A tail inequality for quadratic forms of subgaussian random vectors

Daniel Hsu* ${ }^{*} \quad$ Sham M. Kakade ${ }^{\dagger} \quad$ Tong Zhang ${ }^{\ddagger}$

Abstract

This article proves an exponential probability tail inequality for positive semidefinite quadratic forms in a subgaussian random vector. The bound is analogous to one that holds when the vector has independent Gaussian entries.

Keywords: Tail inequality; quadratic form; subgaussian random vectors; subgaussian chaos. AMS MSC 2010: 60F10.
Submitted to ECP on June 11, 2012, final version accepted on October 29, 2012.
Supersedes arXiv:1110.2842.

1 Introduction

Suppose that $x=\left(x_{1}, \ldots, x_{n}\right)$ is a random vector. Let $A \in \mathbb{R}^{n \times n}$ be a fixed matrix. A natural quantity that arises in many settings is the quadratic form $\|A x\|^{2}=x^{\top}\left(A^{\top} A\right) x$. Throughout $\|v\|$ denotes the Euclidean norm of a vector v, and $\|M\|$ denotes the spectral (operator) norm of a matrix M. We are interested in how close $\|A x\|^{2}$ is to its expectation.

Consider the special case where x_{1}, \ldots, x_{n} are independent standard Gaussian random variables. The following proposition provides an (upper) tail bound for $\|A x\|^{2}$.

Proposition 1.1. Let $A \in \mathbb{R}^{n \times n}$ be a matrix, and let $\Sigma:=A^{\top} A$. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be an isotropic multivariate Gaussian random vector with mean zero. For all $t>0$,

$$
\operatorname{Pr}\left[\|A x\|^{2}>\operatorname{tr}(\Sigma)+2 \sqrt{\operatorname{tr}\left(\Sigma^{2}\right) t}+2\|\Sigma\| t\right] \leq e^{-t}
$$

The proof, given in Appendix A.2, is straightforward given the rotational invariance of the multivariate Gaussian distribution, together with a tail bound for linear combinations of χ^{2} random variables from [2]. We note that a slightly weaker form of Proposition 1.1 can be proved directly using Gaussian concentration [3].

In this note, we consider the case where $x=\left(x_{1}, \ldots, x_{n}\right)$ is a subgaussian random vector. By this, we mean that there exists a $\sigma \geq 0$, such that for all $\alpha \in \mathbb{R}^{n}$,

$$
\mathbb{E}\left[\exp \left(\alpha^{\top} x\right)\right] \leq \exp \left(\|\alpha\|^{2} \sigma^{2} / 2\right)
$$

We provide a sharp upper tail bound for this case analogous to one that holds in the Gaussian case (indeed, the same as Proposition 1.1 when $\sigma=1$).

[^0]
A tail inequality for quadratic forms of subgaussian random vectors

Tail inequalities for sums of random vectors

One motivation for our main result comes from the following observations about sums of random vectors. Let a_{1}, \ldots, a_{n} be vectors in a Euclidean space, and let $A=$ $\left[a_{1}|\cdots| a_{n}\right]$ be the matrix with a_{i} as its i th column. Consider the squared norm of the random sum

$$
\begin{equation*}
\|A x\|^{2}=\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|^{2} \tag{1.1}
\end{equation*}
$$

where $x:=\left(x_{1}, \ldots, x_{n}\right)$ is a martingale difference sequence with $\mathbb{E}\left[x_{i} \mid x_{1}, \ldots, x_{i-1}\right]=0$ and $\mathbb{E}\left[x_{i}^{2} \mid x_{1}, \ldots, x_{i-1}\right]=\sigma^{2}$. Under mild boundedness assumptions on the x_{i}, the probability that the squared norm in (1.1) is much larger than its expectation

$$
\mathbb{E}\left[\|A x\|^{2}\right]=\sigma^{2} \sum_{i=1}^{n}\left\|a_{i}\right\|^{2}=\sigma^{2} \operatorname{tr}\left(A^{\top} A\right)
$$

falls off exponentially fast. This can be shown, for instance, using the following lemma by taking $u_{i}=a_{i} x_{i}$ (see Appendix A.1).

Proposition 1.2. Let u_{1}, \ldots, u_{n} be a martingale difference vector sequence, i.e.,

$$
\mathbb{E}\left[u_{i} \mid u_{1}, \ldots, u_{i-1}\right]=0, \quad \text { for all } i=1, \ldots, n,
$$

such that

$$
\sum_{i=1}^{n} \mathbb{E}\left[\left\|u_{i}\right\|^{2} \mid u_{1}, \ldots, u_{i-1}\right] \leq v \quad \text { and } \quad\left\|u_{i}\right\| \leq b
$$

for all $i=1, \ldots, n$, almost surely. For all $t>0$,

$$
\operatorname{Pr}\left[\left\|\sum_{i=1}^{n} u_{i}\right\|>\sqrt{v}+\sqrt{8 v t}+(4 / 3) b t\right] \leq e^{-t} .
$$

After squaring the quantities in the stated probabilistic event, Proposition 1.2 gives the bound

$$
\begin{aligned}
&\|A x\|^{2} \leq \sigma^{2} \cdot \operatorname{tr}\left(A^{\top} A\right)+\sigma^{2} \cdot O\left(\operatorname{tr}\left(A^{\top} A\right)(\sqrt{t}+t)\right. \\
&\left.+\sqrt{\operatorname{tr}\left(A^{\top} A\right)} \max _{i}\left\|a_{i}\right\|\left(t+t^{3 / 2}\right)+\max _{i}\left\|a_{i}\right\|^{2} t^{2}\right)
\end{aligned}
$$

with probability at least $1-e^{-t}$ when the x_{i} are almost surely bounded by 1 (or any constant).

Unfortunately, this bound obtained from Proposition 1.2 can be suboptimal when the x_{i} are subgaussian. For instance, if the x_{i} are Rademacher random variables, so $\operatorname{Pr}\left[x_{i}=+1\right]=\operatorname{Pr}\left[x_{i}=-1\right]=1 / 2$, then it is known that

$$
\begin{equation*}
\|A x\|^{2} \leq \operatorname{tr}\left(A^{\top} A\right)+O\left(\sqrt{\operatorname{tr}\left(\left(A^{\top} A\right)^{2}\right) t}+\|A\|^{2} t\right) \tag{1.2}
\end{equation*}
$$

with probability at least $1-e^{-t}$. A similar result holds for any subgaussian distribution on the x_{i} [1]. This is an improvement over the previous bound because the deviation terms (i.e., those involving t) can be significantly smaller, especially for large t.

In this work, we give a simple proof of (1.2) with explicit constants that match the analogous bound when the x_{i} are independent standard Gaussian random variables.

A tail inequality for quadratic forms of subgaussian random vectors

2 Positive semidefinite quadratic forms

Our main theorem, given below, is a generalization of (1.2).
Theorem 2.1. Let $A \in \mathbb{R}^{n \times n}$ be a matrix, and let $\Sigma:=A^{\top} A$. Suppose that $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ is a random vector such that, for some $\mu \in \mathbb{R}^{n}$ and $\sigma \geq 0$,

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(\alpha^{\top}(x-\mu)\right)\right] \leq \exp \left(\|\alpha\|^{2} \sigma^{2} / 2\right) \tag{2.1}
\end{equation*}
$$

for all $\alpha \in \mathbb{R}^{n}$. For all $t>0$,

$$
\operatorname{Pr}\left[\|A x\|^{2}>\sigma^{2} \cdot\left(\operatorname{tr}(\Sigma)+2 \sqrt{\operatorname{tr}\left(\Sigma^{2}\right) t}+2\|\Sigma\| t\right)+\operatorname{tr}\left(\Sigma \mu \mu^{\top}\right) \cdot\left(1+2\left(\frac{\|\Sigma\|^{2}}{\operatorname{tr}\left(\Sigma^{2}\right)} t\right)^{1 / 2}\right)\right] \leq e^{-t}
$$

Remark 2.2. If $\mu=0$, then the assumption (2.1) implies $\mathbb{E}[x]=0$ and $\operatorname{cov}(x) \preceq \sigma^{2} I$. In this case,

$$
\mathbb{E}\left[\|A x\|^{2}\right]=\operatorname{tr}(\Sigma \operatorname{cov}(x)) \leq \sigma^{2} \operatorname{tr}(\Sigma), \quad \operatorname{var}\left(\|A x\|^{2}\right)=O\left(\sigma^{4} \operatorname{tr}\left(\Sigma^{2}\right)\right)
$$

so probability inequality may be interpreted as a Bernstein inequality. If $\mu=0$ and $\sigma=1$, then the probability inequality reads

$$
\operatorname{Pr}\left[\|A x\|^{2}>\operatorname{tr}(\Sigma)+2 \sqrt{\operatorname{tr}\left(\Sigma^{2}\right) t}+2\|\Sigma\| t\right] \leq e^{-t}
$$

which is the same as Proposition 1.1.
Remark 2.3. Our proof (via (2.2), (2.4), and (2.5)) actually establishes the following upper bounds on the moment generating function of $\|A x\|^{2}$ for $0 \leq \eta<1 /\left(2 \sigma^{2}\|\Sigma\|\right)$:

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\eta\|A x\|^{2}\right)\right] & \leq \mathbb{E}\left[\exp \left(\sigma^{2}\left\|A^{\top} z\right\|^{2} \eta+\mu^{\top} A^{\top} z \sqrt{2 \eta}\right)\right] \\
& \leq \exp \left(\sigma^{2} \operatorname{tr}(\Sigma) \eta+\frac{\sigma^{4} \operatorname{tr}\left(\Sigma^{2}\right) \eta^{2}+\|A \mu\|^{2} \eta}{1-2 \sigma^{2}\|\Sigma\| \eta}\right)
\end{aligned}
$$

where z is a vector of n independent standard Gaussian random variables.
Proof of Theorem 2.1. Let z be a vector of n independent standard Gaussian random variables (sampled independently of x). For any $\alpha \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(z^{\top} \alpha\right)\right]=\exp \left(\|\alpha\|^{2} / 2\right) \tag{2.2}
\end{equation*}
$$

Thus, for any $\lambda \in \mathbb{R}$ and $\varepsilon \geq 0$, we have the following decoupling (which holds, in fact, for any random vector x):

$$
\begin{align*}
\mathbb{E}\left[\exp \left(\lambda z^{\top} A x\right)\right] & \geq \mathbb{E}\left[\exp \left(\lambda z^{\top} A x\right) \mid\|A x\|^{2}>\varepsilon\right] \cdot \operatorname{Pr}\left[\|A x\|^{2}>\varepsilon\right] \\
& \geq \exp \left(\frac{\lambda^{2} \varepsilon}{2}\right) \cdot \operatorname{Pr}\left[\|A x\|^{2}>\varepsilon\right] . \tag{2.3}
\end{align*}
$$

Moreover, using (2.1),

$$
\begin{align*}
\mathbb{E}\left[\exp \left(\lambda z^{\top} A x\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[\exp \left(\lambda z^{\top} A(x-\mu)\right) \mid z\right] \exp \left(\lambda z^{\top} A \mu\right)\right] \\
& \leq \mathbb{E}\left[\exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\left\|A^{\top} z\right\|^{2}+\lambda \mu^{\top} A^{\top} z\right)\right] \tag{2.4}
\end{align*}
$$

A tail inequality for quadratic forms of subgaussian random vectors

Let $U S V^{\top}$ be a singular value decomposition of A; where U and V are, respectively, matrices of orthonormal left and right singular vectors; and $S=\operatorname{diag}\left(\sqrt{\rho_{1}}, \ldots, \sqrt{\rho_{m}}\right)$ is the diagonal matrix of corresponding singular values. Note that

$$
\|\rho\|_{1}=\sum_{i=1}^{n} \rho_{i}=\operatorname{tr}(\Sigma), \quad\|\rho\|_{2}^{2}=\sum_{i=1}^{n} \rho_{i}^{2}=\operatorname{tr}\left(\Sigma^{2}\right), \quad \text { and } \quad\|\rho\|_{\infty}=\max _{i} \rho_{i}=\|\Sigma\|
$$

By rotational invariance, $y:=U^{\top} z$ is an isotropic multivariate Gaussian random vector with mean zero. Therefore $\left\|A^{\top} z\right\|^{2}=z^{\top} U S^{2} U^{\top} z=\rho_{1} y_{1}^{2}+\cdots+\rho_{n} y_{n}^{2}$ and $\mu^{\top} A^{\top} z=$ $\nu^{\top} y=\nu_{1} y_{1}+\cdots+\nu_{n} y_{n}$, where $\nu:=S V^{\top} \mu$ (note that $\|\nu\|^{2}=\left\|S V^{\top} \mu\right\|^{2}=\|A \mu\|^{2}$). Let $\gamma:=\lambda^{2} \sigma^{2} / 2$. By Lemma 2.4,

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(\gamma \sum_{i=1}^{n} \rho_{i} y_{i}^{2}+\frac{\sqrt{2 \gamma}}{\sigma} \sum_{i=1}^{n} \nu_{i} y_{i}\right)\right] \leq \exp \left(\|\rho\|_{1} \gamma+\frac{\|\rho\|_{2}^{2} \gamma^{2}+\|\nu\|^{2} \gamma / \sigma^{2}}{1-2\|\rho\|_{\infty} \gamma}\right) \tag{2.5}
\end{equation*}
$$

for $0 \leq \gamma<1 /\left(2\|\rho\|_{\infty}\right)$. Combining (2.3), (2.4), and (2.5) gives

$$
\operatorname{Pr}\left[\|A x\|^{2}>\varepsilon\right] \leq \exp \left(-\varepsilon \gamma / \sigma^{2}+\|\rho\|_{1} \gamma+\frac{\|\rho\|_{2}^{2} \gamma^{2}+\|\nu\|^{2} \gamma / \sigma^{2}}{1-2\|\rho\|_{\infty} \gamma}\right)
$$

for $0 \leq \gamma<1 /\left(2\|\rho\|_{\infty}\right)$ and $\varepsilon \geq 0$. Choosing

$$
\varepsilon:=\sigma^{2}\left(\|\rho\|_{1}+\tau\right)+\|\nu\|^{2} \sqrt{1+\frac{2\|\rho\|_{\infty} \tau}{\|\rho\|_{2}^{2}}} \quad \text { and } \quad \gamma:=\frac{1}{2\|\rho\|_{\infty}}\left(1-\sqrt{\frac{\|\rho\|_{2}^{2}}{\|\rho\|_{2}^{2}+2\|\rho\|_{\infty} \tau}}\right)
$$

we have

$$
\begin{aligned}
& \operatorname{Pr}\left[\|A x\|^{2}>\sigma^{2}\left(\|\rho\|_{1}+\tau\right)+\|\nu\|^{2} \sqrt{1+\frac{2\|\rho\|_{\infty} \tau}{\|\rho\|_{2}^{2}}}\right] \\
& \quad \leq \exp \left(-\frac{\|\rho\|_{2}^{2}}{2\|\rho\|_{\infty}^{2}}\left(1+\frac{\|\rho\|_{\infty} \tau}{\|\rho\|_{2}^{2}}-\sqrt{1+\frac{2\|\rho\|_{\infty} \tau}{\|\rho\|_{2}^{2}}}\right)\right)=\exp \left(-\frac{\|\rho\|_{2}^{2}}{2\|\rho\|_{\infty}^{2}} h_{1}\left(\frac{\|\rho\|_{\infty} \tau}{\|\rho\|_{2}^{2}}\right)\right)
\end{aligned}
$$

where $h_{1}(a):=1+a-\sqrt{1+2 a}$, which has the inverse function $h_{1}^{-1}(b)=\sqrt{2 b}+b$. The result follows by setting $\tau:=2 \sqrt{\|\rho\|_{2}^{2} t}+2\|\rho\|_{\infty} t=2 \sqrt{\operatorname{tr}\left(\Sigma^{2}\right) t}+2\|\Sigma\| t$.

The following lemma is a standard estimate of the logarithmic moment generating function of a quadratic form in standard Gaussian random variables, proved much along the lines of the estimate from [2].

Lemma 2.4. Let z be a vector of n independent standard Gaussian random variables. Fix any non-negative vector $\alpha \in \mathbb{R}_{+}^{n}$ and any vector $\beta \in \mathbb{R}^{n}$. If $0 \leq \lambda<1 /\left(2\|\alpha\|_{\infty}\right)$, then

$$
\log \mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} \alpha_{i} z_{i}^{2}+\sum_{i=1}^{n} \beta_{i} z_{i}\right)\right] \leq\|\alpha\|_{1} \lambda+\frac{\|\alpha\|_{2}^{2} \lambda^{2}+\|\beta\|_{2}^{2} / 2}{1-2\|\alpha\|_{\infty} \lambda}
$$

Proof. Fix $\lambda \in \mathbb{R}$ such that $0 \leq \lambda<1 /\left(2\|\alpha\|_{\infty}\right)$, and let $\eta_{i}:=1 / \sqrt{1-2 \alpha_{i} \lambda}>0$ for $i=1, \ldots, n$. We have

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda \alpha_{i} z_{i}^{2}+\beta_{i} z_{i}\right)\right] & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-z_{i}^{2} / 2\right) \exp \left(\lambda \alpha_{i} z_{i}^{2}+\beta_{i} z_{i}\right) d z_{i} \\
& =\eta_{i} \exp \left(\frac{\beta_{i}^{2} \eta_{i}^{2}}{2}\right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \eta_{i}^{2}}} \exp \left(-\frac{1}{2 \eta_{i}^{2}}\left(z_{i}-\beta_{i} \eta_{i}^{2}\right)^{2}\right) d z_{i}
\end{aligned}
$$

A tail inequality for quadratic forms of subgaussian random vectors

so

$$
\log \mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} \alpha_{i} z_{i}^{2}+\sum_{i=1}^{n} \beta_{i} z_{i}\right)\right]=\frac{1}{2} \sum_{i=1}^{n} \beta_{i}^{2} \eta_{i}^{2}+\frac{1}{2} \sum_{i=1}^{n} \log \eta_{i}^{2}
$$

The right-hand side can be bounded using the inequalities

$$
\frac{1}{2} \sum_{i=1}^{n} \log \eta_{i}^{2}=-\frac{1}{2} \sum_{i=1}^{n} \log \left(1-2 \alpha_{i} \lambda\right)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{\infty} \frac{\left(2 \alpha_{i} \lambda\right)^{j}}{j} \leq\|\alpha\|_{1} \lambda+\frac{\|\alpha\|_{2}^{2} \lambda^{2}}{1-2\|\alpha\|_{\infty} \lambda}
$$

and

$$
\frac{1}{2} \sum_{i=1}^{n} \beta_{i}^{2} \eta_{i}^{2} \leq \frac{\|\beta\|_{2}^{2} / 2}{1-2\|\alpha\|_{\infty} \lambda}
$$

Example: fixed-design regression with subgaussian noise

We give a simple application of Theorem 2.1 to fixed-design linear regression with the ordinary least squares estimator.

Let x_{1}, \ldots, x_{n} be fixed design vectors in \mathbb{R}^{d}. Let the responses y_{1}, \ldots, y_{n} be random variables for which there exists $\sigma>0$ such that

$$
\mathbb{E}\left[\exp \left(\sum_{i=1}^{n} \alpha_{i}\left(y_{i}-\mathbb{E}\left[y_{i}\right]\right)\right)\right] \leq \exp \left(\sigma^{2} \sum_{i=1}^{n} \alpha_{i}^{2}\right)
$$

for any $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$. This condition is satisfied, for instance, if

$$
y_{i}=\mathbb{E}\left[y_{i}\right]+\varepsilon_{i}
$$

for independent subgaussian zero-mean noise variables $\varepsilon_{1}, \ldots, \varepsilon_{n}$. Let $\Sigma:=\sum_{i=1}^{n} x_{i} x_{i}^{\top} / n$, which we assume is invertible without loss of generality. Let

$$
\beta:=\Sigma^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} \mathbb{E}\left[y_{i}\right]\right)
$$

be the coefficient vector of minimum expected squared error (i.e., $\mathbb{E}\left[n^{-1} \sum_{i=1}^{n}\left(x_{i}^{\top} \beta-\right.\right.$ $\left.\left.y_{i}\right)^{2}\right]=\min !$). The ordinary least squares estimator is given by

$$
\hat{\beta}:=\Sigma^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}\right) .
$$

The excess loss $R(\hat{\beta})$ of $\hat{\beta}$ is the difference between the expected squared error of $\hat{\beta}$ and that of β :

$$
R(\hat{\beta}):=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}^{\top} \hat{\beta}-y_{i}\right)^{2}\right]-\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}^{\top} \beta-y_{i}\right)^{2}\right] .
$$

It is easy to see that

$$
R(\hat{\beta})=\left\|\Sigma^{1 / 2}(\hat{\beta}-\beta)\right\|^{2}=\left\|\sum_{i=1}^{n}\left(\Sigma^{-1 / 2} x_{i}\right)\left(y_{i}-\mathbb{E}\left[y_{i}\right]\right)\right\|^{2} .
$$

By Theorem 2.1,

$$
\operatorname{Pr}\left[R(\hat{\beta})>\frac{\sigma^{2}(d+2 \sqrt{d t}+2 t)}{n}\right] \leq e^{-t} .
$$

Note that in the case that $\mathbb{E}\left[\left(y_{i}-\mathbb{E}\left[y_{i}\right]\right)^{2}\right]=\sigma^{2}$ for each i, then

$$
\mathbb{E}[R(\hat{\beta})]=\frac{\sigma^{2} d}{n}
$$

so the tail inequality above is essentially tight when the y_{i} are independent Gaussian random variables.

A tail inequality for quadratic forms of subgaussian random vectors

A Standard tail inequalities

A. 1 Martingale tail inequalities

The following is a standard form of Bernstein's inequality stated for martingale difference sequences.
Lemma A. 1 (Bernstein's inequality for martingales). Let d_{1}, \ldots, d_{n} be a martingale difference sequence with respect to random variables x_{1}, \ldots, x_{n} (i.e., $\mathbb{E}\left[d_{i} \mid x_{1}, \ldots, x_{i-1}\right]=0$ for all $i=1, \ldots, n)$ such that $\left|d_{i}\right| \leq b$ and $\sum_{i=1}^{n} \mathbb{E}\left[d_{i}^{2} \mid x_{1}, \ldots, x_{i-1}\right] \leq v$. For all $t>0$,

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} d_{i}>\sqrt{2 v t}+(2 / 3) b t\right] \leq e^{-t} .
$$

Proposition 1.2 is an immediate consequence of the following folklore results, together with Jensen's inequality. Lemma A. 2 is a straightforward application of Bernstein's inequality to a Doob martingale, and Lemma A. 3 is proved by a simple induction argument.

Lemma A.2. Let u_{1}, \ldots, u_{n} be random vectors such that $\sum_{i=1}^{n} \mathbb{E}\left[\left\|u_{i}\right\|^{2} \mid u_{1}, \ldots, u_{i-1}\right] \leq v$ and $\left\|u_{i}\right\| \leq b$ for all $i=1, \ldots, n$, almost surely. For all $t>0$,

$$
\operatorname{Pr}\left[\left\|\sum_{i=1}^{n} u_{i}\right\|-\mathbb{E}\left[\left\|\sum_{i=1}^{n} u_{i}\right\|\right]>\sqrt{8 v t}+(4 / 3) b t\right] \leq e^{-t} .
$$

Lemma A.3. If u_{1}, \ldots, u_{n} is a martingale difference vector sequence (c.f. Proposition 1.2), then $\mathbb{E}\left[\left\|\sum_{i=1}^{n} u_{i}\right\|^{2}\right]=\sum_{i=1}^{n} \mathbb{E}\left[\left\|u_{i}\right\|^{2}\right]$.

A. 2 Gaussian quadratic forms and χ^{2} tail inequalities

It is well-known that if $z \sim \mathcal{N}(0,1)$ is a standard Gaussian random variable, then z^{2} follows a χ^{2} distribution with one degree of freedom. The following inequality from [2] gives a bound on linear combinations of χ^{2} random variables.
Lemma A. 4 (χ^{2} tail inequality; [2]). Let q_{1}, \ldots, q_{n} be independent χ^{2} random variables, each with one degree of freedom. For any vector $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{R}_{+}^{n}$ with nonnegative entries, and any $t>0$,

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} \gamma_{i} q_{i}>\|\gamma\|_{1}+2 \sqrt{\|\gamma\|_{2}^{2} t}+2\|\gamma\|_{\infty} t\right] \leq e^{-t}
$$

Proof of Proposition 1.1. Let $V \Lambda V^{\top}$ be an eigen-decomposition of $A^{\top} A$, where V is a matrix of orthonormal eigenvectors, and $\Lambda:=\operatorname{diag}\left(\rho_{1}, \ldots, \rho_{n}\right)$ is the diagonal matrix of corresponding eigenvalues $\rho_{1}, \ldots, \rho_{n}$. By the rotational invariance of the distribution, $z:=V^{\top} x$ is an isotropic multivariate Gaussian random vector with mean zero. Thus, $\|A x\|^{2}=z^{\top} \Lambda z=\rho_{1} z_{1}^{2}+\cdots+\rho_{n} z_{n}^{2}$, and the z_{i}^{2} are independent χ^{2} random variables, each with one degree of freedom. The claim now follows from a tail bound for χ^{2} random variables (Lemma A.4).

References

[1] D. L. Hanson and F. T. Wright, A bound on tail probabilities for quadratic forms in independent random variables, The Annals of Math. Stat. 42 (1971), no. 3, 1079-1083. MR-0279864
[2] B. Laurent and P. Massart, Adaptive estimation of a quadratic functional by model selection, The Annals of Statistics 28 (2000), no. 5, 1302-1338. MR-1805785
[3] G. Pisier, The volume of convex bodies and banach space geometry, Cambridge University Press, 1989. MR-1036275

Acknowledgments. We thank the anonymous reviewers for their helpful comments.

[^0]: *Microsoft Research New England, USA. E-mail: dahsu@microsoft. com
 ${ }^{\dagger}$ Microsoft Research New England, USA. E-mail: skakade@microsoft.com
 \ddagger Department of Statistics, Rutgers University, USA. E-mail: tzhang@stat.rutgers.edu

