (σ(u−)))3/2 ,

which is constant away fromZ = 0.
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Using the theory of the Skorokhod construction (El Karoui and Chaleyat-
Maurel 1978), we now derive the comparison

Z ≥ B + L

whereL is local time ofB at 0, so thatB + L is reflected Brownian motion. (H
is discontinuous, but the argument of the Skorokhod construction applies so long
asH is non-decreasing.) Consequently

P
[
1

3
Z̃3/2(un−1) ≥ x

]
≤ P [B(un−1) ≥ x]

and so we can deduce from a Borel-Cantelli argument and thelower bound of
Inequality (12)that the following holds eventually inn:

an ≥
(
| ∫ Tn−1 W d t|
(n− 1)2+2α

)1/3

≥ an−1

(
1

8(n− 1)4+4α

)1/3

(16)

for α > 0. Thus eventually inn

Cn ≤ 32
(
1 + (n− 1)1+α

)2
(n− 1)9+9αn2+2α × a2

n−1

and so we can arrange for
∑

n Cn < ∞ so long as we choosean ≤ 1/n7+β for
β > 0.

We state this as a theorem:

Theorem 3.5 The modified strategy described at the head of this subsection (hold
at eachTn till

∫ ∫
W ds d t is zero or has the same sign as

∫
W d t) produces

convergence of

(W,

∫
W d t,

∫ ∫
W ds d t)

to (0, 0, 0) in finite time so long as the conditions ofTheorem 3.1are augmented
by the following: half-cyclen begins atW = ±an for an ≤ 1/n7+β for β > 0
and for all sufficiently largen. (This can be arranged by choosingbn in the range
an/κ ≤ bn ≤ min{an, 1/n

7+β} for constantsκ andβ > 0.)

Remark 3.6The choicebn = an/2 of Ben Arous et al. (1995)will suffice.

Remark 3.7It is possible to obtain a modest gain on the above by recognizing that
the hitting time of Brownian motion on−1 has the same distribution as the inverse
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square of a standard normal random variable. This argument permits replacement
of Equation (10)by

∫ Tn

W d t ≥ constant× a3
n

1√
n

.

Remark 3.8 The elementary comparison approach above can of course be re-
placed by arguments employing the exact computations ofMcKean (1963).

Remark 3.9The method described here (control coupling of higher-order iterated
integrals by judicious waits atW = 0) appears to deliver effective control of just
one higher-order iterated integral in addition toW , V =

∫
W d t. Attempts to

control more than one higher-order iterated integral seem to lead to problems of
propagation of over-correction from one half-cycle to the next. We therefore turn
to a rather different, less explicit, approach in the remainder of the paper.

4 Reduction to non-iterated time integrals

Before considering the problem of coupling more than two iterated time inte-
grals, we first reformulate the coupling problem in terms of integrals of the form∫

tm

m!
B(t) d t rather than the less amenable iterated time integrals of above. We be-

gin with some notation. SupposeW is defined as the difference between two co-
adapted coupled Brownian motions, as in§3.1. Then we setW = W (0) = B −A
and define the firstN iterated time integrals inductively by

W (1) = W (1)(0) +

∫
W (0) d t ,

W (2) = W (2)(0) +

∫
W (1) d t ,

. . .

W (N) = W (N)(0) +

∫
W (N) d t . (17)

(Note that we have allowed for arbitrary initial conditionsW (1)(0) et cetera.)
If W (0)(0) = W (1)(0) = W (2)(0) = . . . = W (N)(0) = 0, so the initial
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conditions all vanish, then we find by exchange of integrals that

W (n)(T ) =

∫ T

0

W (n−1)(t) d t =

∫ T

0

(∫ t

0

W (n−2)(s) ds

)
d t

=

∫ T

0

(∫ T

s

W (n−2)(s) d t

)
ds =

∫ T

0

(T − s)W (n−2)(s) ds

= . . . =

∫ T

0

(T − s)n−1

(n− 1)!
W (0)(s) ds .

Binomial expansion leads to the following:

Lemma 4.1 SupposeW (0)(0) = W (1)(0) = W (2)(0) = . . . = W (N)(0) = 0, and
J is a given adapted control, andζ is a given stopping time. Then

W (0)(ζ) = 0, W (1)(ζ) = 0, W (2)(ζ) = 0, . . . , W (N)(ζ) = 0

if and only if

W (ζ) = 0 ,

∫ ζ

0

W (t) d t = 0 ,

∫ ζ

0

tW (t) d t = 0 ,

. . . ,

∫ ζ

0

tN−1

(N − 1)!
W (t) d t = 0 .

If the iterated time integrals have non-zero initial values then we can reduce
to the case of zero initial values by supposingW is deterministically extended
backwards in time to time−1, with corresponding generalization ofEquation
(17). By a simple argument using orthogonal Legendre polynomialsPn on [−1, 1],
we can chooseW |[−1,0] to produceW (0)(−1) = W (1)(−1) = W (2)(−1) = . . . =
W (N)(−1) = 0, andW (0)(0) = a0, W (1)(0) = a1, W (2)(0) = a2, . . . ,W (N)(0) =
aN as required. For if

W (t) =
N+1∑
n=0

bnPn(2t + 1)

for −1 ≤ t ≤ 0 then
∫ 0

−1

Pn(2t + 1)W (t) d t =
1

2
bn

∫ 1

−1

Pn(t)2 d t .
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Expanding the Legendre polynomials and adapting the argument leading toLemma
4.1, we can finda1, . . . , aN in terms ofb0, b1, . . . , bN−1 by solving a triangular
linear system of equations. Finally,bN andbN+1 may be fixed by the requirement
that W (0) = a0 =

∑N+1
n=0 bnPn(1) and 0 = W (−1) =

∑N+1
n=0 bnPn(0) (note

that Legendre polynomials do not vanish at their end-points, and are odd or even
functions according to whether their order is odd or even!).

This allows us to useLemma 4.1to deduce the required reduction:

Lemma 4.2 It is possible to use adapted controlsJ to ensure

W (0)(ζ) = 0, W (1)(ζ) = 0, W (2)(ζ) = 0, . . . , W (N)(ζ) = 0

at some stopping timeζ (depending on initial valuesW (n)(0)) if and only if it is
also possible to use adapted controls to ensure

W (ζ) = 0 ,

b0 +

∫ ζ

0

W (t) d t = 0 , b1 +

∫ ζ

0

tW (t) d t = 0 ,

. . . , bN−1 +

∫ ζ

0

tN−1

(N − 1)!
W (t) d t = 0 .

(Here the constantsbn depend on the initial conditionsW (n)(0) for the iterated
integrals).

For we may extend back over[−1, 0], condition on achieving the desired values
{W (n)(0) : n = 0, . . . , N}, and work with controlsJ which act only for positive
time.

5 Coupling finitely many iterated integrals

To motivate the control strategy required to couple more than two iterated inte-
grals, we consider a discrete analogue to our problem which is in fact a limiting
case.

Suppose we choose only to switch betweenJ = ±1 at instants whenW
switches over between two constant levels (as illustrated inFigure 1). To aid
explanation we temporarily entertain the fiction that the Brownian motions con-
spire to produce instantaneous switching as soon asJ is switched to−1. Then
it is a matter of simple integration to compute the effect on integrals of the form
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∫
tm

m!
dW : if we hold J = +1 at successive levels±1, beginning at+1, making

switches from±1 to ∓1 at times0 = T0 < T1 < . . . < Tr, then (under the
instantaneous switching approximation)

∫ Tr

0

tm

m!
dW =

r−1∑

k=0

(−1)k Tm+1
k+1 − Tm+1

k

(m + 1)!
. (18)

In §5.1 below we show that particular patterns of switching times produces
zero effect on integrals up to a fixed order, at least for the discrete analogue. This
permits us to eliminate a whole finite sequence of the integrals. (Of course in
practice, because switching is not instantaneous, the use of such patterns creates
further contributions to the integrals which then must be dealt with in turn!)

It is algebraically convenient to formulate the required patterns using a se-
quenceS0, S1, . . .S2N−1 of values of±1 defined recursively in a manner reminis-
cent of the theory of experimental design. We set

S0 = +1 ,

(S2n , S2n+1, . . . , S2n+1−1) = −(S0, S1, . . . , S2n−1) . (19)

Here is the pattern formed by the first sixteenSn values:

+ - - + - + + - - + + - + - - +

We will be considering perturbations and re-scalings of the deterministic control
which applies controlJ = −1 throughout the time interval[m, m + 1) till a
switch has occurred to levelSm, and then appliesJ = 1 for the remainder of
the time interval. The discrete analogue can be viewed as a limiting case under
homogeneous (not Brownian!) scaling of space and time. SeeFigure 5for an
illustration.

5.1 Algebraic properties of the sign sequence

We now prove some simple properties of the sign sequenceS0, S1, . . .S2N−1.

Lemma 5.1 If b(r) is the number of positive bits in the binary expansion ofr then

Sr = (−1)b(r) .
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Figure 5: Illustration of the deterministic switching control corresponding to the
pattern+ - - + - + + - . The top panel shows the path ofW together with
shaded regions indicating discrepancies with the discretized analogue. The middle
panel shows the paths of the first three time integrals of the discretized analogue
(all of which are brought to0 at the end of the sequence). The lower panel shows
the paths of the first three time integrals ofW .
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Proof:
Sinceb(0) = 0 this holds forS0 = 1. Therecursive definition (19)shows that if
the lemma holds for the first2n entries in the sequence ofSn then it will also hold
for the next2n entries. The result follows by induction. ¤

The proofs of the next three corollaries are immediate from the recursive def-
inition of theSm’s.

Corollary 5.2

S2`j+a = SjSa whena = 0, 1, . . . ,2` − 1.

Corollary 5.3
S2m+1 = −S2m

Notice the analogue ofCorollary 5.3doesnot hold betweenS2m+2 andS2m+1!

Corollary 5.4

2n−1∑
m=0

Sm = 0 if n ≥ 1 ,

= 1 if n = 0 .

These results imply the vanishing of certain sums of low-order powers:

Lemma 5.5

2N−1∑
m=0

(m + 1)k

k!
Sm = 0 if k < N ,

= (−1)N2N(N−1)/2 if k = N . (20)

Proof:
Use induction on the levelk. If k = 0 then Equation (20)follows from the
expression for

∑2N−1
m=0 Sm in Corollary 5.4. HenceEquation (20)holds at level

k = 0.
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SupposeEquation (20)holds for all levels below levelk and supposek < N .
Using therecursive construction (19),

2N−1∑
m=0

(m + 1)k

k!
Sm =

2N−1−1∑
m=0

(m + 1)k − (m + 1 + 2N−1)k

k!
Sm

= −
k∑

u=1

(2N−1)u

u!

2N−1−1∑
m=0

(m + 1)k−u

(k − u)!
Sm

using the binomial expansion and cancelling the(m + 1)k terms. Now we can
apply the inductive hypothesis to dispose of terms involving(m+1)k−u for u > 1:

2N−1∑
m=0

(m + 1)k

k!
Sm = −2N−1

2N−1−1∑
m=0

(m + 1)k−1

(k − 1)!
Sm .

ThusEquation (20)follows by applying the inductive hypothesis to the right-hand
side. ¤

Remark 5.6 An alternative approach uses generating functions, applying the re-
cursive construction ofEquation (19)to show

∞∑

k=0

uk




2N−1∑
m=0

(m + 1)k

k!
Sm


 =

(
1− e2N−1u

)
. . .

(
1− e2u

)
(1− eu) eu .

We can now compute the discrete analogue of
∫ 2N

0
tm

m!
W (t) d t under the spe-

cial control which arranges instantaneous switching to levelSm at timem.

Theorem 5.7 For all k < N

2N−1∑
m=0

(m + 1)k+1 −mk+1

(k + 1)!
Sm = 0 . (21)

Proof:
Equation (21)follows fromEquation (20)by binomial expansion: for example we
usem = (m + 1)− 1 to deduce

2N−1∑
m=0

(m + 1)N −mN

N !
Sm =

N−1∑
u=0

(−1)N−u

(N − u)!

2N−1∑
m=0

(m + 1)u

u!
Sm = 0 .
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Note thatEquation (21)for S0, S1, . . . , S2N−1 is equivalent toEquation (18)
with appropriate definitions of the switching timesT0, T1, . . . ,Tr. We now intro-
duce notation for these deterministic times, as they will be basic to our coupling
construction.

Definition 5.8 Define switching times̃T1, . . . , T̃r(N) to be the timesm at which

Sm−1 = ±1 switches toSm = ∓1, and setT̃0 = 0.

Corollary 5.9 By induction onN ≥ 1, sincer(N + 1) ≥ 2r(N),

N ≤ r(N) ≤ 2N − 1 .

5.2 Application to the coupling problem

We can now summarize our control strategy for successful coupling. By global
analysis (specifically, the inverse function theorem), as long as initial conditions
for integrals of order up to

∫
tN−1

(N−1)!
B d t are sufficiently small we can obtain a

perturbationT 0
0 = 2N < T 0

1 < . . . < T 0
r(N) of the switching times̃T1, . . . , T̃r(N)

(Definition 5.8) which will dispose of these initial conditions by time2N . (As will
become apparent, scaling arguments can be deployed to deal with larger initial
conditions.)

Since the coupled Brownian motions cannot actually produceinstantaneous
transitions between±1, the switching activity will have introduced further non-
zero contributions to the integrals by time2N . So long as these contributions are
in turn sufficiently small, we can dispose of them in turn by administering a new
control based on switching timesT 1

0 = 2N < T 1
1 < . . . < T 1

r(N) which form a

small perturbation of thescaledcontrol obtained from̃T1, . . . , T̃r(N) by re-scaling
both space and time homogeneously by a factor1/2 (not by Brownian scaling!)
and shifting forwards in time by2N . Thus switching now occurs between levels
±1/2. A key reason for the success of the coupling is that in terms of Brown-
ian scaling there is now twice as much effective time in which to carry out each
switch! This means that the probability of all switches completing within their
assigned times will increase rapidly to1.

We can now continue this procedure, disposing of further non-zero contribu-
tions by appending further controls using perturbations based on smaller delays
and smaller levels. A Borel-Cantelli argument shows there is a positive lower
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bound on the probability of this infinite sequence completing before a finite time:
and moreover the size of the integrals decreasing to zero.

If this fails (because at some stage no small enough perturbation is available,
or because a switch fails to complete before its successor is due) then we simply
restart the procedure, re-scaling time to ensure existence of the perturbation re-
quired initially. Continuing in this manner allows us to deduce that almost surely
coupling is eventually successful.

All depends on analyzing the behaviour of perturbations of deterministic con-
trols of the form ofDefinition 5.8. Consider the map whose coordinates corre-
spond to analogues of time integrals of order less thanN :

F (t0; t, u) = F (t0; t1, . . . , tN , uN+1, . . . , ur(N)) = (F0, . . . , FN−1) (22)

Fm(t0; t, u) =
N−1∑

k=0

(−1)k tm+1
k+1 − tm+1

k

(m + 1)!
+ (−1)N um+1

N+1 − tm+1
N

(m + 1)!
+ (23)

+

r(N)−1∑

k=N+1

(−1)k um+1
k+1 − um+1

k

(m + 1)!
,

so Fm(t0; t, u) describes the contribution to
∫

tm

m!
W d t made by instantaneous

switching between levels±1 happening at timest1, . . . ,tN , uN+1, . . .ur(N), start-
ing at level1 at timet0. (RecallingCorollary 5.9, r(N) ≥ N if N ≥ 1.) We can
re-writeFm(t0; t, u) as

Fm(t0; t, u) = 2
N∑

k=1

(−1)k−1 tm+1
k

(m + 1)!
+(further terms involvingt0, uN+1, . . .) .

We compute the Jacobian forF (t0; t, u) with respect to the argumentst1, . . . , tN :

det




2 2t1 2
t21
2!

. . . 2
tN−1
1

(N−1)!

−2 −2t2 −2
t22
2!

. . . −2
tN−1
2

(N−1)!

. . .

2(−1)N−2 2(−1)N−2tN−1 2(−1)N−2 t2N−1

2!
. . . 2(−1)N−2 tN−1

N−1

(N−1)!

2(−1)N−1 2(−1)N−1tN 2(−1)N−1 t2N
2!

. . . 2(−1)N−1 tN−1
N

(N−1)!




.

This is proportional to a Vandermonde determinant and in fact evaluates to

2N(−1)N

1 · 1 · 2! · . . . · (N − 1)!

∏
1≤i<j≤N

(tj − ti) , (24)
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which is non-zero so long as theti’s are distinct. This and the inverse function
theorem allows us to assert the following fact:

Lemma 5.10 The polynomial (hence smooth) map

t = (t1, . . . , tN) 7→ F (0; t, T̃N+1, . . . , T̃r(N))

is invertible in a neighbourhood of the initial sequence of switching timesT̃0,
T̃1, . . . , T̃N corresponding to switching between levelsSm, . . . at timesm, . . . . In
particular there isκ > 0 andε′ > 0 such that for allε < ε′, if |W (m+1)(0)| < ε for
m = 0, 1, . . . ,N − 1, then there is aκε-perturbation(t1, . . . , tN) of (T̃1, . . . T̃N)

with 0 < t1 < . . . < tN < T̃N+1 (hence generating a valid switching strategy)
which is such that

Fm(0; t1, . . . , tN , T̃N+1, . . . , T̃r(N)) = −W (m+1)(0)

for m = 0, 1, . . . ,N − 1.

Note further that fromEquation (22)and the binomial theorem we have a
translation symmetry:

Lemma 5.11

Fm(t0 + s; t + s, u + s) =
m∑

u=0

sm−u

(m− u)!
Fu(t0; t, u)

while Equation (22)directly yields a scaling property:

Lemma 5.12
Fm(λt0; λt, λu) = λm+1Fm(t0; t, u) .

We need just one more lemma, concerning the behaviour of Brownian motion,
before we can state and prove the main coupling result for this section.

Lemma 5.13 Consider a Brownian motionB started at0 and run till it hits level
−3/2 at timeS. For fixed constantsK1, K2

∑
n

P

[
S > K1(1 + n)2+2α or sup

[0,S]

B > K2(1 + n)2+2α

]
< ∞ .
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Proof:
This follows easily from the reflection principle and elementary Gaussian integral
estimates:

P

[
S > (1 + n)2+2α or sup

[0,S]

B > (1 + n)2+2α

]

≤ 1− 2P
[
B(1 + n)2+2α < −3

2

]
+ 2P

[
B((1 + n)2+2α) > (1 + n)2+2α

]

≤ 2√
2π

∫ 3
2(1+n)1+α)

− 3
2(1+n)1+α)

e−u2/2 du +
2√
2π

∫ ∞

(1+n)1+α

e−u2/2 du

≤ 5√
2π

1

(1 + n)1+α
.

¤

Theorem 5.14 There is a successful co-adapted coupling for Brownian motion
and its firstN iterated time integrals.

Proof:
By the work of§4 this is reduced this to the problem of finding an adapted control
J = ±1 which deliversW such that at a particular stopping timeζ we have
W (ζ) = W (0)(ζ) = 0 andW (m+1)(0) +

∫ ζ

0
tm

m!
W (t) d t = 0 for m = 0, 1, . . . ,

N − 1. Without loss of generality we assumeW (0) = 2 (for otherwise we can
run the controlJ = −1 till this occurs!).

UsingLemma 5.10andLemma 5.12, for fixed ε > 0 we can chooseC large
enough to solve for(t01, . . . , t

0
N) with |t0k − T̃k| < ε in

Fm(0; Ct01, . . . , Ct0N , CT̃N+1, . . . , CT̃r(N)) = −W (m+1)(0) (25)

for m = 0, . . . , N − 1: carry out this switching strategy over the time period
[0, 2NC) to eliminate the initial conditions.

We now apply the following algorithm iteratively starting at stepk = 1, and
continuing, to reduce the further contributions to the integrals made during previ-
ous switching strategies.
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Stepk: At time T k
0 = (2− 21−k)2NC, useLemmas 5.10, 5.11, and5.12to

determine the solution(tk1, . . . , t
k
N) of

Fm(T k
0 ; T k

0 + 2−kCtk1, . . . , T
k
0 + 2−kCtkN , T k

0 + 2−kCT̃N+1, . . . , T
k
0 + 2−kCT̃r(N))

= −
∫ T k

0

0

tm

m!
W (t) d t

= −
∫ T k

0

T k−1
0

tm

m!
W (t) d t = −

m∑
u=0

(T k
0 )m−u

(m− u)!

∫ 21−k2NC

0

tu

u!
W (t + T k−1

0 ) d t ,

(taking into account that previous steps will have eliminated
∫ T k−1

0

0
tm

m!
W (t) d t)

or equivalently (Lemmas 5.11, 5.12)

Fm(0; tk1, . . . , t
k
N , T̃N+1, . . . , T̃r(N))

= −
(

1

21−kC

)m+1 ∫ 21−k2NC

0

tm

m!
W (t + T k−1

0 ) d t

= −
∫ 2NC

0

tm

m!
W (21−kt + T k−1

0 ) d t ,

for m = 0, 1, . . . ,N − 1.

We setT k
m = T k

0 + 2−kCtkm for m = 1, . . . , N , andT k
m = T k

0 + 2−kCT̃m

for m = N + 1, . . . ,r(N). Note thatT k
r(N) = T k+1

0 .

Apply the switching strategy determined byT k
0 , T k

1 , . . . ,T k
r(N) over the time

interval[T k
0 , T k+1

0 ).

The algorithm can fail at this step ifeitherthe integrals
∫ T k

0

0
tm

m!
W (t) d t are too

large,or one of the2N switches fails to complete in the interval allotted to it. The
estimate ofLemma 5.13allows us to obtain bounds on (a) the probability of large

size of the integrals
∫ T k

r(N)

0
tm

m!
W d t =

∫ T k+1
0

0
tm

m!
W d t, in terms of bounds on|W |,

and (b) the probability that a switch begun atT k
r−1 fails to complete by time the

next switchT k
r is due to start.

Set Z−1
α = supk=0,1,...(1 + k)1+α2−k/2, for some fixedα > 1, and recall

from Lemma 5.10that ε > 0 is the bound on initial conditions required ifκε-
perturbation switching controls are guaranteed to exist. LetDk be the event that
both ∣∣∣∣∣

∫ 2NC

0

tm

m!
W (2−kt + T k

0 ) d t

∣∣∣∣∣ ≤ Zα(1 + k)1+α2−k/2ε
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for m = 0, . . . ,N − 1, and also

W (T k
1 ) = −1

2
W (T k

0 )

W (T k
s ) = −W (T k

s−1) for s = 1, . . . , r(N) .

So long asD0, D1, . . . , Dk−1 have been satisfied, we knowW (T k
0 ) = 21−k,

and so (bearing in mind the effects of the switching strategy)Dk holds only if
W (T k

s ) = 2−k for s = 1, . . . ,r(N); moreover, the condition
∣∣∣∣∣
∫ 2NC

0

tm

m!
W (21−kt + T k−1

0 ) d t

∣∣∣∣∣ ≤ Zα(k)1+α2−(k−1)/2ε ≤ ε

ensures we will be able to determine the solution(tk1, . . . , t
k
N) in Equation (25).

Now the eventDk is contained in the union ofR(n) events of the form

sup
u∈[T k

0 ,T k
s+1]

|2k/2W (u)| ≤ Zαε

(2NC)m+1/(m + 1)!
(1 + k)1+α

andW makes an down-crossing from2−(k−1) to−2−k

over the time interval[T k
0 , T k

s+1] ;

whereT k
0 , T k

s+1 is an interval of minimum length2−k(1 − κε), and the down-
crossing may be replaced by a down-crossing from2−k to−2−k, or an up-crossing
from −2−k to 2−k (but this does not decrease the probability of the event con-
cerned!).

By Brownian scaling any one such event has probability bounded above by
the probability of the following event:

sup
u∈[0,(1+k)2+2α]

|W (u)| ≤ Zαε√
1− κε(2NC)m+1/(m + 1)!

(1 + k)2+2α

andW makes an down-crossing from
2−(k−1)/2

√
1− κε

(1+k)1+α to− 2−k/2

√
1− κε

(1+k)1+α

over the time interval[0, (1 + k)2+2α] .

Consequently byLemma 5.13we deduce that
∑

k P [Dk] < ∞, and moreover we
can use the Markov property and the density of Brownian paths to deduce there is
a positive chancep > 0 that

⋂
k Fk occurs. If this happens then coupling succeeds

at time limk→∞ T k
0 : otherwise we can start the strategy anew. We can therefore

assert, almost surely success will occur eventually. ¤
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6 Impossibility of coupling all iterated integrals

Is it possible to arrange successful coupling forall iterated integrals at a single
stopping timeζ using some adapted controlJ?

Summation of the coupling statements produces a statement about Laplace
transforms of the path, which allows us to demonstrate that coupling of all iterated
integrals is possible only in trivial cases.

Theorem 6.1 Suppose that the initial conditions for the iterated stochastic inte-
grals arefeasible, in the sense that they could have been produced by integration
of a continuous path starting at some previous time (without loss of generality,
time−1). Consider an adapted controlJ producing coupling for all iterated in-
tegrals at a stopping timeζ. This can be produced only ifW = B −A is actually
identically zero over[0, ζ].

Proof:
Suppose the Brownian paths and all iterated integrals couple atζ, soW (n)(ζ) = 0
for all n. We show that in this caseW ≡ 0 must hold over the interval[0, ζ].

By hypothesis, we may convert into statements about integrals over[−1, ζ]
(with a suitable extension ofW ) using powers oft. We can write

∞∑
n=0

βn

∫ ζ

−1

tn

n!
W (t) d t = 0 .

The continuous pathW is bounded over[−1, ζ], so the sum on the left-hand-side
converges and moreover we can exchange integral and summation to obtain

∫ ζ

−1

exp(βt)W (t) d t = 0

for all β. By uniqueness of the Laplace transform, this holds only ifW ≡ 0 over
the interval[0, ζ] as required. ¤

Remark 6.2 This argument is essentially non-stochastic, based only on the con-
tinuity of the path which is the difference of the two coupled processes, and so
holds foranycoupling, whether co-adapted or not.

Remark 6.3More generally, this argument extends immediately to cover for ex-
ample the case when the sequence of initial conditionsW (m)(0) is L2 summable
(use anL2 path over[−1, 0]!).
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7 Conclusion

We conclude by noting that the successful coupling strategies of§3 and§5 are
both in essence very simple, involving switching between synchronous (J = 1)
and mirror (J = −1) coupling. It would be interesting to construct a successful
coupling strategy which optimized, for example, a specific exponential moment
of the coupling time; one expects there would be a whole family of such couplings
parametrized by the coefficient in the exponential moment, and that the coupling
strategies themselves would have some kind of geometric flavour.

The results of this paper can be viewed as introducing a new notion to coupling
theory: that of an “exotic coupling”, a co-adapted coupling for a diffusion (in
this case real Brownian motion) which successfully couples not only the diffusion
itself but also a number of path functionals of the diffusion. It is striking that exotic
coupling is feasible at all; the method of proof for the general case (§5) is very
suggestive for how to address more general situations.Ben Arous et al. (1995)
also showed the existence of an exotic coupling for planar Brownian motion using
the path functional given by the Lévy stochastic area, and it would be interesting
to see how far theBen Arous et al. (1995)result could be extended to higher
dimensional Brownian motion; this would be a useful next step towards the natural
bold conjecture which we now present:

Conjecture 7.1 Hypoelliptic diffusions with smooth coefficients can be coupled
co-adaptively with positive chance of success from any two starting points.

It would of course be of great interest to obtain specific applications of these
couplings, perhaps for example in Coupling from the Past constructions.

Finally we remark thatPrice (1996)gives some results concerning exotic cou-
pling using single functionals of the form

∫
f(t)B d t.
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