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Abstract

We consider a family of stochastic processes built from infinite sums of indepen-

dent positive random functions on R+. Each of these functions increases linearly

between two consecutive negative jumps, with the jump points following a Poisson

point process on R+. The motivation for studying these processes stems from the

fact that they constitute simplified models for TCP traffic on the Internet. Such

processes bear some analogy with Lévy processes, but they are more complex in the

sense that their increments are neither stationary nor independent. Nevertheless,

we show that their multifractal behavior is very much the same as that of certain

Lévy processes. More precisely, we compute the Hausdorff multifractal spectrum

of our processes, and find that it shares the shape of the spectrum of a typical

Lévy process. This result yields a theoretical basis to the empirical discovery of the

multifractal nature of TCP traffic.
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1 Background and Motivations

We study in this work a family of stochastic processes built from infinite sums of indepen-
dent positive random functions on R+. Each of these functions increases linearly between
two consecutive negative jumps, with the jump points following a Poisson point process
on R+. The interest of this class of processes is twofold. The first is theoretical: It will
be seen that the infinite sums of independent random positive functions that we study,
though they have non-stationary and correlated increments, have connections with Lévy
processes. The multifractal nature of Lévy processes has been demonstrated in [18]. A
natural question is to enquire how the multifractal features of Lévy processes are modified
when correlation and non-stationarity of the increments are present. It turns out that, at
least in the frame we consider here, neither correlations nor non-stationarity modify the
shape of the multifractal spectrum. More precisely, we compute the Hausdorff multifrac-
tal spectrum of our processes, and we show that it is the same as that of a typical Lévy
process. Though the strategy developed in [17, 18] to study the multifractal nature of
functions with a dense countable set of jump points applies partly here, our more complex
setting requires different and/or refined arguments at key points of the study. In particu-
lar, we will need a refined version of Shepp’s covering theorem for certain coverings of R+

by Poisson intervals.
The second interest stems from applications: The motivation for studying the processes

considered here is that they constitute simplified but realistic models for TCP traffic on
the Internet. Recent empirical studies, beginning with [23, 29], have shown that traffic on
the Internet generated by the Traffic Control Protocol (TCP) is, under wide conditions,
multifractal. This property has important consequences in practice. For instance, one
may show that the queuing behavior of a multifractal traffic is significantly worse that
the one of a non-fractal traffic (see [13] for details). It is therefore desirable to understand
which features of TCP are responsible for multifractality, in order to try and reduce their
negative impact on, e.g., the queuing behavior.

“Explaining” the multifractality of traffic traces from basic features of the Internet is
a difficult task. Models investigated so far have been based on the paradigm of multiplica-
tive cascades ([13],[24]). Indeed, with few exceptions (most notably [1, 15, 17, 18, 19]),
multifractal analysis has mainly been applied to multiplicative processes. An obvious
reason is that a multiplicative structure often leads naturally to multifractal properties
([25, 26, 8]).

However, there exists a number of real-world processes for which there is convincing
experimental evidence of multifractality, but which do not display a naturally associated
multiplicative structure. Among these, a major example is Internet traffic: Multiplicative
models for TCP are not really convincing because there is no physical evidence that
genuine traffic actually behaves as a cascading or multiplicative process. As a matter
of fact, TCP traffic is rather an additive process, where the contributions of individual
sources of traffic are merged in a controlled way.

The analysis developed below shows that merely adding sources managed by TCP
does lead to a multifractal behavior. This result provides a theoretical confirmation to

509



the empirical finding that TCP traffic is multifractal. Furthermore, it sheds light on the
possible causes of this multifractality: Indeed, it indicates that it may be explained from
the very nature of the protocol, with no need to invoke a hypothetical multiplicative struc-
ture. More precisely, multifractality in TCP already arises from the interplay between the
additive increase multiplicative decrease (AIMD) mechanism and the variable synchro-
nization of the sources. Finally, our computations allow to trace back, in a quantitative
way, the main multifractal features of traces to specific mechanisms of TCP. This may
have practical consequence in traffic engineering.

2 A simplified model of TCP traffic

The exact details of TCP are too intricate to allow for a tractable mathematical analysis.
We consider a simplified model that captures the main ingredients of the congestion
avoidance and flow control mechanisms of TCP. The reader interested with the precise
features of TCP may consult [7, 24, 31]. Our model goes as follows (more details on the
model may be found in [7]):

1. Each “source” of traffic Si sends “packets” of data at a time-varying rate. At time
t, it sends Zi(t) packets.

2. Between two consecutive time instants t and t + 1, two things may happen: The
source i may experience a “loss”, i.e. the flow control mechanisms of TCP detects
that a packet sent by the source did not reach its destination. In this case, TCP tries
to avoid congestion by forcing the source to halve the number of packets sent at time
t + 1 (multiplicative decrease mechanism). In other words, Zi(t + 1) = Zi(t)/2. If
there is no loss, the source is allowed to increase Zi(t) by 1, i.e. Zi(t+1) = Zi(t)+1
(additive increase mechanism).

3. The durations (τ
(i)
k )k≥1 between time instants tk and tk+1 where a given source i

experiences a loss are modeled by a sequence of independent exponential random
variables with parameter λi.

4. The total traffic Z is the sum of an infinite number of independent sources with
varying rates λi, where (λi)i≥1 is a non-decreasing sequence of positive numbers.

As compared to the true mechanisms of TCP, our model contains a number of sim-
plifications (see [7]). However, except for one, these simplifications are not essential, at
least as far as multifractality is concerned: Of all our assumptions, only the one of in-
dependence in (4) is clearly an oversimplification. Indeed, it is obvious that almost all
losses are a consequence of congestion, which is caused by the fact that several sources
are in competition. This gives rise to a strong correlation in the behavior of the sources.
Unfortunately, introducing correlations leads to a significantly more complex analysis.
One should remark nevertheless that the competition between sources is implicitly taken
into account through the fact that sources indexed by large integers are subject to more
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frequent losses. We hope to investigate the effect of correlations on the multifractal be-
havior in a future work. Note also that most other approaches dealing with the fractal
analysis of TCP make similar assumptions of independence. This is in particular the case
in the models [4, 16, 22] discussed below.

Our model takes into account the main features of TCP, while allowing at the same
time a thorough mathematical analysis: We show in the sequel that Z is multifractal, and
we compute its Hausdorff multifractal spectrum. Both the multifractality of Z and the
shape of its spectrum corroborates empirical findings ([23, 29]).

It is interesting to compare our approach with previous works dealing with the math-
ematical modeling of Internet traffic in relation with its (multi-) fractal behavior. A
large number of studies ([16, 22, 27]) have given empirical evidence that many types of
Internet traffic are “fractal”, in the sense that they display self-similarity and/or long
range dependence. Most theoretical models that have been developed so far have focused
on explaining such behaviors. In that view, a popular class of models is based on the
use of “ON/OFF” sources. An ON/OFF source is a source of traffic that is either idle,
or sends data at a constant rate. Adequate assumptions on the distribution of the ON
and/or OFF periods allow to obtain fractal properties. More precisely, the model in [22]
considers independent and identically distributed ON/OFF sources, where the length of
the ON and OFF periods are independent random variables. In addition, the distribu-
tion of the ON or/and of the OFF periods is assumed to have a regularly varying tail
with exponent β ∈ (1, 2). Then, when the number of sources tends to infinity, and if
one rescales time slowly enough, the resulting traffic, properly normalized, tends to a
fractional Brownian motion, with exponent 3/2− β/2. In [28], it is shown that the same
model leads to a β−stable Lévy motion when the time rescaling is “fast”. Finally, in a
recent work, Gaigalas and Kaj ([14]) investigated the intermediate regime where time is
rescaled proportionally to the number of sources. They found that the limit behavior in
this case is neither a stable motion nor a fractional Brownian motion.

Another, elegant, model, which does not require a double re-normalization, is presented
in [16]. It also uses a superposition of independent ON-OFF sources, but this time with
a sequence of ratios for Poisson-idle and Poisson-active periods assumed to decay as a
polynomial. Again, the resulting process display fractal features1.

A major feature of the above models is that the sources, in their ON mode, send
data at a constant rate. This is obviously a simplification, since one does not take into
account the strong and rapid variations induced by the flow control mechanisms of TCP.
This seems to be of no consequence for studying long range dependence or self-similarity:
These properties are obtained through the slow decay of the probability of observing
large busy or idle periods. These slow decays may in turn be traced back to certain large
scale features, such as, e.g., the distribution of the files sizes in the Internet ([11]). More
generally, it is usually accepted that long memory is a property of the network.

In contrast, the use of ON/OFF sources does not allow a meaningful investigation of
the multifractal properties of traffic: Contrarily to long range dependence, multifractality

1Note that the model that we consider does not require any kind of re-normalization.
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is a short-time behavior. An ON/OFF modeling is clearly inadequate in this frame since it
washes out all the (intra-source) high frequency content. At small time scales, the role of
the protocol, i.e. TCP, becomes predominant ([4]). Incorporating some sort of modeling
of TCP is thus necessary if one wants to perform a sensible high-frequency analysis: The
local, rapid variations due to TCP, are determinant from the multifractal point of view.

In that view, it is interesting to note that the limiting behavior of the ON/OFF
model which is usually considered is the one leading to fractional Brownian motion. It
is therefore not multifractal. In contrast, the other limiting case gives rise to a stable
motion, which is multifractal. A possible cause might be that, in this regime, the inter-
source high frequency content (i.e. the rapid variations in the total traffic resulting from
de-synchronized sources) is large enough to produce multifractality. However, it is not
clear which actual mechanisms in the Internet would favor this particular regime. It
would also be interesting to investigate whether the critical case studied in [14] is also
multifractal.

Another approach that allows to “explain” the multifractal features of TCP is based
on the use of “fluid models” ([4]): Rather than representing TCP at the packet level,
one uses fluid equations to describe the joint evolution of throughput for sessions sharing
a given router. The interest of this approach is that it represents the traffic as simple
products of random matrices, while allowing to capture the AIMD mechanism of TCP.
In particular, [4] shows through numerical simulations that this model does lead to a
multifractal behavior. In other words, the fluid model indicates that the multifractality
is already a consequence of the AIMD mechanism. This numerical result corroborates
our theoretical findings. A network extension of the fluid model is studied in [5]. It also
points to multifractality of the traces, with additional intriguing fractal features.

Note also that in a series of paper ([2, 3, 10]), F. Baccelli and collaborators have
performed a fine analysis of TCP at the packet level. They have in particular shown
that TCP is Max-Plus linear. A desirable extension of our work would be to study the
multifractal properties of these more precise models.

3 A class of additive processes with non-stationary

and correlated increments

We now describe our model in a formal way. Let (λi)i≥1 be a non-decreasing sequence of
positive numbers.

For every i ≥ 1, let (τ
(i)
k )k≥1 be a sequence of independent exponential random variables

with parameter λi. Define τ
(i)
0 = 0. Set

T
(i)
k =

k∑

j=0

τ
(i)
j .

The σ-algebras σ(τ
(i)
k , k ≥ 1) are assumed to be mutually independent.
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We consider an infinite sequence of sources (Si)i≥1. The “traffic” (Zi(t))t≥0 generated
by the source Si, i ≥ 1, is modeled by the following stochastic process

Zi(t) =





Zi(0) + t if 0 ≤ t < τ
(i)
1

Zi(T
(i)
k−1) + τ

(i)
k

µ
+ t− T

(i)
k if T

(i)
k ≤ t < T

(i)
k+1 with k ≥ 1,

where (Zi(0))i≥1 is a sequence of non-negative random variables such that the series∑
i≥1 Zi(0) converge, and µ is a fixed real number larger than one (typically equal to 2 in

the case of TCP).

The resulting “global traffic” is the stochastic process

Z(t) =
∑

i≥1

Zi(t) (t ∈ R+).

Our first task is to give conditions under which Z is almost surely everywhere finite.

Proposition 1 If
∑

i≥1 1/λi < ∞ then, with probability one, the stochastic process Z
is finite everywhere. If

∑
i≥1 1/λi = ∞ then, with probability one, Z(t) = ∞ almost

everywhere with respect to the Lebesgue measure.

The proof of Proposition 1 is postponed to Section 5.

We are interested in the multifractal nature of the sample paths of Z. In order to
analyze this matter, it will be useful to decompose each elementary process Zi in the
following way on [T

(i)
k , T

(i)
k+1):

Zi = Xi +Ri

with 



Xi(t) = t− T
(i)
k

Ri(t) =
Zi(0)

µk
+

1

µk+1

k∑

j=1

µjτ
(i)
j .

Then, under the assumptions of Proposition 1, Z is the sum of the two non-negative
processes X =

∑
i≥1Xi and R =

∑
i≥1Ri.

It will be shown that the processes Z and X share the multifractal spectrum of a Lévy
process without Brownian part and whose characteristic measure is Π =

∑
i≥1 λiδ−1/λi

(see [18] for the multifractal nature of Lévy processes).

A heuristic explanation of this fact is that the process X “resembles” the Lévy process
L defined almost surely as limN→∞

∑N
i=1 Li where Li(t) = t−1/λi on [T

(i)
k , T

(i)
k+1) (see [9]):

In particular, both X and L jump at each point T
(i)
k (i, k ≥ 1); The jump sizes are

mutually independent random variables for both processes; And, finally, at each T
(i)
k ,

the jump size of L is the expectation of the jump size of X. A major difference is that
the increments of X are both correlated and not stationary. The same is true for the
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increments of Z. Moreover, the sizes of the jumps of Z cease to be independent. This has
important consequences in performing the multifractal analysis of Z: Even though the
approach used by S. Jaffard in studying the multifractal nature of some functions with a
countable dense set of jump points ([17], [18]) proves useful here, it is necessary to involve
different and refined tools for the study of X and Z. This will be discussed in more detail
in Remark 1.

In the present work, the multifractal nature of Z is investigated through the compu-
tation of its spectrum of singularities or Hausdorff multifractal spectrum. This spectrum
gives a geometrical information on the singularity structure of Z. Another approach to
multifractal analysis is based on a statistical description of the distribution of the singu-
larities. It leads to the computation of the so-called large deviation spectrum. The large
deviation spectrum and related quantities pertaining to the statistical analysis of Z (as,
e.g., its Legendre multifractal spectrum) are studied in the companion paper [6]. These
quantities are the one usually considered in applications (see for instance [29, 23, 24, 13]).

The spectrum of singularities. We need the notion of pointwise regularity of a real
valued function on a non-trivial subinterval I of R. If f is such a function, t0 ∈ Int(I)
and s ∈ R+, then f belongs to Cs(t0) if there exists C > 0 and a polynomial Pt0 of degree
at most [s] such that in a neighborhood of t0,

|f(t)− Pt0(t)| ≤ C|t− t0|s.

The Hölder exponent of f at t0, denoted hf (t0), is defined as

hf (t0) = sup{s : f ∈ Cs(t0)}.

The spectrum of singularities or Hausdorff multifractal spectrum of f describes, for every
h ≥ 0, the “size” of the set Sh of points in Int(I) where f has Hölder exponent h.
More precisely, let dimE denote the Hausdorff dimension of the set E (we adopt the
convention dim ∅ = −∞). Then the spectrum of singularities of f is the function: h 7→
dim{t : hf (t) = h}.

The spectrum of singularities of the sample paths of Z (here I = R+) is governed by
the following index

β = inf{γ ≥ 1;
∑

i≥1

1

λγ−1
i

<∞},

which is also the Blumenthal-Getoor [12] index of the Lévy process L (β ∈ [1, 2] under
the assumptions of Proposition 1). Our main result is:

Theorem 1 Assume
∑

i≥1 1/λi < ∞. With probability one, X and Z are well defined
and they share the following spectrum of singularities:

dim Sh = dβ(h) :=

{
βh if h ∈ [0, 1/β];

−∞ otherwise.
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Remark 1. The spectra of X and Z are the same as that of the Lévy process L de-
fined above. The condition

∑
i≥1 1/λi < ∞ is also necessary and sufficient to define L,

but [18] assumes slightly more than
∑

i≥1 1/λi < ∞ to derive the multifractal spec-
trum of L when β = 2. More precisely, the additional assumption in [18] is (C) :∑

j≥1 2
−j
√
Cj log(1 + Cj) < ∞, where Cj =

∑
2j≤λi<2j+1 λi. This restriction is due to

the use of a certain Lemma by Stute in finding the lower bound estimate of the Hölder
exponents. In fact this lemma gives an upper bound on the number of jump points of∑

2j≤λi<2j+1 Li(·) in any dyadic interval. In [18], Stute’s result is combined with a con-
centration inequality and the fact that the jump size is of the order of 2−j at jump points
of
∑

2j≤λi<2j+1 Li(·). Under (C), this approach also yields a lower bound estimate for
the Hölder exponents of X (not for those of Z) if, on the one hand, one uses the same
truncations of the Xi’s as those used in this paper, and on the other hand one interprets
the Xis as the difference between a drift and a pure jump process. Nevertheless, there
remain problems with the lower bound estimates of the Hausdorff dimensions of the level
sets Sh, as well as with the computation of the maximal Hölder exponent of X. This is
due to the fact that the jump size δ at jump points of

∑
2j≤λi<2j+1 Xi(·) ceases to be of the

same order as 2−j (more precisely, log δ is not of the order of -j). In particular, in [18] the
maximal Hölder exponent of L is found using Shepp’s Theorem on the covering of the real
line by Poisson intervals centered at the jump points of L. Here, we need a refinement of
Shepp’s result for “economic” coverings by Poisson intervals centered at jump points of
the

∑
2j≤λi<2j+1 Xi(·)s selected to satisfy that the jump size at each of those points is of

the same order as 2−j (Theorem 3).
Our lower bound estimate of the Hölder exponents of X and Z is not based on

Stute’s lemma. Rather, we rely on a classical concentration inequality (Bennett inequal-
ity, Lemma 3(ii)). As a consequence, we avoid the restriction (C) in the study of X in
Theorem 1 when β = 2.

Theorem 1 possesses the following natural extension: Let (µi)i≥1 ∈ (1,∞)N∗

. For
every i ≥ 1 define

Z̃i(t) =





Zi(0) + t if 0 ≤ t < τ
(i)
1

Z̃i(T
(i)
k−1) + τ

(i)
k

µi

+ t− T
(i)
k if T

(i)
k ≤ t < T

(i)
k+1 with k ≥ 1,

and
Z̃(t) =

∑

i≥1

Z̃i(t).

Theorem 2 Assume (µi)i≥1 is bounded, | log(µi−1)| = o(log(λi)) and
∑

i≥1 1/(µi−1)λi <

∞. With probability one, the process Z̃ is well defined and its spectrum of singularities is
dβ.

515



In other words, the multifractal nature of the sum is not affected if µ is replaced by
µi in Zi and if the sequence (µi) remains bounded and does not tend “too fast” to 1.
Theorem 2 includes many potential or actual variants of TCP. For instance, one could
imagine treating in different ways sources with different intensity λi: As long as the
reduction factors are bounded and do not approach 1 too fast, the multifractal spectrum
remains unchanged. This suggests that reducing the multifractality of TCP might require
more drastic changes.

4 Proof of Theorem 1.

The proof of Theorem 1 is decomposed in several steps. In Section 4.1, we set some
definitions useful in the sequel. Section 4.2 (resp. 4.3) gives lower (resp. upper) bounds
for the Hölder exponents. Finally, Sections 4.4 and 4.5 computes the Hausdorff dimensions
of the level sets Sh. Ancillary results needed for Sections 4.2 and 4.4-4.5 are grouped in
Sections 5 and 6.

4.1 Definitions and notations

Due to the last assertion of Lemma 1 (Section 5) and the definition of the Ris, the
component involving Zi(0) is too small to play a role in computing the Hölder exponents
of Z on (0,∞). Consequently, we assume without loss of generality that Zi(0) = 0 almost
surely for all i ≥ 1.

It is enough to establish that for every integer T > 0, the restrictions of X and Z to
(0, T ) have almost surely the spectrum of singularities given in Theorem 1.

Therefore, in the sequel we fix T ∈ N∗ and study X and Z on (0, T ).

Moreover, we may and will assume that inf i≥1 λi ≥ 2 without loss of generality, since
we work under the assumption

∑
i≥1 1/λi <∞.

We need some new definitions.

For every i ≥ 1 and t > 0, define T
(i)
t = max {T (i)

k ; T
(i)
k ≤ t} and k

(i)
t the integer k

such that T
(i)
t = T

(i)
k .

The following sets will prove to be useful.

For every j ≥ 1 and δ > 0 define

Gj = {i ≥ 1; 2j ≤ λi < 2j+1} and Ej,δ =
⋃

i∈Gj

⋃

k≥1: T
(i)
k
≤T

[T
(i)
k − 2−δj, T

(i)
k + 2−δj].

Then for every δ > 0 define
Eδ = lim sup

j→∞
Ej,δ.
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For every j ≥ 1 define

βj = 1 +
log2 #Gj

j
,

where #Gj denotes the cardinal of the set Gj, with the convention log(0) = −∞. It
follows from the definition of β that

β = lim sup
j→∞

βj.

For j ≥ 1 define

γj =
6(j + 1)

2j
.

For j ≥ 1 and t′ > t > 0 define

{
XGj

(t, t′) =
∑

i∈Gj
Xi(t

′)1{Xi(t′)≤γj} −Xi(t)1{Xi(t)≤γj}

RGj
(t, t′) =

∑
i∈Gj

(
R̃i(t

′)− R̃i(t)
)
− E

(
R̃i(t

′)− R̃i(t)
)
,

where

R̃i(t) =
1

µk+1

k∑

j=1

µjτ
(i)
j 1

{τ
(i)
j ≤γj}

if T
(i)
t = T

(i)
k

(Lemma 8(ii) in Section 5 shows that if t′ > t > γj then XGj
(t, t′) is a centered random

variable).
Set {

bXGj
(t, t′) =

(
E(XGj

(t, t′)2)
)1/2

bRGj
(t, t′) =

(
E(RGj

(t, t′)2)
)1/2

.

For every ε > 0 and m ≥ 1 define

m(β, ε) =
2m

(β + ε)(3− β + ε)
.

Notice that sup
m≥1

m(β, ε)

m
< 1.

For every J ≥ 0, denote by DJ the set of dyadic points of the J th generation contained
in [0, T ].

4.2 A lower bound for hY (t0), Y ∈ {X,R,Z}.
This section is devoted to the proof of the following proposition. It involves intermediate
results stated and proved in Section 5.

Proposition 2 Assume the hypothesis of Theorem 1. Fix δ > β. With probability one,
for every t0 ∈ (0, T ) and Y ∈ {X,R,Z}, if t0 is not a jump point of Y then

t0 6∈ Eδ ⇒ hY (t0) ≥ 1/δ. (1)
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Proof. Due to the equality Z = X + R, and the fact the X, R, and Z have the same
jump points, we only have to deal with Y ∈ {X,R}.

Fix ε > 0 small enough so that: (i) 3−β−2ε > 0; (ii) 3−β−2ε
(β+ε)(3−β+ε)

> 1/δ (in particular

1/(β + ε) > 1/δ); (iii) β + ε < 2 if β < 2; (iv) 1/2− ε > 1/δ if β = 2.
Fix η ∈ (0, T ) and then Ω′ = Ω′(η) a subset of Ω of probability 1, such that for

every ω ∈ Ω′, there exists m0(ω) ≥ 1 such that for every m ≥ m0(ω), the conclusions of
Corollary 3, Lemma 4 and Lemma 6(ii) hold, as well as that of Lemma 1 (with K = 6)
for i ∈ Gj when j ≥ m/δ and Gj 6= ∅, and also that of Lemma 5 and 7 if j ≥ (m+rm)/βj.
Fix such an m0(ω) for every ω ∈ Ω′.

Now, fix ω ∈ Ω′, and then t0 ∈ (η, T ) such that t0 6∈ Eδ(ω) and t0 is not a jump
point of Y (ω). Since t0 6∈ Eδ(ω), we can choose j0 ≥ m0(ω)/δ such that for every j ≥ j0,
t0 6∈ Ej,δ. The Hölder exponent of Y at t0 is the same as that of

∑
j≥j0

∑
i∈Gj

Yi. We also

choose j0 so that βj < β + ε < δ and (j + 1)
√
j ≤ 2εj for j ≥ j0. To conclude, we need

the following three upper bounds (a), (b), (c):

(a) For every m ≥ δj0, t ∈ (η, T ) such that 2−m ≤ |t−t0| ≤ 2−m+1 and j0 ≤ j ≤ [m/δ]−1,∑
i∈Gj

Yi has no jump between t and t0. Consequently,

∣∣∣∣∣∣

∑

j0≤j≤[m/δ]−1

∑

i∈Gj

Yi(t)− Yi(t0)

∣∣∣∣∣∣
= |t− t0|

∑

j0≤j≤[m/δ]−1

#Gj

= |t− t0|
∑

j0≤j≤[m/δ]−1

2(βj−1)j

≤ |t− t0|
2(δ−1)m/δ

2δ−1 − 1
≤ 2

2δ−1 − 1
|t− t0|1/δ.

(b) By Lemma 6(ii), for some constant C = C(ω), for every m ≥ δj0 and t ∈ (η, T ) such
that 2−m ≤ |t− t0| ≤ 2−m+1, one has

∣∣∣∣∣∣

∑

[m/δ]≤j≤(m+rm)/βj

∑

i∈Gj

Yi(t)− Yi(t0)

∣∣∣∣∣∣
≤ C|t− t0|1/δ| log(|t− t0|)|9.

(c) For every m ≥ δj0, t ∈ (η, T ) such that 2−m ≤ |t − t0| ≤ 2−m+1 and j ≥ (m +

rm)/βj, fix (d
(j)
t , d

(j)
t0 ) ∈ D2

[2(β+ε)j]+1 ∩ (η, T ) such that 2−m ≤ |d(j)
t − d

(j)
t0 | ≤ 2−m+1 and

max(|t − d
(j)
t |, |t0 − d

(j)
t0 |) ≤ 2−[2(β+ε)j]−1. By Lemma 7,

∑
i∈Gj

Yi has at most one jump

point between s and d
(j)
s for s ∈ {t0, t}. Consequently, by definition of the Xi and Ri and

Lemma 5
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∣∣∣∣∣∣

∑

i∈Gj

Yi(t)− Yi(t0)−
∑

i∈Gj

Yi(d
(j)
t )− Yi(d

(j)
t0 )

∣∣∣∣∣∣

≤ 2(#Gj)max(|t− d
(j)
t |, |t0 − d

(j)
t0 |) + 2Cj2−j

≤ 2(βj−1)j2−[2(β+ε)j] + 2Cj2−j

and since βj < β + ε

∑

j, (m+rm)/βj≤j

∣∣∣∣∣∣

∑

i∈Gj

Yi(t)− Yi(t0)−
∑

i∈Gj

Yi(d
(j)
t )− Yi(d

(j)
t0 )

∣∣∣∣∣∣

= O


 ∑

j≥m/(β+ε)

2−(2β−βj+2ε+1)j + j2−j


 = O

(
2−
(
1+ 1

β+ε

)
m
)
+O(m2−

m
β+ε )

= O(2−m/δ)

by property (ii) for ε. Moreover, due to Lemma 1, we have

∑

i∈Gj

Xi(d
(j)
t )−Xi(d

(j)
t0 ) = XGj

(d
(j)
t , d

(j)
t0 )

and ∑

i∈Gj

Ri(d
(j)
t )−Ri(d

(j)
t0 ) = RGj

(d
(j)
t , d

(j)
t0 ) +

∑

i∈Gj

E
(
R̃i(d

(j)
t )− R̃i(d

(j)
t0 )
)
.

Due to Corollary 3 and Lemma 4, this implies that

∑

j, m+rm≤jβj

∣∣∣∣∣∣

∑

i∈Gj

Yi(d
(j)
t )− Yi(d

(j)
t0 )

∣∣∣∣∣∣
≤ C2−m/δ+

C
∑

j, (m+rm)/βj≤j≤m(β,ε)

m22(βj/2−1)j|d(j)
t − d

(j)
t0 |1/2 + C

∑

j≥m(β,ε)

(j + 1)
√
jm2(βj−3)j/2.

On the one hand, since βj < β + ε and |d(j)
t − d(j)

t0 | ≤ 2−m+1, if β < 2, property (iii) for ε
yields

∑

j, (m+rm)/βj≤j≤m(β,ε)

m22(βj/2−1)j|d(j)
t − d

(j)
t0 |1/2 ≤ 2m22−m/2

∑

j≥m/(β+ε)

2

(
(β+ε)/2−1

)
j

=
2

1− 2(β+ε)/2−1
m22−m/22

(
(β+ε)/2−1

)(
m/(β+ε)

)
=

2

1− 2(β+ε)/2−1
m22−m/(β+ε)

= O(m22−m/δ),
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and if β = 2, since βj < 2 + ε, property (iv) for ε yields

∑

j, (m+rm)/βj≤j≤m(β,ε)

m22(βj/2−1)j |d(j)
t − d

(j)
t0 |1/2

≤ 2m22−m/2

m∑

j=1

2εj =
21+ε

2ε − 1
m22−m( 1

2
−ε) = O(m22−m/δ).

On the other hand, since βj < β + ε and (j + 1)
√
j ≤ 2εj, property (ii) for ε yields

∑

j≥m(β,ε)

(j + 1)
√
jm2(βj−3)j/2 ≤ √

m
∑

j≥m(β,ε)

2(β+2ε−3)j/2

=
1

1− 2(β+2ε−3)/2

√
m2−

3−β−2ε
(β+ε)(3−β+ε)

m

= O(
√
m2−m/δ).

Finally, we get
∣∣∣∣∣∣

∑

j, (m+rm)/βj≤j

∑

i∈Gj

Yi(t)− Yi(t0)

∣∣∣∣∣∣
= O

(
|t− t0|1/δ| log2(|t− t0|)|

)
.

From (a), (b) and (c), we deduce that the Hölder exponent of
∑

j≥j0

∑
i∈Gj

Yi and Y

at t0 is at least 1/δ. So, for every ω ∈ Ω′(η), if t0 ∈ (η, T ) is not a jump point of Y , (1)
holds. One concludes by considering Ω′ = ∩n≥1Ω

′( 1
n
).

Remark 2. Under the condition
∑

i≥1 1/λi < ∞, the above computations imply the
following property for Y ∈ {X,R}, even without the knowledge of the finiteness of∑i≥1 Yi:
With probability one, for every η ∈ (0, T ) there exists α > 0 such that if t, t′ ∈ (η, T ) and
|t′− t| ≤ α then limJ→∞

∑J
j=1

∑
i∈Gj

Yi(t
′)−∑J

j=1

∑
i∈Gj

Yi(t) exists. This is a key point
in the proof of Proposition 1.

4.3 Upper bounds for hY (t0), Y ∈ {X,Z}
Let ϕ : R∗+ → R∗+. For j ≥ 1 and δ ≥ 0 define

Ẽj,δ,ϕ =
⋃

i∈Gj

⋃

k≥1:T
(i)
k
≤T, τ

(i)
k
≥ϕ(2−j)

[T
(i)
k − 2−δj, T

(i)
k + 2−δj]

and
Ẽδ,ϕ = lim sup

j→∞
Ẽj,δ,ϕ.

Proposition 3 Suppose limj→∞
logϕ(2−j)

log 2−j = 1. Fix δ > 0. With probability one, for every

t0 ∈ Ẽδ,ϕ, one has hY (t0) ≤ 1/δ for Y ∈ {X,Z}.
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Proof. If Y ∈ {X,Z} and t > 0 is a jump point of Y , |∆Y (t)| stands for the size of the
corresponding jump.

Fix t0 ∈ Ẽδ,ϕ. Fix a sequence (rjn)n≥1 of points such that for every n ≥ 1 there

exist i ∈ Gjn and 1 ≤ k ≤ N
(i)
T such that rjn = T

(i)
k and τ

(i)
k ≥ ϕ(2−jn), and t0 ∈

[rjn − 2−δjn , rjn + 2−δjn ].
By construction we have

|∆X(rjn)| = τ
(i)
k ≥ ϕ(2−jn).

Moreover,

|∆Z(rjn)| = (1− 1/µ)Zi(r
−
jn
) ≥ (1− 1/µ)τ

(i)
k ≥ (1− 1/µ)ϕ(2−jn).

Since |rjn − t0| ≤ 2−δjn , our assumption on ϕ imply for Y ∈ {X,Z}

lim inf
n→∞

log |∆Y (rjn)|
log |rjn − t0|

≤ 1/δ.

The conclusion follows from Lemma 1 in [17] (also Lemma 4 in [18]).

In the next two subsections, the sets Sh are the level sets of the Hölder exponents of
Y ∈ {X,Z}.

4.4 dim Sh for h ∈ [0, 1/β].

Upper bound for dim Sh

Proposition 4 With probability one, dim Sh ≤ βh for all 0 ≤ h ≤ 1/β.

Proof. The set of rational numbers being countable, the conclusion of Proposition 2 holds
almost surely simultaneously for all rational δ > β. Consequently, due to this proposition,
with probability one, if t0 ∈ Sh then t0 ∈

⋂
δ∈Q, δ<1/hEδ. Moreover, it is shown in [18]

that dim Eδ ≤ β/δ.

Lower bound for dim Sh

Let ϕ be as in previous section. For h ≥ 0, define

S̃h,ϕ =
⋂

δ∈Q, δ<1/h

Ẽδ,ϕ \
⋃

δ∈Q, δ>1/h

Eδ

(1/0 := +∞).

Proposition 5 Suppose limj→∞
logϕ(2−j)

log 2−j = 1. With probability one, S̃h,ϕ ⊂ Sh for every

0 ≤ h ≤ 1/β.
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Proof. We saw that the conclusion of Proposition 2 holds almost surely simultaneously
for all rational δ > β. This implies that with probability one, for every h ∈ [0, 1/β], if

t0 ∈ S̃h,ϕ, then, due to Proposition 2, hY (t0) ≥ 1/δ for all rational δ such that h > 1/δ,

so hY (t0) ≥ h. Moreover, due to Proposition 3, if t0 ∈ S̃h,ϕ then hY (t0) ≤ 1/δ for all δ
such that h < 1/δ, so hY (t0) ≤ h.

Let (jn)n≥1 be an increasing sequence of integers such that Gjn 6= ∅ and limn→∞ βjn =
β. Then for b ≥ 1 define

Hb = lim sup
n→∞

⋃

i∈Gjn

⋃

k≥1: T
(i)
k
≤T, τ

(i)
k
≥2−jn

[T
(i)
k − 2−bβjnjn , T

(i)
k + 2−bβjnjn ].

For every d ≥ 0, let Hd be the Hausdorff measure defined with the gauge function
x ≥ 0 7→ (log(x))2xd.

Proposition 6 With probability one
(i) H1 is of full Lebesgue measure in [0, T ];
(ii) for all b > 1, H1/b(Hb) > 0.

The proof is postponed to Section 6 (assertion (i) is the only to be proved; the other one
is a consequence of Theorem 2 in [18] or [19]).

Corollary 1 (Lower bound for dim S̃h,idR∗+
) Suppose ϕ(t) = t, t > 0. With probabil-

ity one, dim S̃h,ϕ ≥ βh for every h ∈ (0, 1/β].

Proof. It is straightforward that, with probability one, for every h ∈ (0, 1/β], H1/(βh) ⊂⋂
δ∈Q, δ<1/h Ẽδ,ϕ. Consequently, due to Proposition 6, Hβh(

⋂
δ∈Q, δ<1/h Ẽδ,ϕ) > 0. More-

over, by Proposition 4, Hβh(
⋃

δ∈Q, δ>1/hEδ) = 0. It follows that Hβh(S̃h,ϕ) > 0.

Since S0 6= ∅ (it contains at least the jump points), it follows from Propositions 4 and
5, as well as Corollary 1 that with probability one, dim Sh = βh for all h ∈ [0, 1/β].

4.5 Sh = ∅ for h > 1/β.

Theorem 3 [“Economic covering result”] There exists ϕ such that limj→∞
logϕ(2−j)

log 2−j = 1

and with probability one, (0, T ) ⊂ Ẽδ,ϕ for all δ < β.

We use the terminology “economic covering” with respect to the analogous property
satisfied by the largest sets Eδ: (R) with probability one (0, T ) ⊂ Eδ for all δ < β.
The property (R) is used in [18] to prove for Lévy processes the result corresponding to
Corollary 2 below. Moreover, (R) is a consequence of Shepp’s theorem for the covering
of the real line by Poisson intervals.

The proof of Theorem 3 is postponed to Section 6.

Corollary 2 With probability one, Sh = ∅ for all h > 1/β.

Proof. Combine Theorem 3 with Proposition 3.
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5 Proofs of basic lemmas and propositions

Recall that we assumed without loss of generality that λi ≥ 2 for all i ≥ 1. For t > 0 and
i ≥ 1 define

N
(i)
t = #{T (i)

k ; k ≥ 1} ∩ [0, t].

N
(i)
t is a Poisson random variable with intensity λit.

Lemma 1 Assume
∑

i≥1 1/λi < ∞. For every K ≥ 2, with probability one, there exists
i0 ≥ 1 such that for every i ≥ i0,

{
N

(i)
T ≤Mi = Tλi + 4

√
Tλi log(Tλi)

∀ 1 ≤ k ≤ N
(i)
T + 1, τ

(i)
k ≤ K log(λi)/λi.

In particular, for every i ≥ i0 and t ∈ (K log(λi)/λi, T ], one has k
(i)
t ≥ K−1λit/ log λi.

Proof. From Lemma 1 of [18], for i ≥ 1 large enough P(N (i)
T ≥ Mi) ≤ 1/(Tλi)

7.
Moreover, for every i ≥ 1

P(∃ 1 ≤ k ≤Mi + 1; τ
(i)
k >

K log(λi)

λi

) = 1− (P(τ (i)
1 ≤ K log(λi)/λi))

Mi+1

= 1− (1− 1/λK
i )

Mi+1

= T/λK−1
i + o(1/λK−1

i ).

Consequently

∑

i≥1

P
(
{N (i)

T ≥Mi} ∪
{
∃ 1 ≤ k ≤Mi + 1; τ

(i)
k >

K log(λi)

λi

})
<∞.

The first assertion of the lemma is a consequence of the Borel-Cantelli Lemma. The other
one is a consequence of the first assertion and the definition of k

(i)
t .

Proof of Proposition 1. Suppose
∑

i≥1 1/λi <∞. Assume we have shown the following
property (P): with probability one, the processes X and R are finite at every point t of
a dense countable subset of R+.

Then, since X and R are respectively the infinite sums of the nonnegative processes
Xi and Ri, the property obtained in Remark 2 after the proof of Proposition 2 and (P)
together show that almost surely X and R are finite everywhere, as well as their sum Z.

To see that (P) holds, it is enough to show that for every t > 0 and Y ∈ {X,R},∑
i≥1 Yi(t) < ∞ almost surely. Fix t > 0. Due to Lemma 1, k

(i)
t goes so fast to infinity

that one can assume that Zi(0) = 0 for all i ≥ 1. Then, the computations done in the
proofs of Lemma 8(i) and Lemma 10(i) show that

∑
i≥1 E

(
Xi(t)+Ri(t)

)
<∞, hence the

conclusion.

Suppose now that
∑

i≥1 1/λi = ∞. Then we can use Lemma 8(ii) to show that

for every t > 0, if γ ∈ (0, t) then
∑

i≥1 E
(
Xi(t)1{Xi(t)≤γ}

)
=
∑

i≥1
1
λi
(1 − e−λiγ) = ∞.
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Since the Xi(t)s are independent random variables, Kolmogorov’s three series theorem
(see [32] p. 106) shows that

∑
i≥1Xi(t) = ∞ almost surely. Moreover, the function

f : (t, ω) ∈ R∗+ × Ω 7→ 1{∞}

(∑
i≥1Xi(t)(ω)

)
is measurable. Consequently, the Fubini

theorem applied for every n ≥ 1 with the restriction of f to [0, n] × Ω and the products
`n ⊗ P, where `n denotes the restriction of the Lebesgue measure to [0, n], implies that
with probability one, X(t) =∞ almost everywhere. The same holds for Z since Z ≥ X.

Lemma 2 Fix ε > 0, η ∈ (0, T ) and Y ∈ {X,R}.
(i) There exist A,B > 0 and m0 ≥ 1 such that for all m ≥ m0, if m/3 ≤ j ≤ m(β, ε) is
such that Gj 6= ∅ and η < t, t′ ≤ T are such that 2−m ≤ t′ − t ≤ 2−m+1, then

A ≤
bYGj

(t, t′)

2(βj/2−1)j|t′ − t|1/2 ≤ Bj.

For m ≥ 1 define rm = 2 log2

(
144max

(
1, 1

µ−1

)
B
A2m

2(m+ 1)
)
.

(ii) There exists m0 ≥ 1 such that for all m ≥ m0, if (m + rm)/βj ≤ j ≤ m(β, ε),
η < t < t′ ≤ T and 2−m ≤ t′ − t ≤ 2−m+1 then

P
(
|YGj

(t, t′)| ≥ 6Bm22(βj/2−1)j|t′ − t|1/2
)
≤ 2 exp(−9m2).

(iii) There exists m0 ≥ 1 such that for all m ≥ m0, if j ≥ m(β, ε), η < t < t′ ≤ T and
t′ − t ≤ 2−m+1 then

P
(
|YGj

(t, t′)| ≥ 48max

(
1,

1

µ− 1

)
(j + 1)

√
jm2(βj−3)j/2

)
≤ 2 exp(−8jm).

The proof of Lemma 2 uses the following well-known inequalities, which are essentially,
e.g., Lemma 1.5 and Bennett inequality (6.10) in [21].

Lemma 3 Let (Vi)1≤i≤n be a finite sequence of independent random variables with mean
0. Assume that there exists γ > 0 such that |Vi| ≤ γ almost surely for all i.

(i) For all s > 0,

P
(∣∣∣

n∑

i=1

Vi

∣∣∣ > sγ
√
n
)
≤ 2e−s2/2.

(ii) Define b2 = E(
∑n

i=1 V
2
i ). For all 0 < s ≤ b2

2γ
,

P
(∣∣∣

n∑

i=1

Vi

∣∣∣ > s
)
≤ 2e−s2/4b2 .
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Proof of Lemma 2. (i) The case Y = X: One verifies that by our choice for γj, as
m → ∞, for m/3 ≤ j ≤ m(β, ε) such that Gj 6= ∅ and η < t < t′ ≤ T such that

2−m ≤ t′− t ≤ 2−m+1, if i ∈ Gj, one has λiγj →∞, γ2
j e
−λiγj = o

(
t′−t
λi

)
and λi(t

′− t)→ 0.

It follows from Lemma 9 applied with γ = γj (γj < η for j large enough) that as m→∞

E
((
Xi(t

′)1{Xi(t′)≤γj} −Xi(t)1{Xi(t)≤γj}

)2) ∼ (t′ − t)
∑

i∈Gj

2

λi

.

Since by definition (#Gj)2
−j ≤∑i∈Gj

2
λi
≤ 2(#Gj)2

−j this yields that form large enough,

for m/3 ≤ j ≤ m(β, ε) such that Gj 6= ∅ and η < t < t′ ≤ T such that 2−m ≤ t′ − t ≤
2−m+1

1

2
≤

bYGj
(t, t′)

2(βj/2−1)j|t′ − t|1/2 ≤ 2.

The case Y = R: It follows from a combination of Lemma 10(i) and (ii) that there
exists K > 0 such that for m large enough, for m/3 ≤ j ≤ m(β, ε) and η < t < t′ ≤ T
such that 2−m ≤ t′ − t ≤ 2−m+1, if i ∈ Gj

(
E
(
R̃i(t

′)− R̃i(t)
))2

≤ K

(
γ2
j e
−λiγj +

exp
(
− 2(1− µ−1)λit

)

λ2
i

)
.

By our choice γj = 6(j + 1)2−j, on the one hand γ2
j e
−λiγj = O(2−6j) and 2−4j = O

(
t′−t
λi

)

because j ≥ m/3.

On the other hand,
exp
(
−2(1−µ−1)λit

)
λ2
i

≤ 2−2j exp
(
− 2(1 − µ−1)2jη

)
= o(2−αj) for all

α > 0. This implies that

∑

i∈Gj

(
E
(
R̃i(t

′)− R̃i(t)
))2

= o(2(βj−2)j|t′ − t|)

as m→∞, m/3 ≤ j ≤ m(β, ε), η < t < t′ ≤ T and 2−m ≤ t′ − t ≤ 2−m+1.

Before applying Lemma 10(iii), notice that for i ∈ Gj, γ
2
j e
−λiγj/2λi = O(j22−je−3j) =

o(2−4j). Also before applying Lemma 10(iv), use Lemma 1 (with K = 6) to get

P({N (i)
T ≥Mi} ∪ {∃ 1 ≤ k ≤Mi; τ

(i)
j > γj}) = O(2−5j);

next notice that if i ∈ Gj and λi(t
′ − t)→ 0 then γ2

j (1− e−λi(t
′−t)) = O(j2(t′ − t)2−j).

Then, it follows from Lemma 10(iii)(iv) applied with γ = γj that as m→∞, m/3 ≤
j ≤ m(β, ε), η < t < t′ ≤ T and 2−m ≤ t′ − t ≤ 2−m+1,

∑

i∈Gj

E
((
R̃i(t

′)− R̃i(t)
)2)

= O
(
j22(βj−2)j(t′ − t)

)
.
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To find the lower bound for
∑

i∈Gj
E
((
R̃i(t

′)− R̃i(t)
)2)

when Gj 6= ∅, first write
∣∣∣E
((
R̃i(t

′)− R̃i(t)
)2)− E

((
Ri(t

′)−Ri(t)
)2) ∣∣∣

=
∣∣∣E
[(
Ri(t

′)− R̃i(t
′)−

(
Ri(t)− R̃i(t)

))(
Ri(t

′)−Ri(t) + R̃i(t
′)− R̃i(t)

)]∣∣∣

Then, the Cauchy-Schwarz inequality together with Lemma 10(iii)(iv) and the above
estimates show that

∣∣∣E
((
R̃i(t

′)− R̃i(t)
)2)− E

((
Ri(t

′)−Ri(t)
)2) ∣∣∣ = O

(
j22−je−3j/2

√
t′ − t

)
= o
(t′ − t

λi

)

as m→∞, m/3 ≤ j ≤ m(β, ε), η < t < t′ ≤ T and 2−m ≤ t′− t ≤ 2−m+1. Then one uses
Lemma 10(v).

(ii) Fix m0 as in (i). For Y ∈ {X,R}, m ≥ m0 and (m+ rm)/βj ≤ j ≤ m(β, ε), if Gj 6= ∅
and γj < t < t′ ≤ T , 2−m ≤ t′− t ≤ 2−m+1, the sum YGj

(t, t′) is made of centered random
variables bounded by γ = 2γj if Y = X and by γ = 2γj/(µ− 1) if Y = R. Moreover, by
the left inequality in (i) together with the properties j ≤ m(β, ε) ≤ m and βjj ≥ m+ rm,
one has

b2YGj
(t, t′)

2γ
≥ s := 6Bm22(βj/2−1)j|t′ − t|1/2.

Consequently, we can apply Lemma 3(ii) to get

P
(
|XGj

(t, t′)| ≥ 6Bm22(βj/2−1)j|t′ − t|1/2
)
≤ 2 exp

(
− s2/4b2YGj

(t, t′)
)
.

Now using the right inequality in (i) and again the fact that j ≤ m yields s2/4b2YGj
(t, t′) ≥

9m2, hence the conclusion.

(iii) Follows from Lemma 3(i) applied with γ as in the proof of (ii), s = 4
√
jm and

n = #Gj = 2(βj−1)j when Gj 6= ∅.

Corollary 3 Fix ε > 0 and η ∈ (0, T ).

There exists C > 0 such that with probability one, there exists m0 ≥ 1 such that for
all m ≥ m0 and Y ∈ {X,R}
(i) For all (m + rm)/βj ≤ j ≤ m(β, ε), for all (d, d′) ∈ D2

[2(β+ε)]j+1 ∩ (η, T )2 such that

2−m ≤ |d′ − d| ≤ 2−m+1,

|YGj
(d, d′)| ≤ Cm22(βj/2−1)j|d′ − d|1/2.

(ii) For all j ≥ m(β, ε), for all (d, d′) ∈ D2
[2(β+ε)]j+1 ∩ (η, T )2 such that 2−m ≤ |d′ − d| ≤

2−m+1,
|YGj

(d, d′)| ≤ C(j + 1)
√
jm2(βj−3)j/2.
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Proof. For every m ≥ 1 large enough, if j is such that (m + rm)/βj ≤ j ≤ m(β, ε),
one has J = [2(β + ε)j] + 1 ∈ [2m, (2(β + ε)m)] + 1)]. Moreover, the number of pairs
(d, d′) ∈ D2

J such that 2−m ≤ |d′ − d| ≤ 2−m+1 is bounded by 22J−m+2. Consequently,
it follows from Lemma 2(ii) that there exists a constant C > 0 such that for m large
enough,

P


∃





(m+ rm)/βj ≤ j ≤ m(β, ε),{
(d, d′) ∈ D[2(β+ε)j]+1,

2−m ≤ |d′ − d| ≤ 2−m+1

, |YGj
(d, d′)| > Cm22(βj/2−1)j|d′ − d|1/2




≤




(2(β+ε)m]+1∑

J=2m

22J−m+2


 2 exp(−9m2) ≤ exp(−8m2).

Also, one has

P


∃





j ≥ m(β, ε),{
(d, d′) ∈ D[2(β+ε)j]+1,

2−m ≤ |d′ − d| ≤ 2−m+1

, |YGj
(d, d′)| > C(j + 1)

√
jm2(βj−3)j/2




≤
∑

j≥m(β,ε)

22([2(β+ε)j]+1)−m+22 exp(−8jm) ≤ exp(−7m(β, ε)m)

1− exp(−7m(β, ε)m)
.

Since
∑

m≥1 exp(−8m2) + exp(−7m(β, ε)m) converge, the conclusion follows from the
Borel-Cantelli lemma.

Lemma 4 Fix ε > 0 and η ∈ (0, T ). There exists C > 0 such that for every m large
enough,

sup
η<t,t′≤T

|t′−t|≤2−m+1

∑

j≥m/3

∑

i∈Gj

∣∣∣E
(
R̃i(t

′)− R̃i(t)
)∣∣∣ ≤ C 2−m/δ.

Proof. We saw in the proof of Lemma 2(i) that for every j ≥ 1, i ∈ Gj, and 0 < η <
t, t′ ≤ T ,

∣∣∣E
(
R̃i(t

′)− R̃i(t)
)∣∣∣ = O(2−3j) +O

(
2−j exp

(
− (1− µ−1)2jη

))
.

Consequently

sup
γ<t,t′≤T

|t′−t|≤2−m+1

∑

j≥m/3

∑

i∈Gj

∣∣∣E
(
R̃i(t

′)− R̃i(t)
)∣∣∣ = O(2−m) = O(2−m/δ).

Lemma 5 Fix η ∈ (0, T ). With probability one, there exists C > 0 such that for Y ∈
{X,R} and j large enough, the jumps sizes of ∑i∈Gj

Yi in (η, T ) are bounded by Cj2−j.
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Proof. Recall that Zi(0) is assumed to be 0 for all i ≥ 1. Due to Lemma 1 and the
respective definitions of Xi and Ri , with probability one, there exists K > 0 such that for
i large enough both supt∈(η,T )Xi(t) and supt∈(η,T )Ri(t) are less than K log(λi)/λi. This
is enough to conclude.

Lemma 6 (i) There exists m0 ≥ 1 such that for all m ≥ m0, for Y ∈ {X,R}, the
probability of the event Em = {there exists [m/δ] ≤ j ≤ (m+ rm))/βj such that

∑
i∈Gj

Yi

has on any of the T2m−1 dyadic subintervals of length 2−m+1 of [0, T ] more than m8

jumps} is bounded by 2−m.

(ii) Fix η ∈ (0, T ). With probability one, there exists m0 ≥ 1 and a constant Cη > 0 such
that for m ≥ m0, for all t, t

′ ∈ (η, T ] such that 2−m ≤ |t′ − t| ≤ 2−m+1,
∣∣∣∣∣∣

∑

[m/δ]≤j≤(m+rm)/βj

∑

i∈Gj

Yi(t
′)− Yi(t)

∣∣∣∣∣∣
≤ Cη|t′ − t|1/δ

∣∣ log(|t′ − t|)
∣∣9.

Proof. (i) Since the Yi are independent, the number of jump points of
∑

i∈Gj
Yi in

a dyadic interval of the (m − 1)th generation is a Poisson variable of parameter Λj =
2−m+1

∑
i∈Gj

λi ≤ 2−m+1(#Gj)2
j+1. Moreover, if j ≤ (m + rm))/βj, Λj ≤ 4.2−m+βjj ≤

4.2rm = O(m6) ≤ m7 for m large enough. Consequently, for m large enough, the proba-
bility that

∑
i∈Gj

Yi has on any of the 2m−1T dyadic subintervals of length 2−m+1 of [0, T ]

more than m8 jumps is bounded by

2m−1T exp(−Λj)
∑

k≥m8

m7k

k!
≤ 2m−1T

∑

k≥m8

( e
m

)k

= O(2−m8

)

(we used Stirling’s formula). It follows that P(Em) = O
(
(m+ rm)2

−m8)
. This yields the

first part of the lemma.

(ii) Due to the first part of the lemma and the Borel-Cantelli lemma, with probability
one, there exists m0 ≥ 1 such that if m ≥ m0 then Em does not happen, hence for all
t, t′ ∈ (η, T ] such that 2−m ≤ t′ − t ≤ 2−m+1 and all for all j such that [m/δ] ≤ j ≤
(m+ rm)/βj,

∑
i∈Gj

Yi has at most 2m8 jump points between t and t′. By Lemma 5, m0

can be also chosen so that these jumps are O(j2−j), so O(m)2−j here. Consequently,
∣∣∣∣∣∣

∑

[m/δ]≤j≤(m+rm)/βj

∑

i∈Gj

Yi(t
′)− Yi(t)

∣∣∣∣∣∣
≤

∑

[m/δ]≤j≤(m+rm)/βj

2m8O(m)2−j

+
∑

[m/δ]≤j≤(m+rm)/βj

|t′ − t|2(βj−1)j

≤ O(m9)2−m/δ + |t′ − t|2m+rm
∑

m/δ≤j≤(m+rm)/βj

2−j

= O(m9)2−m/δ +O(m6)2−m/δ,

that is the desired result.
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Lemma 7 Fix ε > 0. With probability one, for Y ∈ {X,R} and j large enough, the
distance between two consecutive jump points of

∑
i∈Gj

Yi in [0, T ] is at least 2−2(β+ε)j.

Proof. The jump points of
∑

i∈Gj
Yi are also the jump points of a Poisson process of

intensity Λj =
∑

i∈Gj
λi. Consequently, there exists a sequence (θ

(j)
k )k≥1 of independent

exponential random variables with parameter Λj such that almost surely the jump points
of
∑

i∈Gj
Yi in [0, T ] are described by the points of the increasing finite sequence of points

of the form
∑m

k=1 θ
(j)
k , m ≥ 1, that belong to [0, T ]. The problem is reduced to estimate

the minimum distance between two consecutive of these points, i.e the minimum of {θ(j)
m :∑m

k=1 θ
(j)
k ∈ [0, T ]}.

Define Ñ
(j)
T = # {θ(j)

m :
∑m

k=1 θ
(j)
k ∈ [0, T ]} and M̃j = TΛj + 4

√
TΛj log(TΛj). By

Lemma 1 of [18], one has P(Ñ (j)
T ≥ M̃j) ≤ 1/(TΛj)

7. Moreover,

P
(
∃ 1 ≤ k ≤ M̃j : θ

(j)
k < 2−2(β+ε)j

)
= 1−

(
P(θ(j)

1 ≥ 2−2(β+ε)j)
)M̃j

= 1− exp
(
− M̃jΛj2

−2(β+ε)j
)
.

By construction, M̃jΛj2
−2(β+ε)j = O(2−

ε
2
j). It follows that

∑

j≥1

P
(
{Ñ (j)

T ≥ M̃j} ∪ {∃ 1 ≤ k ≤ M̃j : θ
(j)
k < 2−2(β+ε)j}

)
<∞.

One concludes with the Borel-Cantelli Lemma.

Recall that for k ≥ 1 the probability distribution of T
(i)
k is the Gamma(λi, k) distri-

bution, that is

P(T (i)
k ∈ du) = 1[0,∞)(u)

λk
i

(k − 1)!
uk−1e−λiudu. (2)

It is then quite easy, and left to the reader, to verify the properties collected in the
following lemma.

Lemma 8 Fix i ≥ 1 and γ > 0. For every t′ > t > 0,

(i) E
(
Xi(t)

)
= E(t− T

(i)
t ) =

1

λi

(
1− e−λit

)
.

(ii) The stochastic process
(
Xi(t)1{Xi(t)≤γ}

)
t>γ

is stationary. More precisely, for t > γ,

one has {
P(Xi(t)1{Xi(t)≤γ} = 0) = e−λit,

P
(
Xi(t)1{Xi(t)≤γ} ∈ [u, u+ du]

)
= λie

−λiu du (u ∈ (0, γ]).

(iii) If t′ > t > γ ≥ t′−t, one has P
(
{T (i)

t ≥ t′−γ}∩{T (i)
t = T

(i)
t′ }∩{T

(i)
t ∈ [u, u+du]}

)
=

P
(
{T (i)

t ∈ [u, u+ du]} ∩ {τ (i)

k
(i)
t +1

≥ t′ − u}
)
= λie

−λi(t
′−u) du (u ∈ [t′ − γ, t]).

(iv) If t > t′ > γ ≥ t′− t, one has P
(
{T (i)

t ≥ t− γ}∩ {T (i)
t < T

(i)
t′ }∩ {T

(i)
t ∈ [u, u+ du]}∩

{τ (i)

k
(i)
t +1

∈ [v, v + dv]}
)
= λ2

i e
−λiv dudv (u ∈ [t− γ, t], v ∈ (t− u, t′ − u]).
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Lemma 9 One has

E
((
Xi(t

′)1{Xi(t′)≤γ} −Xi(t)1{Xi(t)≤γ})Xi(t)
)2)

2(t′ − t)/λi

−→ 1 as (P) holds,

where

(P) =





(t′ − t) ≤ γ < t < t′

λiγ →∞, γ2e−λiγ = o
(

t′−t
λi

)

λi(t
′ − t)→ 0.

Proof. Fix i ≥ 1. Fix 0 < γ < t < t′ so that t′ − t ≤ γ. Denote Xi(u)1{Xi(u)≤γ} by Yi(u)
for u ∈ {t, t′}. By using Lemma 8(ii) we get

E
(
Yi(t

′)− Yi(t)
)2

= 2

∫ γ

0

u2λie
−λiu du− 2E

(
Yi(t

′)Yi(t)
)

=
2

λ2
i

(
2− (2 + 2λiγ + λ2

i γ
2)e−λiγ

)
− 2E

(
Yi(t

′)Yi(t)
)

=
4

λ2
i

− 2E
(
Yi(t

′)Yi(t)
)
+ o
(t′ − t

λi

)
as (P) holds.

Now, on the one hand, using Lemma 8(iii) we have

E
(
Yi(t

′)Yi(t)1{T (i)
t =T

(i)

t′
}

)
= E

(
[Yi(t) + t′ − t]Yi(t)1{T (i)

t =T
(i)

t′
}
1
{T

(i)
t ≥t′−γ}

)

= E
(
[t− T

(i)
t + t′ − t][t− T

(i)
t ]1

{T
(i)
t =T

(i)

t′
}
1
{T

(i)
t ≥t′−γ}

)

=

∫ t

t′−γ

λi(t− u+ t′ − t)(t− u)e−λi(t
′−u) du

=
2

λ2
i

e−λi(t
′−t) +

t′ − t

λi

e−λi(t
′−t)

−e
−λiγ

λ2
i

(
2 + 2λi(γ − t′ + t) + λ2

i (γ − t′ + t)2
)
− t′ − t

λi

e−λiγ
(
1 + γ − t′ + t

)

=
2

λ2
i

− t′ − t

λi

+ o
(t′ − t

λi

)
as (P) holds.

On the other hand we have

E
(
Yi(t

′)Yi(t)1{T (i)
t <T

(i)

t′
}

)
= E

(
Yi(t

′)Yi(t)1{t−γ≤T
(i)
t ≤t}

1
{t−T

(i)
t <τ

(i)

k
(i)
t

+1
≤t′−T

(i)
t }

)
.

Due to the lack of memory of the exponential law, conditionally on {t− T
(i)
t < τ

(i)

k
(i)
t +1

≤
t′ − T (i)

t }, the random variable Yi(t
′) has the probability distribution of t′ − T (i)

t − τ (i)

k
(i)
t +1

.
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It follows from Lemma 8(i) that E
(
Yi(t

′)|t − T
(i)
t < τ

(i)

k
(i)
t +1

≤ t′ − T
(i)
t

)
= 1

λi

(
1 −

e
−λi

(
t′−T

(i)
t −τ

(i)

k
(i)
t

+1

)
)
. Consequently, using Lemma 8(iv) we can get

E
(
Yi(t

′)Yi(t)1{T (i)
t <T

(i)

t′
}

)

= E
( 1

λi

(
1− e

−λi

(
t′−T

(i)
t −τ

(i)

k
(i)
t

+1

)
)
(t− T

(i)
t )1

{t−γ≤T
(i)
t ≤t}

1
{t−T

(i)
t <τ

(i)

k
(i)
t

+1
≤t′−T

(i)
t }

)

=

∫

R2
+

1{[t−γ,t]}(u)1[t−u,t′−u](v)λ
2
i (t− u)

1

λi

(
1− e−λi(t

′−u−v)
)
e−λiv dudv

=

(
1− e−λi(t

′−t)

λ2
i

−
(t′ − t

λi

+
(t′ − t)2

2

)
e−λi(t

′−t)

)(
1− (1 + λiγ)e

−λiγ
)

= o
(t′ − t

λi

)

as 0 < t′− t ≤ γ < t < t′, λiγ →∞ and λi(t
′− t)→ 0. Adding the three above estimates

yields the conclusion.

Fix γ > 0. Consider the stochastic process R̃
(γ)
i = R̃i defined on [T

(i)
k ≤ t < T

(i)
k+1) for

every k ≥ 0 and i ≥ 1 by

R̃i(t) =
1

µk+1

k∑

j=1

µjτ
(i)
j 1

{τ
(i)
j ≤γ}

.

Lemma 10 Fix T ≥ t′ > t > 0.

(i) |E(Ri(t
′))− E(Ri(t))| ≤ 4

µ

(µ− 1)λi

exp
(
− (1− µ−1)λit

)
.

(ii) There exists a constant K > 0 such that if λiγ ≥ 1 then

0 ≤ E
(
Ri(t)− R̃i(t)

)
≤ Kγe−λiγ/2.

(iii) There exists a constant K > 0 such that if λiγ ≥ 1 and t ≥ γ then

E
(
[Ri(t)− R̃i(t)]

2
)
≤ Kγ2e−λiγ/2(λiT ).

(iv)

E
(
[Ri(t

′)−Ri(t)]
2
)
≤ γ2(1− e−λi(t

′−t))+ 4T 2 P({N (i)
T ≥Mi}∪ {∃ 1 ≤ j ≤Mi; τ

(i)
j > γ}).

(v) E
(
1
{k

(i)

t′
=k

(i)
t +1}

[Ri(t
′)−Ri(t)]

2
)
≥ 2

µ2

(
1− 1

µ

)2 t′ − t

λi

+ o
(t′ − t

λi

)
as λi(t

′− t)→ 0 and

λit→∞.
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Proof. (i) For every k ≥ 1, the random variables τ
(i)
j have, conditionally on {k(i)

t = k},
the same probability distribution. This yields

E(Ri(t)) = E
(
1
{k

(i)
t ≥1}

1

µk
(i)
t +1

k
(i)
t∑

j=1

µjτ
(i)
j

)
= E

(
1
{k

(i)
t ≥1}

1

k
(i)
t

1

µk
(i)
t +1

k
(i)
t∑

j=1

µj
( k

(i)
t∑

j=1

τ
(i)
j

))

= (µ− 1)−1E
(
1
{k

(i)
t ≥1}

1

k
(i)
t

(1− 1

µk
(i)
t

)T
(i)

k
(i)
t

)
= (µ− 1)−1

∞∑

k=1

(1− 1

µk
)e−λit

∫ t

0

λk
i u

k

k!
du

= (µ− 1)−1e−λit
(∫ t

0

(eλiu − e(λi/µ)u) du
)

=
1

(µ− 1)λi

[
1 + (µ− 1)e−λit − µe−λi(1−1/µ)t

]
.

(ii) and (iii). On the one hand

0 ≤ E
(
Ri(t)− R̃i(t)

)
= E

(
1
{k

(i)
t ≥1}

1

µk
(i)
t +1

k
(i)
t∑

j=1

µjτ
(i)
j 1

{τ
(i)
j >γ}

)

= E
(
1
{k

(i)
t ≥1}

1

µk
(i)
t +1

( k
(i)
t∑

j=1

µj
)
τ

(i)
1 1

{τ
(i)
1 >γ}

)
≤ E

(
1
{k

(i)
t ≥1}

τ
(i)
1 1

{τ
(i)
1 >γ}

)

≤
(
E
(
(τ

(i)
1 )21

{τ
(i)
1 >γ}

))1/2(
P({k(i)

t ≥ 1})
)1/2

≤
(
E
(
(τ

(i)
1 )21

{τ
(i)
1 >γ}

))1/2

.

On the other hand

E
(
[Ri(t)− R̃i(t)]

2
)
= E

(
1
{k

(i)
t ≥1}

1

µ2k
(i)
t +2

( k
(i)
t∑

j=1

µjτ
(i)
j 1

{τ
(i)
j >γ}

)2)

≤ E
(
1
{k

(i)
t ≥1}

k
(i)
t

µ2k
(i)
t +2

k
(i)
t∑

j=1

µ2j(τ
(i)
j )21

{τ
(i)
j >γ}

)
= E

(
1
{k

(i)
t ≥1}

k
(i)
t

µ2k
(i)
t +2

( k
(i)
t∑

j=1

µ2j
)
(τ

(i)
1 )21

{τ
(i)
1 >γ}

)

≤ E
(
k

(i)
t 1

{k
(i)
t ≥1}

(τ
(i)
1 )21

{τ
(i)
1 >γ}

)
≤
(
E
(
(τ

(i)
1 )41

{τ
(i)
1 >γ}

))1/2 ( ∞∑

k=1

k2P(T (i)
t = T

(i)
k )
)1/2

.

Then, simple computations show that for every n ≥ 1, there exists K > 0 such that
for all i ≥ 1 and t > 0 such that λit ≥ 1 one has E

(
(τ

(i)
1 )n1

{τ
(i)
1 >γ}

)
≤ Kγne−λiγ and

(∑∞
k=1 k

2P(Tt = T
(i)
k )
)1/2

≤ Kλit. This yields the conclusions.

(iv) In the following computation, we use the fact that, conditionally on {τ (i)
j ≤ γ}, for

all 1 ≤ j ≤ k
(i)
t′ , both Ri(t) and Ri(t

′) are in [0, γ], and so is |Ri(t
′)− Ri(t)|. We also use
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the obvious upper bound Ri(t) ≤ t.

E
(
[Ri(t

′)−Ri(t)]
2
)
= E

(
1{Tt′>Tt}[Ri(t

′)−Ri(t)]
2
)

≤ γ2P(Tt′ > Tt) + E
(
1
{∃ 1≤j≤k

(i)

t′
; τ

(i)
j >γ}

[Ri(t
′)−Ri(t)]

2
)

≤ γ2P(Tt′ > Tt) + P(∃ 1 ≤ j ≤ k
(i)
t′ ; τ

(i)
j > γ)(t+ t′)2

≤ γ2(1− e−λi(t
′−t)) + P({N (i)

T ≥Mi} ∪ {∃ 1 ≤ j ≤Mi; τ
(i)
j > γ})(t+ t′)2.

(v)

E
(
1
{k

(i)

t′
=k

(i)
t +1}

[Ri(t
′)−Ri(t)]

2
)

= E


1{k(i)

t′
=k

(i)
t +1}


[

k
(i)
t∑

j=1

µj(
1

µk
(i)
t +2

− 1

µk
(i)
t +1

)τ
(i)
j

]
+
τ

(i)

k
(i)
t +1

µ




2



≥ A1 + A2 + A3

with 



A1 =
(

1
µ
− 1

µ2

)2

E
(∑k

(i)
t

j=1 1{k(i)

t′
=k

(i)
t +1}

µ2j

µ2k
(i)
t

(τ
(i)
j )2

)

A2 = 2E

(
1
{k

(i)

t′
=k

(i)
t +1}

[∑k
(i)
t

j=1 µ
j( 1

µk
(i)
t

+2
− 1

µk
(i)
t

+1
)τ

(i)
j

] τ (i)

k
(i)
t

+1

µ

)

A3 = E


1

{k
(i)

t′
=k

(i)
t +1}

(
τ
(i)

k
(i)
t

+1

)2

µ2


 .

To find a lower bound of A1 (resp. A3) we use assertion (ii) (resp. (i)) of the following
lemma, whose elementary proof is left to the reader.

Lemma 11 (i) P
(
2 ≤ k

(i)
t′ = k

(i)
t + 1, T

(i)

k
(i)
t

∈ [u, u + du], τ
(i)

k
(i)
t +1

∈ [v, v + dv]
)

=

λ2
i e
−λi(t

′−u) dudv (u ∈ [0, t], v ∈ [t− u, t′ − u]).

(ii) P
(
3 ≤ k

(i)
t′ = k

(i)
t +1, T

(i)

k
(i)
t −1

∈ [u, u+du], τ
(i)

k
(i)
t

∈ [v, v+dv], τ
(i)

k
(i)
t +1

∈ [w,w+dw]
)
=

λ3
i e
−λi(t

′−u) dudvdw (u ∈ [0, t], v ∈ [0, t− u], w ∈ [t− (u+ v), t′ − (u+ v)]).

Also, in finding a lower bound for A1 and A2 we use the fact that conditionally on
{k(i)

t′ = k
(i)
t + 1}, the τ (i)

j , 1 ≤ j ≤ k
(i)
t , have the same probability distribution.
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A1 =
( 1
µ
− 1

µ2

)2

E
( k

(i)
t∑

j=1

1
{k

(i)

t′
=k

(i)
t +1}

µ2j

µ2k
(i)
t

(τ
(i)

k
(i)
t

)2
)

≥
( 1
µ
− 1

µ2

)2
∫ t

0

∫ t−u

0

∫ t′−(u+v)

t−(u+v)

λ3
i v

2e−λi(t
′−u) dudvdw

=
( 1
µ
− 1

µ2

)2 t′ − t

3λi

e−λi(t
′−t)

∫ λit

0

u3e−udu

= 2
( 1
µ
− 1

µ2

)2 t′ − t

λi

+ o
(t′ − t

λi

)

as λi(t
′ − t)→ 0 and λit→∞.

A2

= −2E


1

{2≤k
(i)

t′
=k

(i)
t +1}

1

k
(i)
t

[ k
(i)
t∑

j=1

µj

µk
(i)
t +2

](
1− 1

µ

)
T

(i)

k
(i)
t

τ
(i)

k
(i)
t +1




= −2
∞∑

k=1

1

k

1

µ2
(1− 1

µk+1
)

∫ t

0

u
λk
i u

k−1

(k − 1)!
e−λiu

∫ t′−u

t−u

vλie
−λive−λi(t

′−u−v)dvdu

≥ −2e−λit
′

∞∑

k=1

1

µ2

∫ t

0

λk
i u

k

k!

∫ t′−u

t−u

λiv dvdu

≥ −e−λit
′ (t′ − t)

µ2

∫ t

0

λie
λiu(t′ + t− 2u) du

= −e−λit
′ (t′ − t)

µ2

[
(t′ + t)(eλit − 1)− 2

λi

[(λit− 1)eλit + 1]

]

≥ −2t
′ − t

µ2λi

+ o
(t′ − t

λi

)

as λi(t
′ − t)→ 0 and λit→∞.

A3 =
1

µ2

∫ t

0

∫ t′−u

t−u

λ2
i v

2e−λi(t
′−u) dudv =

1

µ2

∫ t

0

λ2
i e
−λi(t

′−u) (t
′ − u)3 − (t− u)3

3
du

=
t′ − t

3µ2

∫ t

0

λ2
i e
−λi(t

′−u)((t′ − u)2 + (t′ − u)(t− u) + (t− u)2) du

=
t′ − t

3µ2

∫ t′

t′−t

λ2
i e
−λiv(3v2 + 3v(t− t′) + (t′ − t)2) dv

≥ t′ − t

µ2λi

∫ λit
′

λi(t′−t)

v2e−v dv − (t′ − t)2

µ2

∫ λit
′

λi(t′−t)

ve−v dv

= 2
t′ − t

µ2λi

+ o
(t′ − t

λi

)
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as λi(t
′ − t) → 0 and λit → ∞. The conclusion follows by adding the respective lower

bounds of A1, A2 and A3.

6 Proofs of covering results

Proof of Proposition 6.(i) Suppose we have shown that for every t ∈ (0, T ], P(t ∈ H1) =
1. Then the Fubini theorem applied to the measurable function f(ω, t) = 1{H1(ω)}(t) and
the measure P⊗ `T , where `T is the restriction of the Lebesgue measure to (0, T ], yields
the conclusion.

Fix t ∈ (0, T ]. To see that P(t ∈ H1) = 1, first notice that the event {t ∈ H} is also
the limsup of the events

An,i =
{
t ∈

⋃

1≤k≤N
(i)
T

τ
(i)
k
≥2−jn

[T
(i)
k − 2−βjnjn , T

(i)
k + 2−βjnjn ]

}
(n ≥ 1, i ∈ Gjn),

as n → ∞. Since by construction these events are independent, by the Borel-Cantelli
Lemma it is enough to show that

∑

n≥1

∑

i∈Gjn

P(An,i) = +∞.

For every n such that 2−βjnjn + 2−jn ≤ t we have

P(An,i)

≥ P
(
k

(i)
t ≥ 2, T

(i)
t ≤ t < T

(i)
t + 2−βjnjn , τ

(i)
kt
≥ 2−jn

)

= P






k

(i)
t ≥ 2, T

(i)

k
(i)
t −1

≤ t− 2−jn ,

max
(
2−jn , t− T

(i)

k
(i)
t −1

− 2−βjnjn
)
≤ τ

(i)

k
(i)
t

≤ t− T
(i)

k
(i)
t −1

,




≥ Pn,i

where

Pn,i = P
(
k

(i)
t ≥ 2, T

(i)

k
(i)
t −1

≤ t− 2−jn − 2−βjnjn , t− T
(i)

k
(i)
t −1

− 2−βjnjn ≤ τ
(i)

k
(i)
t

≤ t− T
(i)

k
(i)
t −1

)
.

To compute Pn,i we use (2) to get that P
(
k

(i)
t ≥ 2, T

(i)

k
(i)
t −1

∈ [u, u+du], τ
(i)

k
(i)
t

∈ [v, v+dv]) =

1{u+v≤t}1{0≤u}λ
2
i e
−λi(t−u)dudv (u ∈ [0, t− 2−jn − 2−βjnjn ], v ∈ [t− u− 2−βjnjn , t− u]).

We obtain

Pn,i = λi2
−βjnjn exp

(
− λi(2

−jn + 2−βjnjn)
)
− λi2

−βjnjn exp(−λit).

Notice that since t is a fixed positive number and #Gjn = 2(βjn−1)jn , one has
∑

n≥1

∑

i∈Gjn

λi2
−βjnjn exp(−λit) <∞.
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So we have to prove that
∑

n≥1

∑
i∈Gjn

P ′n,i = +∞ where P ′n,i = λi2
−βjnjn exp

(
−λi(2

−jn+

2−βjnjn)
)
. Since by construction βjn ≥ 1, we have −λi(2

−jn + 2−βjnjn) ≥ −4 for i ∈ Gjn .

It follows that
∑

i∈Gjn
P ′n,i ≥ e−4

∑
i∈Gjn

λi2
−βjnjn ≥ e−4 since λi2

−βjnjn ≥ 2−(βjn−1)jn =

(#Gjn)
−1. Consequently,

∑
n≥1

∑
i∈Gjn

P ′n,i ≥
∑

n≥1 e
−4.

(ii) Consequence of (i) and Theorem 2 of [18].

Proof of Theorem 3. Since for every choice of ϕ the family Ẽδ,ϕ, 0 ≤ δ < β, is non-
increasing, it is enough to find a function ϕ such that for every η ∈ (0, T ) and δ ∈ (0, β),

with probability one, (η, T ) ⊂ Ẽδ,ϕ.
We distinguish the cases β = 1 and β > 1.

Case β = 1: fix 0 < δ < 1. In fact, the following stronger result holds: with probability
one, there exists i0 ≥ 1 such that for all i ≥ i0

(η, T ) ⊂
⋃

1≤k≤N
(i)
T

, τ
(i)
k
≥2λ−1

i

[T
(i)
k − λ−δ

i , T
(i)
k + λ−δ

i ].

To see this, denote by M̃i the smallest integer larger than λ1−δ
i /(2 log(λi)), and notice,

using Lemma 1 and its proof, that

P(∃ 1 ≤ k ≤ N
(i)
T : ∀ 0 ≤ l ≤ M̃i, τ

(i)
k+l < 2λ−1

i )

≤ P(N (i)
T > Mi) +MiP(∀ 0 ≤ l ≤ M̃i, τ

(i)
1+l < 2λ−1

i )

≤ (Tλi)
−7 +Mi(1− e−2)M̃i+1,

where Mi = Tλi + 4
√
Tλi log(Tλi). The right hand side of the previous inequality is

summable. By the Borel-Cantelli Lemma, this implies that with probability one, for
i large enough, the number of consecutive points of the form T

(i)
k in (0, T ) such that

τ
(i)
k < 2λ−1

i is at most M̃i + 1. Moreover, due to Lemma 1 (applied with K = 2), the

distance between two T
(i)
k ’s is at most 2 log(λi)/λi for i large enough. Consequently, for i

large enough, two consecutive intervals of the form [T
(i)
k −λ−δ

i , T
(i)
k +λ−δ

i ] with τ
(i)
k ≥ 2λ−1

i

are overlapping. This yields the conclusion.

Case β > 1: Let (jn)n≥1 be an increasing sequence of integers such that β = limn→∞ βjn

and Gjn 6= ∅ for all n ≥ 1. Then choose a sequence (δjn)n≥1 such that βjn ≥ δjn ,
limn→∞ βjn− δjn = 0 and log(jn) = o

(
(βjn− δjn)jn

)
. Also define ψ(n) = 2(βjn−δjn )jnj2

n and
choose the function ϕ to be

ϕ(t) =





2−jn

ψ(n)
if t = 2−jn

t otherwise.

By construction limt→0+
logϕ(t)
log(t)

= 1.
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We prove the following result, which is stronger than the desired one because limn→∞ δjn =
β: with probability one, for all n0 large enough,

(η,∞) ⊂
⋃

n≥n0

Ên,δ,ϕ,

where
Ên,δ,ϕ =

⋃

i∈Gjn

⋃

k≥1

τ
(i)
k

>ϕ(2−jn )

(T
(i)
k , T

(i)
k + 2−jnδjn ).

The method is inspired from Kahane’s approach for Shepp’s Theorem in [20].

Let nη > 0 be such that η > ϕ(2−jn) + 2−jnδjn for n ≥ nη. Then fix n0 ≥ nη. For
N ≥ n0 set

τN = inf
{
t ≥ η : t 6∈ ÊN :=

N⋃

n=n0

Ên,δ,ϕ

}
.

The sequence τN is non-decreasing, and the conclusion will follow if we show that a.s.
τN → ∞ as N → ∞, or equivalently E(exp(−τN)) → 0 as N → ∞. We shall prove that
there exists C > 0 such that for N large enough

E(e−τN ) ≤ C2(jN+1)δjN exp(−
(
2jN (βjN−δjN )(1− 2−δjN )

)
. (3)

By our choice for δjN , the right hand side in (3) tends to 0 as N →∞ and the conclusion
follows.

To establish (3), we look at the integral

IN = E
∫

[η,∞)

e−t1{t6∈ÊN}
dt.

in two ways. Fix N ≥ n0. First, in order to obtain (5) below we write

IN =

∫

[η,∞)

e−tP(t 6∈ ÊN) dt

with

P(t 6∈ ÊN) =
N∏

n=n0

∏

i∈Gjn

(
1− P(∃ k ≥ 1 : τ

(i)
k > ϕ(2−jn), t− 2−jnδjn < T

(i)
k < t)

)

≤
N∏

n=n0

∏

i∈Gjn

(
1− Pi(t)

)
(4)

where

Pi(t) = P(∃ k ≥ 1 : τ
(i)
k > ϕ(2−jn), τ

(i)
k+1 > 2−jnδjn , t− 2−jnδjn < T

(i)
k < t).
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Let us compute Pi(t) for i ∈ Gjn . Due to its definition, Pi(t) simplifies to be

Pi(t) = P(τ (i)

k
(i)
t

> ϕ(2−jn), τ
(i)

k
(i)
t +1

> 2−jnδjn , t− 2−jnδjn < T
(i)
t < t).

On the one hand, since t ≥ ϕ(2−jn) + 2−jnδjn for n ≥ nη and t ≥ η we have

P1 := P(k(i)
t = 1, τ

(i)
1 > ϕ(2−j), τ

(i)
2 > 2−jnδjn , t− 2−jnδjn < τ

(i)
1 < t)

= e−λi2
−jnδjn

∫ t

t−2−jnδjn

λie
−λiu du = e−λit − e−λi(t+2−jnδjn ).

On the other hand

P2 := P
(
k

(i)
t ≥ 2, τ

(i)

k
(i)
t

> ϕ(2−j), τ
(i)

k
(i)
t +1

> 2−jnδjn , t− 2−jnδjn < T
(i)
t < t)

= P








k
(i)
t ≥ 2, T

(i)

k
(i)
t −1

< t− ϕ(2−jn),

max
(
ϕ(2−jn), t− T

(i)

k
(i)
t −1

− 2−jnδjn
)
< τ

(i)

k
(i)
t

≤ t− T
(i)

k
(i)
t −1

,

τ
(i)

k
(i)
t +1

> 2−jnδjn .




To evaluate that probability, we use the fact P
(
k

(i)
t ≥ 2, T

(i)

k
(i)
t −1

∈ [u, u+du], τ
(i)

k
(i)
t

∈ [v, v+

dv], τ
(i)

k
(i)
t +1

> 2−jnδjn
)
= e−λi2

−jnδjnλ2
i e
−λiv dudv, (0 ≤ u ≤ t−ϕ(2−jn), max

(
ϕ(2−jn), t−

u− 2−jnδjn
)
< v ≤ t− u). A computation yields

P2 = λi2
−jnδjn exp

(
− λi(ϕ(2

−jn) + 2−jnδjn )
)
− exp(−λit) + exp

(
− λi(t+ 2−jnδjn )

)
.

Adding P1 and P2 yields Pi(t) = λi2
−jnδjn exp

(
− λi(ϕ(2

−jn) + 2−jnδjn )
)
which does not

depend on t. Write Pi for Pi(t). Equation (4) now yields

IN ≤ e−η

N∏

n=n0

∏

i∈Gjn

(1− Pi). (5)

The integral IN can also be written

IN = E
(
e−τN

∫

[0,∞)

e−s1{τN+s6∈ÊN}
ds

)

= E
(
e−τNE

(∫

[0,∞)

e−s1{τN+s6∈ÊN}
ds|τN

))

= E
(
e−τN

∫

[0,∞)

e−sP(τN + s 6∈ ÊN |τN) ds
)
.
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For every s ≥ 0 and t ≥ η, one has

P(τN + s 6∈ ÊN |τN = t)

= P
( N⋂

n=n0

⋂

i∈Gjn

{
6 ∃k : τ

(i)
k > ϕ(2−jn), T

(i)
k ∈ (max(t, t+ s− 2−jnδjn ), t+ s)

}∣∣∣τN = t
)

≥ P
( N⋂

n=n0

⋂

i∈Gjn

{
6 ∃k : T

(i)
k ∈ (max(t, t+ s− 2−jnδjn ), t+ s)}

∣∣∣τN = t
)

=
N∏

n=n0

∏

i∈Gjn

P̃i(s, t)

where, for i ∈ Gjn , P̃i(s, t) is the probability that there is no integer k ≥ 1 such that

T
(i)
k ∈ (max(t, t + s − 2−jnδjn ), t + s). The last equality is due to the lack of memory

of the exponential law as well as the independence between sources. The probability
P̃i(s, t) is well known to be equal to e−λi|I| where |I| denotes the length of the interval
I = (max(t, t + s − 2−jnδjn ), t + s). Since that length does not depend on t, we denote

P̃i(s, t) by P̃i(s), which is given by

P̃i(s) =

{
e−λis if 0 ≤ s ≤ 2−jnδjn

e−λi2
−jnδjn otherwise.

It turns out that

IN ≥ E(e−τN )

∫

R+

e−s

N∏

n=n0

∏

i∈Gjn

P̃i(s) ds.

Now we can use (5) to get

e−η ≥ E(e−τN )

∫

R+

e−s

N∏

n=n0

∏

i∈Gjn

P̃i(s)

1− Pi

ds

= E(e−τN )

∫

R+

e−s

N∏

n=n0

Π1,n(s)Π2,n(s) ds, (6)

where




Π1,n(s) =





∏
i∈Gjn

exp(−λis)

1−λi2
−jnδjn exp

(
−λi(ϕ(2−jn )+2−jnδjn )

) if s ≤ 2−jnδjn

1 otherwise,

Π2,n(s) =




1 if s ≤ 2−jnδjn

∏
i∈Gjn

exp
(
−λi2

−jnδjn

)

1−λi2
−jnδjn exp

(
−λi(ϕ(2−jn )+2−jnδjn )

) otherwise.
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We claim that
∏N

n=n0
Π2,n(s) is bounded by below independently of s by a positive

constant. To prove this fact first we notice that for every n ≥ n0 and i ∈ Gjn one has
exp
(
−λi2

−jnδjn

)

1−λi2
−jnδjn exp

(
−λi(ϕ(2−jn )+2−jnδjn )

) ≤ 1 since e−x

1−xe−x ≤ 1 on R+. Consequently, for every

n ≥ n0

Π2,n(s) ≥
∏

i∈Gjn

exp
(
− λi2

−jnδjn
)

1− λi2−jnδjn exp
(
− λi(ϕ(2−jn) + 2−jnδjn )

) .

Then, we use the fact that for x ∈ (0, 1) one has e−x ≥ 1 − x and 1
1−x

≥ (1 + x). This
yields

exp
(
− λi2

−jnδjn
)

1− λi2−jnδjn exp
(
− λi(ϕ(2−jn) + 2−jnδjn )

)

≥
(
1− λi2

−jnδjn
)(

1 + λi2
−jnδjn exp

(
− λi(ϕ(2

−jn) + 2−jnδjn )
))
. (7)

Moreover, the definition of ϕ and the fact that limn→∞ δjn = β > 1 together imply
that λi(ϕ(2

−jn) + 2−jnδjn )→ 0 as n→∞. A computation using this fact shows that the
logarithm of the right hand side of (7) is equivalent to −λ2

i 2
−jn(1+δjn )/ψ(n). It follows that

logP2,n(s) is larger than or equal to a term equivalent to un := −∑i∈Gjn
λ2
i 2
−jn(1+δjn )/ψ(n).

Moreover un ≥ −4#Gjn2
2jn2−jn(1+δjn )/ψ(n) = −4j−2

n by construction. Since
∑

n≥n0
j−2
n <

∞ we have the conclusion.
So there exists A > 0 such that

e−η ≥ AE(e−τN )

∫

R+

e−s

N∏

n=n0

Π1,n(s) ds.

A last computation shows that there exists B > 0 such that

log Π1,n(s) ≥ Bun +
∑

i∈Gjn

λi(2
−jnδjn − s) ≥ Bun + 2jnβjn (2−jnδjn − s), (0 ≤ s ≤ 2−jnδjn ).

So there exists A′ > 0 such that

e−η ≥ A′ E(e−τN )

∫

R+

e−s
∏

n0≤n≤N

s≤2−jnδjn

exp
(
2jnβjn (2−jnδjn − s)

)
ds

≥ A′ E(e−τN )

∫ 2
−jNδjN

0

e−s exp
(
2jNβjN (2−jN δjN − s)

)
ds

≥ A′ E(e−τN )

∫ 2
−(jN+1)δjN

0

e−s exp
(
2jN (βjN−δjN )(1− 2−δjN )

)
ds

≥ A′ E(e−τN )2−(jN+1)δjN exp
(
− 2−(jN+1)δjN

)
exp

(
2jN (βjN−δjN )(1− 2−δjN )

)

and (3) follows since exp
(
− 2−(jN+1)δjN

)
→ 1 as N →∞.

540



References

[1] J.-M. Aubry and S. Jaffard, Random wavelet series. Commun. Math. Phys, 227
(2002), 483–514.

[2] F. Baccelli and B. Thomas, Window Flow Control in FIFO Networks with Cross
Traffic. Inria Tech. Rep. RR-3434 (1998).

[3] F. Baccelli and D. Hong, TCP is Max-Plus Linear and what it tells us on its through-
put. Inria Tech. Rep. RR-3986 (2000).

[4] F. Baccelli and D. Hong, AIMD, Fairness and Fractal Scaling of TCP Traffic. INFO-
COM, (June 2002).

[5] F. Baccelli and D. Hong, Interaction of TCP Flows as Billiards. Inria Tech. Rep.
RR-4437, (2002).
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