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Abstract

We obtain estimates on the exponential rate of decay of the relative entropy from
equilibrium for Markov processes with a non-local infinitesimal generator. We adapt
some of the ideas coming from the Bakry–Emery approach to this setting. In par-
ticular, we obtain volume-independent lower bounds for the Glauber dynamics of
interacting point particles and for various classes of hardcore models.

Keywords: Entropy decay; Modified logarithmic Sobolev inequality; Stochastic particle sys-
tems.
AMS MSC 2010: 39B62; 60J80; 60K35.
Submitted to EJP on May 22, 2012, final version accepted on April 28, 2013.
Supersedes arXiv:1205.4599v2.

1 Introduction

The study of contractivity and hypercontractivity of Markov semigroups has received
a tremendous impulse from seminal paper [1], which has introduced the so-called Γ2-
approach, and has originated a number of developments in different directions (see e.g.
[9, 12, 14]). In particular, for Brownian diffusions in a convex potential, the Γ2-approach
provides a short and elegant proof of the fact that lower bounds on the Hessian of the
potential translate into lower bounds for both the spectral gap and the logarithmic
Sobolev constant. How much these ideas can be adapted to non-local operators, such
as generators of discrete Markov chains, is not yet fully understood. Although Γ2-type
computations had been performed for specific example (see e.g. [11]), the first attempt
to approach systematically this problem appeared in [3], where lower bounds on the
spectral gap of various classes of generators were given. In [4] and [5] we have ad-
dressed the problem of going beyond spectral gap estimates for non-local operators,
looking for estimates on the exponential rate of decay of the relative entropy from equi-
librium. Note that, in the case of diffusion operators, a strictly positive exponential rate
is equivalent to the validity of a logarithmic Sobolev inequality. In the non-local case,
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Entropy decay for interacting systems

the exponential entropy decay corresponds to a weaker inequality, to which we will refer
to as the entropy inequality (often also called modified logarithmic Sobolev inequality
or L1-logarithmic Sobolev inequality, [19]). We have shown in [4] that estimates on the
best constant in the entropy inequality can also be obtained from a Γ2-approach; how-
ever, when looking for explicit estimates, we have encountered technical difficulties,
that will be illustrated in the next section. More specifically, our results were restricted
to particle systems where the only allowed interactions were the exclusion rule ([4]) or
a zero-range interaction ([5]).

This paper improves substantially the results mentioned above; we obtain, more
specifically, high temperature estimates on the best constant in the entropy inequality
for Glauber-type dynamics of interacting systems. The main example concerns interact-
ing point particles, where estimates on the spectral gap, as well as constants for other
functional inequalities, have been obtained with various techniques [2, 11, 16] . This
is however, to our knowledge, the first estimate concerning the entropy inequality, that
we obtain under the classical Dobrushin uniqueness condition.

It should be made clear that the aim of this paper is to extend to non-local operators
those implications of the Bakry-Emery’s results which are concerned with the rate of
convergence to equilibrium of Markov processes. The Bakry-Emery theory has many
different, although related, applications, in particular to differential geometry. In this
context, extensions to the discrete setting have also been recently considered, see e.g.
[8, 17].

The paper is organized as follows. In Section 2 we recall the approach to the spectral
gap and entropy decay rate that we have introduced in [4], to which we add the main
original ingredient of this paper, consisting in a bivariate real inequality. The rest of the
paper is devoted to specific examples.

2 Generalities

2.1 The Entropy Inequality

We begin by recalling the basic functional inequality we will be concerned with.
Consider a time-homogeneous Markov process (Xt)t≥0, with values on a measurable
space (S,S), having an invariant measure π. We assume the semigroup (Tt)t≥0 defined
on L2(π) by

Ttf(x) := E[f(Xt)|X0 = x]

is strongly right-continuous, so that the infinitesimal generator L exists, i.e. Tt = etL.
We also assume, for what follows, reversibility of the process, i.e. L is self-adjoint in
L2(π). We define the non-negative quadratic form on D(L)×D(L), called Dirichlet form
of L,

E(f, g) := −π[fLg],

where D(L) is the domain of L, and we use the notation π[f ] for
∫
fdπ. Given a prob-

ability measure µ on (S,S), we denote by µTt the distribution of Xt assuming X0 is
distributed according to µ, i.e. ∫

fd(µTt) :=

∫
(Ttf)dµ.

An ergodic Markov process, in particular a countable-state, irreducible and recurrent
one, has a unique invariant measure π, and the rate of convergence of µTt to π is a
major topic of research. Quantitative estimates on this rate of convergence can be
obtained by analyzing functional inequalities. To set up the necessary notations, define
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Entropy decay for interacting systems

the relative entropy h(µ|π) of the probability µ with respect to π by

h(µ|π) := π

[
dµ

dπ
log

dµ

dπ

]
,

where h(µ|π) is meant to be infinite whenever µ 6� π or dµ
dπ log dµ

dπ 6∈ L1(π). Although
h(· | ·) is not a metric in the usual sense, its use as “pseudo-distance” is motivated by a
number of relevant properties, the most basic ones being:

h(µ|π) = 0 ⇐⇒ µ = π

and (see [7] equation (2.8))
2‖µ− π‖2TV ≤ h(µ|π), (2.1)

where ‖ · ‖TV denotes the total variation norm. For a generic measurable function f ≥ 0

it is common to write

Entπ(f) :=

{
π[f log f ]− π[f ] log π[f ] if f log f ∈ L1(π)

+∞ otherwise,

so that h(µ|π) = Entπ

(
dµ
dπ

)
. Ignoring technical problems concerning the domains of

Dirichlet forms, a simple formal computation shows that

d

dt
h(µTt|π) = −E(Ttf, log Ttf) (2.2)

where f := dµ
dπ . Therefore, assuming that, for each f ≥ 0, the following entropy inequal-

ity (EI) holds:

Entπ(f) ≤ 1

α
E(f, log f) (2.3)

with α > 0 (independent of f ), then (2.2) can be closed to get a differential inequality,
obtaining

h(µTt|π) ≤ e−αth(µ|π).

In other words, estimates on the best constant α for which the (EI) holds provide es-
timates for the rate of exponential convergence to equilibrium of the process, in the
relative entropy sense. It is known (see [7] even though (EI) is never explicitly men-
tioned) that α ≤ 2γ, where γ is the spectral gap for L:

γ := inf{E(f, f) : Varπ(f) := π
[
(f − π[f ])2

]
= 1}. (2.4)

2.2 Convex decay of Entropy

We now introduce a strengthened version of (EI). Again at a formal level, we com-
pute the second derivative of the entropy along the semigroup:

d2

dt2
Entπ(Ttf) = − d

dt
E(Ttf, log Ttf) = π

[
L2Ttf log Ttf

]
+ π

[
(LTtf)2

Ttf

]
. (2.5)

Assume now the inequality

κE(f, log f) ≤ π[L2f log f ] + π

[
(Lf)2

f

]
, (2.6)

holds for some κ > 0 and every f > 0. Then as for the first derivative with (EI), (2.5)
can be closed to get the differential inequality,

d

dt
E(Ttf, log Ttf) ≤ −κE(Ttf, log Ttf), (2.7)
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Entropy decay for interacting systems

from which we obtain
E(Ttf, log Ttf) ≤ e−κtE(f, log f).

Rewriting (2.7) as
d

dt
E(Ttf, log Ttf) ≤ κ d

dt
Entπ(Ttf)

and integrating from 0 to +∞ we get

κEntπ(f) ≤ E(f, log f) .

So (2.6) implies (EI) for every α ≥ κ. This result is well known; however, when one
tries to make rigorous the above arguments, some difficulties arise due to the fact
that generators are only defined in suitable domains. For this reason we give here the
following precise statement: although the assumptions we make are likely to be not
optimal, they are sufficient to cover the applications presented in this paper.

Proposition 2.1. Assume L is self-adjoint in L2(π), and denote by D(L) its domain of
self-adjointness. We write E(f, g) = −π[gLf ] whenever f ∈ D(L) and g ∈ L2(π). For
each M ∈ N define

AM := {f > 0, f ∈ D(L2), | log f | ≤M,Lf is bounded}

and assume AM is L2(π)-dense in L2
M := {f > 0, f ∈ L2, | log f | ≤M}. Then, setting

A :=
⋃
M>0

AM ,

the following results hold.

1. (EI) holds for every f ∈ A if and only if

Entπ(Ttf) ≤ e−αtEntπ(f) (2.8)

for every f ≥ 0 measurable, such that Entπ(f) < +∞.

2. (2.6) holds for every f ∈ A if and only if

E(Ttf, log Ttf) ≤ e−κtE(f, log f) ,

for every f ∈ A.

3. If (2.6) holds for some κ and every f ∈ A, then (EI) holds with α ≥ κ and every
f ∈ A.

The proof is postponed to the Appendix. Note that (2.6) gives estimates on the
second derivative of the entropy along the flow of the semigroup Tt. In particular,
being E(f, log f) ≥ 0, it implies time convexity of the entropy. There are cases (see [4]
Section 4.2) where (EI) holds but the entropy is non convex in time. Therefore, (2.6) is
strictly stronger that (EI).

Remark 2.2. By a similar proof one shows that the spectral gap γ is the best constant
in the inequality

kE(f, f) ≤ π
[
(Lf)2

]
, (2.9)

that is equivalent to the Poincaré inequality

kVarπ(f) ≤ E(f, f),

whose best constant is, by definition, the spectral gap of L. Inequality (2.9) is related to
the convex decay of the variance along the flow of the semigroup. Unlike the entropy,
the variance decay is always convex in time.
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2.3 A class of non-local dynamics

Suppose the probability space (S,S, π) is given, together with a set G of measurable
functions γ : S → S, that we call moves. We also assume G is provided with a measur-
able structure, i.e. a σ-algebra G of subsets of G. In this paper we deal with Markov
generators that, can be written in the form

Lf(η) =

∫
G

∇γf(η)c(η, dγ), (2.10)

where

• the discrete gradient ∇γ is defined by

∇γf(η) := f(γ(η))− f(η);

• for η ∈ S, c(η, dγ) is a positive, finite measure on (G,G), such that for each A ∈ G
the map η 7→ c(η,A) is measurable, and π[c2(η,G)] < +∞.

It should be stressed that not necessarily an expression as in (2.10) defines a Markov
generator. We assume this is the case. We make the following additional assumption on
the generator L.

(Rev) There is a measurable involution

G → G

γ 7→ γ−1

such that the equality γ−1(γ(η)) = η holds c(η, dγ)π(dη)-almost everywhere. Moreover,
for every Ψ : S ×G→ R measurable and bounded,∫

Ψ(η, γ)c(η, dγ)π(dη) =

∫
Ψ(γ(η), γ−1)c(η, dγ)π(dη). (2.11)

Note that, since π[c2(η,G)] < +∞ and letting D0 be the set of bounded, measurable
functions from S to R, we have that Lf ∈ L2(π) for f ∈ D0. Moreover, by (Rev), L is
symmetric on D0 and, for f, g ∈ D0,

E(f, g) = E(g, f) =
1

2

∫
G

π [c(·, dγ)∇γf∇γg] . (2.12)

In particular by (2.12) −L is a positive operator so, by considering its Friedrichs exten-
sion, L can be extended to a domain of self-adjointness D(L) ⊇ D0. It also follows that
if f ∈ A, where A has been defined in Proposition 2.1, then log f ∈ D(L), and

π
[
L2Ttf log Ttf

]
= π [LTtfL log Ttf ] =

∫
π [c(·, dγ)c(·, dδ)∇γf∇δ log f ] .

Definition 2.3. A finite measure R on S × G × G is said admissible if the following
conditions hold.

i) R is supported on the set {(η, γ, δ) : γ(δ(η)) = δ(γ(η))}.
ii) The maps (η, γ, δ) 7→ (η, δ, γ) and (η, γ, δ) 7→ (γ(η), γ−1, δ) are R-preserving.

Similarly, we say that a nonnegative measurable function r : S × G × G → [0,+∞) is
admissible if the measure R(dη, dγ, dδ) := c(η, dγ)c(η, dδ)r(η, γ, δ)π(dη) is admissible.
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By (Rev), it is easy to check that a function r ∈ L1(c(η, dγ)c(η, dδ)π(dη)) is admissible
if the following conditions hold:

a) r is supported on the set {(η, γ, δ) : γ(δ(η)) = δ(γ(η))}, up to sets of zero measure
for c(η, dγ)c(η, dδ)π(dη);

b) the following equality holds c(η, dγ)c(η, dδ)π(dη)-almost everywhere:

r(η, γ, δ) = r(η, δ, γ).

c) the equality (between measures on G)

c(η, dδ)r(η, γ, δ) = c(γ(η), dδ)r(γ(η), γ−1, δ) (2.13)

holds c(η, dγ)π(dη)-almost everywhere.

Admissible measures guarantee the following Bochner-type identities. A proof of
these identities is in [4]; we include it here for completeness.

Proposition 2.4. The following identities hold for every bounded measurable functions
f, g : S → R:∫

∇γf(η)∇δg(η)R(dη, dγ, dδ) =
1

4

∫
∇γ∇δf(η)∇γ∇δg(η)R(dη, dγ, dδ), (2.14)

∫
∇γf(η)∇δf(η)

f(η)
R(dη, dγ, dδ)

=
1

4

∫ [
∇γ
(
∇δf(η)

f(δ(η))

)
∇γ∇δf(η)−∇γ

(
(∇δf(η))2

f(η)f(δ(η))

)
∇γf(η)

]
R(dη, dγ, dδ). (2.15)

Proof. We begin by proving (2.14). By i) of Definition 2.3,

∇γ∇δf(η)∇γ∇δg(η) = ∇γ∇δf(η)∇δ∇γg(η)

R-almost everywhere. Thus, R-almost everywhere,

∇γ∇δf(η)∇δ∇γg(η)

= ∇γf(δ(η))∇δg(γ(η))−∇γf(δ(η))∇δg(η)−∇γf(η)∇δg(γ(η)) +∇γf(η)∇δg(η) .

(2.16)

We show that the R-integral of each summand of (2.16) equals∫
∇γf(η)∇δg(η)R(dη, dγ, dδ),

from which (2.14) follows. For the fourth summand there is nothing to prove. In the
steps that follow we use admissibility of R, in particular first ii), then i), then ii) and i)
again of Definition 2.3, and the simple identity ∇γf(η) = −∇γ−1f(γ(η)):∫

∇γf(η)∇δg(η)R(dη, dγ, dδ) =

∫
∇γ−1f(γ(η))∇δg(γ(η))R(dη, dγ, dδ)

= −
∫
∇γf(η)∇δg(γ(η))R(dη, dγ, dδ) (2.17)

= −
∫
∇δf(η)∇γg(δ(η))R(dη, dγ, dδ)

= −
∫
∇δf(γ(η))∇γ−1g(δ(γ(η)))R(dη, dγ, dδ)

=

∫
∇δf(γ(η))∇γg(δ(η))R(dη, dγ, dδ)

=

∫
∇γf(δ(η))∇δg(γ(η))R(dη, dγ, dδ). (2.18)
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Note that (2.17) takes care of the third (and by symmetry the second) summand, while
(2.18) takes care of the first summand. This completes the proof of (2.14).

We now prove (2.15). By admissibility of R (used twice),∫
∇γf(η)∇δf(η)

f(η)
R(dη, dγ, dδ) = −

∫
∇γf(δ−1δ(η))∇δ−1f(δ(η))

f(δ−1δ(η))
R(dη, dγ, dδ)

= −
∫
∇γf(δ(η))∇δf(η)

f(δ(η))
R(dη, dγ, dδ)

=

∫
∇γf(δ(η))∇δf(γ(η))

f(γδ(η))
R(dη, dγ, dδ).

Thus∫
∇γf(η)∇δf(η)

f(η)
R(dη, dγ, dδ)

=
1

4

[∫
∇γf(η)∇δf(η)

f(η)
R(dη, dγ, dδ)−

∫
∇γf(δ(η))∇δf(η)

f(δ(η))
R(dη, dγ, dδ)

+

∫
∇γf(δ(η))∇δf(γ(η))

f(γδ(η))
R(dη, dγ, dδ)−

∫
∇γf(δ(η))∇δf(η)

f(δ(η))
R(dη, dγ, dδ)

]
that, by a simple calculation, is shown to equal the right hand side of (2.15).

The use of admissible measures in establishing convex entropy decay is illustrated
in what follows. Consider the inequality (2.6); the two sides if the inequality, for gener-
ators of the form (2.10) take the form

E(f, log f) =
1

2
π

[∫
c(η, dγ)∇γf(η)∇γ log f(η)

]
(2.19)

π[LfL log f ] + π

[
(Lf)2

f

]
=

∫
π

[
c(·, dγ)c(·, dδ)

(
∇γf∇δ log f +

∇γf∇δf
f

)]
. (2.20)

Admissible measures allow to modify the term (2.20), the purpose being to make it
comparable with (2.19).

Proposition 2.5. Let R be an admissible measure. Then for every f > 0 measurable
with log f bounded,∫

R(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
≥ 0. (2.21)

Therefore, letting Γ(dη, dγ, dδ) := π(dη)c(η, dγ)c(η, dδ)−R(dη, dγ, dδ), we have

π

[∫
c(η, dγ)c(η, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)]
≥
∫

Γ(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
. (2.22)

Proof. Using (2.14) with g = log f , we get∫
R(dη, dγ, dδ)∇γf(η)∇δ log f(η) =

1

4

∫
R(dη, dγ, dδ)∇γ∇δf(η)∇γ∇δ log f(η)
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Thus, using also (2.15),∫
R(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
=

1

4

∫
R(dη, dγ, dδ)

[
∇γ∇δf(η)∇γ∇δ log f(η) +∇γ

(
∇δf(η)

f(δ(η))

)
∇γ∇δf(η)

−∇γ
(

(∇δf(η))2

f(η)f(δ(η))

)
∇γf(η)

]
(2.23)

The fact that (2.23) is nonnegative, follows from the nonnegativity of

∇γ∇δf(η)∇γ∇δ log f(η) +∇γ
(
∇δf(η)

f(δ(η))

)
∇γ∇δf(η)−∇γ

(
(∇δf(η))2

f(η)f(δ(η))

)
∇γf(η)

for every η, γ, δ. Indeed, setting a := f(η), b := f(δ(η)), c := f(γ(η)), d := f(δγ(η)), one
checks that this last expression equals the sum of the following 4 expressions

d log d− d log(bc/a) + (bc/a)− d
c log c− c log(da/b) + (da/b)− c
b log b− b log(da/c) + (da/c)− b
a log a− a log(bc/d) + (bc/d)− a

which are all non-negative, since α logα − α log β + β − α ≥ 0 for every α, β > 0. The
proof is therefore completed.

By (2.19), (2.20) and Proposition 2.5, convex decay of entropy, i.e. inequality (2.6)
follows by showing∫

Γ(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
≥ κ

2

∫
π [c(·, dγ)∇γf∇γ log f ]

(2.24)
for every f > 0 measurable, with log f bounded. To illustrate the treatment of (2.24),
we consider the corresponding inequality for the spectral gap studied in [3]:∫

Γ(dη, dγ, dδ)∇γf(η)∇δf(η) ≥ k

2

∫
π
[
c(·, dγ) (∇γf)

2
]
. (2.25)

The strategy to obtain (2.25) can be described in two steps.

i) Determine an admissible function r(η, γ, δ) and a “nearly diagonal” D ⊆ G × G

such that∫
D

Γ(dη, dγ, dδ)∇γf(η)∇δf(η) =

∫
D

π [c(·, dγ)c(·, dδ)[1− r(·, γ, δ)]∇γf∇δf ]

≥ u
∫
π
[
c(·, dγ) (∇γf)

2
]

(2.26)

for some u > 0.

ii) The remaining integral on Dc is estimated from below using the inequality 2ab ≥
−a2 − b2 which, by symmetry, yields

π

[∫
Dc
c(η, dγ)c(η, dδ)[1− r(η, γ, δ)]∇γf(η)∇δf(η)

]
≥

−
∫
Dc
π
[
c(·, dγ)c(·, dδ)|1− r(·, γ, δ)| (∇γf)

2
]
≥ −h

∫
π
[
c(·, dγ) (∇γf)

2
]
, (2.27)
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where

h := sup
η,γ

∫
{δ:(γ,δ)∈Dc}

c(η, dδ)|1− r(η, γ, δ)|. (2.28)

If h < u, we thus obtain (2.25) with k := 2(u− h).
The feasibility of steps i) and ii) above depends on a suitable choice of an admissible

function r. We do not have a general procedure to determine it. It turns out, for
example, that equation (2.13) does not uniquely (up to constant factors) determine r.
Condition (2.13) is, for instance, satisfied by

r(η, γ, δ) :=
1

2

[
c(γ(η), dδ)

c(η, dδ)
+ 1

]
, (2.29)

which is well defined whenever the Radon-Nikodym derivative c(γ(η),dδ)
c(η,dδ) exists. Not

necessarily, however, (2.29) defines an admissible function, in particular it is not nec-
essarily supported on the set {(η, γ, δ) : γ(δ(η)) = δ(γ(η))}. The admissible functions
in the examples in [3], [4] as well as those in this paper, are all obtained by suitable
modifications of (2.29).

The main purpose of this paper is to extend the procedure above to inequality (2.24).
The main difficulty consists in the comparison of the “off diagonal terms”∫

Dc
π

[
c(·, dγ)c(·, dδ)[1− r(·, γ, δ)]

(
∇γf∇δ log f +

∇γf∇δf
f

)]
with corresponding diagonal terms (i.e. δ = γ). The simple inequality 2ab ≥ −a2 − b2 is
the replaced by the following inequality.

Lemma 2.6. The following inequality holds for every a, b > 0:

(a− 1) log b+ (b− 1) log a+ 2(a− 1)(b− 1) +
(a− 1)2

a
+

(b− 1)2

b

≥ −
[
(a− 1) log a+ (b− 1) log b+

(a− 1)2

a
+

(b− 1)2

b

]
. (2.30)

Proof. Inequality (2.30) can be rewritten as

(a+ b− 2) log(ab) + 2ab− (a+ b)− 2 +
a+ b

ab
≥ 0. (2.31)

Letting z := a+ b, w = ab, we are left to show that for z, w > 0

(z − 2) logw + 2w − z − 2 +
z

w
≥ 0. (2.32)

Case z ≥ 2. Using the inequality log(1 + x) ≤ x for every x > −1,

(z − 2) logw = −(z − 2) log

(
1 +

1− w
w

)
≥ −(z − 2)

1− w
w

.

Thus

(z − 2) logw + 2w − z − 2 +
z

w
≥ 2

(
w +

1

w
− 2

)
≥ 0.

Case z < 2. Using again log(1 + x) ≤ x for every x > −1,

(z − 2) logw = (z − 2) log[1 + (w − 1)] ≥ (z − 2)(w − 1),

so

(z − 2) logw + 2w − z − 2 +
z

w
≥ z

(
w +

1

w
− 2

)
≥ 0.
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Letting

a :=
f(γ(η))

f(η)
b :=

f(δ(η))

f(η)
,

(2.30) becomes

∇γf(η)∇δ log f(η) +∇δf(η)∇γ log f(η) + 2
∇γf(η)∇δf(η)

f(η)

≥ −∇γf(η)∇γ log f(η)−∇δf(η)∇δ log f(η)− (∇γf(η))
2

f(γ(η))
− (∇δf(η))

2

f(δ(η))
. (2.33)

3 Examples

3.1 Glauber dynamics of particles in the continuum

Let Ω be the set of locally finite subsets of Rd. We provide Ω with the weakest
topology that, for every continuous f : Rd → R with compact support, makes the maps
η 7→

∑
x∈η f(x) continuous. Measurability on Ω is provided by the corresponding Borel

σ-field.
Now let Λ be a bounded Borel subset of Rd of nonzero Lebesgue measure, and set

S := ΩΛ := {η ∈ Ω : η ⊆ Λ}.

Consider a nonnegative measurable and even function ϕ : Rd → [0,+∞) (everything
works with minor modifications for ϕ : Rd → [0,+∞] allowing “hardcore repulsion”).
We fix a boundary condition τ ∈ ΩΛc := {η ∈ Ω : η ⊆ Λc}, and define the Hamiltonian
Hτ

Λ : S → [0,+∞]

Hτ
Λ(η) =

∑
{x,y}⊆η∪τ
{x,y}∩Λ6=∅

ϕ(x− y). (3.1)

The dependence of Hτ
Λ on Λ and τ is omitted in the sequel. We assume the nonnegative

pair potential ϕ and the inverse temperature β to satisfy the condition

ε(β) :=

∫
Rd

(
1− e−βϕ(x)

)
dx < +∞. (3.2)

For N ∈ N we let SN = {η ∈ S : |η| = N} denote the subset of S consisting of all possible
configurations of N particles in Λ. Note that a measurable function f : SN → R may be
identified with a symmetric function from ΛN → R. With this identification, we assume,
for every N ∈ N, that the boundary condition τ is such that H(η) < +∞ in a subset
of ΛN having positive Lebesgue measure. Functions from S to R may be identified
with symmetric functions from

⋃
n Λn to R. With this identification, we define the finite

volume grand canonical Gibbs measure π with inverse temperature β > 0 and activity
z > 0 by

π[f ] :=
1

Z

+∞∑
n=0

zn

n!

∫
Λn
e−βH(x)f(x) dx, (3.3)

where Z is the normalization. We define the creation and annihilation maps on S: for
x ∈ Λ

γ+
x (η) = η ∪ {x}, γ−x (η) = η \ {x}.

We let G := {γ+
x , γ

−
x : x ∈ Λ}. In the sequel we write∇+

x and∇−x rather than∇γ+
x

and
∇γ−x . Note that ∇−x f(η) = 0 unless x ∈ η. We consider the following Markov generator

Lf(η) :=
∑
x∈η
∇−x f(η) + z

∫
Λ

e−β∇
+
xH(η)∇+

x f(η) dx. (3.4)
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It is shown in [2], Proposition 2.1, that L generates a Markov semigroup. This generator
is of the form (2.10) if we define c(η, dγ) by∫

F (γ)c(η, dγ) :=
∑
x∈η

F (γ−x ) + z

∫
Λ

e−β∇
+
xH(η)F (γ+

x ) dx.

In particular, it is easy to show that the reversibility condition (2.11) holds, after having
observed that (

γ+
x

)−1
= γ−x ,

(
γ−x
)−1

= γ+
x .

Moreover c(η,G) ≤ |η| + C|Λ|, where |Λ| is the Lebesgue measure of Λ; therefore
π[c2(η,G)] < +∞.

Now we define

r(η, γ+
x , γ

+
y ) =

dc(γ+
x η, ·)

dc(η, ·)
(γ+
y ) = exp

[
−β∇+

x∇+
y H(η)

]
= exp [−βϕ(x− y)]

r(η, γ−x , γ
−
y ) =

dc(γ−x η, ·)
dc(η, ·)

(γ−y ) =

{
1 for x, y ∈ η, x 6= y

0 otherwise
(3.5)

r(η, γ−x , γ
+
y ) = r(η, γ+

x , γ
−
y ) = 1.

Lemma 3.1. The function r is admissible.

Proof. Note that the set {(η, γ, δ) : γ(δ(η)) = δ(γ(η))} has full measure for the measure
c(η, dγ)c(η, dδ)π(dη). Indeed, the only exception to commutativity γ ◦ δ(η) = δ ◦ γ(η) is
for γ = γ−x , δ = γ+

x , x 6∈ η; but it is easily seen that the set

{(η, γ, δ) : ∃x 6∈ η such that γ = γ−x , δ = γ+
x }

is null for c(η, dγ)c(η, dδ)π(dη). Moreover, the symmetry condition r(η, γ, δ) = r(η, δ, γ) is
clear by definition of r. Thus, it is enough to prove (2.13). First, let γ = γ+

x . Then∫
c(η, dδ)r(η, γ+

x , δ)F (δ) =
∑
y∈η

r(η, γ+
x , γ

−
y )F (γ−y ) + z

∫
Λ

e−β∇
+
y H(η)r(η, γ+

x , γ
+
y )F (γ+

y ) dy

=
∑
y∈η

F (γ−y ) + z

∫
Λ

e−β∇
+
y H(γ+

x (η))F (γ+
y ) dy. (3.6)

Similarly∫
c(γ+

x (η), dδ)r(γ+
x (η),

(
γ+
x

)−1
, δ)F (δ)

=
∑

y∈γ+
x (η)

r(γ+
x (η), γ−x , γ

−
y )F (γ−y ) + z

∫
Λ

e−β∇
+
y H(γ+

x (η))r(γ+
x (η), γ−x , γ

+
y )F (γ+

y )dy

=
∑
y∈η

F (γ−y ) + z

∫
Λ

e−β∇
+
y H(γ+

x (η))F (γ+
y )dy, (3.7)

which shows (2.13) for this case. The case γ = γ−x is dealt with similarly.

Theorem 3.2. Let ε(β) be the quantity defined in (3.2) and assume zε(β) < 1. Then
inequality (2.6) holds for

κ = 1− zε(β).

Thus, for zε(β) < 1, the entropy decays exponentially with a rate which is uniformly
positive in Λ and in the boundary condition τ .
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Proof. It is enough to prove (2.24). First observe that, by (Rev) and (2.12),

E(f, g) = π

[∑
x

∇−x f∇−x g

]
= z

∫
Λ

π
[
e−β∇

+
xH∇+

x f∇+
x g
]
dx. (3.8)

We have∫
Γ(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
=

∫
π

[
c(·, dγ)c(·, dδ)[1− r(·, γ, δ)]

(
∇γf∇δ log f +

∇γf∇δf
f

)]
= π

[∑
x

∇−x f∇−x log f

]
+ π

[∑
x

(∇−x f)
2

f

]

+ z2

∫
Λ2

π

[
e−β∇

+
xHe−β∇

+
y H
(

1− e−βϕ(x−y)
)(
∇+
x f∇+

y log f +
∇+
x f∇+

y f

f

)]
dx dy. (3.9)

By (3.8), the first summand in the r.h.s. of (3.9) equals E(f, log f). For the third sum-

mand we use (2.33), together with the facts that, being ϕ ≥ 0, we have e−β∇
+
y H(η) ≤ 1

and 1− e−βϕ(x−y) ≥ 0:

z2

∫
Λ2

π

[
e−β∇

+
xHe−β∇

+
y H
(

1− e−βϕ(x−y)
)(
∇+
x f∇+

y log f +
∇+
x f∇+

y f

f

)]
dx dy

≥ −z2

∫
Λ2

π

[
e−β∇

+
xHe−β∇

+
y H
(

1− e−βϕ(x−y)
)(
∇+
x f∇+

x log f +
(∇+

x f)
2

f ◦ γ+
x

)]
dx

≥ −z2ε(β)

∫
Λ

π
[
e−β∇

+
xH∇+

x f∇+
x log f

]
dx− z2ε(β)

∫
Λ

π

[
e−β∇

+
xH

(∇+
x f)

2

f ◦ γ+
x

]
dx. (3.10)

Since

z

∫
Λ

π
[
e−β∇

+
xH(η)∇+

x f∇+
x log f

]
dx = E(f, log f),

and, by reversibility,

z

∫
Λ

π

[
e−β∇

+
xH

(∇+
x f)

2

f ◦ γ+
x

]
dx = π

[∑
x

(∇−x f)
2

f

]
,

by (3.9) and (3.10) we obtain∫
Γ(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
≥ (1− zε(β))E(f, log f) + (1− zε(β))π

[∑
x

(∇−x f)
2

f

]
≥ (1− zε(β))E(f, log f),

which completes the proof of (2.24).

Remark 3.3. Theorem 3.2 provides the lower bound α ≥ 1−zε(β) for the best constant
α in the entropy inequality. Note that it coincides with the lower bound, obtained e.g.
in [3], for the spectral gap γ. The upper bound γ ≤ 1 + zε(β) has also be obtained in
[20].
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3.2 Interacting birth and death processes and a simple non perturbative ex-
ample

With no essential change, the arguments in Section 3.1 can be adapted to the fol-
lowing discrete version of the model, which can be viewed as describing a family of
interacting birth and death processes. Let h : Zd → [0,+∞) be such that h(0) = 0,
h(−x) = h(x) and ∑

x∈Zd
h(x) < +∞.

Define ΛL := Zd ∩ [1, L]d and consider for η ∈ S := ΩL := {η : ΛL → N ∪ {0}}, the pair
potential :

ϕ(x, y, η) := h(x− y)η(x)η(y),

and the Hamiltonian (a boundary condition can be added as is section 3.1)

H(η) :=
1

2

∑
x,y∈ΛL

ϕ(x, y, η). (3.11)

We assume the function h to satisfy the condition

ε(β) :=
∑
x∈Zd

(
1− e−βh(x)

)
< +∞

for 0 ≤ β < β0. The finite volume grand canonical Gibbs measure π with inverse
temperature β and activity z is the probability measure defined on S as

π(η) :=
1

Z
e−βH(η)

∏
x∈ΛL

zη(x)

η(x)!
,

where Z is the normalization. Fix x ∈ Zd; given any configuration η ∈ S we define η±δx
as (η ± δx)(y) := η(y) ± 1(x = y). Define also the creation and annihilation maps at x,
γ±x : S → S, as

γ+
x (η) := η + δx, γ−x (η) :=

{
η − δx if η(x) > 0

η otherwise.

We let G := {γ−x , γ+
x : x ∈ T}. We write ∇+

x and ∇−x rather than ∇γ+
x

and ∇γ−x . We
consider the Markov generator

Lf(η) :=
∑
x∈ΛL

[
η(x)∇−x f(η) + ze−β∇

+
xH(η)∇+

x f(η)
]
.

It is easy to show that L is self adjoint in L2(π), and that generates a Markov semigroup.
It can be written in the form (2.10) by defining c(η, dγ) analogously to section 3.1. In
particular, the condition π[c2(η,G)] < +∞ is satisfied. By defining the admissible func-
tion r : S ×G×G→ R,

r(η, γ+
x , γ

+
y ) =

dc(γ+
x η, ·)

dc(η, ·)
(γ+
y ) = exp

[
−β∇+

x∇+
y H(η)

]
r(η, γ−x , γ

−
y ) =

dc(γ−x η, ·)
dc(η, ·)

(γ−y ) =

{
η(x)−1
η(x) if x = y and η(x) > 0,

1 otherwise

r(η, γ−x , γ
+
y ) = r(η, γ+

x , γ
−
y ) = 1,

and following the same arguments of section 3.1, it can be shown that Theorem 3.2
holds also in this case.
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The condition zε(β) < 1, under which the convex exponential decay of entropy has
been established in both the continuous and discrete space, is a high temperature/low
density condition, i.e. a condition which states that the measure π and the associated
dynamics generated by L are small perturbations of a system of independent particles,
for which (2.3) holds by standard tensorization properties.

It is interesting to observe that the same technique can be applied to cases which
are far from a product case, by requiring some convexity on the Hamiltonian H. This is
quite natural in the Γ2 approach (see [1]). However, the nonlocality of the generators
is a source of serious limitations. The main problem is the fact that inequality (2.30) is
only bivariate: rather surprisingly, “natural” multivariate extensions of it are false. This
forces us to consider systems of only two interacting birth and death processes.

In the notations of the present section choose d = 1, L = 2, z = 1, H(η) = K(η1 +

η2), with K an increasing convex function (e.g. K(u) = u2). Notice that under these
conditions ∇+

1 H = ∇+
2 H ≥ 0 and ∇+

1 ∇
+
1 H = ∇+

1 ∇
+
2 H = ∇+

2 ∇
+
2 H ≥ 0. As in the proof

of Theorem 3.2 it can be shown that, for f > 0 with log f bounded,∫
Γ(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
=

2∑
x=1

π

[
η(x)

{
∇−x f∇−x log f +

(∇−x f)
2

f

}]

+

2∑
x,y=1

π

[
e−β∇

+
xHe−β∇

+
y H
(

1− e−β∇
+
x∇

+
y H
)(
∇+
x f∇+

y log f +
∇+
x f∇+

y f

f

)]
.

By erasing a positive term, using reversibility and symmetrizing, we get∫
Γ(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
≥ E(f, log f) +

2∑
x=1

π

[
η(x)

(∇−x f)
2

f

]
+

2∑
x=1

π
[
e−2β∇+

xH
(

1− e−β∇
+
x∇

+
xH
)
∇+
x f∇+

x log f
]

+
1

2

∑
x 6=y

π

[
e−β∇

+
xHe−β∇

+
y H
(

1− e−β∇
+
x∇

+
y H
)

×
(
∇+
x f∇+

y log f +∇+
y f∇+

x log f + 2
∇+
x f∇+

y f

f

)]
Using (2.33) and reversibility on the last term we obtain:

1

2

∑
x 6=y

π

[
e−β∇

+
xHe−β∇

+
y H
(

1− e−β∇
+
x∇

+
y H
)

×
(
∇+
x f∇+

y log f +∇+
y f∇+

x log f + 2
∇+
x f∇+

y f

f

)]

≥ −
2∑

x=1

π

[
e−β∇

+
1 He−β∇

+
2 H
(

1− e−β∇
+
1 ∇

+
2 H
){
∇+
x f∇+

x log f +
(∇+

x f)2

f ◦ γ+
x

}]

= −
2∑

x=1

π
[
e−2β∇+

xH
(

1− e−β∇
+
x∇

+
xH
)
∇+
x f∇+

x log f
]

−
2∑

x=1

π

[
η(x)e−β(∇+

xH)◦γ−x
{

1− e−β(∇+
x∇

+
xH)◦γ−x

} (∇−x f)2

f

]
.
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So we have that∫
Γ(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
≥ E(f, log f)

+

2∑
x=1

π

[
η(x)

(∇−x f)
2

f

]
−

2∑
x=1

π

[
η(x)e−β(∇+

xH)◦γ−x
{

1− e−β(∇+
x∇

+
xH)◦γ−x

} (∇−x f)2

f

]
.

We can conclude that inequality (2.6) holds with κ = 1 for any β ≥ 0 by observing that,
under the current assumptions on H:

η(x)e−β∇
+
xH(η−δx)

{
1− e−β∇

+
x∇

+
xH(η−δx)

}
≤ η(x)

for any η ∈ S, x ∈ {1, 2}.

3.3 A general hardcore model

In this section we present a general birth and death process taking values in the
set of multi-subsets of a given finite set. While it is possible, with minimum effort, to
establish similar results for more general interactions, we limit our analysis to models
where the interaction takes the form of a general exclusion rule.

Let T be a finite set and consider the configuration space S := {η : T → N ∪ {0}}.
In S there is a natural (partial) order relation defined by η, ξ ∈ S, η ≤ ξ if and only if
η(x) ≤ ξ(x) for any x ∈ T . A decreasing subset A of S is an A ⊆ S with the property
that given η ∈ S and ξ ∈ A with η ≤ ξ then η ∈ A.

Fix a decreasing A ⊆ S as the set of allowed configuration and an intensity ν : T →
(0,+∞). We can define the probability measure on S given by

π(η) :=
1(η ∈ A)

Z

∏
x∈T

ν(x)η(x)

η(x)!
,

where Z is the normalization.
We are going to define a Markov chain on S reversible with respect to π. Fix x ∈ T ,

given any configuration η ∈ S we define η+δx and η−δx as (η±δx)(y) := η(y)±1(x = y).
Define also the creation and annihilation maps at x, γ±x : A→ A as

γ+
x (η) :=

{
η + δx if η + δx ∈ A
η otherwise,

γ−x (η) :=

{
η − δx if η − δx ∈ A
η otherwise.

We let G := {γ−x , γ+
x : x ∈ T}. In the sequel we write ∇+

x and ∇−x rather than ∇γ+
x

and
∇γ−x . Observe that ∇−x f(η) = 0 if η(x) = 0 and ∇+

x f(η) = 0 if η + δx 6∈ A. Consider now
the Markov generator

Lf(η) =
∑
x∈T

[
η(x)∇−x f(η) + ν(x)∇+

x f(η)
]
. (3.12)

It is easy to check that L is self-adjoint in L2(π), it can be written in the form (2.10),
with π[c2(η,G)] < +∞.

Now we define

r(η, γ+
x , γ

+
y ) =

dc(γ+
x (η), ·)

dc(η, ·)
(γ+
y ) = 1(η + δx + δy ∈ A)

r(η, γ−x , γ
−
y ) =

dc(γ−x (η), ·)
dc(η, ·)

(γ−y ) =

{
η(x)−1
η(x) if x = y and η(x) > 0,

1 otherwise
(3.13)

r(η, γ−x , γ
+
y ) = r(η, γ+

x , γ
−
y ) = 1.
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It is elementary to check that r is admissible. This allows us to prove the following
result.

Theorem 3.4. Define

ε0 := sup
x,η:η(x)>0

∑
y:y 6=x

ν(y)1(η − δx + δy ∈ A)1(η + δy 6∈ A)

ε1 := inf
x,η:η(x)>0

ν(x)1(η + δx 6∈ A),

and assume ε0 ≤ 1. Then inequality (2.6) holds for κ = 1− ε0 + ε1.

Proof. Observe that

1− r(η, γ+
x , γ

+
y ) = 1(η + δx + δy 6∈ A)

1− r(η, γ−x , γ−y ) =
1(x = y, η(x) > 0)

η(x)

1− r(η, γ−x , γ+
y ) = 1− r(η, γ+

x , γ
−
y ) = 0.

Thus, for f > 0 with log f bounded,

∫
Γ(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
=

∫
π

[
c(·, dγ)c(·, dδ)[1− r(·, γ, δ)]

(
∇γf∇δ log f +

∇γf∇δf
f

)]
=
∑
x∈T

π

[
η(x)

{
∇−x f∇−x log f +

(∇−x f)
2

f

}]

+
∑
x∈T

ν2(x)π

[
1(·+ δx ∈ A)1(·+ 2δx 6∈ A)

{
∇+
x f∇+

x log f +
(∇+

x f)
2

f

}]
+

+
∑
x 6=y

ν(x)ν(y)π

[
1(·+ δx ∈ A)1(·+ δy ∈ A)1(·+ δx + δy 6∈ A)

×
{
∇+
x f∇+

y log f +
∇+
x f∇+

y f

f

}]
.

Following the by now usual steps, using reversibility and symmetrization, we obtain

∫
Γ(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
≥

≥ E(f, log f) +
∑
x∈T

π

[
η(x)

(∇−x f)
2

f

]
+
∑
x∈T

ν(x)π
[
η(x)1(·+ δx 6∈ A)∇+

x f∇+
x log f

]
+

1

2

∑
x 6=y

ν(x)ν(y)π

[
1(·+ δx ∈ A)1(·+ δy ∈ A)1(·+ δx + δy 6∈ A)

×

(
∇+
x f∇+

y log f +∇+
y f∇+

x log f + 2
∇+
x f∇+

y f

f

)]
.
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Finally, by (2.33)

1

2

∑
x 6=y

ν(x)ν(y)π

[
1(·+ δx ∈ A)1(·+ δy ∈ A)1(·+ δx + δy 6∈ A)

×

(
∇+
x f∇+

y log f +∇+
y f∇+

x log f + 2
∇+
x f∇+

y f

f

)]

≥ −
∑
x 6=y

ν(x)ν(y)π

[
1(·+ δx ∈ A)1(·+ δy ∈ A)1(·+ δx + δy 6∈ A)

×
{
∇+
x f∇+

x log f +
(∇+

x f)2

f ◦ γ+
x

}]
,

and using reversibility on the last term we obtain

1

2

∑
x 6=y

ν(x)ν(y)π

[
1(·+ δx ∈ A)1(·+ δy ∈ A)1(·+ δx + δy 6∈ A)

×

(
∇+
x f∇+

y log f +∇+
y f∇+

x log f + 2
∇+
x f∇+

y f

f

)]

≥ −
∑
x 6=y

ν(y)π

[
η(x)1(· − δx + δy ∈ A)1(·+ δy 6∈ A)

(
∇−x f∇−x log f +

(∇−x f)2

f

)]

≥ −ε0

{
E(f, log f) +

∑
x∈T

π

[
η(x)

(∇−x f)2

f

]}
.

Observing that∑
x∈T

ν(x)π
[
η(x)1(·+ δx 6∈ A)∇+

x f∇+
x log f

]
≥ ε1E(f, log f),

all this sums up to∫
Γ(dη, dγ, dδ)

(
∇γf(η)∇δ log f(η) +

∇γf(η)∇δf(η)

f(η)

)
≥ (1− ε0 + ε1)E(f, log f) + (1− ε0)

∑
x∈T

π

[
η(x)

(∇−x f)
2

f

]
.

In the next examples we give some application of Theorem 3.4.

3.3.1 The hardcore model

Let G = (V,E) a finite, connected (symmetric, simple) graph (we let E ⊆ {{x, y} ⊆ V :

x 6= y}). Take T := V , ν ≡ ρ > 0 and

A := {η ∈ S : η(x) ∈ {0, 1} for any x ∈ V and η(x)η(y) = 0 if {x, y} ∈ E} .

Then define the maximum degree of G as

∆ := max
x∈V

deg(x, V ) = max
x∈V

∑
y∈V

1({x, y} ∈ E)
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We have that ε0 = ∆ρ and ε1 = ρ. This gives κ ≥ 1−ρ(∆−1) for ρ ≤ 1/∆, i.e. the mixing
time does not depend on the size of the graph provided that ρ ≤ 1/∆.

The hardcore model has been widely studied in literature (see [13] section 22.4 and
the discussion therein). The best result on the mixing time for this model on general
graph known by authors is the fast mixing result for ρ < 2/(∆−2) contained in [15, 18].
We want to stress that the model considered in [15, 18] is a discrete time Markov chain
which can be compared with our result by using Theorem 20.3 of [13].

3.3.2 Loss Networks

For a complete introduction to loss networks we refer to [10]. Here we give only a brief
sketch of the model.

Consider a finite, connected (symmetric, simple) graph G = (V,E) and a function
C : E → N ∪ {+∞} called capacity function. A path in G is a sequence (e1, . . . , en)

of edges in E such that ei ∩ ei+1 6= ∅, i = 1, . . . , n and ei 6= ej for any i 6= j. Given a
path x = (e1, . . . , en) and an edge e ∈ E we say that e belongs to x if e = ei for some
i ∈ {1, . . . , n}. We write e ∈ x in this case. Let T be a collection of paths in G. A
configuration η is an element of S := {η : T → N ∪ {0}}. G should be thought as the
graph of a “telecommunication network” in which v ∈ V are “callers” and e ∈ E are
“links”. T represents the set of possible “routes” which a call can use to connect two
callers. For η ∈ S and x ∈ T , η(x) is the number of routes of type x ∈ T . So, given
η ∈ S the number of calls using the link e ∈ E is

∑
x3e η(x). We impose that there are

at most C(e) calls using the link e by requiring that the set of allowed route is given by
the decreasing set

A =

{
η ∈ S :

∑
x3e

η(x) ≤ C(e) for any e ∈ E

}
.

Now fix an intensity function ν : T → (0,+∞). The generator given by (3.12) is the
generator a Markov chain in which calls arrive independently with intensity ν. If a call
which violates the constraint defined by A arrives, it is rejected. Any call lasts for an
exponential time of mean 1. Is should be clear that ε0 is small if maxx∈T ν(x) is small
enough (depending on the geometry of G, T and on the function C). So we can get
lower bound on κ by taking small intensities.

3.3.3 Long hard rods

This is a statistical mechanics model for liquid crystals. See [6] for a deeper discussion
of the model. Let L, k ∈ N, with L � k. Consider the graph G := (V,E) where V :=

Z2 ∩ [0, L]2 and E := {{(u1, u2), (v1, v2)} ⊆ V : (u1 − v1)2 + (u2 − v2)2 = 1}. An horizontal
rod of length k is a sequence of k + 1 adjacent vertexes of V in “horizontal” direction

{(u1, u2), (u1 + 1, u2), . . . , (u1 + k, u2)}.

Denote by T+ the set of horizontal rods of length k. Similarly a vertical rod of length k
is a sequence of k + 1 adjacent vertexes of V in “vertical” direction

{(u1, u2), (u1, u2 + 1), . . . , (u1, u2 + k)}.

Denote by T− the set of vertical rods of length k. We set T = T+ ∪ T−,

A := {η ∈ S : η(x) ∈ {0, 1}, η(x)η(y) = 0 if x 6= y and x ∩ y 6= ∅}
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(i.e. rods can not touch), and ν ≡ ρ > 0. We then obtain ε0 = ρ(k2 +4k+1), ε1 = ρ so that
if ρ ≤ 1/(k2 + 4k + 1) then κ ≥ 1− ρ(k2 + 4k). We recall that for k sufficiently large (see
[6]) the Gibbs measure π exhibits a phase transition in the limit L→ +∞ at some point
ρc which is expected to be of order 1/k2. We therefore obtain the exponential decay of
entropy for ρ up to 1/k2, which has the same order in k as the critical value ρc.

4 Appendix: Proof of Proposition 2.1

We first observe that AM is Tt-stable, i.e. if f ∈ AM , than Ttf ∈ AM too. The
implication

e−M ≤ f ≤ eM ⇒ e−M ≤ Ttf ≤ eM ,

follows from positivity of Tt. Moreover, by a standard application of functional calculus,
if f ∈ D(L2) then Ttf ∈ D(L2) and L2Ttf = TtL2f .

1. Assume (EI) holds for every f ∈ A. By definition of generator, if f ∈ D(L2) ⊆ D(L),
then Ttf is differentiable in the L2 sense. We also claim that, if f ∈ AM , then
log Ttf is L1-differentiable, and

d

dt
log Ttf := L1 − lim

h→0

log Tt+hf − log Ttf

h
=
LTtf
Ttf

.

Indeed, using the inequality | log(1 + x)− x| ≤ x2

1+x , we have∥∥∥∥ log Tt+hf − log Ttf

h
− LTtf

Ttf

∥∥∥∥
1

=

∥∥∥∥ 1

h
log

(
1 +

h

Ttf

Tt+hf − Ttf
h

)
− LTtf

Ttf

∥∥∥∥
1

≤
∥∥∥∥ 1

h

[
log

(
1 +

h

Ttf

Tt+hf − Ttf
h

)
− h

Ttf

Tt+hf − Ttf
h

]∥∥∥∥
1

+

∥∥∥∥∥
Tt+hf−Ttf

h

Ttf
− LTtf

Ttf

∥∥∥∥∥
1

≤

∥∥∥∥∥∥∥
1

h

(
h
Ttf

)2 (
Tt+hf−Ttf

h

)2

Tt+hf/Ttf

∥∥∥∥∥∥∥
1

+

∥∥∥∥∥
Tt+hf−Ttf

h

Ttf
− LTtf

Ttf

∥∥∥∥∥
1

≤ |h|e2M

∥∥∥∥∥
(
Tt+hf − Ttf

h

)2
∥∥∥∥∥

1

+ eM
∥∥∥∥Tt+hf − Ttfh

− LTtf
∥∥∥∥

1

≤ |h|e2M

∥∥∥∥Tt+hf − Ttfh

∥∥∥∥2

2

+ eM
∥∥∥∥Tt+hf − Ttfh

− LTtf
∥∥∥∥

2

,

and both last summands go to zero as h→ 0.

Now, assuming without loss of generality that π[f ] = 1, we show that the expres-
sion

Entπ(Ttf) = π[Ttf log Ttf ]

can be differentiated commuting derivative with expectation, obtaining

d

dt
Entπ(Ttf) = −E(Ttf, log Ttf). (4.1)

Indeed

1

h
[Entπ(Tt+hf)− Entπ(Ttf)]

= π

[
Tt+hf − Ttf

h
log Tt+hf

]
+ π

[
log Tt+hf − log Ttf

h
Ttf

]
.
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Since both log Tt+hf and Ttf are uniformly bounded, we can take the limit in the
above expression, obtaining (4.1). From (4.1), using (EI) and Gromwall’s Lemma,
we get (2.8) for every f ∈ A. Now, for f ∈ L2

M , by Assumption A there is a
sequence fn ∈ AM which converges to f in L2(π), which implies Ttfn → Ttf in
L2(π); note that also log fn (resp. log Ttfn) converges to log f (resp. log Ttf ) in
L2(π) (e.g. observe that x 7→ log x is Lipschitz continuous in [e−M , eM ]). Thus
Entπ(fn) = π[fn log fn] − π[fn] log π[fn] → π[f log f ] = Entπ(f), which implies that
(2.8) holds for f ∈ ∪ML2

M . Finally, set f with Entπ(f) < +∞, and set

fM := (f ∧ eM ) ∨ e−M .

Clearly fM ∈ AM , fM → f a.s. and in L1 as M → +∞. Moreover

(fM log fM )
+ ≤ (f log f)+,

while (fM log fM )
− is bounded uniformly. Thus, by dominated convergence,

Entπ(fM )→ Entπ(f).

Note that, possibly along subsequences, the same convergence holds for TtfM and
Ttf in place of fM and f . This implies, by approximation, that (2.8) holds for every
f with Entπ(f) < +∞.

We now show the converse implication. Assume (2.8) holds for every f ≥ 0 mea-
surable, such that Entπ(f) < +∞. In particular, it holds for f ∈ A. The functions
of t Entπ(Ttf) and e−αtEntπ(f) are both differentiable, and coincide at t = 0. Nec-
essarily

d

dt
Entπ(Ttf)

∣∣
t=0
≤ d

dt
e−αtEntπ(f)

∣∣
t=0

,

which gives (EI).

2. Note that, so far, we have not used all properties of AM , but only the facts that
f ∈ D(L) and | log f | ≤M . The other properties are used below to take the second
derivative of the entropy.

Suppose (2.6) holds for all f ∈ A. The point is to justify the differentiation

d

dt
E(Ttf, log Ttf) = − d

dt
π [TtLf log Ttf ] .

Similarly to what we have done in point 1, we can differentiate using the product
rule since:

• t 7→ TtLf is L2-differentiable for f ∈ A, since Lf ∈ D(L), and log Ttf is
uniformly bounded;

• log Ttf is L1-differentiable, and TtLf is uniformly bounded.

We obtain
d

dt
E(Ttf, log Ttf) = −π [LTtfL log Ttf ]− π

[
(LTtf)2

Ttf

]
(4.2)

that, by (2.6) and Gromwall’s Lemma, implies E(Ttf, log Ttf) ≤ e−κtE(f, log f).
Conversely, (2.6) follows from E(Ttf, log Ttf) ≤ e−κtE(f, log f) by taking deriva-
tives at t = 0, as in point 1.

3. From (4.2), (2.6) and (4.1), we obtain

− d

dt
E(Ttf, log Ttf) ≥ −κ d

dt
Entπ(Ttf) .
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that, integrated from 0 to∞, yields

kEntπ(f) ≤ E(f, log f),

which completes the proof.

Acknowledgments. We thank P. Caputo for useful discussions.
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