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For q ≥ 1, the Wasserstein distance with index q between two probability measures
µ and ν on Rd is denoted by

W q
q (µ, ν) = inf

γ<µν

∫
Rd×Rd

|x− y|qdγ(x, y) (0.1)

where the infimum is taken over all probability measures γ on Rd ×Rd with respective
marginals µ and ν. We also introduce the relative entropy and the chi-square pseudo
distance

H(ν|µ) =

{∫
Rd

ln
(
dν
dµ (x)

)
dν(x) if ν absolutely continuous w.r.t. µ

+∞ otherwise

χ2
2(ν|µ) =


∫
Rd

(
dν
dµ (x)− 1

)2
dµ(x) = ‖ dνdµ − 1‖2L2(µ) if ν absolutely continuous w.r.t. µ

+∞ otherwise
.

Next, we precise the inequalities that will be discussed in the paper.

Definition 0.1. The probability measure µ on Rd is said to satisfy

the Poincaré inequality P(C) with constant C if

∀ϕ : Rd → R C1 with a bounded gradient,∫
R

ϕ2(x)dµ(x)−
(∫

R

ϕ(x)dµ(x)

)2

≤ C
∫
R

|∇ϕ(x)|2dµ(x).
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Transport-chi-square inequality

the transport-chi-square inequality Tχ(C) with constant C if

∀ν probability measure on Rd, W2(µ, ν) ≤
√
Cχ2(ν|µ).

the log-Sobolev inequality LS(C) with constant C if ∀ϕ : Rd → R C2 compactly
supported,∫
R

ϕ2(x) ln(ϕ2(x))dµ(x)−
∫
R

ϕ2(x)dµ(x) ln

(∫
R

ϕ2(x)dµ(x)

)
≤ C

∫
R

|∇ϕ(x)|2dµ(x).

the transport-entropy inequality TH(C) with constant C if

∀ν probability measure on Rd, W2(µ, ν) ≤
√
CH(ν|µ).

According to [9], the log-Sobolev inequality is stronger than the transport-entropy
inequality which is itself stronger than the Poincaré inequality and more precisely
LS(C) ⇒ TH(C) ⇒ P(C/2). The transport-entropy inequality is strictly weaker than
the log-Sobolev inequality (see [3, 5] for examples of one-dimensional probability mea-
sures µ satisfying the transport-entropy inequality but not the log-Sobolev inequality)
and is strictly stronger than the Poincaré inequality (see for example [5] Theorem 1.7).

To obtain some transport inequality equivalent to the Poincaré inequality, one may
try to replace either W2(ν, µ) in the left-hand-side by some smaller Wasserstein distance
or the relative entropy H(ν|µ) in the right-hand-side by some larger pseudo-distance.
The first possibility is successfully explored in [2] Corollary 5.1 where the Poincaré
inequality is proved to be equivalent to the modified transport-entropy inequality

∃C < +∞, ∀ν probability measure on Rd,

inf
γ<µν

∫
Rd×Rd

(
|x− y|2 ∧ |x− y|

)
dγ(x, y) ≤ CH(ν|µ)

with possibly different constants C. The present paper is devoted to the second possi-
bility. More precisely, since the inequality x ln(x) ≤ (x − 1) + (x − 1)2 implies H(ν|µ) ≤
χ2
2(ν|µ), we consider replacing the transport-entropy inequality TH(C) by the weaker

transport-chi-square inequality Tχ(C). It turns out that, by an easy adaptation of the
linearization argument in [9], the transport-chi-square inequality implies the Poincaré
inequality. Moreover, in dimension d = 1, we are able to prove the converse implication
so that both inequalities are equivalent. Last, we prove tensorization of the transport-
chi-square inequality.

1 Main results

Theorem 1.1. ∀d ≥ 1, Tχ(C)⇒ P(C). Moreover, when d = 1, P(C)⇒ Tχ(32C) and the
transport-chi-square and Poincaré inequalities are equivalent.

Before proving Theorem 1.1, we state our second main result dedicated to the ten-
sorization property of the transport-chi-square inequality. Its proof is postponed in
Section 4.

Theorem 1.2. If µ1 and µ2 are probability measures on Rd1 and Rd2 respectively satis-
fying Tχ(C1) and Tχ(C2), then the measure µ1⊗µ2 satisfies Tχ((C1+C2(1+

√
(3d2 + 2)d2))∧

(C2 + C1(1 +
√

(3d1 + 2)d1))).

Remark 1.3. According to Proposition 8.4.1 [1], if µ1 and µ2 respectively satisfy TH(C1)

and TH(C2), then µ1 ⊗ µ2 satisfies TH(C1 ∨ C2). The constant that we obtain in the
tensorization of the transport-chi-square inequality is larger than C1 ∨ C2.
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The proof of the one-dimensional implication P(C)⇒ Tχ(32C) in Theorem 1.1 relies
on the two next propositions, the proof of which are respectively postponed in Sections
2 and 3. When d = 1, we denote by F (x) = µ((−∞, x]) and G(x) = ν((−∞, x]) the
cumulative distribution functions of the probability measures µ and ν. The càg pseudo-
inverses of G (resp. F ) is defined by G−1 :]0, 1[3 u 7→ inf{x ∈ R : G(x) ≥ u} (resp.
F−1(u) = inf{x ∈ R : G(x) ≥ u}) and satisfies

∀x ∈ R, ∀u ∈ (0, 1), x < G−1(u)⇔ G(x) < u. (1.1)

When µ (resp. ν) admits a density w.r.t. the Lebesgue measure, this density is denoted
by f (resp. g). Moreover, the optimal coupling in (0.1) is given by γ = du ◦ (F−1, G−1)−1
where du denotes the Lebesgue measure on (0, 1) so that

W q
q (µ, ν) =

∫ 1

0

(F−1(u)−G−1(u))qdu

(see [10] p107-109). We take advantage of this optimal coupling to work with the cumu-
lative distribution functions and check the following proposition. In higher dimensions,
far less is known on the optimal coupling and this is the main reason why we have not
been able to check whether the Poincaré inequality implies the transport-chi-square
inequality.

Proposition 1.4. If a probability measure µ on the real line admits a positive probabil-
ity density f , then, for any probability measure ν on R,

W 2
2 (µ, ν) ≤ 4

∫
R

(F −G)2

f
(x)dx. (1.2)

Remark 1.5. • One deduces that W 2
1 (µ, ν) ≤ 4

∫
R

(F−G)2

f (x)dx. Notice that since,
by (1.1) and Fubini’s theorem,

W1(µ, ν) =

∫ 1

0

∫
R

1{F−1(u)≤x<G−1(u)} + 1{G−1(u)≤x<F−1(u)}dxdu

=

∫
R

∫ 1

0

1{G(x)<u≤F (x)} + 1{F (x)<u≤G(x)}dudx =

∫
R

|F (x)−G(x)|dx,

the stronger bound

W 2
1 (µ, ν) =

(∫
R

|F −G|√
f
×
√
f(x)dx

)2

≤
∫
R

(F −G)2

f
(x)dx

is a consequence of the Cauchy-Schwarz inequality.

• It is not possible to control
∫
R

(F−G)2

f (x)dx in terms of W 2
2 (µ, ν). Indeed for f(x) =

1
2e
−|x| and dν(x) = 1

2e
−|x−m|dx, one has W 2

2 (µ, ν) = m2,

G(x) =
ex−m

2
1{x≤m} + (1− em−x

2
)1{x>m},

and for m > 0,

∫
R

(F −G)2

f
(x)dx ≥

∫ +∞

m

(F −G)2

f
(x)dx =

e−m

2
(em − 1)2.

Next, when the probability measure µ on the real line admits a positive probability
density satisfying a tail assumption known to be equivalent to the Poincaré inequality
(see Theorem 6.2.2 [1]), we are able to control the right-hand-side of (1.2) in terms of
χ2
2(ν|µ).
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Proposition 1.6. Let f(x) be a positive probability density on the real line with cumu-
lative distribution function F (x) =

∫ x
−∞ f(y)dy and median m such that

b
def
= sup

x≥m

∫ +∞

x

f(y)dy

∫ x

m

dy

f(y)
∨ sup
x≤m

∫ x

−∞
f(y)dy

∫ m

x

dy

f(y)
< +∞. (1.3)

Then for any probability density g on the real line with cumulative distribution function
G(x) =

∫ x
−∞ g(y)dy, ∫

R

(F −G)2

f
(x)dx ≤ 4b

∫
R

(f − g)2

f
(x)dx. (1.4)

Remark 1.7. • The combination of these two propositions implies that any proba-
bility measure µ on the real line admitting a positive density f such that b < +∞
satifies Tχ(16b).

• Proposition 1.6 is a generalization of the last assertion in Lemma 2.3 [7] where f
is restricted to the class of probability densities f∞ solving f∞(x) = −A(F∞(x))

on the real line with

A : [0, 1]→ R C1, negative on (0, 1) and s.t. A(0) = A(1) = 0, A′(0) < 0, A′(1) > 0.

The constant b associated with any such density is finite by the proof of Lemma
2.1 [7]. Moreover, in order to investigate the long-time behaviour of the solution
ft of the Fokker-Planck equation

∂tft(x) = ∂xxft(x) + ∂x(A
′(Ft(x))ft(x)), (t, x) ∈ [0,+∞)×R

to the density f∞ such that
∫
R
xf∞(x)dx =

∫
R
xf0(x)dx, [7] first investigates the

exponential convergence to 0 of
∫
R

(Ft−F∞)2

f∞
(x)dx (Lemma 2.8) before dealing with

that of
∫
R

(ft−f∞)2

f∞
(x)dx (Theorem 2.4).

• It is not possible to control
∫
R

(f−g)2
f (x)dx in terms of

∫
R

(F−G)2

f (x)dx, even when

b < +∞. Indeed let f(x) = 1
2e
−|x| and

for n ∈ N, gn(x) =
∑
k≤n

f(x)1[k−1,k)(|x|) +
∑
k≥n

e−
|x|
2

2
1[xk,k+1)(|x|)

where xk = k + 1 − 2 ln
(
1 + e−1

2 e−
k+1
2

)
belongs to (k, k + 1) and is such that∫ k+1

xk
e−

x
2 dx =

∫ k+1

k
e−xdx. One has, using ∀y ≥ 0, ln(1 + y) ≥ y

1+y by concavity of

the logarithm and 1 + e−1
2 e−

k+1
2 ≤

√
e for the inequality,∫

R

(f − gn)2

f
(x)dx = 2

∫ +∞

n

g2n
f
(x)dx− e−n = 2

∑
k≥n

ln

(
1 +

e− 1

2
e−

k+1
2

)
− e−n

≥ (e− 1)√
e

∑
k≥n

e−
k+1
2 − e−n = (

√
e+ 1)e−

n+1
2 − e−n.

On the other hand, since for k ≥ n and x ∈ [k, k + 1], 1 − e−k

2 ≤ Gn(x) ≤ F (x) =

1− e−x

2 , ∫
R

(F −Gn)2

f
(x)dx ≤

∑
k≥n

∫ k+1

k

(e−k − e−x)2

e−x
dx =

e2 − 2e− 1

e− 1
e−n.
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Proof of Theorem 1.1. The implication Tχ(C)⇒ P(C) is obtained by linearization of the
transport-chi-square inequality Tχ(C). For νε = (1+ εφ)µ with φ : Rd → R a C2 function
compactly supported and such that

∫
Rd
φ(x)dµ(x) = 0, according to [9] p394, there is a

finite constant K not depending on ε such that

∫
Rd
φ2(x)dµ(x) ≤

√∫
Rd
|∇φ(x)|2dµ(x)× W2(µ, νε)

ε
+
KW 2

2 (µ, νε)

ε
.

When Tχ(C) holds, then W2(µ, νε) ≤ ε
√
C
∫
Rd
φ2(x)dµ(x) and taking the limit ε→ 0, one

deduces that ∫
Rd
φ2(x)dµ(x) ≤

√∫
Rd
|∇φ(x)|2dµ(x)×

√
C

∫
Rd
φ2(x)dµ(x).

This implies
∫
Rd
φ2(x)dµ(x) ≤ C

∫
Rd
|∇φ(x)|2dµ(x). Let now ϕ, φn : Rd → R be C2

functions compactly supported with φn taking its values in [0, 1], equal to 1 on the ball
centered at the origin with radius n and ∇φn bounded by 1. Taking the limit n → ∞ in

the inequality written with φ replaced by ϕn = ϕ−φn
∫
Rd
ϕ(x)dµ(x)∫

Rd
φn(x)dµ(x)

, one deduces that the

Poincaré inequality P(C) holds for ϕ. The extension to C1 functions ϕ with a bounded
gradient is obtained by density.

To prove the converse implication, we now suppose that d = 1, µ satisfies the
Poincaré inequality P(C) and that χ2(ν|µ) < +∞. We set µn = ρn ? µ and νn = ρn ? ν for
n ≥ 1 where

ρn(x) =

√
n

2π
e−

nx2

2 (1.5)

denotes the density of the centered Gaussian law with variance 1/n. For ϕ a C1 function
on R with a bounded derivative such that 0 =

∫
R
ϕ(x)dµn(x) =

∫
R
ρn ? ϕ(x)dµ(x), one

has ∫
R

ϕ2(x)dµn(x) =

∫
R

(ρn ? ϕ
2)(x)− (ρn ? ϕ)

2(x)dµ(x) +

∫
R

(ρn ? ϕ)
2(x)dµ(x)

≤
∫
R

1

n
(ρn ? (ϕ

′)2)(x)dµ(x) + C

∫
R

(ρn ? ϕ
′)2(x)dµ(x)

≤ 1 + nC

n

∫
R

(ρn ? (ϕ
′)2)(x)dµ(x) =

1 + nC

n

∫
R

(ϕ′)2(x)dµn(x)

where we used the Poincaré inequalities for the Gaussian density ρn ([1] Théorème 1.5.1
p10) applied to ϕ and for µ applied to ρn ? ϕ for the second inequality then Jensen’s in-
equality. The probability measure µn admits a positive density w.r.t. the Lebesgue mea-
sure and satisfies P( 1+nCn ). According to Théorème 6.2.2 [1], this property is equivalent
to the fact that the constant associated with µn through (1.3) is bn ≤ 2 1+nC

n . Combining
Propositions 1.4 and 1.6, one deduces that

W 2
2 (µn, νn) ≤ 32

1 + nC

n
χ2
2(νn|µn).

To conclude, let us check that W 2
2 (µ, ν) ≤ lim infn→∞W 2

2 (µn, νn) and that χ2
2(νn|µn) ≤

χ2
2(ν|µ). First, the probability measures µn with c.d.f. Fn(x) = µn((−∞, x]) (resp νn with

c.d.f. Gn(x) = νn((−∞, x])) converge weakly to µ (resp. ν) which ensures that du a.e.
on (0, 1), (F−1n (u), G−1n (u)) tends to (F−1(u), G−1(u)) as n→∞. With Fatou lemma, one
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deduces that

W 2
2 (µ, ν) =

∫ 1

0

(F−1(u)−G−1(u))2du

≤ lim inf
n→∞

∫ 1

0

(F−1n (u)−G−1n (u))2du = lim inf
n→∞

W 2
2 (µn, νn).

On the other hand, by Jensen’s inequality,

χ2
2(νn|µn) =

∫
R

(∫
R
( dνdµ (y)− 1)ρn(x− y)dµ(y)∫

R
ρn(x− y)dµ(y)

)2 ∫
R

ρn(x− z)dµ(z)dx

≤
∫
R

∫
R

(
dν

dµ
(y)− 1

)2

ρn(x− y)dµ(y)dx = χ2
2(ν|µ).

Remark 1.8. Since

W 2
2 (µn, νn) ≤ inf

γ<µν

∫
R3

((x+ z)− (y + z))2dγ(x, y)ρn(z)dz =W 2
2 (µ, ν),

one has limn→∞W2(µn, νn) =W2(µ, ν).
Moreover, when χ2

2(ν|µ) < +∞, then interpreting µn and (resp νn) as the distribution
at time 1

n of a Brownian motion initially distributed according to µ (resp. ν) and using
Theorem 1.7 [4], one obtains limn→∞ χ2

2(νn|µn) = χ2
2(ν|µ).

2 Proof of Proposition 1.4

To prove the proposition, one first needs to express the Wasserstein distance in
terms of the cumulative distribution functions F and G instead of their pseudo-inverses.

Lemma 2.1.

W 2
2 (µ, ν) =

∫
R2

(
(F (x ∧ y)−G(x ∨ y))+ + (G(x ∧ y)− F (x ∨ y))+

)
dydx. (2.1)

Proof of Lemma 2.1. Using Fubini’s theorem and (1.1) for the third equality, one obtains

W 2
2 (µ, ν) =

∫ 1

0

(G−1(u)− F−1(u))2du

= 2

∫
[0,1]

∫
R2

(
1{F−1(u)≤x≤y<G−1(u)} + 1{G−1(u)≤x≤y<F−1(u)}

)
dxdydu

= 2

∫
R2

1{x≤y}

∫ 1

0

(
1{G(y)<u≤F (x)} + 1{F (y)<u≤G(x)}

)
dudydx

= 2

∫
R

∫ +∞

x

(
(F (x)−G(y))+ + (G(x)− F (y))+

)
dydx. (2.2)

By symmetry, one deduces that (2.1) holds.

Proof of Proposition 1.4. One has∫ +∞

x

(F (x)−G(y))+dy

= 1{F (x)>G(x)}

∫ G−1(F (x))

x

(F (x)−G(y))dy ≤ (F (x)−G(x))+(G−1(F (x))− x).

(2.3)
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By Fubini’s theorem and a similar argument,∫
R

∫ +∞

x

(G(x)− F (y))+dydx =

∫
R

∫ x

−∞
(G(y)− F (x))+dydx

≤
∫
R

(G(x)− F (x))+(x−G−1(F (x)))dx

With (2.2) and (2.3), then using Cauchy-Schwarz inequality and the change of variables
u = F (x), one deduces that when µ admits a positive density f w.r.t. the Lebesgue
measure, then

W 2
2 (µ, ν) ≤ 2

∫
R

|G(x)− F (x)||x−G−1(F (x))|dx

≤ 2

(∫
R

(G(x)− F (x))2

f(x)
dx

)1/2

×
(∫

R

(x−G−1(F (x)))2f(x)dx
)1/2

= 2

(∫
R

(G(x)− F (x))2

f(x)
dx

)1/2

×
(∫ 1

0

(F−1(u)−G−1(u))2du
)1/2

.

Recognizing that the second factor in the r.h.s. is equal to W2(µ, ν), one concludes that
(1.4) holds as soon as W2(µ, ν) < +∞. To prove (1.4) without assuming finiteness of
W2(µ, ν), one defines a sequence (Gn)n of cumulative distribution functions converging
pointwise to G by setting

Gn(x) =


F (x) ∧ 1

n if x < G−1( 1n )

G(x) if x ∈ [G−1( 1n ), G
−1(n−1n ))

F (x) ∨ n−1
n if x ≥ G−1(n−1n )

For x < G−1( 1n ), G(x) <
1
n and

|F (x)−Gn(x)| = (F (x)− 1

n
)+ ≤ min(|F (x)−G(x)|, (F (x)− 1

n+ 1
)+) ≤ |F (x)−Gn+1(x)|.

Similarly, for x ≥ G−1
(
n−1
n

)
, G(x) ≥ n−1

n and

|F (x)−Gn(x)| = (
n− 1

n
−F (x))+ ≤ min(|F (x)−G(x)|, ( n

n+ 1
−F (x))+) ≤ |F (x)−Gn+1(x)|.

As a consequence, for fixed x ∈ R, the sequence (|Gn(x)− F (x)|)n∈N is non-decreasing
and goes to |G(x) − F (x)| as n → ∞. By monotone convergence, one deduces that

limn→+∞
∫
R

(Gn−F )2

f (x)dx =
∫
R

(G−F )2

f (x)dx. Moreover,

G−1n (u) =


F−1(u) ∧G−1( 1n ) if u ≤ 1

n

G−1(u) if u ∈ ( 1n ,
n−1
n ]

F−1(u) ∨G−1(n−1n ) if u > n−1
n

.

As a consequence, denoting by νn the probability measure with c.d.f. Gn,

W 2
2 (µ, νn) =

∫ 1

0

(F−1(u)−G−1n (u))2du < +∞

and W 2
2 (µ, ν) ≤ lim infn→∞W 2

2 (µ, νn) by Fatou Lemma. One concludes by taking the
limit n→ +∞ in (1.4) written with (νn, Gn) replacing (ν,G).
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3 Proof of Proposition 1.6

Let us assume that b < +∞ and
∫
R

(f−g)2
f (x)dx < +∞. By integration by parts, for

n ∈ N∗,∫ n

−n

(F −G)2

f
(x)dx =

[
(F −G)2(x)

∫ x

m

dy

f(y)

]+n
−n
− 2

∫ n

−n
(F −G)(f − g)(x)

∫ x

m

dy

f(y)
dx.

(3.1)

For x larger than the median m of the density f , by definition of b, then by the equality
(F −G)(x) =

∫∞
x

(g − f)(y)dy and Cauchy-Schwarz inequality, one has

0 ≤ (F −G)2(x)
∫ x

m

dy

f(y)
≤ b (F −G)

2(x)∫ +∞
x

f(y)dy
= b

(∫∞
x

(f − g)(y)dy
)2∫ +∞

x
f(y)dy

≤ b
∫ ∞
x

(f − g)2

f
(y)dy.

where the right-hand-side tends to 0 as x → +∞ by integrability of (f−g)2
f on the real

line. Similarly, limx→−∞(F − G)2(x)
∫m
x

dy
f(y) = 0. Taking the limit n → ∞ in (3.1) and

using again the definition of b, one deduces that∫
R

(F −G)2

f
(x)dx ≤ 2b

∫
R

|(F −G)(f − g)|(x)

(
1{x≥m}∫∞
x
f(y)dy

+
1{x<m}∫ x
−∞ f(y)dy

)
dx. (3.2)

The product |(F −G)(f−g)|(x)×
(

1{x≥m}∫∞
x
f(y)dy

+
1{x<m}∫ x
−∞ f(y)dy

)
is locally integrable on R since

the first factor is integrable and the second one is locally bounded. Let an < +∞ denote
the integral of this function on [−n, n].

By Cauchy Schwarz inequality,

an ≤

√∫
R

(f − g)2
f

(x)dx

∫ n

−n
f(F −G)2(x)

(
1{x≥m}∫∞
x
f(y)dy

+
1{x<m}∫ x
−∞ f(y)dy

)2

dx

1/2

.

(3.3)

Now, setting εn = (F−G)2(n)∫∞
n
f(y)dy

+ (F−G)2(−n)∫−n
−∞ f(y)dy

, we obtain by integration by parts that for

n ≥ |m|,

∫ n

−n
f(F −G)2(x)

(
1{x≥m}∫∞
x
f(y)dy

+
1{x<m}∫ x
−∞ f(y)dy

)2

dx

=

[
(F −G)2(x)∫∞
x
f(y)dy

]n
m

− 2

∫ n

m

(F −G)(f − g)(x)∫∞
x
f(y)dy

dx−

[
(F −G)2(x)∫ x
−∞ f(y)dy

]m
−n

+ 2

∫ m

−n

(F −G)(f − g)(x)∫ x
−∞ f(y)dy

dx

= −4(F −G)2(m) + εn − 2

∫ n

−n
(F −G)(f − g)(x)

(
1{x≥m}∫∞
x
f(y)dy

−
1{x<m}∫ x
−∞ f(y)dy

)
dx

≤ 2an + εn.

Plugging this estimation in (3.3), one deduces that

∀n ≥ |m|, an ≤ 1{an>0}

(
2 +

εn
an

)∫
R

(f − g)2

f
(x)dx.
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Using that, according to the analysis of the boundary terms in the first integration by
parts performed in the proof, limn→+∞ εn = 0 and that (an)n is non-decreasing, one may
take the limit n→∞ in this inequality to obtain∫

R

|(F −G)(f − g)|(x)

(
1{x≥m}∫∞
x
f(y)dy

+
1{x<m}∫ x
−∞ f(y)dy

)
dx ≤ 2

∫
R

(f − g)2

f
(x)dx.

One easily concludes with (3.2).

4 Proof of Theorem 1.2

Let ν be a probability measure on Rd1 ×Rd2 with respective marginals ν1 and ν2 and
such that χ2(ν|µ1 ⊗ µ2) < +∞, ρ denote the Radon-Nykodym derivative dν

dµ1⊗µ2
and for

x1 ∈ Rd1 , ρ1(x1) =
∫
Rd2

ρ(x1, x2)dµ2(x2). Notice that

χ2
2(ν, µ1 ⊗ µ2) =

∫
Rd1+d2

(ρ(x1, x2)− 1)
2
dµ1(x1)dµ2(x2).

According to the tensorization property of transport costs (see for instance Proposi-
tion A.1 [6]),

W 2
2 (µ1 ⊗ µ2, ν) ≤W 2

2 (µ1, ν1) +

∫
Rd1

1{ρ1(x1)>0}W
2
2

(
µ2,

ρ(x1, .)

ρ1(x1)
µ2

)
dν1(x1) (4.1)

By Tχ(C1) satisfied by µ1, the equality dν1
dµ1

(x1) = ρ1(x1) =
∫
Rd2

ρ(x1, x2)dµ2(x2) and
Jensen’s inequality, one has

W 2
2 (µ1, ν1) ≤ C1χ

2
2(ν1|µ1) = C1

∫
Rd1

(ρ1(x1)− 1)2dµ1(x1) ≤ C1χ
2
2(ν, µ1 ⊗ µ2). (4.2)

So the first term of the right-hand-side of (4.1) is controled by χ2
2(ν, µ1 ⊗ µ2). By the

inequality Tχ(C2) satisfied by µ2, when ρ1(x1) > 0,

W 2
2

(
µ2,

ρ(x1, .)

ρ1(x1)
µ2

)
≤ C2

∫
Rd2

(
ρ(x1, x2)

ρ1(x1)
− 1

)2

dµ2(x2).

Unfortunately, there is no hope to control∫
Rd1+d2

1{ρ1(x1)>0}

(
ρ(x1, x2)

ρ1(x1)
− 1

)2

dν1(x1)dµ2(x2)

=

∫
Rd1+d2

1{ρ1(x1)>0}

(
ρ(x1, x2)

ρ1(x1)
− 1

)2

ρ1(x1)dµ1(x1)dµ2(x2)

in terms of χ2
2(ν, µ1 ⊗ µ2) because of the possible very small values of ρ1(x1). Therefore

it is not enough to plug the latter inequality into the right-hand-side of (4.1) to conclude
that µ1 ⊗ µ2 satisfies a transport-chi-square inequality. So we are only going to use this
inequality for ρ1(x1) ≥ 1

α where α is some constant larger than 1 to be optimized at the
end of the proof. Using Lemma 4.1 below with β = α, one obtains∫

Rd1

W 2
2

(
µ2,

ρ(x1, .)

ρ1(x1)
µ2

)
1{ρ1(x1)≥ 1

α}
dν1(x1)

≤ αC2

∫
Rd1+d2

(ρ(x1, x2)− 1)21{ρ1(x1)≥ 1
α}
dµ1(x1)dµ2(x2). (4.3)
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For small positive values of ρ1, we use the estimation of W 2
2

(
µ2,

ρ(x1,.)
ρ1(x1)

µ2

)
deduced

from the optimal coupling for the total variation distance. If ν 6= µ, let ε denote a

Bernoulli random variable with parameter p =
∫
Rd2

(
ρ(x1,x2)
ρ1(x1)

∧ 1
)
dµ2(x2) and (X,Y, Z)

denote an independent Rd2 ×Rd2 ×Rd2 -valued random vector with X, Y and Z respec-

tively distributed according to 1
p

(
ρ(x1,x2)
ρ1(x1)

∧ 1
)
dµ2(x2),

1
1−p

(
1− ρ(x1,x2)

ρ1(x1)

)+
dµ2(x2) and

1
1−p

(
ρ(x1,x2)
ρ1(x1)

− 1
)+

dµ2(x2). The random variables εX + (1− ε)Y and εX + (1− ε)Z are

respectively distributed according to dµ2(x2) and ρ(x1,x2)
ρ1(x1)

dµ2(x2). As a consequence,

W 2
2

(
µ2,

ρ(x1, .)

ρ1(x1)
µ2

)
≤ E

(
(1− ε)2|Y − Z|2

)
= (1− p)E

(
|Y − Z|2

)
≤ 2(1− p)

[
E

(∣∣∣∣Y − ∫
Rd2

y2dµ2(y2)

∣∣∣∣2
)

+ E

(∣∣∣∣Z − ∫
Rd2

y2dµ2(y2)

∣∣∣∣2
)]

≤ 2

∫
Rd2

∣∣∣∣x2 − ∫
Rd2

y2dµ2(y2)

∣∣∣∣2 ∣∣∣∣ρ(x1, x2)ρ1(x1)
− 1

∣∣∣∣ dµ2(x2).

One deduces∫
Rd1

1{0<ρ1(x1)<
1
α}
W 2

2

(
µ2,

ρ(x1, .)

ρ1(x1)
µ2

)
dν1(x1)

≤ 2

∫
Rd1+d2

∣∣∣∣x2 − ∫
Rd2

y2dµ2(y2)

∣∣∣∣2 |ρ(x1, x2)− ρ1(x1)| 1{ρ1(x1)<
1
α}
dµ1(x1)dµ2(x2)

≤ 2

(∫
Rd1+d2

∣∣∣∣x2 − ∫
Rd2

y2dµ2(y2)

∣∣∣∣4 1{ρ1(x1)<
1
α}
dµ1(x1)dµ2(x2)

)1/2

×
(∫

Rd1+d2

(ρ(x1, x2)− ρ1(x1))21{ρ1(x1)<
1
α}
dµ1(x1)dµ2(x2)

)1/2

≤ 2C2

√
(3d2 + 2)d2

(∫
Rd1

α2(ρ1(x1)− 1)2

(α− 1)2
1{ρ1(x1)<

1
α}
dµ1(x1)

)1/2

×
(∫

Rd1+d2

[(ρ(x1, x2)− 1)2 − (ρ1(x1)− 1)2]1{ρ1(x1)<
1
α}
dµ1(x1)dµ2(x2)

)1/2

≤
C2α

√
(3d2 + 2)d2
α− 1

∫
Rd1+d2

(ρ(x1, x2)− 1)21{ρ1(x1)<
1
α}
dµ1(x1)dµ2(x2),

where we used Cauchy Schwarz inequality for the second inequality, then Lemma 4.2
below and an explicit computation of the third factor for the third inequality and last
the inequality

√
b
√
a− b ≤ a

2 for any a ≥ b ≥ 0.

Inserting this estimation together with (4.2) and (4.3) into (4.1), one obtains

W 2
2 (µ1 ⊗ µ2, ν) ≤C1χ

2
2(ν1, µ1) + C2α

(
1 ∨

√
(3d2 + 2)d2
α− 1

)
χ2
2(ν, µ1 ⊗ µ2).

For the optimal choice α = 1 +
√
(3d2 + 2)d2, one concludes that the measure µ1 ⊗ µ2

satisfies Tχ(C1 + C2(1 +
√

(3d2 + 2)d2)). Exchanging the roles of µ1 and µ2 in the above
reasonning, one obtains that µ1 ⊗ µ2 also satisfies Tχ(C2 + C1(1 +

√
(3d1 + 2)d1)).
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Lemma 4.1. For β ≥ α > 0,∫
Rd1+d2

(
ρ(x1, x2)

ρ1(x1)
− 1

)2

1{ρ1(x1)≥ 1
α}
dν1(x1)dµ2(x2)

+ β

∫
Rd1

(ρ1(x1)− 1)21{ρ1(x1)≥ 1
α}
dµ1(x1)

≤β
∫
Rd1+d2

(ρ(x1, x2)− 1)
2
1{ρ1(x1)≥ 1

α}
dµ1(x1)dµ2(x2).

Proof. Developping the squares and using the definition of ρ1 and the equality dν1(x1) =
ρ1(x1)dµ1(x1), one checks that the difference between the right-hand-side and the first
term of the left-hand-side is equal to∫

Rd1

[(
β − 1

ρ1(x1)

)∫
Rd2

ρ2(x1, x2)dµ2(x2) + (1− 2β)ρ1(x1) + β

]
1{ρ1(x1)≥ 1

α}
dµ1(x1).

One easily concludes by remarking that the first integral is retricted to the x1 ∈ Rd1
such that 1

ρ1(x1)
≤ α ≤ β and that

∫
Rd2

ρ2(x1, x2)dµ2(x2) ≥
(∫

Rd2

ρ(x1, x2)dµ2(x2)

)2

= ρ21(x1).

Lemma 4.2. If a probability measure µ on Rd satisfies T (C), then∫
Rd

∣∣∣∣x− ∫
Rd
ydµ(y)

∣∣∣∣2 dµ(x) ≤ dC and

∫
Rd

∣∣∣∣x− ∫
Rd
ydµ(y)

∣∣∣∣4 dµ(x) ≤ (3d+ 2)dC2.

Proof. According to Theorem 1.1, µ satisfies P(C). By spatial translation, one may
assume that

∫
Rd
ydµ(y) = 0. Applying the Poincaré inequality P(C) to the functions

x = (x1, . . . , xd) ∈ Rd 7→ xi, x 7→ x2i and x 7→ xixj with 1 ≤ i 6= j ≤ d, yields,∫
Rd
x2i dµ(x) ≤ C∫

Rd
x4i dµ(x) ≤ 4C

∫
Rd
x2i dµ(x) +

(∫
Rd
x2i dµ(x)

)2

≤ 5C2

∫
Rd

(xixj)
2dµ(x) ≤ C

∫
Rd
x2i + x2jdµ(x) +

(∫
Rd
xixjdµ(x)

)2

≤ 2C2 +

∫
Rd
x2i dµ(x)

∫
Rd
x2jdµ(x) ≤ 3C2.

One easily concludes by summation of these inequalities.
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