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Abstract

We study the cover time τcov by (continuous-time) random walk on the 2D box of side length n with
wired boundary or on the 2D torus, and show that in both cases with probability approaching 1

as n increases,
√
τcov =

√
2n2[

√
2/π logn + O(log log n)]. This improves a result of Dembo, Peres,

Rosen, and Zeitouni (2004) and makes progress towards a conjecture of Bramson and Zeitouni
(2009).

Keywords: Cover times ; Gaussian free fields ; random walks.
AMS MSC 2010: Primary 60J10, Secondary 60G60, 60G15.
Submitted to EJP on November 15, 2011, final version accepted on June 15, 2012.

1 Introduction

We consider the random walk on a 2D box/torus and study a fundamental parameter, the cover
time τcov, which is the first time when the random walk has visited every single vertex of the
underlying graph.

Let A ⊂ Z2 be a 2D box and denote by ∂A = {v ∈ A : ∃u ∈ Z2 \A such that u ∼ v} the boundary
set of A. We say a random walk on A with wired boundary if we identify ∂A as a single vertex and
run the random walk on the wired graph. Formally, the transition kernel of the random walk is
given by

p(u, v) =

{
1
41v∼u , if u ∈ A \ ∂A ,

dv,∂A∑
w∈A\∂A dw,∂A

1v∈A\∂A , if u ∈ ∂A ,

where dv,∂A = |{v′ ∈ ∂A : v′ ∼ v}|. Throughout this work, we consider continuous-time random
walk, where the random walk makes jumps according to a Poisson clock with rate 1 and the jumping
rule follows the transition kernel (of the corresponding discrete walk).

We give the following estimate on τcov for a random walk on 2D box of side length n with wired
boundary condition. Throughout the paper, the notation “with high probability” means that with
probability approaching 1 as n→∞.

Theorem 1.1. The cover time τcov for a random walk in an n× n 2D box with wired boundary with
high probability satisfies the following for an absolute constant c > 0,√

2/π log n− c log logn 6
√
τcov/2n2 6

√
2/π log n+ log log n .
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Denote by Z2
n a 2D torus with total number of vertices n2. We prove an analogous result to the

preceding theorem for the random walk Z2
n.

Theorem 1.2. The cover time τcov for a random walk on Z2
n with high probability satisfies the

following for absolute constants c, C > 0,√
2/π log n− c log log n 6

√
τcov/2n2 6

√
2/π log n+ C log log n .

Remarks. (1) Our results extend to discrete-time random walk as the number of jumps made up to
time t is highly concentrated with a standard deviation

√
t. (2) It is clear from our proof that the

expected cover time tcov satisfies that
√
tcov/2n2 =

√
2/π log n + O(log log n). (3) By analogy with

regular trees, we believe that log log n is the correct order for the second term of the normalized
cover time. (4) The upper bound in Theorem 1.1 holds if we replace log log n by an arbitrary se-
quence an with an → ∞ (as indicated in the proof). Since we believe the true value of the cover
time should be around

√
2/π log n − c∗ log log n for a positive constant c∗, we decide such potential

improvement is irrelevant. (5) The wired boundary corresponds to Dirichlet boundary condition for
2D Gaussian free field, and the torus case corresponds to the GFF on a torus. Among other things,
one connection is that the covariances for the GFF are given by the Green function (see (1.2)) of
the corresponding random walk.

Our estimates improve a result of Dembo, Peres, Rosen, and Zeitouni [7], in which they show
that with high probability

√
τcov/2n2 = (

√
2/π + o(1)) log n for Z2

n. The question on the limiting law
for

√
τcov/n2 was initialized in [7], and it was explicitly conjectured by Bramson and Zeitouni [5]

that
√
τcov/n2 is tight after centering by its median. Our results can be seen as progress toward

this conjecture.
The cover time on a graph, turns out to have an intimate connection with the maximum of the

discrete Gaussian free field (GFF) on the graph. The GFF {ηv : v ∈ A} on 2D box with Dirichlet
boundary is a mean zero Gaussian process which takes value 0 on ∂A and satisfies the following
Markov field condition for all v ∈ A \ ∂A: ηv is distributed as a Gaussian variable with variance 1/4

and mean the average over the neighbors (in graph distance) given the GFF on A \ {v} (see also
Section 1.3). Throughout the paper, we use the notation

Mn = sup
v∈A

ηv , and mn = EMn . (1.1)

where A is a 2D box of side length n and ηv is the GFF on A with Dirichlet boundary condition. We
compare our cover time results with the following result on the tightness of the maximum of the
GFF on 2D box due to Bramson and Zeitouni [4], which serves as a fundamental ingredient in our
proof (note that definitions of the GFF in our paper and in [4] have different normalization – by a
factor of 2).

Theorem 1.3. [4] The sequence of random variables Mn −mn is tight and

mn =
√

2/π
(

log n− 3
8 log 2 log log n

)
+O(1) .

We remark that in view of the analogy to the GFF, it is not at all obvious why the cover time
seems to exhibit the same behavior on a box with wired boundary and a torus, as the maximum for
the GFF does have different deviation in two cases. In order to see that the maximum for GFF on
2D torus (with a fixed vertex being 0) has deviation of order

√
log n, we take a box of side-length n/2

in side the torus and argue that (i) the average (or a suitable weighted average) for the GFF over
the boundary of the small box is a mean zero Gaussian variable with variance of order log n; (ii) the
deviation of the average of the GFF over this boundary will propagate to the maximum, since the
GFF of every vertex in a slightly smaller and centered box has (roughly) the average as the mean
conditioning on the GFF over the boundary.

1.1 Related works

In a work of Ding, Lee, and Peres [9], a useful connection between cover times and GFFs had
been demonstrated by showing that, for any graph, the cover time is equivalent, up to a univer-
sal multiplicative constant, to the product of the number of edges and the square of the expected
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supremum for the GFF. This connection was recently strengthened by [8], which obtained the lead-
ing order asymptotics of the cover time via Gaussian free fields in bounded-degree graphs as well
as general trees (together with an exponential concentration around its mean for the case of trees).
We will use some of the ideas therein.

Before the work [9], the connection between cover times and GFFs for certain specific graphs,
has already been a folklore. This was highlighted through the analogy in 2D lattice. Bolthausen,
Deuschel and Giacomin [3] established the asymptotics for the maximum of GFF on 2D box, by
exploring a certain tree structure in the 2D lattice; in [7], the asymptotics for the cover time was
calculated through an analogous tree structure but the proof was significantly more involved. A
similar tree structure also appeared in the work of Daviaud [6] who studied the extremes for the
GFF. The key idea of [4] is to construct a tree structure of this type but with conceptual novelty.

For regular trees, Ding and Zeitouni [10] computed precisely the second order term for the
cover time, improving the asymptotics result of Aldous [2] and complementing the tightness result
of [5].

1.2 A brief discussion

We remark that it was highly nontrivial for [7] to explore a tree structure and succeed to demon-
strate the asymptotics for the cover time in 2D torus. However, it seems unlikely to obtain better
estimate using the method employed therein. A natural attempt would be to use a modified tree-
structure (the so-called Modified branching random walk) as in [4] to obtain a precise estimate for
the cover time. Among other things, there appear to be two significant challenges when trying to
implement such strategy: For one thing, the structure in [4] comes arise from a random partition-
ing of 2D box (alternatively, a smoothed branching Brownian random walk) and it is not clear how
such a structure shall apply to random walk. For another, the linear structure for Gaussian process
great simplifies the issue of controlling the correlations. In particular, the well-known comparison
theorems for Gaussian processes (see [24, 15]) allowed [4] to conveniently switch between several
modifications of GFFs/branching random walks. A lacking of such comparison theorems for cover
times raises a conceptual challenge. The proof in our work, get around these two issues by explic-
itly using a two-level structure, which in a sense amounts to bury (use) a tree structure as of [4]
for GFF instead of random walk — this is validated by the connection between the random walk
and the GFF. Finally, as demonstrated in [10] there is a difference of order log log n between the
normalized cover time and the maximum of GFF on a binary tree of n vertices. Such a difference
should presumably also exhibit in 2D lattices, which suggests an obstacle for attempts to improve
our estimates on the cover time using its connection with the GFF.

1.3 Preliminaries

Electric networks. In this work, we focus on random walks on 2D lattices and thus have no
attempt to touch the general setting for a random walk on network. Nevertheless, we occasionally
use the point of view of electric network, which is obtained by placing a unit resistor on each edge
of the graph. Associated to such an electrical network are the classical quantity Reff : V ×V → R>0

which is referred to as the effective resistance between pairs of nodes. We refer to [18, Ch. 9] for a
discussion about the connection between electrical networks and the corresponding random walk
(where the random walker started at u moves to a vertex v with probability proportional to edge
conductance on (u, v)).

For convenience, we will mainly work with continuous-time random walks where jumps are made
according to the discrete-time random walk and the times spent between jumps are i.i.d. exponential
random variables with mean 1. See [1, Ch. 2] for background and relevant definitions. We remark
that our results automatically extend to discrete time random walk. Note the number of steps N(t)

performed by a continuous-time random walk up to time t, has Poisson distribution with mean t.
Therefore, N(t) exhibits a Gaussian type concentration around t with standard deviation bounded
by
√
t. This implies that the concentration result in Theorems 1.1 and 1.2 hold for discrete-time

case.
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Gaussian free field. Consider a connected graph G = (V,E). For U ⊂ V , the Green function
GU (·, ·) of the discrete Laplacian is given by

GU (x, y) = Ex(
∑τU−1
k=1 1{Sk = y}) , for all x, y ∈ V , (1.2)

where τU is the hitting time to set U for random walk (Sk), defined by (the notation applies through-
out the paper)

τU = min{k > 0 : Sk ∈ U} . (1.3)

The discrete Gaussian free field (GFF) {ηv : v ∈ V } with Dirichlet boundary on U is then defined
to be a mean zero Gaussian process indexed by V such that the covariance matrix is given by the
normalized Green function (GU (x, y)/dy)x,y∈V , where dy is the degree of vertex y. It is clear to see
that ηv = 0 for all v ∈ U . For more preliminary background on Gaussian free field, we encourage
the reader to refer to [16, 22] for a good account.

Cover times and local times. For a vertex v ∈ V and time t, we define the local time Lvt by

Lvt =
1

dv

∫ t

0

1{Xs=v}ds . (1.4)

It is obvious that local times are crucial in the study of cover times, since

τcov = inf{t > 0 : Lvt > 0 for all v ∈ V } .

For that purpose, it turns out that it is convenient to decompose the random walk into excursions
at the origin v0 ∈ V . This motivates the following definition of the inverse local time τ(t):

τ(t) = inf{s : Lv0s > t}. (1.5)

We study the cover time via analyzing the local time process {Lvτ(t) : v ∈ V }. In this way, we measure
the cover time in terms of τ(t) and we are indeed working with the cover and return time, defined
as

τ�cov = inf {t > τcov : Xt = X0} . (1.6)

In the asymptotic and concentration sense considered in this work, the difference between cover
times τcov and τ�cov is negligible. In order to see this, define thit = maxu,v Euτv (where τv = τ{v} is
defined as in (1.3))and note that

τ�cov � τcov + τhit ,

where � means stochastic domination, and τhit measures the time it takes the random walk to goes
back to the origin after τcov. Using the recursion that

max
u,v

Pv(τu > 2kthit) = max
u,v

(Pv(τu > 2kthit | τu > 2thit)Pv(τv > 2thit)) 6 1
2 max
u,v

Pv(τu > 2(k − 1)thit) ,

we see that P(τhit > 2kthit) 6 (1/2)k, and hence τhit is negligible.

Dynkin Isomorphism theory. The distribution of the local times for a Borel right process can be
fully characterized by a certain associated Gaussian processes; results of this flavor go by the name
of Dynkin Isomorphism theory. Several versions have been developed by Dynkin [12, 11], Marcus
and Rosen [20, 21], Eisenbaum [13] and Eisenbaum, Kaspi, Marcus, Rosen and Shi [14]. In what
follows, we present the second Ray-Knight theorem in the special case of a continuous-time random
walk. It first appeared in [14]; see also Theorem 8.2.2 of the book by Marcus and Rosen [22] (which
contains a wealth of information on the connection between local times and Gaussian processes). It
is easy to verify that the continuous-time random walk on a connected graph is indeed a recurrent
strongly symmetric Borel right process. Furthermore, in the case of random walk, the associated
Gaussian process turns out to be the GFF on the underlying network.
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Theorem 1.4 (generalized Second Ray-Knight Isomorphism Theorem). Consider a continuous-time
random walk on graph G = (V,E) with v0 ∈ V . Let τ(t) be defined as in (1.5). Denote by η = {ηx :

x ∈ V } the GFF on G with the choice U = {v0} when defining Green functions as in (1.2). Let Pv0
and Pη be the laws of the random walk and the GFF, respectively. Then under the measure Pv0 ×Pη,
for any t > 0 {

Lxτ(t) +
1

2
η2
x : x ∈ V

}
law
=

{
1

2
(ηx +

√
2t)2 : x ∈ V

}
. (1.7)

2 Random walk on 2D box with wired boundary condition

In this section, we study the random walk on 2D box with wired boundary and prove Theo-
rem 1.1. The main work goes to the proof for the lower bound, for which we employ the sprinkling
method that was used in [8]. As we wish to show a fairly sharp bound on the cover time, we can
only afford to decrease the time from t to (1 − 1/ log n)t in the sprinkling stage, such that for each
“trial” there is merely a chance of Poly((log n)−1) to detect an uncovered point. To fight with such
a slight probability, we need to have Poly(log n) number of candidates for trial. Apart from other
things, this gives arise to the issue of controlling correlations of all these trials. We make use of
the strong boundary condition in the wired case (which decouples the random walk), together with
carefully chosen candidates, to solve this issue.

2.1 Concentration for inverse local time

In this work, we typically measure the cover time τcov by the inverse local time τ(t). This is an
efficient measurement only if τ(t) is highly concentrated, which we show in this subsection.

Lemma 2.1. For an n × n 2D box A, consider a random walk on A with wired boundary (where
we identify ∂A as vertex v0). Let τ(t) be defined as in (1.5), for t > 0. Then, the following holds
uniformly for any λ > 0 and t > 1

P(|τ(t)− 4tn2| > λn2
√
t) 6 O(1/λ2) .

To prove the preceding lemma, we need the next simple claim on the joint Gaussian variables.

Claim 2.2. Let (X,Y ) be joint mean 0 Gaussian variables such that Cov(X,Y ) = ρ. Then

Cov(X2, Y 2) = 2ρ2 .

Proof. Let σ2
1 = VarX and σ2

2 = VarY . It is clear that we can write X = σ1Z1 and Y = ρ
σ1
Z1 +√

σ2
2 − (ρ/σ1)2Z2, where Z1 and Z2 are independent standard Gaussian variables. We can now use

standard moments estimates for Gaussian variables, and obtain that

Cov(X2, Y 2) = E(X2Y 2)− σ2
1σ

2
2 = ρ2E(Z4

1 ) + (σ2
1σ

2
2 − ρ2)− σ2

1σ
2
2 = 2ρ2 .

Define the Poisson kernel a(x, y) = a(x − y) =
∑∞
n=0(P0(Sn = 0) − P0(Sn = x − y)) where Sn is

a simple random walk on Z2 started at the origin 0. We will need the following standard estimates
on Green functions for random walks in 2D lattices (in terms of the Poisson kernel). See, e.g., [17,
Prop. 4.6.2, Thm. 4.4.4] for a reference.

Lemma 2.3. For A ⊂ Z2, consider a random walk (St) on Z2 and define τ∂A = min{j > 0 : Sj ∈ ∂A}
be the hitting time to ∂A. For x, y ∈ A, let G∂A(x, y) be the Green function as in (1.2). Then

G∂A(x, y) = Ex(a(Sτ∂A , y))− a(x, y) .

Furthermore, a(x, y) = 2
π log |x− y|+ 2γ+log 8

π +O(|x− y|−2), where γ is Euler’s constant.

Proof of Lemma 2.1. For all x ∈ A \ ∂A, define

Zx = η2
x − Eη2

x , and Z =
∑

x∈A\∂A

Zx .
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By Claim 2.2 and definition of Gaussian free field, we get that for all x, y ∈ A \ ∂A,

Cov(Zx, Zy) = G∂A(x, y)2/8 .

Combined with Lemma 2.3, we have that

Cov(Zx, Zy) 6
(

2
π (log n− log |x− y|) +O(1)

)2
.

It follows that

VarZ =
∑
x,y

Cov(Zx, Zy) = O(1)n2
2n∑
k=1

k ((log n− log k) +O(1))
2

= O(n4) . (2.1)

In addition, we can estimate that

Var(
∑
xηx) =

∑
x,y

Cov(ηx, ηy) =
1

4

∑
x,y

G∂A(x, y) =
1

4

∑
x

Ex(τ∂A) = O(n4) . (2.2)

Recall that v0 is the vertex obtained from identifying the boundary ∂A. Notice that

τ(t) = tdv0 +
∑
v 6=v0

dvL
v
τ(t) = 4nt+ 4

∑
v 6=v0

Lvτ(t) .

An application of Theorem 1.4 gives that

τ(t) + Z
law
= 2t|E|+ 2Z +

√
2t4
∑
v

ηv ,

where |E| counts for the number of edges in the wired graph and so |E| = 2n2 − 2n. It follows that

P(|τ(t)− 2t|E|| > λ|E|
√
t) 6 2P(|Z| > λ|E|

√
t/6) + P(|

∑
vηv| > λ|E|/10) 6 O(1/λ2) ,

where the last transition follows from an application of Chebyshev’s inequality together with esti-
mates (2.1) and (2.2).

2.2 Proof for the upper bound

We prove in this subsection the upper bound for the cover time. Note that an upper bound on the
expected cover time tcov can be obtained by an application of Matthews method [23], as illustrated
in [1, Ch.7: Cor.25]. The point of our proof below, which follows from an application of a union
bound, is to give an upper bound on the deviation of τcov.

Set tλ = 1
π (log n+ λ)2 for λ > 0. By Lemma 2.3,

Reff(x, ∂A) = G∂A(x, x)/4 6 1
2π log n+O(1) , for all x ∈ A . (2.3)

The marginal distribution for local times satisfies that

Lxτ(tλ) ∼
N∑
i=1

Xi , (2.4)

where N is a Poisson variable with mean tλ/Reff(x, ∂A) and Xi are i.i.d. exponential variables with
mean Reff(x, ∂A). This follows from the following several observations.

• The number of excursions at v0 (∂A) that occur up to τ(tλ) follows a Poisson distribution with
mean dv0tλ.

• Each excursion at v0 has probability 1/dv0Reff(x, ∂A) to hit vertex x, independently (see, e.g.,
[19, Eq. (2.5)]).

• Starting from x, the local time accumulated at x before hitting v0 is an exponential variable
with mean Reff(x, ∂A).
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By (2.3) and (2.4), we have that for all x ∈ A,

P(Lxτ(tλ) = 0) 6 exp(−tλ/Reff(x, ∂A)) 6 n−2O(e−λ) .

A simple union bound then gives that

P(τcov > τ(tλ)) 6
∑
x

P(Lxτ(tλ) = 0) = O(e−λ) .

Together with Lemma 2.1, we conclude that

P(τcov > 4
πn

2(log n)2 + λn2 log n) = O(1/λ2) ,

completing the proof of the upper bound.

2.3 Proof for the lower bound

A packing of 2D box. We carefully define a packing for a 2D box as follows. Let κ > 0 be a
constant to be specified later. For an n × n 2D box A with left bottom corner o = (0, 0), consider a

collection of boxes B = {Bi : 0 6 i 6 m} with m = b (logn)κ/3

12 c − 1 such that for every i ∈ [m]:

• The side length of each box Bi satisfies L = n
(logn)2κ .

• The left bottom corner of Bi is vi = ( 3in
(logn)κ , n/(log n)2κ).

We give a high level explanation for the choices of the parameters for the packing.

(a) The side length L guarantees that |mn −mL| = O(log log n) (this is the main reason for an error
term O(log log n) in Theorem 1.1).

(b) The distance between each box Bi and the boundary ∂A is of distance nPoly((log n)−1), which
implies that the number of excursions that visited each box is Poly(log n).

(c) The distances between the boxes are significantly larger than the distance from boxes to the
boundary, such that with high probability the random walk starting from one box would hit the
boundary first before hitting other boxes.

Property (a) bounds the magnitude of the slackness; properties (b) and (c) control the correlation
for the random walks on different boxes Bi; the choice for the number m ensures that we have
enough number of trials in the sprinkling stage.

In what follows, we will abuse the notation: we denote by B both the collection of boxes {Bi}
and the union of boxes {Bi}, whose meaning should be clear from the context. Following this rule,
we denote by ∂B = ∪B∈B∂B the union of the boundaries over all boxes in B.

The following lemma implies that our boxes in B are well-separated.

Lemma 2.4. For an n× n box A, define B as above. Then, for any B ∈ B and v ∈ B, we have

Pv(τ∂A > τ∂B\∂B) 6 C(log n)−κ/2 ,

where C > 0 is a universal constant.

Proof. We consider the projection of the random walk to the horizontal and vertical axises, and
denote them by (Xt) and (Yt) respectively. Define

T
X

= min

{
t : |Xt −X0| >

n

(log n)κ

}
, and T

Y
= min{t : Yt = 0} .

It is clear that τ∂A 6 T
Y

and T
X

6 τ∂B\∂B. Write t? = n2

(logn)3κ . Is is obvious that with probability

1−exp(−Ω(t?)) the number of steps spent on walking in the horizontal (vertical) axis is at least t?/3.
Combined with standard estimates for 1-dimensional random walks, it follows that for a universal
constant C > 0 (recall that v has vertical coordinate bounded by 2n/(log n)2κ)

P(T
Y
> t?) 6

C

(log n)κ/2
, and P(T

X
6 t?) 6

C

(log n)κ
.

Altogether, we conclude that Pv(τ∂A > τ∂B\∂B) 6 2C(log n)−κ/2 as required.
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Thin points for random walks. In this subsection, we consider the embedded discrete time
random walk, which is obtained by following the jumps in the continuous-time walk and ignore the
exponentially distributed waiting times between the jumps. For v ∈ A, denote by Nv(t) the number
of times that v is visited in the embedded walk, which corresponds to the continuous-time walk up
to τ(t). We aim to show the following lemma on thin points of random walks, i.e., points that are
visited for only a few times.

Lemma 2.5. Write t = m2
L/2 and assume κ > 8. Consider the random walk on A up to τ(t). For

B ∈ B, define

RB = {∃v ∈ B : Nv(t) 6 120} .

Then, P(RB) > 10−6.

The following are two crucial ingredients for the verification of the preceding lemma.

Proposition 2.6. [8, Prop. 4.10] Consider a network G = (V,E) with maximal degree ∆ and an
arbitrary t > 0. For v ∈ V , assume that {`w : w ∈ V } are positive numbers such that `u`v 6 1/16 for
all u ∼ v. Define Γ = {Lwτ(t) = `w for all w ∈ V }. Then

P(Nv(t) > 30∆ | Γ) 6 1/2 .

Lemma 2.7. Consider the Gaussian free field {ηv}v∈A with Dirichlet boundary condition, and con-
sider the collection of packing boxes B defined as above. For B ∈ B, define

EB = {∃v ∈ B : |ηv −mL| · |ηu −mL| 6 1/4 for all u ∼ v} .

Then, P(EB) > 10−4/16.

Proof of Lemma 2.5. Consider a B ∈ B. Lemma 2.7 gives that P(EB) > 10−4/16. Combined
with Theorem 1.4, this implies that with probability at least 10−4/16, there exists v ∈ B such that
Lvτ(t) · L

u
τ(t) 6 1/64 for all u ∼ v. Combined with Proposition 2.6, it follows that P(RB) > 10−6.

It remains to prove Lemma 2.7. To this end, we will use a detection result from [8].

Proposition 2.8. [8, Proposition 3.4] Given a graph G = (V,E) with maximal degree bounded by
∆, let {ηv}v∈V be the GFF on G with ηv0 = 0 for some v0 ∈ V . For any M > 0,

P (∃v ∈ V : |ηv −M | · |ηu −M | 6 1/4 for all u ∼ v) >
1

4 · 10∆
P(sup

u
ηu >M) .

Though Proposition 2.8 was stated in [8] for the case that the GFF was defined with the value at
a single vertex v0 pinned at 0. The precisely identical proof shows that the same result holds if the
values of the GFF are pinned to be 0 in an (arbitrary) set of vertices U (that is, the covariances are
given by Green functions as defined in (1.2)). This slightly new version of the preceding proposition
directly yields

P {∃v ∈ B : |ηv −m∗(1/4)| · |ηu −m∗(1/4)| 6 1/4 for all u ∼ v} > 1/16 ,

where m∗(1/4) = sup{z : P(supv∈B ηv > z) > 1/4} is the (1/4)-quantile for supv∈B ηv. It remains to
prove that mL > m∗(1/4). This is an immediate consequence of the following lemma.

Lemma 2.9. For a graph G = (V,E), consider V1 ⊂ V2 ⊂ V . Let {η(1)
v }v∈V and {η(2)

v }v∈V be GFFs on
V such that η(1)|V1

= 0 and η(2)|V2
= 0 (that is to say, the covariances are given by Green functions

as in (1.2) with U = V1 and U = V2 respectively.). Then for any λ > 0 and V ′ ⊂ V ,

P(supv∈V ′η
(1)
v > λ) > 1

2P(supv∈V η
(2)
v > λ) .
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Proof. Note that the conditional covariance matrix of {η(1)
v }v∈V ′ given the values of {η(1)

v }v∈V2\V1

corresponds to the covariance matrix of {η(2)
v }v∈V ′ . This implies that

{η(1)
v : v ∈ V ′} law= {η(2)

v + E(η(1)
v | {η(1)

u : u ∈ V2 \ V1}) : v ∈ V ′} ,

where on the right hand side {η(2)
v : v ∈ V ′} is independent of {η(1)

u : u ∈ V2 \V1}. Write φv = E(η
(1)
v |

{η(1)
u : u ∈ V2 \V1}). Note that φv is a linear combination of {η(1)

u : u ∈ V2 \V1}, and thus a mean zero
Gaussian variable. By the above identity in law, we derive that

P(supv∈V ′η
(1)
v > λ) = P(supv∈V ′η

(2)
v + φv > λ) > P(supv∈V ′η

(2)
v > λ, φξ > 0) = 1

2P(supv∈V ′η
(2)
v > λ) ,

where we denote by ξ ∈ V ′ the maximizer of {η(2)
u : u ∈ U} and the second transition follows from

the independence of {η(1)
v } and {φv}.

Application of sprinkling method. We are now ready to employ the sprinkling method and prove
the lower bound on the cover time. As a preparation, we show that random walks on all the boxes
B ∈ B are almost independent. To formalize the statement, we decompose the random walk up to
τ(t) into a collection E of disjoint excursions at the boundary ∂A, where an excursion is a minimal
segment for the random walk such that the starting and ending vertex both belong to ∂A.

Lemma 2.10. For t 6 10(log n)2 and κ > 8, we have

P(∃Ex ∈ E ∃B,B′ ∈ B : Ex ∩B 6= ∅,Ex ∩B′ 6= ∅) = O(1/ log n) .

Proof. For B ∈ B, denote by ex(B) = |Ex ∈ E : Ex ∩B 6= ∅| the number of excursions that visited B.
By our choice of the packing B, we trivially have that Reff(B, ∂A) > 1 for all B ∈ B, and thus ex(B)

is stochastically dominated by the sum of i.i.d. Bernoulli(1/|∂A|) where the number of summands is
an independent Poisson random variable of mean t|∂A|. Therefore,

P(ex(B) > 20(log n)2) = O(1/ log n) .

Combined with Lemma 2.4, we obtain that

P(∃Ex ∈ E ∃B′ ∈ B : Ex ∩B 6= ∅,Ex ∩B′ 6= ∅) = O(1/(log n)κ−2) .

Now a simple union bound over B ∈ B yields the desired estimate.

Thanks to the preceding lemma, we can now assume without loss of generality that all the
excursions visited at most one box B ∈ B. Since the visits to all the boxes belong to disjoint
excursions, the independence among the excursions then implies the independence for random
walks within all the boxes B ∈ B.

Write t− = (mL − 1)2/2. For B ∈ B, let QB be the event that the box B is not covered by time
τ(t−). By Lemma 2.5, we have P(RB) > 10−6. Assume that RB indeed holds, and take v ∈ B such
that Nv(t) 6 120, and thus Ev = {Ex ∈ E : v ∈ Ex} has cardinality at most 120. Given the collection
E of excursions at the boundary ∂A (note that here we do not yet reveal the order for excursions to
occur), the times for the excursions to occur (measured by the local time at boundary ∂A) are i.i.d.
uniformly distributed over [0, t]. Therefore,

P(QB) > P(RB)P(Ex occurs in (t−, t] for all Ex ∈ Ev | B, E) > 10−6(1/mL)120 .

Recall from Theorem 1.3 that

mL =
√

2/π
(

log n−
(
2κ+ 3

8 log 2

)
log log n

)
+ 3κ

4 log 2 log log log n+O(1) . (2.5)

Now choose κ = 400, and we will have m = |B| > (log n)130/40. By our justified assumption on the
independence of events {QB : B ∈ B} and a standard argument on concentration, we conclude that

P(τcov 6 τ(t−)) = O(1/ log n) .

Using (2.5) again and applying Lemma 2.1, we compete the proof for the lower bound.
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3 Random walk on 2D torus

In this section, we consider the random walk on a 2D torus and prove Theorem 1.2. We wish
to employ the same roadmap as the proof for the wired boundary case, and we come across the
following two conceptual difficulties:

(i) The inverse local time τ(t) is not concentrated enough. Indeed, it is not hard to see that τ(t)

has a deviation of order n2
√
t
√

log n� n2 log n log log n, for t = Θ((log n)2).

(ii) Essentially regardless of the choice of packing boxes, the random walk starting from one box
would strongly prefer to hit other boxes before going back to the origin (since the origin, as
a single point, is very likely to miss). This reinforces the challenge to control the correlation
between the random walks in different boxes.

The hope (and the reason) that the deviation of the inverse local time does not give the right
order for the deviation of the cover time, is that the number of excursions required to cover the
graph (or alternatively, the local time at the origin at time τcov) also exhibits a fairly large deviation
(as opposed to the wired boundary case). Furthermore, these two random variables are negatively
associated such that their deviations will cancel each other, and hence the cover time τcov is still
fairly concentrated.

It seems rather challenging to study (or even to formalize) the negative association between the
inverse local time and the number of excursions required for covering. Alternatively, we pose an
artificial boundary over a suitable subset of the torus and argue that:

• The cover times with or without this artificial boundary are almost the same.

• The inverse local time exhibits a significantly smaller deviation with the boundary condition.

• It is possible to carefully select a collection of packing boxes such that the random walks on
these boxes are almost independent.

Our proof, as demonstrated in the rest of this section, is laid out precisely in this manner. Since we
have been through the proof for the wired boundary case, we focus on the new issues for the case
of 2D torus.

3.1 A coupling of random walks

Consider Z2
n and o ∈ Z2

n. We imagine that Z2
n is placed on a two-dimensional lattice where o is

the origin and the boundaries are properly identified. Throughout this section, we use the notation

nk = n/(log n)k for all k > 0 .

For r > 0, define Cr to be the discrete ball of radius r, by

Cr = {x ∈ Z2 : ‖x‖2 6 r} .

Let κ > 10 be an absolute constant selected later. For convenience of notation, denote by A = Z2
n in

this section. Let Ã be obtained from A by identifying all the vertices in Cn2κ (as v0). We consider a
random walk (St) on A and a random walk (S̃t) on Ã, respectively. The following coupling says that
with high probability these two random walks have the same behavior on A \ Cnκ .

Lemma 3.1. Define τ̃(t) as in (1.5) to be the inverse local time for the random walk (S̃r). For
t 6 10(log n)2, with probability at least 1−O(1/ log n), we can couple the random walk (Sr) and (S̃r)

together such that for a random time τ satisfying |τ − τ̃(t)| 6 n2/ log n, we have the random walks
(Sr : 0 6 r 6 τ) and (S̃r : 0 6 r 6 τ̃(t)) are the same in the region A \ Cnκ .

Remarks. (1) Note that in the coupling, we do not insist that the total amount of time spent at the
two random walks are the same. All that we require is that if we watch the two random walks in the
region A \ Cnκ , we will observe the same sequence of random walk paths (P1, P2, . . .) where each Pi
is a random walk path with starting and ending points in ∂Cnκ . (2) As we will see in the proof, the
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same result holds if we shift the disk Cn2κ
within distance n/3. We will use this fact in the derivation

for the upper bound on the cover time.
In order to prove the preceding coupling lemma, we need to study the harmonic measureHB(x, ·)

on B (for B ⊂ Z2 and x ∈ Z2) defined by

HB(x, y) = Px(SτB = y) for all y ∈ B .

The following lemma (see, e.g., [17, Prop. 6.4.5]) will be used repeatedly.

Lemma 3.2. Suppose that m < n/4 and Cn \ Cm ⊂ B ⊂ Cn. Suppose that x ∈ C2m with Px(Sτ∂B ∈
∂Cn) > 0 and z ∈ ∂Cn. Then,

Px(Sτ∂B = z | Sτ∂B ∈ ∂Cn) = H∂Cn(0, z)(1 +O(m log(n/m))/n) .

Furthermore, we have that c/n 6 H∂Cn(0, z) 6 C/n for two absolute constants c, C > 0.

For two probability measures µ and ν on a countable space Ω, we define the total variation
distance between µ and ν by

‖µ− ν‖TV = 1
2

∑
x∈Ω

|µ(x)− ν(x)| .

We will use a well-known fact that there exists a coupling (X,Y ) such that X ∼ µ, Y ∼ ν and
P(X 6= Y ) = ‖µ − ν‖TV. See, e.g., [18, Prop. 4.7]. The following is an immediate consequence of
Lemma 3.2.

Corollary 3.3. Denote by H(·, ·) and H̃(·, ·) the harmonic measures for random walks on A and Ã

respectively. For all x ∈ Cn2κ , we have

‖H∂Cnκ (x, ·)− H̃∂Cnκ (v0, ·)‖TV = O(1/(log n)8) .

Proof. Let B = Cnκ \ Cn2κ and m = n2κ. It is clear that

‖H∂Cnκ (x, ·)− H̃∂Cnκ (v0, ·)‖TV

6 max
y,z∈∂C2m

‖Py(Sτ∂B = · | Sτ∂B ∈ ∂Cnκ)− Pz(Sτ∂B = · | Sτ∂B ∈ ∂Cnκ)‖TV .

Now, an application of Lemma 3.2 with n = nκ completes the proof.

Proof of Lemma 3.1. In order to demonstrate the coupling, we consider the crossings between
∂Cn2κ

and ∂Cnκ for (Sr), where each crossing is a minimal segment of the random walk path which
starts at ∂Cn2κ

and ends at ∂Cnκ ; for (S̃r), we consider the crossings between v0 and ∂Cnκ . We denote
by K̃ the number of crossings for (S̃r) up to time τ̃(t), and denote by (Z̃k)16k6K̃ be the sequence of

ending points for these crossings. Similar to the justifications of (2.4), we see that K̃ is distributed
as a sum of i.i.d. Bernoulli variables with mean 1

degv0Reff (v0,∂Cnκ ) and the number of summands is an

independent Poisson variable with mean degv0t, where degv0 is the degree of the identified vertex

v0 in Ã. Since Reff(v0, ∂Cnκ) > 1, we have

P(K̃ > (log n)3) = O(1/ log n).

In what follows, we can then assume that K̃ 6 (log n)3. Now, we consider the first K̃ crossings for
random walk (Sr) and denote by (Zk)16k6K̃ the sequence of the ending points for these crossings.
Observe that

‖P(Zk ∈ ·)− P(Z̃k ∈ ·)‖TV 6 max
x∈Cn2κ

‖H∂Cnκ (x, ·)− H̃∂Cnκ (v0, ·)‖TV = O(1/(log n)8) .

Therefore, with probability at least 1 − O(1/(log n)5), we have Zk = Z̃k for all 1 6 k 6 K̃. In what
follows, we assume that we indeed have Zk = Z̃k.
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Now, the coupling is natural and obvious. Since starting from the same point at ∂Cnκ , the random
walks on A and Ã follow the same transition kernel until they hit ∂Cn2κ

. Thus, we can couple the two
random walks together such that the sequences of the random walk paths watched in the region
A \ Cnκ are identical to each other.

It remains to control the difference between τ and τ̃(t). Due to the coupling, we see that the
total time that these two random walks spent on the region A \ Cn2κ are the same. So the difference
only comes from the time the two walks spend at Cnκ . We denote by T and T̃ these two times
respectively. Note that

ET 6 (log n)3 max
x∈Cn2κ

Exτ∂Cnκ 6 (log n)3O((nκ)2 log n) = O(n2/(log n)16) .

Since κ > 10, we have
ET̃ =

∑
v∈Cnκ

dvt 6
∑

v∈Cn10

dvt = O(n2/(log n)18) .

At this point, an application of Markov’s inequality completes the proof.

Thanks to the coupling, it suffices to study the covering for random walk (S̃r) in order to under-
stand the cover time for (Sr). In what follows, we will focus on the random walk (S̃r). For easiness
of notation, we drop the tilde symbol except for the underlying graph Ã (to remind us which graph
we are working on in case of ambiguity). One of the purposes to identify Cn2κ

is to give better
concentration for the inverse local time, for which we first prove the next preparation lemma.

Lemma 3.4. Let G·(·, ·) be the Green function of random walk on Z2. For x, y ∈ A,

Gy(x, x) = 4
π (log |x− y|Z2

n
) +O(1) ,

where |x− y|Z2
n

= mini,j∈Z |x− y + (in, jn)| is the Euclidean distance between x, y in Z2
n.

Proof. By homogeneity of Z2
n, we can assume that x = o and y1 > y2 > 0. Let L be a vertical

line segment of length y1 centered at y/2, and let L′ = {v ∈ L : Pv(τo < τx) > 1/2}. Without
loss of generality, we assume that |L′| > y1/2 (otherwise we exchange the role of o and y). By our
assumption, we have Gy(o, o) 6 2GL′(o, o). In addition, we have

GL′(o, o) = G∂Cy1/4(o, o) + max
z∈Cy1/4

Gy(z, o) = 2
π log y1 + max

z∈Cy1/4
GL′(z, o) +O(1) , (3.1)

where in the second equality we used Lemma 2.3. Let B be a rectangular centered at o with side
lengths y1 × 2y1. So in particular L ⊂ ∂B. Applying [17, Proposition 6.4.3], we obtain that the
random walk started from z will hit ∂B before returning to o with probability 1−O(1/ log y1) for all
z ∈ Cy1/4. Also note that the harmonic measure of L′1 with respect to starting point z and stopping
set ∂B is at least c > 0 for a certain constant c (see, e.g., [17, Prop. 8.1.5], and note that L′ consists
of a constant fraction of ∂B; alternatively, one could approximate the harmonic measure by that of
the Brownian motion.) Therefore, we have deduced that Pz(τo < τL′) = O(1/ log y1). In addition, we
could get GL′(o, o) 6 G∂Cy1/4(o, o)/c = O(log y1). Altogether, we get that maxz∈Cy1/4 GL′(z, o) = O(1).
Combined with (3.1), this completes the proof of the upper bound.

In order to prove the lower bound, we use a connection between Green functions and effective
resistances as follows (see [16, Thm. 9.20])

GU (x, y) = 2(Reff(x, U) +Reff(y, U)−Reff(x, y)) . (3.2)

Now, let B1 and B2 be cubes of side-length y1/4 centered at o and y respectively. Using preceding
inequality and Lemma 2.3, we see that

Reff(o, ∂B1) = Reff(o, ∂B2) = 1
2π log y1 +O(1) .

Using Rayleigh monotonicity for the effective resistances (c.f., e.g., [19]), we deduce that

Reff(o, y1) > 1
π log y1 +O(1) .

Combined with (3.2), this yields the desired lower bound.
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The following lemma (whose lower bound we did not attempt to optimize) will be useful.

Lemma 3.5. For m < n/4, we have 1
8 log(n/m) +O(1) 6 Reff(∂Cm, ∂Cn) = 1

2π log(n/m) +O(1).

Proof. By Rayleigh monotonicity principle, we have Reff(o, ∂Cn) > Reff(∂Cm, ∂Cn) + Reff(o, ∂Cm).
Combined with Lemma 2.3, the upper bound follows. In order to prove the (non-optimal) lower
bound, it suffices to consider the cut-set Πk where Πk are the edges connecting centering boxes of
side length 2k and 2(k + 1). Applying Nash-William (c.f. [19, Ch. 2]) criterion, we obtain that

Reff(∂Cm, ∂Cn) >
∑n/4
k=m(|Πk|)−1 = 1

8 log(n/m) +O(1) ,

completing the proof.

The next corollary is immediate.

Corollary 3.6. For all x, y ∈ A \ Cnκ , we have

2
π log |x|+ 1

2 log |x|n2κ
6 GCn2κ

(x, x) 6 2
π log |x|+ 2

π log |x|n2κ
+O(1) , (3.3)

GCn2κ
(x, y) = 2

π (log n− log |x− y|Z2 +O(κ log log n)) . (3.4)

Proof. By Rayleigh monotonicity, we have Reff(x, o) > Reff(x, ∂Cn2κ
) +Reff(o, ∂Cn2κ

). Combined with
Lemma 2.3, it follows that

Reff(x, ∂Cn2κ) 6 1
2π log |x|+ 1

2π log |x|n2κ
+O(1) .

Using Rayleigh monotonicity again, we get

Reff(x, ∂Cn2κ) > Reff(x, ∂Cx(|x|/3)) +Reff(Cn2κ , ∂C|x|/3) > 1
2π log |x|+ 1

8 log |x|n2κ
+O(1) ,

where Cx(|x|/3) is a ball of radius |x|/3 centered at x and C|x|/3 is a ball of radius |x|/3 centered at
the origin. Therefore, we obtain (3.3) in view of (3.2). An analogous bound holds for Reff(y, ∂Cn2κ).
Writing r = |x− y|Z2 ∧ n2κ, we have

RÃeff(x, y) > Reff(x, ∂Cx(r/4)) +Reff(y, ∂Cy(r/4)) = 1
π log r +O(1) = 1

π log |x− y|Z2
n

+O(κ log log n) .

By Lemma 2.3 and Rayleigh monotonicity, we see from Lemma 3.4 that

RÃeff(x, y) 6 RAeff(x, y) = 1
π log |x− y|Z2

n
+O(1) .

Thus, RÃeff(x, y) = 1
π log |x− y|Z2

n
+O(κ log log n). Combined with (3.3) and (3.2), (3.4) follows.

Lemma 3.7. For t > 0, define τ(t) as in (1.5) to be the inverse local time for the random walk on
Ã. Then, for any λ > 0

P(|τ(t)− 2t|E|| > λn2
√

log log n
√
t) 6 O(κ/λ2) .

Proof. Our proof follows the same outline as that of Lemma 2.1. We only emphasize the different
estimates required due to the change of the underlying graph. As in the proof of Lemma 2.1, we
consider the GFF {ηx : x ∈ Ã} on Ã (that is, the covariances are given by Green functions as in (1.2)
with U = Cn2κ), and define Zx = η2

x − Eη2
x and Z =

∑
x Zx. Applying the Lemma 3.4, we obtain that

VarZ 6
∑

x,y∈Ã\Cnκ

(GCn2κ
(x, y))2 6 n2O(1)

n∑
k=1

k(log n− log k + κ log log n)2 = O(κn4 log log n) .

Furthermore, we have
Var(

∑
xηx) =

∑
x

Exτ∂Cn2κ
= O(κn4 log log n) .

Using the above two estimates and following the proof of Lemma 2.1, we can easily deduce the stan-
dard deviation for the time spent by random walk on Ã \ Cnκ up to time τ(t) is O(n2

√
κ log log n

√
t).

It remains to control the deviation for the time spent on Cnκ , for which a simple Markov’s inequality
suffices (as the volume of Cnκ is significantly smaller than n2 and thus the time spent by the random
walk on it is negligible compared to τ(t)). Altogether, the proof is completed.
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3.2 Proof of Theorem 1.2

We first explain the proof for the upper bound on the cover time for random walk on Ã, based
on which we derive an upper bound for the random walk on A. By Corollary 3.6, we get that for all
x ∈ Ã,

GCn2κ
(x, x) 6 2

π log n+O(κ) log log n .

Applying this estimate and following the proof in Subsection 2.2, we can derive that

P(τcov(Ã) > τ(tλ)) = O(1/λ2) ,

for tλ = 1
π (log n + Cκ log log n + λ)2 with a large enough absolute constant C > 0. Combined with

Lemma 3.7, we obtain that

P(τcov(Ã) > 2tλ|E|+ λ
√
tλ|E|

√
log log n) = O(κ/λ2) .

Now, applying Lemma 3.1 twice (with C2κ centered at o and (n/3, n/3) respectively), we conclude
that

P(τcov(A) > 2tλ|E|+ λ
√
tλ|E|

√
log log n) = O(κ/λ2) ,

completing the proof for the upper bound.

The proof for the lower bound is more involved. To this end, we specify a packing of balls in
Ã. Throughout this subsection, we denote by v0 the vertex obtained from identifying Cn2κ . Let
m = (log n)κ/2/2, and define B to be a collection of packing balls {Bi : i ∈ [m]} such that:

• Take {oi ∈ ∂Cnκ/2 : i ∈ [m]} such that |oi − oj | > nκ for all 1 6 i < j 6 m.

• For i ∈ [m], the packing ball Bi is a disk of radius n5κ centered at oi.

We show that the packing balls in B are well-separated in the sense that the random walks watched
in each B ∈ B are almost independent.

Lemma 3.8. Fix t 6 (log n)2 and set t′ = t − κ2 log n log log n. For all B ∈ B, let LB be the law for
the path of random walk (Sr) watched in the region B up to τ(t). Let {PB : B ∈ B} be independent
random walk paths such that PB ∼ LB. Let {P ∗B : B ∈ B} be the random walk paths in B ∈ B that
are generated by (Sr) up to τ(t′). Then for κ > 1000, we can construct a coupling such that with
probability at least 1−O(1/ log n), we have P ∗B ⊆ PB for all B ∈ B, i.e., ∪γ∈P∗Bγ ⊆ ∪γ∈PBγ.

Note that the random walk in ball B can influence the random walk in ball B′ only by either
influencing the number of times for the random walk to enter B′ or the hitting vertex at which the
random walk enters B′. In order to prove the preceding lemma, we only need to control this two
types of correlations. In what follows, we formalize this intuition.

For B ∈ B, let UB = {v0} ∪ B \ B. We consider the crossings from UB to B, that is, a minimal
segment of the random walk with starting point in UB and ending point in B. To be formal, we
define τ0 = τ ′0 = 0 and for all k ∈ N

τk = min{r > τ ′k−1 : Sr ∈ B} , and τ ′k = min{r > τk : Sr ∈ UB} .

Then the set of crossing points up to time τ(s) are defined by

NB(s) = {Sτ ′k : k > 1, τ ′k 6 τ(s)} .

In view of Lemma 3.8, define
N ∗B = NB(t′) , for B ⊂ B .

In addition, let {NB}B∈B be independent such that NB has the same law as NB(t). To prove
Lemma 3.8, it suffices to prove that there exists a coupling such that with probability at least
1−O(1/ log n)

N ∗B ⊆ NB , for all B ∈ B . (3.5)

Naturally, a preliminary step is to show that |N ∗B | is smaller than |NB |, as incorporated in the
following lemma.
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Lemma 3.9. Suppose that κ > 1000. Then with probability at least 1−O(1/ log n)

|N ∗B | 6 |NB | 6 (log n)2 for all B ∈ B .

Proof. Consider B ∈ B and let N = NB = |NB |. Following the justifications for (2.4), we can write

N =

K∑
k=1

Xk , (3.6)

where K ∼ Poi(t/Reff(v0, B)) is the number of excursions at v0 that enters B, and Xk is the number
of crossings to B in the k-th excursion that visited B and thus clearly independent. In addition, it is
not hard to see that

1 + Geom(p1) � Xk � 1 + Geom(p2) ,

where we use the definition that P(Geom(p) = k) = pk(1− p) for k > 0, and that

p1 = min
x∈B

Px( there is at least one crossing from UB to B before hitting v0),

p2 = max
x∈B

Px( there is at least one crossing from UB to B before hitting v0) .

Let C be a discrete ball of radius n2κ with the same center as B. By Lemma 3.2, we have

p1 − p2 6 max
x,y∈B

|H∂C(x, ·)−H∂C(y, ·)|TV = O((log n)−2κ+1) .

Next, we give an upper bound on p2. To this end, we apply Corollary 3.6 and obtain that for all
x ∈ UB

Gv0(x, x) > 1
2π (log |x|+ π

4 log |x|n2κ
) +O(1) , and GB(x, x) 6 1

2π (log |x− o′|+ log |x−o
′|

n5κ
) +O(1) ,

where o′ is the center of B. It follows that for n large enough, we have

Reff(x, v0) > Reff(x,B) . (3.7)

Based on preceding inequality, we now claim that

Px(τB < τv0) 6 1/2 . (3.8)

In order to verify the claim, we consider a reduced network (for network reduction, see, e.g., [9,
Lemma 2.9]) on vertices {x, v0, b} where b is for the vertex obtained by identifying B in the original
graph. Let cb,v0 , cv0,x and co,b be the conductance between pairs of vertices in the reduced network.
Since the effective resistances are preserved by network reduction, we deduce from (3.7) that
cv0,x 6 cv0,b. Combined with the fact (c.f. [9, Lemma 2.9]) that the original random walk watched
on {v0, b, x} has the same law as the random walk on the reduced network, (3.8) follows since in the
reduced network the random walk (started at v0) has probability at most 1/2 moving to x instead of
b. By definition of p2, it is clear that

p2 6 max
x∈UB

Px(τB < τv0) 6 1/2 .

Applying Rayleigh monotonicity principle again, we obtain that

Reff(v0, B) 6 Reff(o, o′)−Reff(o, ∂Cn2κ
)−Reff(o′, ∂B) 6 10κ log log n ,

where in the last transition we used Lemmas 2.3 and 3.4. Denoting by α = Reff(v0, B)/κ log log n, we
therefore have α 6 10. Combining all the estimates for the parameters to determine the distribution
of N , we see that

EN − E|N ∗B | >
κ logn
α ,VarN 6 4(logn)2

ακ log logn , and Var |N ∗B | 6
4(logn)2

ακ log logn .

At this point, a standard concentration argument yields that (recalling (3.6))

P(N < |N ∗B |) 6 P(|N − EN | > κ logn
2α ) + P(||N ∗B | − E|N ∗B|| >

κ logn
2α ) 6 O(1)(log n)−κ/16α .

Combined with the fact that α 6 10 and |B| = (log n)κ/2 (recalling the assumption that κ > 1000),
the desired estimates follows from a simple union bound.
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Next, we prove that both N ∗B and NB are almost a collection of i.i.d. random points from B. To
this end, we need to control the harmonic measure on ∂B when the random walk is started at a
vertex outside of B, as incorporated in the next lemma. For a proof, see [17, Prop. 6.6.1] and its
proof therein.

Lemma 3.10. For m < n and x, y ∈ Z2 \ Cn, we have that

‖HCm(x, ·)−HCm(y, ·)‖TV = O
(m(logn)2

n

)
.

The following is an immediate consequence.

Corollary 3.11. For a random walk started at an arbitrary x ∈ UB, let P be the random walk
watched in the region UB. Let P1 and P2 be two arbitrary traces in region UB before hitting B.
Then,

‖Px(SτB ∈ · | P = P1)− Px(SτB ∈ · | P = P2)‖TV = O((log n)−3κ+2) .

Proof. Let C and C′ be discrete balls of radius n2κ and n3κ/2 with the same center as B. Clearly,
the random walk needs to hit C before hitting B. Consider y, z ∈ ∂C. We have the following
decomposition for y (and thus similarly for z)

Py(SτB = u) = Py(SτB=u | τB < τ ′C)Py(τB < τ ′C) + Py(τB > τ ′C)
∑
v∈∂C′

µy(v)Pv(SτB = u) , (3.9)

where µy(·) is a certain probability distribution (whose particular form is of no care). We also need
the following lemma.

Lemma 3.12. [17, Prop. 6.4.1] For m < n and x ∈ Cn \ Cm, we have

Px(τ∂Cn < τ∂Cm) =
log |x| − logm+O(1/m)

log n− logm
.

Applying the preceding lemma, we obtain that

Py(τB < τ∂C′) > 1/100 , and |Py(τB < τ∂C′)− Pz(τB < τ∂C′)| = O(1/
√
n) . (3.10)

Combining (3.9) and (3.10) with an application of Lemma 3.10, we obtain that

‖Py(SτB∈· | τB < τC′)− Pz(SτB∈· | τB < τC′)‖TV = O((log n)−3κ+2) .

Combined with (3.10), this immediately implies the desired estimates.

Proof of Lemma 3.8. By Lemmas 3.9 and 3.11, a union bound would imply that with probability
at least 1−O(1/ log n), we have N ∗B ⊆ NB for all B ∈ B. Together with the discussion around (3.5),
this completes the proof.

The lower bound for the cover time now readily follows. For each B ∈ B consider a box B′ ⊂ B

of side length L = n5κ/4. Let mL be the median for the GFF on a L×L box with Dirichlet boundary
(recall Theorem 1.3 for its estimate). For D ⊂ Ã, denote by τcov(D) the first time that the set D
is covered. Let QB′ be the event that the box B is not covered by random walk path PB defined
as in Lemma 3.8. By Lemma 3.8, QB′ are independent events such that with probability at least
1−O(1/ log n) for all such B′

QB′ ⊆ {τcov(B′) > τ((mL − 2κ2 log log n− 1)2/2)} ,

where
P(QB′) = P(τcov(B′) > τ((mL − 1)2/2)) .

We need to relate mL to M̃ = maxv∈B η̃v where η̃· is the GFF on 2D torus with Green functions given
by (1.2) with U = {v0}. In light of the Lemma 2.9, we see that P(M̃ > mL) > 1/4. Following the
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proof for the wired boundary case (first show a vertex with small local times at it and its neighbors,
and then do a sprinkling argument), we can show that

P(QB′) > 10−6(mL)−120 .

Choosing κ = 1000 and applying Lemma 3.8, we obtain that

P(τB > τ((mL − 2κ2 log log n− 1)2/2)) = 1−O(1/ log n) .

Combined with Lemmas 3.1 and 3.7, this completes the proof for the lower bound.
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