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1 Introduction and Main Results

Suppose Mn is a n×n matrix with real eigenvalues λ1, λ2, . . . , λn. Then the empirical
spectral distribution (ESD) of the matrix Mn is defined by

FMn(x) :=
# {1 ≤ i ≤ n : λi ≤ x}

n
.

We will be interested in the case when Mn := 1
nAnA

T
n and An is an n ×N real random

matrix.
If the entries of An are i.i.d. random variables with zero mean and variance one,

we call Mn a sample covariance matrix. There are many results concerning the limit-
ing behavior of the spectral distribution of sample covariance matrices. For example,
Marchenko and Pastur ([17]) and Wachter ([21]) prove that the ESD F

1
nAnA

T
n (x) con-

verges to Fc(x) provided that N/n → c ∈ (0,∞), where Fc is the distribution function
for the Marchenko-Pastur law with parameter c > 0. That is, Fc has density

pc(x) =

{ √
(x−a)(b−x)

2πx : a ≤ x ≤ b,
0 : otherwise,

and a point mass 1− c at the origin if c < 1, where a = (1−
√
c)2 and b = (1 +

√
c)2. The

above convergence holds with probability 1 (see for example [5] and [8, Chapter 3]).
There are a number of results in which the independence assumption (on the entries

of An) is weakened. In the seminal paper by Marchenko and Pastur [17], one considers
independent rows rather than independent entries. In [22], Yin and Krishnaiah consider
the case where the independent rows have a spherically symmetric distribution.
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A note on the Marchenko-Pastur law

More recently in 2006, Aubrun obtained the Marchenko-Pastur law for matrices
with independent rows distributed uniformly on the lnp balls, [4]. This was generalized
by Pajor and Pastur in [20] to matrices with independent rows distributed according to
an arbitrary isotropic log-concave measure.

In [13] and [15], Götze and Tikhomirov study two classes of random matrices which
generalize Wigner random matrices and sample covariance random matrices. In partic-
ular, these matrices satisfy certain martingale-type conditions without any assumption
on the independence of the entries. In a similar setting, Adamczak studied a class of
random matrices with uncorrelated entries in which each normalized row and normal-
ized column converges to one in probability, [1].

Other random matrix ensembles with dependent entries that have been studied in-
clude random Markov matrices with independent rows and doubly stochastic random
matrices (see [10, 9, 11] and references contained therein).

In this note, we study a class of random matrices with dependent entries and show
that the limiting empirical distribution of the eigenvalues is given by the Marchenko-
Pastur law. In particular, we consider a sequence of n×N random matrices An with the
following properties.

Definition 1.1 (Condition C0). Let {An}n≥1 be a sequence of n × N real random

matrices where N = N(n) and cn := N/n. We let r(n)1 , . . . , r
(n)
n denote the rows of

An = (ζ
(n)
ij )1≤i≤n,1≤j≤N and define the σ-algebra associated to row k as

F (n)
k := σ(r

(n)
1 , . . . , r

(n)
k−1, r

(n)
k+1, . . . , r

(n)
n )

for all k = 1, . . . , n. Let Ek[·] denote the conditional expectation with respect to the
σ-algebra associated to row k. We then say that the sequence {An}n≥1 obeys condition
C0 if the following hold:

(i) Ek[ζ
(n)
ki ] = 0 for all i, k, n

(ii) One has

qn := sup
k

1

n

N∑
i=1

E|Ek[(ζ(n)ki )2]− 1| = o(1)

(iii) One has

sup
k,i 6=j

|Ek[ζ(n)ki ζ
(n)
kj ]|+ sup

k,i,j 6=l
|Ek[(ζ(n)ki )2ζ

(n)
kj ζ

(n)
kl ]| = O(n−1/2γn)

a.s., where γn → 0 as n→∞.

(iv) sup |Ek[ζ(n)ki ζ
(n)
kj ζ

(n)
kl ζ

(n)
km ]| = O(n−1γn) a.s where the supremum is over all k and all

i, j, l,m distinct.

(v) supn,i,j E|ζ
(n)
ij |4 ≤M <∞

(vi) One has

ρn := sup
k

1

n2

∑
1≤i,j≤N

E|Ek[(ζ(n)ki )2(ζ
(n)
kj )2]− 1| = o(1).

(vii) There exists a non-negative integer sequence βn = o(
√
n) such that σ(r(n)i1

, . . . , r
(n)
ik

)

and σ(r(n)j1
, . . . , r

(n)
jm

) are independent σ-algebras whenever

min
1≤l≤k,1≤p≤m

|il − jp| > βn.
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A note on the Marchenko-Pastur law

Remark 1.2. Condition (i) implies that entries from different rows are uncorrelated
while (iii) and (iv) allow for a weak correlation amongst entries in the same row. Condi-
tion (ii) is a requirement on the variance of the entries and (v) is a moment assumption
on the entries. Condition (vi) is of a technical nature. In particular, (vi) (along with (ii))
allows one to control terms of the form

sup
k

Var

(
1

n
|r(n)k |

2

)
where |r(n)k | is the Euclidian norm of the vector r(n)k . In words, condition (vii) implies
that rows, which are “far enough apart,” are independent.

Example 1.3. Let ξ be a real random variable with mean zero, variance one, and
E|ξ4| < ∞. Let An be an n × N matrix where each entry is an i.i.d. copy of ξ. If
N/n → c ∈ (0,∞), then An satisfies Definition 1.1. All the results in this paper are
already known for such matrices with i.i.d. entries. See for example [17], [8, Chapter
3], [5], and references contained therein.

Example 1.4. Let An be a n×(2n) matrix where the rows are i.i.d. random vectors such

that the entries of r(n)k are ±1 symmetric Bernoulli random variables chosen uniformly
such that the sum of the entries of each row is zero. Then the sequence {An}n≥1 obeys
condition C0. Indeed, one can compute

E[ζ
(n)
ij ] = 0,

Var[ζ
(n)
ki ] = 1,

E[ζ
(n)
ki ζ

(n)
kj ] = − 1

2N − 1
for i 6= j,

and

E[ζ
(n)
ki ζ

(n)
kj ζ

(n)
kl ζ

(n)
km ] =

12N2 − 12N

2N(2N − 1)(2N − 2)(2N − 3)
= O

(
1

N2

)
for i, j, l,m distinct, where N = 2n. In particular, one finds that γn = n−1/2 and
qn, ρn, βn = 0.

Let us mention that the conditions in Definition 1.1 are similar to the assumptions
of Theorem 1 in [17]. However, in [17], the authors require the rows of An to be
independent.

Also, the sequence of random matrices defined in Example 1.4 satisfies condition
C0, but does not satisfy the assumptions of the theorems provided in [4], [20], [13], or
[1].

Let ‖M‖ denote the spectral norm of the matrix M . In this paper, we shall prove the
following theorems.

Theorem 1.5. Let {An}n≥1 be a sequence of real random matrices that obey condition
C0 and assume cn := N/n→ c ∈ (0,∞). Then

‖EF 1
nAnA

T
n − Fc‖ := sup

x
|EF 1

nAnA
T
n − Fc| −→ 0

as n→∞. Moreover, if there exists p > 1 such that

∞∑
n=1

(βn + 1)p

np/2
<∞ (1.1)
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A note on the Marchenko-Pastur law

then
‖F 1

nAnA
T
n − Fc‖ −→ 0

almost surely as n→∞.

Theorem 1.6. Let {An}n≥1 be a sequence of real random matrices that obey condition
C0 and assume cn := N/n ≥ 1 such that cn → c ∈ [1,∞). Additionally assume that

lim sup
n→∞

1

n
E‖AnAT

n‖ <∞. (1.2)

Then we obtain that

‖EF 1
nAnA

T
n − Fcn‖ = O

(
max

(
q1/22n , γ1/22n , ρ1/22n ,

(
(βn + 1)2

n

)1/22
))

.

Remark 1.7. We stated Theorem 1.5 for a sequence of random matrices that obey con-
dition C0. However, it is actually possible to prove the convergence of the expected
ESD without condition (vii) from Definition 1.1. That is, if the sequence {An}n≥1 satis-
fies conditions (i) - (vi) from Definition 1.1 with cn → c ∈ (0,∞), then

‖EF 1
nAnA

T
n − Fc‖ −→ 0

as n→∞. The proof of this statement repeats the proof of Theorem 1.5 almost exactly.
We detail the necessary changes in Remark 4.1. It should be noted that the almost sure
convergence portion of Theorem 1.5 still requires condition (vii) from Definition 1.1 and
(1.1).

Remark 1.8. Without any additional information on the convergence rate of cn to c,
we cannot obtain a rate of convergence of ‖EFAnAT

n − Fc‖. This is why Fcn appears in
Theorem 1.6.

Remark 1.9. The rates obtained in Theorem 1.6 are not optimal and are obtained as a
simple corollary to Lemma 3.1 below.

Example 1.10. Let {An}n≥1 be the sequence of random matrices defined in Example
1.4. Theorem 1.5 implies that

‖F 1
nAnA

T
n − F2‖ −→ 0

almost surely as n → ∞. We will now use Theorem 1.6 to obtain a rate of convergence
for EF

1
nAnA

T
n . We must verify that (1.2) holds. By [2, Theorem 3.13] 1, there exists

C,C ′ > 0 such that for any 0 < ε < 1/3,

P
(
‖AnAT

n‖ ≥ Cn
)
≤ C ′ log n

n1+ε
.

Since we always have the bound

‖AnAT
n‖ ≤ Tr(AnA

T
n ) = n2,

1One technical assumption required by Theorem 3.13 is control over the ψ1-norm (‖ · ‖ψ1
) of the term

|〈ξ, y〉| where ξ is a row of the matrix An and y is an arbitrary unit vector. In particular, one can show that

‖〈ξ, y〉‖ψ1
≤

√
n

logn1+ε
.

The bound follows by applying Markov’s inequality, which yields

P(|〈ξ, y〉| > t) = O(t−4),

and then taking t = n1/3.
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it follows that
E‖AnAT

n‖ = O(n).

Therefore, Theorem 1.6 gives the rate of convergence

‖EF 1
nAnA

T
n − F2‖ = O(n−1/44).

2 Stieltjes Transform

If G(x) is a function of bounded variation on the real line, then its Stieltjes transform
is defined by

SG(z) =

∫
1

x− z
dG(x)

for z ∈ D := {z ∈ C : Im(z) > 0}.
Letmc(z) be the Stieltjes transform of Fc, the distribution function of the Marchenko-

Pastur law with parameter c. One can then check (see for example [8]), that

mc(z) =
−(z + 1− c) +

√
(z + 1− c)2 − 4z

2z
.

Furthermore, mc(z) can be characterized uniquely as the solution to

mc(z) =
1

c− 1− z − zmc(z)
(2.1)

that satisfies Im(zmc(z)) ≥ 0 for all z with Im z > 0.
We will study the Stieltjes transform of the ESD of the random matrix 1

nAnA
T
n in

order to prove Theorems 1.5 and 1.6. In particular, the following lemma states that it
suffices to show the convergence of the Stieltjes transform of the ESD to the Stieltjes
transform of Fc.

Lemma 2.1 ([8, Theorem B.9]). Assume that {Gn} is a sequence of functions of bounded
variation and Gn(−∞) = 0 for all n. Then

lim
n→∞

sGn(z) = s(z) ∀z ∈ D

if and only if there is a function of bounded variation G with G(−∞) = 0 and Stieltjes
transform s(z) and such that Gn → G vaguely.

We will also use the following lemma in order to establish the rate of convergence
in Theorem 1.6.

Lemma 2.2 ( [8, Theorem B.14] ). Let F be a distribution function and let G be a
function of bounded variation satisfying

∫
|F (x) − G(x)|dx < ∞. Denote their Stieltjes

transforms by sF (z) and sG(z) respectively, where z = u+ iv ∈ D. Then

‖F −G‖ ≤ 1

π(1− ξ)(2ρ− 1)

(∫ A

−A
|sF (z)− sG(z)|du

+ 2πv−1
∫
|x|>B

|F (x)−G(x)|dx

+ v−1 sup
x

∫
|u|≤2va

|G(x+ u)−G(x)|du

)
,

where the constants A > B > 0, ξ, and a are restricted by ρ = 1
π

∫
|u|≤a

1
u2+1du >

1
2 , and

ξ = 4B
π(A−B)(2ρ−1) ∈ (0, 1).
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3 Proof of Theorems 1.5 and 1.6

Let {An}n≥1 be a sequence of real random matrices that obeys condition C0 and
assume cn := N/n→ c ∈ (0,∞). We begin by introducing some notation. Let

sn(z) :=
1

n
Tr

(
1

n
AnA

T
n − zIn

)−1
=

1

n
Tr

(
1

n
AnA

T
n − z

)−1
where In is the identity matrix of order n and z = u+ iv. Fix α > 0 and let

Dα,n := {z = u+ iv ∈ C : |u| ≤ α, vn ≤ v ≤ 1}

where vn is a sequence we will choose later such that 0 < vn < 1 for all n. We will
eventually allow the sequence vn to approach zero as n tends to infinity.

We will use the following lemma to prove Theorems 1.5 and 1.6.

Lemma 3.1. Suppose {An}n≥1 is a sequence of real random matrices that obey condi-
tion C0 and assume cn := N/n→ c ∈ (0,∞). Then for any α > 0

sup
z∈Dα,n

∣∣∣∣Esn(z)− 1

cn − 1− z − zEsn(z)

∣∣∣∣ = O

(√
qn +

√
γn +

√
ρn

v3n
+
βn + 1√
nv3n

)
.

We prove Lemma 3.1 in Section 4. For the moment, assume this lemma. First, take
vn > 0 to be fixed. Then Dα,n does not change with n. Since cn → c, we obtain that

Esn(z) =
1

c− 1− z − zEsn(z)
+ o(1)

for all z ∈ Dα,n. Fix z0 = u0 + iv0 ∈ Dα,n. Since |Esn(z0)| ≤ 1
v0

, one can use a
compactness argument to obtain a convergent subsequence Esnk(z0) → s(z0). Then
s(z0) must satisfy the equation

s(z0) =
1

c− 1− z0 − z0s(z0)
.

Also, since the eigenvalues of AnAT
n are non-negative, Im(zEsn(z)) ≥ 0 for all Im(z) > 0

and hence Im(z0s(z0)) ≥ 0. Thus, by the characterization (2.1), it follows that s(z0) =

mc(z0). Since every convergent subsequence of {Esn(z0)} must converge to the same
limit, we obtain that

lim
n→∞

Esn(z0) = mc(z0)

and since z0 ∈ Dα,n was arbitrary, one obtains

lim
n→∞

Esn(z) = mc(z) (3.1)

for all z ∈ Dα,n. Finally, since |Esn(z)| ≤ 1
v , Vitali’s Convergence Theorem implies that

(3.1) holds for all z ∈ D. Therefore,

‖EF 1
nAnA

T
n − Fc‖ := sup

x
|EF 1

nAnA
T
n − Fc| −→ 0

as n→∞.
To obtain the almost sure convergence in Theorem 1.5, one repeats the argument

above and then applies the Borel-Cantelli lemma, since

P (|sn(z)− Esn(z)| ≥ ε) ≤
Cp(βn + 1)p

np/2vpnεp

ECP 17 (2012), paper 28.
Page 6/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-2020
http://ecp.ejpecp.org/


A note on the Marchenko-Pastur law

by Lemma A.1 from Appendix A.
To prove Theorem 1.6, we will apply Lemma 2.2. Under assumption (1.2), there

exists B > 0 such that
EF

1
nAnA

T
n (x)− Fcn(x) = 0

for all |x| > B and n sufficiently large.
By [8, Lemma 8.15], it follows that

sup
x

∫
|u|<vn

|Fcn(x+ u)− Fcn(x)| = O
(
v3/2n

)
for cn ≥ 1.

From Lemma 3.1, we have that

Esn(z) =
1

cn − 1− z − zEsn(z)
+ δn

for all z ∈ Dα,n. Thus

z(Esn(z))
2 + Esn(z)(z + 1− cn) + 1 = δn(1− cn − z − zEsn(z)).

By subtracting the quadratic equation for mcn(z) obtained from (2.1), one finds that

|Esn(z)−mcn(z)| =
|δn||1− cn + z + zEsn(z)|

|zEsn(z) + zmcn(z) + z + 1− cn|
= O

(
δn
v2n

)
.

Therefore, from Lemma 2.2, one obtains that

‖EF 1
nAnA

T
n − Fcn‖ = O

(√
qn +

√
γn +

√
ρn

v5n
+
βn + 1√
nv5n

+
√
vn

)
and hence we can take

vn = max

(
q1/11n , γ1/11n , ρ1/11n ,

(
(βn + 1)2

n

)1/11
)
.

The proof of Theorem 1.6 is complete.
It only remains to prove Lemma 3.1.

4 Proof of Lemma 3.1

Let {An}n≥1 be a sequence of real random matrices that obey condition C0 and
assume cn := N/n → c ∈ (0,∞). Fix α > 0. In order to simplify notation, we drop the
superscript (n) and write ζij and rk for the entries of An and the rows of An respectively.
We define the resolvent

Rn(z) :=

(
1

n
AnA

T
n − z

)−1
.

Using the Schur complement, we obtain that

(Rn(z))kk =
1

1
n |rk|2 − z −

1
nrkA

T
n,kRn,k(z)An,kr

T
k

=:
1

ak

where An,k is obtained from the matrix An by removing the k-th row and

Rn,k =

(
1

n
An,kA

T
n,k − z

)−1
.
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Since |(Rn(z))kk| ≤ ‖Rn(z)‖ ≤ 1
vn

, we obtain that |ak| ≥ vn. Thus,∣∣∣∣∣Esn(z)− 1

n

n∑
k=1

1

Eak

∣∣∣∣∣ ≤ 1

nv2n

n∑
k=1

E|ak − Eak|. (4.1)

We now compute the expectation of ak. By condition (ii) in Definition 1.1, we have
that

sup
k

∣∣∣∣E 1

n
|rk|2 − cn

∣∣∣∣ ≤ qn.
For convenience, write

Bn,k := AT
n,kRn,k(z)An,k.

We first note that supk ‖Bn,k‖ = O(v−1n ). Indeed, since |z|2 ≤ α2 + 1 = O(1),

‖Bn,k‖ = ‖Rn,k(z)An,kAT
n,k‖ = ‖In−1 + zRn,k(z)‖ ≤ 1 +

|z|
vn

for all k = 1, . . . , n. Then we have that

E
1

n
rkBn,kr

T
k =

1

n

N∑
i,j=1

E [Ek[ζkiζkj ](Bn,k)ij ] =
1

n
ETrBn,k + εn,k +O

(
qn
vn

)
(4.2)

uniformly for all k (by condition (ii) in Definition 1.1) where

εn,k :=
1

n

∑
i 6=j

E [Ek[ζkiζkj ](Bn,k)ij ] .

By condition (iii), we have that

|εn,k| ≤

Eγ2n
n3

N∑
i,j,s,t=1

|(Bn,k)ij ||(Bn,k)s,t|

1/2

≤
(
E
2γ2n
n

Tr(Bn,kB
∗
n,k)

)1/2

= O
(
v−1n γn

)
uniformly in k.

Combining the above yields,

sup
k

∣∣∣∣Eak − (cn − z − E 1

n
TrBn,k

)∣∣∣∣ = O

(
qn + γn
vn

)
(4.3)

We now note that 1
nTrBn,k = n−1

n + z 1
nTrRn,k(z). By equation (3.11) in [7] (or alterna-

tively, by Cauchy’s Interlacing Theorem), one finds that∣∣∣∣ 1nTrRn,k(z)− 1

n
TrRn(z)

∣∣∣∣ = O

(
1

nvn

)
(4.4)

uniformly in k. Therefore, from (4.3) and the fact that 1
nTrRn(z) = sn(z), we obtain that

sup
k
|Eak − (cn − 1− z − zEsn(z))| = O

(
qn + γn
vn

+
1

nvn

)
(4.5)

We now turn our attention to obtaining a bound for E|ak − Eak|. First we note that

E

∣∣∣∣ 1n |rk|2 − cn
∣∣∣∣ ≤ qn
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by condition (ii) of Definition 1.1. Using (4.2) and the bounds obtained above for εn,k,
we have that

E

∣∣∣∣ 1nrkBn,krTk − E 1

n
TrBn,k

∣∣∣∣2 =
1

n2

N∑
i,j,s,t=1

E[ζkiζkjζksζkt(Bn,k)ij(Bn,k)st]

−
(
E
1

n
TrBn,k

)2

+O

(
qn + γn
v2n

)
.

For the sum
1

n2

N∑
i,j,s,t=1

E[ζkiζkjζksζkt(Bn,k)ij(Bn,k)st].

we consider several cases:

(a) When we sum over all i, j, s, t distinct, one finds

1

n2

∑
E[ζkiζkjζksζkt(Bn,k)ij(Bn,k)st] = O

(
γn
v2n

)
by condition (iv).

(b) When we sum of all i = j, s = t, we obtain

1

n2

∑
E[ζkiζkjζksζkt(Bn,k)ij(Bn,k)st] = E

[(
1

n
TrBn,k

)2
]
+O

(
ρn
v2n

)
by condition (vi).

(c) When we sum over all i = s, j = t (or i = t, j = s), we have

1

n2

∑
E[ζkiζkjζksζkt(Bn,k)ij(Bn,k)st]

= E

[
1

n2
Tr(Bn,kB

∗
n,k)

]
+O

(
ρn
v2n

)
= O

(
ρn
v2n

+
1

nv2n

)
by condition (vi).

(d) When i = s, j 6= t (or i = t, j 6= s), one finds that

1

n2

∑
E[ζkiζkjζksζkt(Bn,k)ij(Bn,k)st] = O

(
γn√
nv2n

)
by condition (iii).

(e) When i = j, s 6= t, we find

1

n2

∑
E[ζkiζkjζksζkt(Bn,k)ij(Bn,k)st]

≤ γn
n3/2vn

E

(∑
s,t

|(Bn,k)st|

)

≤ γn
n3/2vn

E

 ∑
s,t,l,m

|(Bn,k)st||(Bn,k)lm|

1/2

≤ γn
n3/2vn

nE
(
2Tr(Bn,kB

∗
n,k)

)1/2
= O

(
γn
v2n

)
by Cauchy-Schwarz and condition (iii).
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Therefore, we obtain that

E

∣∣∣∣ 1nrkBn,krTk − E 1

n
TrBn,k

∣∣∣∣2 = Var

(
1

n
TrBn,k

)
+O

(
qn + γn + ρn

v2n
+

1

nv2n

)
. (4.6)

The bound in (4.6) holds uniformly in k since the bounds in conditions (iii), (iv), and (vi)
of Definition 1.1 hold uniformly in k.

By Lemma A.1 in Appendix A, we have that

sup
k

Var

(
1

n
TrBn,k

)
= O

(
(βn + 1)2

nv2n

)
and hence

E

∣∣∣∣ 1nrkBn,krTk − E 1

n
TrBn,k

∣∣∣∣2 = O

(
qn + γn + ρn

v2n
+

(βn + 1)2

nv2n

)
. (4.7)

Therefore

sup
k
E|ak − Eak| = O

(√
qn +

√
γn +

√
ρn

vn
+
βn + 1√
nvn

)
. (4.8)

One can also observe that Im(zsn(z)) ≥ 0 for all z with Im z > 0, since the eigenvalues
of AnAT

n are non-negative. Combining this fact with equations (4.1) and (4.3) and the
estimates above, we obtain that∣∣∣∣Esn(z)− 1

1− cn − z − zsn(z)

∣∣∣∣ = O

(√
qn +

√
γn +

√
ρn

v3n
+
βn + 1√
nv3n

)
where the bound holds uniformly for z ∈ Dα,n. The proof of Lemma 3.1 is complete.

Remark 4.1. As noted in Remark 1.7, it is possible to show that if the sequence
{An}n≥1 satisfies conditions (i) - (vi) from Definition 1.1 with cn → c ∈ (0,∞), then

‖EF 1
nAnA

T
n − Fc‖ −→ 0 (4.9)

as n → ∞. The proof of the above statement repeats the proof of Theorem 1.5 almost
exactly; we now detail the necessary changes.

Since the Stieltjes transform is an analytic and bounded function, it suffices to prove
the convergence of Esn(z) to mc(z) for all z in a compact set in the upper-half plane
with Im(z) ≥ κ for a sufficiently large constant κ to be chosen later.

A careful reading of the proof of Lemma 3.1 reveals that condition (vii) from Defini-
tion 1.1 is only used to invoke Lemma A.1 and obtain the variance bound (A.2). Thus,
in order to prove (4.9), it suffices to show that

Var

(
1

n
TrRn(z)

)
= o(1) (4.10)

for all z in a compact set in the upper-half plane with Im(z) ≥ κ.
We decompose

(Rn(z))kk =
1

1
n |rk|2 − z −

1
nrkA

T
n,kRn,k(z)An,kr

T
k

=
1

cn − 1− z − zEsn(z)− εk

where

εk = cn − 1− zEsn(z)−
1

n
|rk|2 +

1

n
rkA

T
n,kRn,k(z)An,kr

T
k .
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Thus

(Rn(z))kk =
1

cn − 1− z − zEsn(z)

+
εk

(cn − 1− z − zEsn(z))((cn − 1− z − zEsn(z)− εk)

=
1

cn − 1− z − zEsn(z)
[1 + (Rn(z))kkεk].

Taking Im(z) ≥ κ we obtain

Var

(
1

n
TrRn(z)

)
≤ C

κ4n

n∑
k=1

E|εk|2

for some absolute constant C > 0. Using condition (vi) from Definition 1.1, (4.4), and
(4.6), we bound E|εk|2 and obtain

Var

(
1

n
TrRn(z)

)
≤ C|z|2

κ4
Var

(
1

n
TrRn(z)

)
+O

(
qn + γn + ρn +

1√
n

)
.

Taking z in a compact set for which |z|2/κ4 is sufficiently small verifies (4.10).

A Estimate of Variance of Stieltjes Transform

Lemma A.1. Let An be an n×N real random matrix with rows r(n)1 , . . . , r
(n)
n that satisfy

condition (vii) from Definition 1.1. Then for every p > 1 there exists a constant Cp > 0

(depending only on p) such that

E

∣∣∣∣∣ 1nTr
(
1

n
AnA

T
n − zIn

)−1
− 1

n
ETr

(
1

n
AnA

T
n − zIn

)−1∣∣∣∣∣
p

≤ Cp(βn + 1)p

np/2| Im z|p
(A.1)

for any z with Im z 6= 0. In particular, there exists an absolute constant C > 0 such that

Var

[
1

n
Tr

(
1

n
AnA

T
n − zIn

)−1]
≤ C(βn + 1)2

n| Im z|2
(A.2)

for any z with Im z 6= 0.

Proof. Since (A.1) implies (A.2) when p = 2, it suffices to prove (A.1) for arbitrary p > 1.
Let E≤k denote the conditional expectation with respect to the σ-algebra generated by

r
(n)
1 , . . . , r

(n)
k . Define

Rn(z) :=

(
1

n
AnA

T
n − zIn

)−1
and

Yk := E≤k
1

n
TrRn(z)

for k = 0, 1, . . . , n. Then {Yk}nk=0 is a martingale since E≤kYk+1 = Yk. Define the
martingale difference sequence

αk := Yk − Yk−1
for k = 1, 2, . . . , n. We then note that

n∑
k=1

αk =
1

n
TrRn(z)− E

1

n
TrRn(z). (A.3)
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A note on the Marchenko-Pastur law

We will bound the p-th moment of the sum in (A.3), but first we obtain a bound on
the individual summands αk.

For each 1 ≤ k ≤ n, define the set

J(k) := {1 ≤ j ≤ n : k ≤ j ≤ k + βn}.

Now let An,J(k) be obtained from the matrix An by removing row j if and only if j ∈ J(k).
Let

Rn,J(k)(z) =

(
1

n
An,J(k)A

T
n,J(k) − zIn

)−1
.

A simple computation (see for instance [12, Example 5.1.5]) reveals thatE≤kTrRn,J(k)(z) =
E≤k−1TrRn,J(k)(z) by condition (vii) of Definition 1.1. Thus

αk = E≤k
1

n

(
TrRn(z)− TrRn,J(k)(z)

)
− E≤k−1

1

n

(
TrRn(z)− TrRn,J(k)(z)

)
.

Using the triangle inequality and equation (3.11) in [7], we have that∣∣TrRn(z)− TrRn,J(k)(z)
∣∣ ≤ βn + 1

| Im z|

and hence

|αk| ≤
2(βn + 1)

n| Im z|
.

We now apply the Burkholder inequality (see for example [8, Lemma 2.12] for a
complex-valued version of the Burkholder inequality) and obtain that there exists a
constant Cp > 0 such that

E

∣∣∣∣∣
n∑
k=1

αk

∣∣∣∣∣
p

≤ CpE

(
n∑
k=1

|αk|2
)p/2

≤ Cp
(
4(βn + 1)2n

n2| Im z|2

)p/2
≤ Cp2

p(βn + 1)p

np/2| Im z|p
.

References

[1] Adamczak, R., On the Marchenko-Pastur and circular laws for some classes of random ma-
trices with dependent entries, Electronic Journal of Probability, Vol. 16 (2011). MR-2820070

[2] Adamczak, R.; Litvak, A.; Pajor, A.; Tomczak-Jaegermann, N., Quantitative estimates of the
convergence of the empirical covariance matrix in log-concave ensembles, J. Amer. Math.
Soc. 23 (2010), 535-561. MR-2601042

[3] Anderson, G.W., Guionnet, A., and Zeitouni, O. An Introduction to Random Matrices, Cam-
bridge Studies in Advanced Mathematics 118, Cambridge University Press, New York, 2010.
MR-2760897

[4] Aubrun, G., Random points in the unit ball of lnp , Positivity, 10(4):755-759, 2006. MR-
2280648

[5] Bai, Z. D. Methodologies in spectral analysis of large-dimensional random matrices, a re-
view. Statist. Sinica 9, 611–677 (1999). MR-1711663

[6] Bai, Z. D., Hu, J., Pan, G., Zhou, W., A Note on Rate of Convergence in Probability to Semi-
circular Law , Electronic Journal of Probability, Vol. 16(2011). MR-2861680

ECP 17 (2012), paper 28.
Page 12/13

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2820070
http://www.ams.org/mathscinet-getitem?mr=2601042
http://www.ams.org/mathscinet-getitem?mr=2760897
http://www.ams.org/mathscinet-getitem?mr=2280648
http://www.ams.org/mathscinet-getitem?mr=2280648
http://www.ams.org/mathscinet-getitem?mr=1711663
http://www.ams.org/mathscinet-getitem?mr=2861680
http://dx.doi.org/10.1214/ECP.v17-2020
http://ecp.ejpecp.org/


A note on the Marchenko-Pastur law

[7] Bai, Z.-D.; Convergence Rate of Expected Spectral Distributions of Large Random Matrices.
Part I. Wigner Matrices, Ann. Probab. Volume 21, Number 2 (1993), 625–648. MR-1217559

[8] Bai, Z.-D.; Silverstein, J.; Spectral analysis of large dimensional random matrices, Mathe-
matics Monograph Series 2, Science Press, Beijing 2006.

[9] Bordenave, B., Caputo, P., Chafaï, D., Circular law theorem for random Markov matrices,
Probability Theory and Related Fields 152, 3-4 (2012) 751-779

[10] Chafaï, D., The Dirichlet Markov Ensemble, J. Multivariate Anal. 101 (2010), no. 3, 555-567.
MR-2575404

[11] Chatterjee, S., Diaconis P., Sly A., Properties of Uniform Doubly Stochastic Matrices,
arXiv:1010.6136v1 [math.PR]

[12] Durrett R., Probability. Theory and Examples, 4th ed., Cambridge University Press, New
York, 2010. MR-2722836

[13] Götze, F.; Tikhomirov, A.; Limit theorems for spectra of positive random matrices under
dependence, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), Vol. 311
(2004), Veroyatn. i Stat.7, 92-123, 299. MR-2092202

[14] Götze, F.; Tikhomirov, A.; On the Rate of Convergence to the Marchenko–Pastur Distribution,
arXiv:1110.1284v1 [math.PR].

[15] Götze, F.; Tikhomirov, A.; Limit Theorems for spectra of random matrices with martingale
structure, Stein’s Method and Applications, Singapore Univ. Press (2005), pp. 181-195. MR-
2205336

[16] Horn, R.; Johnson, Ch.; Topics in Matrix analysis, Cambridge University Press, 1991. MR-
1091716

[17] V. Marchenko, L. Pastur, Distribution of eigenvalues of some sets of random matrices, Math
USSR-Sb. 1, (1967), 457–486.

[18] M.L. Mehta, Random Matrices, 3rd ed., Elsevier/Academic Press, Amsterdam, 2004. MR-
2129906

[19] Mendelson, S.; Pajor, A.On singular values of matrices with independent rows, Bernoulli
12(5), 2006, 761-773. MR-2265341

[20] Pajor, A.; Pastur, L., On the Limiting Empirical Measure of the sum of rank one matrices
with log-concave distribution, Studia Math. 195 (2009) MR-2539559

[21] Wachter, K. W., The strong limits of random matrix spectra for sample matrices of indepen-
dent elements, Ann. Probab. 6, 1–18 (1978). MR-0467894

[22] Y. Q. Yin, P. R. Krishnaiah, Limit Theorem for the Eigenvalues of the Sample Covariance
Matrix when the Underlying Distribution is Isotropic , Theory Probab. Appl. 30, pp. 861-
867. MR-0816299

Acknowledgments. The author is grateful to A. Litvak for pointing out Theorem 3.13
in [2]. The author would also like to thank A. Soshnikov and D. Renfrew for useful
conversations and comments.

ECP 17 (2012), paper 28.
Page 13/13

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=1217559
http://www.ams.org/mathscinet-getitem?mr=2575404
http://www.ams.org/mathscinet-getitem?mr=2722836
http://www.ams.org/mathscinet-getitem?mr=2092202
http://www.ams.org/mathscinet-getitem?mr=2205336
http://www.ams.org/mathscinet-getitem?mr=2205336
http://www.ams.org/mathscinet-getitem?mr=1091716
http://www.ams.org/mathscinet-getitem?mr=1091716
http://www.ams.org/mathscinet-getitem?mr=2129906
http://www.ams.org/mathscinet-getitem?mr=2129906
http://www.ams.org/mathscinet-getitem?mr=2265341
http://www.ams.org/mathscinet-getitem?mr=2539559
http://www.ams.org/mathscinet-getitem?mr=0467894
http://www.ams.org/mathscinet-getitem?mr=0816299
http://dx.doi.org/10.1214/ECP.v17-2020
http://ecp.ejpecp.org/

	Introduction and Main Results
	Stieltjes Transform
	Proof of Theorems 1.5 and 1.6 
	Proof of Lemma 3.1
	Estimate of Variance of Stieltjes Transform
	References

