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Abstract

The Kolmaogorov (1934jiffusionis the two-dimensional diffusion gen-
erated by real Brownian motiaB and its time integral B d¢. In this paper
we construct successful co-adapted couplings for iterated Kolmogorov dif-
fusions defined by adding iterated time integril§ Bdsdt, ...as further
components to the original Kolmogorov diffusion. A Laplace-transform ar-
gument shows it is not possible successfully to couple all iterated time in-
tegrals at once; however we give an explicit construction of a successful
co-adapted coupling method foB, [ Bdt, [ [ Bdsdt); and a more im-
plicit construction of a successful co-adapted coupling method which works
for finite sets of iterated time integrals.
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1 Introduction

The Kolmogorov (1934)iffusionis the two-dimensional diffusion generated by
real Brownian motionB and its time integral B d¢. Analytic studies of distri-
bution and winding rate about, 0) have been carried out liMcKean (1963)
More recent workersliachal 1997 Khoshnevisan and Shi 199&roeneboom,
Jongbloed, and Wellner 199€@hen and Li 200Bhave considered growth asymp-
totics, distribution under conditioning, and small ball probabiliti&en Arous
et al. (1995)showed thatB, [ Bdt) can be successfullgoupled co-adapted]y
meaning that for any two different starting poiifts, a») and(by, b) it is possible
to construct random processes, [ Ad¢) and(B, [ Bdt) begun aa;, as) and
(b1, by) respectively, adapted to the same filtration and suchAheatd B are real
Brownian motions with respect to this filtration, whicbhuple successfuliy the
sense thatl; = Br andasy + fOT Adt = by + fOT B dt for some random but finite
time T'. Theiterated Kolmogorov diffusiors obtained by adding (perhaps a finite
number of) further iterated time integrafs/ Bdsdt, ...as components, and the
object of this note is to study its coupling properties.

There are many different kinds of couplingo-adaptedor Markovian cou-
pling as described abovep-adapted time-changed couplinghich relaxes the
filtration requirements to permit random time-changes (an example is to be found
in lKendall 1994; non-adapted couplingwhich lifts the filtration requirement;
and finallyshift-coupling which relaxes the coupling requirement to permit cou-
pling up to a random timeA]dous and Thorisson 1993Elementary martingale
arguments show a diffusion cannot be successfully coupled if there exist non-
trivial bounded functions which are parabolic (space-time harmonic) with respect
to the diffusion; more generally a diffusion cannot be successfully shift-coupled if
there exist non-trivial bounded functions which are harmonic. The converse state-
ments are also true: absence of non-constant parabolic functions means there exist
successful non-adapted couplin@riffeath 197% Goldstein 1979 and absence
of non-constant harmonic functions means there exist successful shift-couplings
(Aldous and Thorisson 1993

Co-adapted couplings are generally less powerful than non-adapted couplings,
but can provide significant links to mathematical notions such as curvature. For
exampleKendall (1986)describes a co-adapted coupling construction for Brown-
ian motion on Cartan-Hadamard manifolds of negative curvature bounded above
away from zero, and shows that there is no successful co-adapted coupling. If
it could be shown in this case that successful non-adapted coupling implied ex-
istence of a successful co-adapted coupling, then one could use the link with
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parabolic functions to deduce that all such manifolds must support non-constant
bounded parabolic functions; this question from Riemannian geometry is cur-
rently open! Furthermore, it is typically much easier to construct co-adapted cou-
plings when they do exist; a matter of major significance when using coupling
to explore convergence of a Markov chain to equilibrium (when using Markov
chains as components of approximate counting algorithms as expoundett in
rum 2003 or when implementing Coupling from the Past a®nopp and Wilson
1996). Burdzy and Kendall (2000¢xplore the difference between non-adapted
and co-adapted couplings; see elayes and Vigoda (2003who describe a
non-adapted variation on an adapted coupling which provides better bounds for
mixing in a particular graph algorithm.

In this paper we extend the resultsBen Arous et al. (1995pr (B, | Bdt),
giving an explicit construction for a successful co-adapted coupling at the level of
the twice-iterated time integralbheorem 3.5 We also give an implicit construc-
tion for successful co-adapted couplings for higher-order iterated Kolmogorov
diffusions [Theorem 5.1 and note that it is impossible successfully to couple all
iterated time integrals simultaneousiyjheorem 6.L
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2 Parabolic functions and harmonic functions

We begin by sketching some general mathematical considerations. It is possible
to derive information about the existence or otherwise of couplings from analytic
considerations, albeit in a rather non-constructive fashion. The existence of a suc-
cessful non-adapted coupling is known to be equivalent to the nonexistence of
non-constant parabolic functior&fjffeath 197%/Goldstein 1979 The same is

true if we replace “non-adapted coupling” and “parabolic” by “shift-coupling” and
“harmonic” (Aldous and Thorisson 1993 (These papers consider the discrete-
time case: the technical issue of moving to continuous time is dealt with for ex-
ample inThorisson 2000
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In general itis known that manifolds which are (for example) unimodular solv-
able Lie groups will not carry non-constant bounded harmonic functioyeng
and Sullivan 1984Kaimanovich 1986/Leeb 1993. The iterated Kolmogorov
diffusion can be viewed as a Brownian motion on a nilpotent Lie group, so we can
deduce the existence of successhift-couplingsfor the iterated Kolmogorov
diffusion.

We are concerned here with successful couplings rather than successful shift-
couplings, corresponding to parabolic functions rather than harmonic functions.
HoweverCranston and Wang (20068, Remark 3show that a parabolic Harnack
inequality holds for left-invariant diffusions on unimodular Lie groups (and there-
fore successful shift-couplings exist for such diffusions if and only if successful
non-adapted couplings exist). It suffices to indicate how the iterated Kolmogorov
diffusion can be viewed as such a diffusion. We outline the required steps.

First observe that there is a homomorphism of the semigroup of patimsler
concatenation into the quotiegtoup which identifies paths with the same time-
length and the same endpoints and iterated time integrals up to erdé&he
resulting group is graded by a degree defined inductively by time-integration,
and is nilpotent with this grading. It is a Lie group, since it can be coordi-
natized smoothly by, B;, andn iterated integrals of the forr[f(deu,

Jy...Jy Bdw...du; evolution of B generates the required left-invariant dif-
fusion. Nilpotent Lie groups are unimodul®&drwin and Greenleaf 1990so the
Cranston and Wang (200@jork applies.

Thus at a rather abstract and indirect level we know it is possible to construct
successful non-adapted couplings for the iterated Kolmogorov diffusion. However
in the following we will show how to construct successtoladapted couplings
while our general constructiosg) is not completely explicit, nevertheless it is
much more direct than the above, as well as possessing the useful co-adapted

property.

3 Explicit co-adapted coupling

for the twice-iterated Kolmogorov diffusion
We now describe a constructive approach to successhadaptedcoupling of
Brownian motion and its first two iterated integral3; [ Bdt and [ [ Bdsdt.

In later sections we will show how to deal with higher-order iterated integrals.
We use the conventional probabilistic language of “ev&éntappens eventu-
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ally in n” to mean, almost surely,, occurs for all but finitely many: (in measure-
theoretic terms this corresponds to the assertion that the eyef,..,, A, has
null complement).

3.1 Case of first integral

Coupling of the first two iterated integrals is based orBee Arous et al. (1995)
coupling construction fofB, | B dt); we begin with a brief description of this in
order to establish notation.

A B

Ty AN R "
S

Figure 1:Plots of (a) two coupled Brownian motionsand B, (b) the difference
W =B—A=B(0)—A(0)+ [(J—1)dA. The coupling controJ switches be-
tween valuest1 (“synchronous coupling”) and1 (“reflection coupling”). In the
figure, switches to fixed periods df= +1 are triggered by successive crossings
of £1 by W.

Co-adapted couplings are built on two co-adapted Brownian motioasd
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B begun at different locationd (0) and B(0): we shall suppose they are related
by a stochastic integra8 = B(0) + [ Jd A, whereJ is a piece-wise constant
+1-valued adapted random function. The coupling is defined by specifyiing

Wo— B-A — B(O)—A(0)+/(J—1)dA, (1)

so thatlV is constant on intervals where= 1 (holding interval3, and evolves as
Brownian motion run at raté on intervals where/ = —1 (intervals in whichiV/
is run atfull rate). The coupling is illustrated ifigure 1

So our coupling problem is reduced to a stochastic control problem: how
should one choose adaptddso as to controlV andV = V(0) + [ W dt to
hit zero simultaneously?

We start by noting that the trajectofyV, V') breaks up intchalf-cyclesac-
cording to successive alternate visits to the positive and negative rays of the axis
V = 0. (We can assum¥& (0) = 0 without loss of generality; we can manipu-
late W andV to this end using an initial phase of controls!) We adopt a control
strategy as follows: if the" half-cycle begins atV = =+a,, for a,, > 0 then we
compute a leveb,, depending om,,, with b,, < a,, < kb,, for some fixeds > 1,
and run this half-cycle oV at full rate (/ = —1) until W hits Fb,, or the half-
cycle ends. I hits Fb,, before the end of the half-cycle then we start a holding
interval (J/ = 1) until V' hits zero, so concluding the half-cycle. Sgt ; to be the
absolute value ofl” at the end of the half-cycle. We will call the holding interval
the Fall of the half-cycle and will refer to the initial component as Br®wnian
componenbr BrC. The construction is illustrated figure 2

With appropriate choices for the, andb,, it can be shown that this control
forces(W, V') almost surely to converge {0, 0) in finite time. To see this, note
the following. By the reflection principle applied to a Brownian motiBrbegun
ato,

an + b,

< .
- v/ 21t

Simple dynamical arguments allow us to control the duration of the Fall:

P [BrC duration > t,] < P[2|B(t,)| < a, + b,]

(2)

maxV duringBrC < (BrC duration x (maxW duringBrC)
by, - by, ’
3)

Fall duration <
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Fall BrC

-b

n

=] ’ w

Figure 2:lllustration of two half-cycles for the casg = a,,/2, k = 2, labelling
Fall andBrC for first half-cycle.

which we can combine with the following (far, > 0):

P[(maxW duringBrC) > z,] = P[2B + a, hitsz,, before — b,)]
_ an + by (4)
 ap+ b+,
We now use a Borel-Cantelli argument to deduce that
Duration of half-cyclen < (1 + zﬁ) tn (5)
for all sufficiently largen, so long as
a 1
- — < 0. 6
P M e R ©

(Bear in mind, we have stipulated that < a,, < xb,.) Now this convergence is
ensured by setting/t,, = x,, = a,n'™ for somea > 0, in which case we obtain

Duration of half-cycler < (1 + m") tn < (14 k0" aZn®.

an
(7)
If we arrange for,, < x/n?*? then the sum of this over converges, since we
can chooser < 2(3/3. Thus we have proved the following, which is a trivial
generalization gBen Arous et al. (1995, Theorem 2.1)
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Theorem 3.1 Suppose the evolution @/, [ W d¢) is divided into half-cycles as
described above: if the™" half-cycle begins atV’ = +a,,, thenitis run at full rate

till W hits b,, and then allowed to fall to the conclusion of the half-cycle. (The
fall phase is omitted if the half-cycle concludes befdfehits Fb,,.) Our control
consists of choosing thg,; so long asa, /s < b, < min{a,, 1/n**} for all
sufficiently largen for some constantsand3 > 0, then(, [ W d¢) converges

to (0,0) in finite time.

Remark 3.2 By definition of a,, we knowa, < b, 1 < 1/(n — 1)*"%, so itis
feasible to choosg, such thats,, /x < b, < min{a,, 1/n*>*?} for all largen.

Remark 3.3 Note thata,, is determined by the location & at the end of half-
cyclen — 1.

Remark 3.4We can assume the initial conditiollg, = 1, 1, = 0 (otherwise we
can run the diffusion at full rate tilV" hits zero, as can be shown to happen almost
surely, then re-scale accordingly). It then suffices tobget min{a,, 1/(n +
1)2+7}. However this is not the only option; for examBen Arous et al. (1995)
useb,, = a, /2. Note, in either case we find,;; < b, < a, < kb, for k = 2.

3.2 Controlling two iterated integrals

Inspection of the above control strategy reveals some flexibility which was not
exploited byBen Arous et al. (1995)n then'" half-cycle there is a timé&, at
which W first hits0, and we may thehold W = 0 constant (by setting = 1)

and so delay for a timé’,,, without altering eithefV or V' = [ ¥ d¢. We may
choose’,, as we wish without jeopardizing convergencedf, V') to (0,0). This
flexibility allows us to consider controlling = [ [ W dsd¢ as follows: we hold
atT,, for a duration long enough to forée, V' to have the same sign:

_ — [ [Wdsdt _ U
C, = maX{O, Twdt } = max{O,—V}. (8)

The eventV(T,,) = 0] turns out to be of probability zero, since it can only happen
if T,, occurs at the very start of the half-cycle, which in turn happens omlyIfits
zero exactly at the end of the previous half-cycle; that this is a null event will be a
weak consequence of th@ver bound at Inequality (1&elow. The construction
is illustrated inFigure 3

Supposen,, < x/n**? as in the previous subsection. If we can show that
>, Cn < oo then this strategy results {i#V, V') tending to(0, 0) in finite time ¢,
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Fall

Figure 3: Two consecutive half-cycles for the cake = a,,/2, together with a
graph ofU against time. The disks signify time points at which there is an option
to hold the diffusion to allowU to change sign if required.

with U hitting zero in infinitely many half-cycles accumulatinglend therefore
also converging to at (. To fix notation, let us suppodé is positive at the start
of the half-cycle in question. This ensurks > 0 at time7,,. So the issue at
hand is to control”,, by determining what makesU = — [ [ W dsdt large,
and what make¥ = [ W d¢ small at timeT,,.

Consider—U at timeT,,. At the start of the half-cycle we knoWw = 0 and
W = a,, S0 subsequent contributions mak& more negative and need not detain
us. At the start of th@revioushalf-cycleU will be non-negative. Consequently
an upper bound for-U at timeT,, is given by

(Duration of half-cyclen — 1)?
2

X (—minimum value ofiV’ over half-cyclen — 1),

thus (given the work 0§3.1) we may suppose that, eventuallyripat timeT;, the
quantity—U is bounded above by

2
1 ((1 + m) tn_1> X Ty = 1 (1+k(n— 1)14“0“)2 a’_ (n— 1),
2 o1 2
9)
Now apply a Borel-Cantelli argument and the reflection principle to show that
eventually inn the Brownian component takes time at legst(4n>™2) in travel-
ling from a,, to a,,/2. We deduce almost surely for all sufficiently larget time
T, it must be the case th&t = [ W d¢ exceeds

(an/2) x time to move fromu,, toa,,/2 > m, (10)
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ThusC,, is bounded above, eventuallyiin by

3
4(1+ k(n— 1)1+°‘)2 (n — 1)>oep2t2e x (M) az . (11)
n
This leads to the crux of the argument; we need an eventual upper bound on the
ratioa,,_1/a,.
First note that théower bound of Inequality (1Qppplied to thén—1)% cycle,
shows that eventually in

Trn-1 CL3

n—1

— wdt > W : (12)
So it suffices to obtain a suitable lower boundagnthe value ofi¥ at the end of
half-cyclen — 1, in terms of— fT'“l W dt and holding eventually in. Moreover
we may ignore thé&all component of half-cycle — 1 so long as the lower bound
is smaller tharb,,_,, and treatl” over the whole of this half-cycle as a Brownian
motion of rated.

We now introduce a discontinuous time-change based on the continuous (but

non-monotonic) additive function&l(¢) = [ W ds: condition on ™"~ W d¢ =
—u,,_; and set

olw) = inf{s>0:V(T,+s)—V(T,) >u—u,1}

for 0 < u < w,_1;. We setZ(u) = W(o(u) and use standard time-change
arguments to showd = W(o(u))do so do/du = 1/W(o(u)) = 1/Z(u).
Consequently, on time intervals throughout whi¢h> 0,
~ 2 ~ ~
dZ(u) = —=dB whenZ >0 (13)
V7

for a new standard Brownian motidh The time-changed procegsis illustrated
inFigure 4 Note thatZ must be non-negative.

A nonlinear transformation of scalé = Z3/2/3 produces a Bessglx pro-

cessZ in time intervals throughout whicl (equivalently?) is positive: by 16's
formula the stochastic differential equation

1~ 1~ ~ 11  ~
dz = d|=2°? = “ZYV2dZ4+ -——(dZ)?
577) - 3 Y5707

~ 11
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Figure 4: Discontinuous time-change for W based 6n= [ W d¢. The effect

of the time-change is to delete the loops extending ihita> 0, and to continue
deletion till V = [ 1V dt re-attains its minimum, thus generating discontinuities
(some of which are indicated in the figure by small dots onlthaxis) in the
time-changed process, which follows the red /dark trajectory.

holds in intervals for whict¥Z > 0.

Now observe that the zero-sét : Z(u) = 0} is almost surely a null-set.
For certainly the Brownian zero-sét : W (t) = 0} is almost surely null, and
{V(t) : W(¢t) = 0} is then almost surely null by Sard’s lemma, sifi¢es aC"
function with derivativel” (indeed this is an easy exercise in this simple context).
But{u: Z(u) =0} ={u: Z(u) =0} isasubsetof V(¢) : W(t) = 0}.

Becausqu : Z(u) = 0} is almost surely a null-set, it follows that the stochas-
tic integral

Blu) - /OU]I[Z>O]dB (14)

(usingEquation (13)}o constructB whenZ > 0) defines a Brownian motion.
Furthermore we can apply limiting arguments to write

1 1
Z = B+6/]I[Z>O]Edu+H (15)
whereH is the non-decreasing pure jump process

Hw) = 05 Wlo(w) ~ Wie(u-)"?

v<u

which is constant away froid = 0.
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Using the theory of the Skorokhod constructid Karoui and Chaleyat-
Maurel 1978, we now derive the comparison

Z > B+L

wherelL is local time of B at0, so thatB + L is reflected Brownian motion.H{
is discontinuous, but the argument of the Skorokhod construction applies so long
asH is non-decreasing.) Consequently

P57 2e] < FB) 24

and so we can deduce from a Borel-Cantelli argument andiotler bound of
Inequality (12)that the following holds eventually in:

n—1 1/3 1/3
| [T W dt] 1
an = <m > Qp—1 W (16)

for o > 0. Thus eventually im

n

Co < 32(14 (n— 1)) (n— 1)0n2+20 5 g2

and so we can arrange for, C,, < oo so long as we choose, < 1/n"* for
8> 0.
We state this as a theorem:

Theorem 3.5 The modified strategy described at the head of this subsection (hold
at eachT, till | [ W dsdt is zero or has the same sign g3V dt) produces

convergence of
(W,/Wdt,//stdt)

to (0,0, 0) in finite time so long as the conditionsDheorem 3.-are augmented
by the following: half-cycle: begins atW’ = =+a, for a,, < 1/n™¥ for 3 > 0
and for all sufficiently large:. (This can be arranged by choosihgin the range
an/k < b, < min{a,, 1/n"*?} for constants: and 3 > 0.)

Remark 3.6 The choicé,, = a,,/2 of Ben Arous et al. (1995ill suffice.

Remark 3.7It is possible to obtain a modest gain on the above by recognizing that
the hitting time of Brownian motion on 1 has the same distribution as the inverse
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square of a standard normal random variable. This argument permits replacement
of Equation (10)y

Tn

1
Wdt > constantx a} —.
n

Remark 3.8 The elementary comparison approach above can of course be re-
placed by arguments employing the exact computatiohdafean (1963)

Remark 3.9 The method described here (control coupling of higher-order iterated
integrals by judicious waits 8t/ = 0) appears to deliver effective control of just
one higher-order iterated integral in addition6, VV = [ 1V d¢. Attempts to
control more than one higher-order iterated integral seem to lead to problems of
propagation of over-correction from one half-cycle to the next. We therefore turn
to a rather different, less explicit, approach in the remainder of the paper.

4 Reduction to non-iterated time integrals

Before considering the problem of coupling more than two iterated time inte-
grals, we first reformulate the coupling problem in terms of integrals of the form
[ = B(t) dt rather than the less amenable iterated time integrals of above. We be-
gin with some notation. Suppos$g is defined as the difference between two co-
adapted coupled Brownian motions, a§#il. Thenwe setV = W©® =B — A

and define the firstv iterated time integrals inductively by

wh = wWh() + / wOd¢,
w® = w®(0)+ / whde,
w™ = w®™(0) + / w™Mdt. (17)

(Note that we have allowed for arbitrary initial conditiori&™") (0) et cetera)
If WO©0) = wh0) = w@(@©) = ... = W™(0) = 0, so the initial
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conditions all vanish, then we find by exchange of integrals that

we(r)y = /OTW("—”(t)dt = /0T</Otw("—2>(s)ds)dt
= /OT(/STW(‘Q)(s)dt)ds — /OT(T—S)W<”—2>(s)ds

= ... = /O%W(O)(s)ds.

Binomial expansion leads to the following:

Lemma 4.1 SupposéV (?(0) = W (0) = WP (0) = ... = W (0) = 0, and
J is a given adapted control, angis a given stopping time. Then

WO =0, wOQ=0 WOQ=0, ..., WV =0
if and only if

W) = o, /OQW(t)dt:O, /OgtW(t)dt:O,

¢ tN—l
g /0 Fmar = o,

If the iterated time integrals have non-zero initial values then we can reduce
to the case of zero initial values by supposingis deterministically extended
backwards in time to time-1, with corresponding generalization &Qquation
(17). By a simple argument using orthogonal Legendre polynoniiatsn[—1, 1],
we can choos#V|_1 g to produceV @ (—1) = W (-1) = W& (-1) = ... =
WW(~1) =0, andW©(0) = ag, WV (0) = a1, WP (0) = ay, ..., WM (0) =
ay as required. For if

N+1
W) = ) bPu(2t+1)
n=0
for -1 <t <0then
0 1 1
/ P2t + )W () dt = §bn/ P.(t)2dt.
-1 -1
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Expanding the Legendre polynomials and adapting the argument leadiamtoa
4.1, we can finday, ..., ay in terms ofby, by, ..., by_1 by solving a triangular
linear system of equations. Finalby andby,; may be fixed by the requirement
that W (0) = ap = SN b,P.(1) and0 = W(—1) = 2715, P,(0) (note
that Legendre polynomials do not vanish at their end-points, and are odd or even
functions according to whether their order is odd or even!).

This allows us to useemma 4.1to deduce the required reduction:

Lemma 4.2 It is possible to use adapted contraldo ensure

at some stopping time (depending on initial value® ™ (0)) if and only if it is
also possible to use adapted controls to ensure

W) = 0,
¢ ¢

b0+/ Wt)dt = 0, b1+/tW(t)dt:0,
0 0

¢ 7f]V—l
. bN1+/O mW(t)dt = 0.

(Here the constants, depend on the initial conditiond’ (™ (0) for the iterated
integrals).

For we may extend back ovér1, 0], condition on achieving the desired values
{W™(0) :n=0,..., N}, and work with controls/ which act only for positive
time.

5 Coupling finitely many iterated integrals

To motivate the control strategy required to couple more than two iterated inte-
grals, we consider a discrete analogue to our problem which is in fact a limiting
case.

Suppose we choose only to switch between= +1 at instants wheri//
switches over between two constant levels (as illustrateBigare 7). To aid
explanation we temporarily entertain the fiction that the Brownian motions con-
spire to produce instantaneous switching as soos asswitched to—1. Then
it is a matter of simple integration to compute the effect on integrals of the form
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/5 = dW: if we hold J = +1 at successive levels1, beginning at-1, making
SWI'[CheS fromt1 to F1 at times0 = Ty < 171 < ... < T,, then (under the
instantaneous switching approximation)

T r—1 m—+1 m-+1
r tm T T
—dw = u. 18
o m! ; (m+1)! (18)

In §5.1 below we show that particular patterns of switching times produces
zero effect on integrals up to a fixed order, at least for the discrete analogue. This
permits us to eliminate a whole finite sequence of the integrals. (Of course in
practice, because switching is not instantaneous, the use of such patterns creates
further contributions to the integrals which then must be dealt with in turn!)

It is algebraically convenient to formulate the required patterns using a se-
qguenceSy, Si, ...So~_; of values oft1 defined recursively in a manner reminis-
cent of the theory of experimental design. We set

SO = +1 )
(Sgn, SQH+1, ey 52n+1_1) - —(S()7 Sl, ey Sgn_l) . (19)
Here is the pattern formed by the first sixtegnvalues:

+ - -+ -+ + - -+ + -+ - -+

We will be considering perturbations and re-scalings of the deterministic control
which applies control/ = —1 throughout the time intervdln, m + 1) till a
switch has occurred to leved,,, and then applies = 1 for the remainder of

the time interval. The discrete analogue can be viewed as a limiting case under
homogeneous (not Brownian!) scaling of space and time. Figgre Sfor an
illustration.

5.1 Algebraic properties of the sign sequence

We now prove some simple properties of the sign sequepcs,, ...Sov_;.

Lemma 5.1 If b(r) is the number of positive bits in the binary expansion tfen
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Discrete analogue to Brownian time integrals

Brownfan time integrals

BN

\ .

Figure 5:lllustration of the deterministic switching control corresponding to the

pattern+ - - + - + + -

. The top panel shows the path1df together with

shaded regions indicating discrepancies with the discretized analogue. The middle
panel shows the paths of the first three time integrals of the discretized analogue
(all of which are brought t0 at the end of the sequence). The lower panel shows
the paths of the first three time integralslof
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Proof:

Sinceb(0) = 0 this holds forS, = 1. Therecursive definition (193hows that if
the lemma holds for the firgt* entries in the sequence 8§, then it will also hold
for the nex2" entries. The result follows by induction. O

The proofs of the next three corollaries are immediate from the recursive def-
inition of the S,,,’s.

Corollary 5.2
Sytjra = S;S.  whena=0,1,...,2°—1.

Corollary 5.3
52m+1 = _SQm

Notice the analogue @orollary 5.3doesnot hold betweerb,,, > andSs,, ;1!

Corollary 5.4
Sm = 0 ifn>1,

= 1 ifn=20

These results imply the vanishing of certain sums of low-order powers:

Lemmab.5
2N 1
1)k )
%Sm = 0 ifk <N,
m=0 ’
= (=1)NoNIV-D/2 if k=N. (20)
Proof:

Use induction on the levet. If £ = 0 then Equation (20)follows from the

expression fo’ "2 1 S, inCorollary 5.4 HenceEquation (20)holds at level
k=0.
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Supposéquation (20holds for all levels below level and supposé < N.
Using therecursive construction (19)

2N 1 2N-1_1

(m+ 1) B (m+1)F — (m+ 1+ 28" HF
P T D S T S
m=0 m=0
B k 2N71 U 2N-1-1 (m + 1)k7u
N = (k—u) "

using the binomial expansion and cancelling the+ 1)* terms. Now we can
apply the inductive hypothesis to dispose of terms invol\ing- 1)~ for u > 1:

2N _1 oN-1_1

(m 4 1)* N1 (m+ 1)t
2 g Smo= 2D CERV

m=0 m=0

ThusEquation (20¥ollows by applying the inductive hypothesis to the right-hand
side. OJ

Remark 5.6 An alternative approach uses generating functions, applying the re-
cursive construction dgquation (19)fo show

iuk ZL‘DSWL :<1—62N71“> (1—e™)(1—e")e

k=0 m=0

We can now compute the discrete analogug“O f“" ;W (t) dt under the spe-
cial control which arranges instantaneous SW|tch|ng to ISyeht timem.

Theorem 5.7 Forall k < N
k+1

20 (m+ 1)k —m B
> e L (21)

m=0
Proof:

Equation (21 ¥ollows from Equation (20)py binomial expansion: for example we
usem = (m + 1) — 1 to deduce

2N -1 N-1 _y 2V-1 “
Z (m—i—l)N—mNS _ (—1)N (m+1) s~ o
— N! " = (N —u)! “= u! "



O

Note thatEquation (21)or S, S, ..., Syv_; IS equivalent tcEquation (18)
with appropriate definitions of the switching timég 7, ...,7,.. We now intro-
duce notation for these deterministic times, as they will be basic to our coupling
construction.

Definition 5.8 Define switching timeg}, ..., T,(y) to be the timesn at which
S.,—1 = *1 switches taoS,, = F1, and setl{, = 0.

Corollary 5.9 By induction onN > 1, sincer(N + 1) > 2r(N),

N < r(N) < 2V-1.

5.2 Application to the coupling problem

We can now summarize our control strategy for successful coupling. By global

analysis (specifically, the inverse function theorem), as long as initial conditions
. N— .. .

for integrals of order up tq &V—AI),B dt are sufficiently small we can obtain a

perturbation7y = 2V < 77 < ... < T}, of the switching timed, ..., Ty
(Definition 5.8 which will dispose of these initial conditions by tir2&. (As will
become apparent, scaling arguments can be deployed to deal with larger initial
conditions.)

Since the coupled Brownian motions cannot actually prodast&ntaneous
transitions betweenr1, the switching activity will have introduced further non-
zero contributions to the integrals by ti@&. So long as these contributions are
in turn sufficiently small, we can dispose of them in turn by administering a new
control based on switching timég = 2% < 7! < ... < T}, which form a

small perturbation of thecaledcontrol obtained from?, ... ,TVT(N) by re-scaling
both space and time homogeneously by a fatf@r(not by Brownian scaling!)
and shifting forwards in time bg". Thus switching now occurs between levels
+1/2. A key reason for the success of the coupling is that in terms of Brown-
ian scaling there is now twice as much effective time in which to carry out each
switch! This means that the probability of all switches completing within their
assigned times will increase rapidly to

We can now continue this procedure, disposing of further non-zero contribu-
tions by appending further controls using perturbations based on smaller delays
and smaller levels. A Borel-Cantelli argument shows there is a positive lower
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bound on the probability of this infinite sequence completing before a finite time:
and moreover the size of the integrals decreasing to zero.

If this fails (because at some stage no small enough perturbation is available,
or because a switch fails to complete before its successor is due) then we simply
restart the procedure, re-scaling time to ensure existence of the perturbation re-
quired initially. Continuing in this manner allows us to deduce that almost surely
coupling is eventually successful.

All depends on analyzing the behaviour of perturbations of deterministic con-
trols of the form ofDefinition 5.8 Consider the map whose coordinates corre-
spond to analogues of time integrals of order less thNan

E(tmgg) = E(to,tl, tN,UN+17--~7u7"(N)) = (FO""’FNfl) (22)
S gyt = uyty — 5"
_ . kRl Pk (_(\WIN+L N
k=0
r(N)— ZH_ll_uZH_l
k +
LY S o T
k=N+1

so F,,(to;t,u) describes the contribution t 1%Wdt made by instantaneous
switching between levels1 happening attimes, ..., tx, Uy, - - .Uy, Start-
ing at levell at timet,. (RecallingCorollary 5.9 »(N) > N if N > 1.) We can
re-write F,,,(to; t,u) as

gt . .
Fo(to;t,u) = 22 ‘1—1)+(furtherterms|nvoIV|ng0,uN+1,...).

We compute the Jacobian fél(ty; t, w) with respect to the arguments .. .,¢y:

2 21 Xt o
1 2! (N=1)!
2 ot o4 gt
2 2! (N=1)!
det
t2 V-1
2(—1)N"2 2(—1)N Pty 2(—DNTREL L 2(—1)N*2(€;§)!

_ _ _1t3 1 tn
2(-)Nt 2=Vt (=N L 2(=1)N 1(1¢V_1)!
This is proportional to a Vandermonde determinant and in fact evaluates to

2N(_1)N
ti —t;), 24
1-1-21-....(N—=1)! H (t; =) (24)
1<i<j<N
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which is non-zero so long as tligs are distinct. This and the inverse function
theorem allows us to assert the following fact:

Lemma 5.10 The polynomial (hence smooth) map

t = (t17“'7tN) = F(O;z7fN+17"'7TT(N))

is invertible in a neighbourhood of the initial sequence of switching tifigs
T, ..., T corresponding to switching between lev8]s, ...at timesn, .... In
particular there iss > 0 ande’ > 0 such thatfor alk < &', if W™+ (0)| < ¢ for
m=0,1,...,N — 1, then there is ac-perturbation(ty, ..., ty) of (ﬁ, .. .fN)
with0 < t; < ... <ty < fNH (hence generating a valid switching strategy)
which is such that

F(Oity, ..oty Tvgn, - Toy) = —WOD(0)
form=0,1,...,N — 1.

Note further that fromEquation (22)and the binomial theorem we have a
translation symmetry:

Lemma5.11

m gm—u
Fo(to+s;t+s,u+s) = ZmFu(to;Lu)

u=0
while Equation (224irectly yields a scaling property:

Lemma 5.12

We need just one more lemma, concerning the behaviour of Brownian motion,
before we can state and prove the main coupling result for this section.

Lemma 5.13 Consider a Brownian motio® started at0 and run till it hits level
—3/2 attimeS. For fixed constanté(;, K,

Z]P’ S > Ki(1+n)*™*or sup B > Ky(1+n)*™*| < 0.
n [0,5]
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Proof:
This follows easily from the reflection principle and elementary Gaussian integral
estimates:

P|S > (1+n)*"orsupB > (1+n)*H
[0,5]

3

< 1-2F [B(l +n) < —5] +2P [B((1+n)*") > (1 +n)*]

T o2/ -y
= or du + —= du

T 2(14n )H’a) (14n)tte

D 1

< .
~ V21 (14 n)tte

Theorem 5.14 There is a successful co-adapted coupling for Brownian motion
and its firstV iterated time integrals.

Proof:
By the work o154 this is reduced this to the problem of finding an adapted control
J = +1 which deliversI¥ such that at a particular stopping tigewe have
W(¢) = WO() = 0 andW(0) + [ LW (t)dt = 0 form = 0, 1,
N — 1. Without loss of generallty we assurimé(o) = 2 (for otherwise we can
run the control/ = —1 till this occurs!).

UsingLemma 5.10andLemma 5.12for fixede > 0 we can choosé€’ large
enough to solve foft!, . .., %) with |t — T}| < ein

Fo(0;C, ..., Ct%, CTy 1, ..., CTyy) = —WH(0)  (25)

form = 0, ..., N — 1: carry out this switching strategy over the time period
0,2V C) to eliminate the initial conditions.

We now apply the following algorithm iteratively starting at step= 1, and
continuing, to reduce the further contributions to the integrals made during previ-
ous switching strategies.
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Stepk: Attime T = (2 — 217%)2V(C, useLemmas 5.1(5.11, and5.12to
determine the solutioftt, ... %) of

Fo(TETE 4 27FCHE . TE 4+ 275CH  TE + 275 C Ty 1, ..., To + 27" CTon)

TS ym
= — —W(t)dt

o m!

T tm m Tk m—u 21-koNC g
_ _ Z 0) e kel

(taking into account that previous steps will have eliminafggfzf1 %W(t) de)
or equivalentlylLemmas 5.115.12)

Fm<07tlf, NN ;t§v7TN+17 [N 7Tr(N))

1 m—+1 21_1“2NC tm
_ k—1

2NC m
_ _/0 (@R T dt
form=0,1,...,N — 1.

We setl® = T + 27*Ctk form = 1, ..., N, andT* = T} + 27%CT,,

form =N +1,...,r(N). Note that’} ) = Ty

Apply the switching strategy determined B, 77, ..., T} y, over the time
interval [T, TH*1).
The algorithm can fail at this stepeéftherthe mtegralsz0 f;" (t)dt are too
large,or one of the2" switches fails to complete in the interval allotted to it. The
estimate oLemma 5. 1$1IIows us to obtain bounds on (a) the probability of large

size of the integralg, T Ty dt = [0 e LW dt, in terms of bounds ofiV|,
and (b) the probability that a switch begunﬂ‘t fails to complete by time the
next switchT” is due to start.

SetZ,' = supj_,. (1 + k)'**27%/2 for some fixeda > 1, and recall
fromLemma 5.10thate > 0 is the bound on initial conditions required A&-
perturbation switching controls are guaranteed to exist./lebe the event that
both

2N 4m
/ — W™t +THdt| < Z.(1+k)Fe27k 2%
0

m!
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form=0,...,N —1,andalso
1
W) = —SW(Ty)
Wk = —W(TF)) fors=1,...,7(N).
So long asDy, Dy, ..., D;_; have been satisfied, we kndi (77) = 2'7F,
and so (bearing in mind the effects of the switching stratdgy)holds only if
W(Tk) =2"%fors =1, ...,r(N); moreover, the condition

2NC ym
t
/ %W(Ql_'“thTé“_l)dt < Zg(k)trem-b2e <
O .

ensures we will be able to determine the solutith. . . , t%) in Equation (25)
Now the eventD, is contained in the union a®(n) events of the form

o€
sup 2T ()] <
welTE T, ] @NC)m+t/(m + 1)t

s+1

(1 + k)1+a

and?W makes an down-crossing froem*~ to —27*
over the time intervally, 7.1 ;

whereT#, TF , is an interval of minimum lengtl2~*(1 — xe), and the down-
crossing may be replaced by a down-crossing feofito —2~%, or an up-crossing
from —27% to 2% (but this does not decrease the probability of the event con-
cerned!).

By Brownian scaling any one such event has probability bounded above by
the probability of the following event:

o€

su Wiu S 1+ L 24+2c
u6[07(1+5)2+20‘} Wiw)l V91— ke(2NC)™+1/(m + 1)!< )
9—(k—=1)/2 - —k/2 .
andW makes an down-crossing from——(1+%k) " t0 ——(1+&k) ™
g \/1—/%( ) \/1—,%5( )

over the time interval0, (1 + k)*™2].

Consequently byemma 5.13ve deduce tha} |, P [D;] < oo, and moreover we

can use the Markov property and the density of Brownian paths to deduce there is
a positive chancg > 0 that(), £}, occurs. If this happens then coupling succeeds
at timelim;_., T¢': otherwise we can start the strategy anew. We can therefore
assert, almost surely success will occur eventually. O
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6 Impossibility of coupling all iterated integrals

Is it possible to arrange successful coupling diriterated integrals at a single
stopping time; using some adapted contrd?

Summation of the coupling statements produces a statement about Laplace
transforms of the path, which allows us to demonstrate that coupling of all iterated
integrals is possible only in trivial cases.

Theorem 6.1 Suppose that the initial conditions for the iterated stochastic inte-
grals arefeasible in the sense that they could have been produced by integration
of a continuous path starting at some previous time (without loss of generality,
time —1). Consider an adapted control producing coupling for all iterated in-
tegrals at a stopping timé. This can be produced onlyli¥ = B — A is actually
identically zero ovef0, C].

Proof:
Suppose the Brownian paths and all iterated integrals couglesat? ™ (¢) = 0
for all n. We show that in this casé” = 0 must hold over the interval, ¢].

By hypothesis, we may convert into statements about integrals|[ever|
(with a suitable extension d#”) using powers of. We can write

The continuous path’ is bounded ovef—1, (], so the sum on the left-hand-side
converges and moreover we can exchange integral and summation to obtain

¢
/ exp(St)W(t)dt = 0
-1
for all 3. By uniqueness of the Laplace transform, this holds only’i= 0 over
the intervall0, ¢] as required. O

Remark 6.2 This argument is essentially non-stochastic, based only on the con-
tinuity of the path which is the difference of the two coupled processes, and so
holds foranycoupling, whether co-adapted or not.

Remark 6.3 More generally, this argument extends immediately to cover for ex-
ample the case when the sequence of initial conditidi®)(0) is L? summable
(use anL? path over—1, 0]!).
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7 Conclusion

We conclude by noting that the successful coupling strategi€8 ahd 35 are

both in essence very simple, involving switching between synchronpus ()

and mirror (/ = —1) coupling. It would be interesting to construct a successful
coupling strategy which optimized, for example, a specific exponential moment
of the coupling time; one expects there would be a whole family of such couplings
parametrized by the coefficient in the exponential moment, and that the coupling
strategies themselves would have some kind of geometric flavour.

The results of this paper can be viewed as introducing a new notion to coupling
theory: that of an “exotic coupling”, a co-adapted coupling for a diffusion (in
this case real Brownian motion) which successfully couples not only the diffusion
itself but also a number of path functionals of the diffusion. Itis striking that exotic
coupling is feasible at all; the method of proof for the general cgSeig very
suggestive for how to address more general situati@sn Arous et al. (1995)
also showed the existence of an exotic coupling for planar Brownian motion using
the path functional given by theélvy stochastic area, and it would be interesting
to see how far thd8en Arous et al. (1995)esult could be extended to higher
dimensional Brownian motion; this would be a useful next step towards the natural
bold conjecture which we now present:

Conjecture 7.1 Hypoelliptic diffusions with smooth coefficients can be coupled
co-adaptively with positive chance of success from any two starting points.

It would of course be of great interest to obtain specific applications of these
couplings, perhaps for example in Coupling from the Past constructions.

Finally we remark thelPrice (1996 gives some results concerning exotic cou-
pling using single functionals of the forrh f(¢) B dt.
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