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Abstract

We present an extension of the Gromov-Hausdorff metric on the set of compact met-
ric spaces: the Gromov-Hausdorff-Prokhorov metric on the set of compact metric
spaces endowed with a finite measure. We then extend it to the non-compact case by
describing a metric on the set of rooted complete locally compact length spaces en-
dowed with a boundedly finite measure. We prove that this space with the extended
Gromov-Hausdorff-Prokhorov metric is a Polish space. This generalization is needed
to define Lévy trees, which are (possibly unbounded) random real trees endowed
with a boundedly finite measure.
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1 Introduction

In the present work, we aim to give a topological framework to certain classes of
measured metric spaces. The methods go back to ideas from Gromov ([11]), who
first considered the so-called Gromov-Hausdorff metric in order to compare metric
spaces which might not be subspaces of a common metric space. The classical the-
ory of the Gromov-Hausdorff metric on the space of compact metric spaces, as well
as its extension to locally compact spaces, is exposed in particular in Burago, Burago
and Ivanov ([4]). Recently, the concept of Gromov-Hausdorff convergence has found
striking applications in the field of probability theory, in the context of random graphs.
Evans ([8]) and Evans, Pitman and Winter ([9]) considered the space of real trees, which
is Polish when endowed with the Gromov-Hausdorff metric. This has given a framework

∗Partial support: French “Agence Nationale de la Recherche” grant ANR-08-BLAN-0190.
†MAPMO, CNRS UMR 7349, Fédération Denis Poisson FR 2964, Université d’Orléans, France.
E-mail: romain.abraham@univ-orleans.fr
‡Université Paris-Est, CERMICS, Marne La Vallée, France.
E-mail: delmas@cermics.enpc.fr
§Université Paris-Est, CERMICS, Marne La Vallée, France.
E-mail: patrick.hoscheit@normalesup.org

http://ejp.ejpecp.org/
http://dx.doi.org/10.1214/EJP.v18-2116
http://hal.archives-ouvertes.fr/hal-00673921
mailto:romain.abraham@univ-orleans.fr
mailto:delmas@cermics.enpc.fr
mailto:patrick.hoscheit@normalesup.org
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to the theory of continuum random trees, which originated with Aldous ([3]). There are
also applications in the context of random maps, where there have been significant
developments in the last years.

If, in addition to their metric structure, measures are defined on the spaces in con-
sideration, the theory is not yet firmly established. In his monograph [15], Villani gives
an account of the current state of the theory. As mentioned by Villani, there are es-
sentially two approaches for the topology of metric measure spaces. The first is to
emphasize the importance of the measures carried by the spaces, and to compare met-
ric measure spaces through the measures defined on them. This approach, which goes
back to Gromov, was first described, in the context of compact real trees, in the mono-
graph [8] by Evans. Later, a similar framework was developed in [10] for (Polish) metric
spaces, endowed with probability measures, as well as in [13, 14] in connection with
mass transportation problems. In order to compare two such metric measure spaces,
embeddings of both spaces into some common Polish metric space are considered, and
the Prokhorov metric is used to compare the ensuing measures.

The second approach, used in this work, consists in combining the Hausdorff metric
with the Prokhorov metric in order to compare both geometric and measure-related
features of the spaces. Although it is known that the two approaches coincide when
restricted to some classes of metric measure spaces (such as spaces carrying measures
with the doubling property), this is not the case in general, and our approach is different
from [10] in this respect. This comes at the price of having to restrict ourselves to length
spaces.

Also, we treat the general case of boundedly finite measures instead of probability
measures. The latter were considered in [10] (with the Gromov-Prokhorov approach)
and in [2, 12] (with the Gromov-Hausdorff-Prokhorov approach). Roughly speaking,
our approach corresponds to vague convergence (or weak-# convergence, see Remark
2.3 below), whereas the classical approach using the Prokhorov metric corresponds to
weak convergence. Furthermore, the study of metric spaces with probability measures
in [2, 10, 12] relies crucially on Strassen’s theorem relating the Prokhorov distance
between probability measures and the existence of good couplings (see for instance
Corollary 11.6.4 in [6]). In the general case of boundedly finite measures considered
here, such a correspondence no longer holds. Therefore, in most of the proofs, we are
making use of the properties of ε-nets and finite approximations to the measures to
replace Strassen’s theorem.

This work was motivated by applications in the setting of weighted Lévy trees (which
are in particular length spaces), see Abraham, Delmas and Hoscheit ([1]). We give an
hint of those applications by stating that the construction of a weighted tree coded in
a continuous function with compact support is measurable with respect to the Gromov-
Hausdorff-Prokhorov topologies described in this paper. This construction allows us
to define real tree-valued random variables using continuous random processes on R,
in particular the Lévy trees of [7] that describe the genealogy of the so-called critical
or sub-critical continuous-state branching processes that become a.s. extinct. These
trees have an intrinsic metric, and carry a totally finite measure m. This measure can
be renormalized to a probability measure that can be interpreted as the uniform mea-
sure on the leaves of the tree. The construction can be generalized to super-critical
continuous-state branching processes which can live forever; in that case the corre-
sponding genealogical tree is infinite (in the sense that it has infinite diameter) with
positive probability. The construction of m can also be carried over from the sub-
critical and critical case, but the ensuing measure is no longer totally finite a.s., but
only boundedly finite. This paper gives an appropriate framework to handle such tree-
valued random variables and also tree-valued Markov processes as in [1].
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In the following sections, we describe several properties of the Gromov-Hausdorff-
Prokhorov metric, dcGHP, on the set K of (isometry classes of) compact metric spaces,
with a distinguished element called the root and endowed with a finite measure. The-
orem 2.5 ensures that (K, dcGHP) is a Polish metric space. We extend those results by
considering the Gromov-Hausdorff-Prokhorov metric, dGHP, on the set L of (isometry
classes of) rooted locally compact, complete length spaces, endowed with a boundedly
finite measure. Theorem 2.9 ensures that (L, dGHP) is also a Polish metric space. The
proof of the completeness of L relies on a pre-compactness criterion given in Theorem
2.11. It should be noted that some natural examples of metric measure spaces (such
as continuum random trees) do not satisfy doubling estimates on the measures, but are
length spaces. In this respect, the pre-compactness criterion might prove a useful com-
plement to Theorem 27.32 in [15]. The methods used are similar to the methods used
in [4] to derive properties about the Gromov-Hausdorff topology of the set of locally
compact complete length spaces.

The structure of the paper is as follows. Section 2 collects the main results of the
paper. The application to real trees is given in Section 3. The proofs of the results in
the compact case are given in Section 4. The proofs of the results in the locally compact
case are given in Section 5.

2 Main results

2.1 Rooted weighted metric spaces

Let (X, dX) be a Polish metric space. The diameter of A ∈ B(X) is given by

diam (A) = sup{dX(x, y); x, y ∈ A}.

For A,B ∈ B(X), we set

dXH (A,B) = inf{ε > 0; A ⊂ Bε and B ⊂ Aε},

the Hausdorff distance between A and B, where

Aε = {x ∈ X; inf
y∈A

dX(x, y) < ε} (2.1)

is the ε-halo set of A. If X is compact, then the space of compact subsets of X, en-
dowed with the Hausdorff metric, is compact (see theorem 7.3.8 in [4]). To state a
pre-compactness criterion, we will need the notion of ε-nets.

Definition 2.1. Let (X, dX) be a metric space, and ε > 0. A subset A ⊂ X is an ε-net of
B ⊂ X if

A ⊂ B ⊂ Aε.

Notice that, for any ε > 0, compact metric spaces admit finite ε-nets and locally
compact spaces admit locally finite ε-nets.

Let Mf (X) denote the set of all nonnegative finite Borel measures on X. If µ, ν ∈
Mf (X), we set

dXP (µ, ν) = inf{ε > 0; µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε for any closed set A},

the Prokhorov metric between µ and ν. It is well-known (see [5] Appendix A.2.5) that
(Mf (X), dXP ) is a Polish metric space, and that the topology generated by dXP is exactly
the topology of weak convergence (convergence against continuous bounded function-
als). When there is no ambiguity on the metric space (X, dX), we may write d, dH, and
dP instead of dX , dXH and dXP . In the case where we consider different metrics on the

EJP 18 (2013), paper 14.
Page 3/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2116
http://ejp.ejpecp.org/


Gromov-Hausdorff-Prokhorov distance on locally compact spaces

same space, in order to stress that the metric is dX , we will write dd
X

H and dd
X

P for the
corresponding Hausdorff and Prokhorov metrics. If Φ : X → X ′ is a Borel map between
two Polish metric spaces and if µ is a Borel measure on X, we will note Φ∗µ the image
measure on X ′ defined by Φ∗µ(A) = µ(Φ−1(A)), for any Borel set A ⊂ X.

In this paper, in order to generalize the properties of probability measures on Polish
metric spaces, we will be interested in metric spaces carrying boundedly finite mea-
sures, in the following sense:

Definition 2.2. Let (X, d) be a metric space. A Borel measure is boundedly finite if it
is finite on all bounded Borel sets.

The set of all boundedly finite nonnegative Borel measures onX will be notedM(X).
Let ∅ be a distinguished element of X, which we will call the root. We will often
consider the closed ball of radius r centered at ∅

X(r) = {x ∈ X; dX(∅, x) ≤ r}, (2.2)

and for µ ∈M(X) its restriction µ(r) to X(r)

µ(r)(dx) = 1X(r)(x) µ(dx). (2.3)

Remark 2.3. The Prokhorov metric could be extended to boundedly finite measures in
the following way. If µ, ν ∈ M(X), we define a generalized Prokhorov metric between
µ and ν:

dXgP(µ, ν) =

∫ ∞
0

e−r
(

1 ∧ dXP
(
µ(r), ν(r)

))
dr. (2.4)

It is not difficult to check that dXgP is well defined (see Lemma 2.8 in a more general
framework) and is a metric. Furthermore (M(X), dXgP) is a Polish metric space, and the
topology generated by dXgP is exactly the topology of weak-# convergence (convergence
against continuous bounded functionals with bounded support), see [5] Appendix A.2.6.
Notice that, when X is locally compact in addition of being Polish, then the weak-
# convergence coincides with the classical vague convergence (convergence against
continuous bounded functionals with compact support) onMf (X). However, this gen-
eralized Prokhorov distance is not well-suited to combination with the Hausdorff dis-
tance. Therefore, we will use another approach to compare two Polish metric spaces,
endowed with boundedly finite measures, by first comparing balls of finite radius using
the Gromov-Hausdorff-Prokhorov metric on compact metric spaces carrying finite mea-
sures, then integrating over all radii. The topology on boundedly finite measures we
recover will however be the same as the one defined by dgP.

Definition 2.4. • A rooted weighted metric space X = (X, d,∅, µ) is a metric space
(X, d) with a distinguished element ∅ ∈ X, called the root, and a boundedly finite
Borel measure µ.

• Two rooted weighted metric spaces X = (X, d,∅, µ) and X ′ = (X ′, d′,∅′, µ′) are
said to be GHP-isometric if there exists an isometric one-to-one map Φ : X → X ′

such that Φ(∅) = ∅′ and Φ∗µ = µ′. In that case, Φ is called a GHP-isometry.

Notice that if (X, d) is compact, then a boundedly finite measure on X is finite and
belongs toMf (X). We will now use a procedure due to Gromov ([11]) to compare any
two compact rooted weighted metric spaces, even if they are not subspaces of the same
Polish metric space.
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2.2 Gromov-Hausdorff-Prokhorov metric for compact spaces

For convenience, we recall the definition of the Gromov-Hausdorff metric, see for
example Definition 7.3.10 in [4]. Let (X, d) and (X ′, d′) be compact metric spaces. The
Gromov-Hausdorff distance between (X, d) and (X ′, d′) is given by

dcGH((X, d), (X ′, d′)) = inf
ϕ,ϕ′,Z

dZH(ϕ(X), ϕ′(X ′)), (2.5)

where the infimum is taken over all isometric embeddings ϕ : X ↪→ Z and ϕ′ : X ′ ↪→ Z

into some common Polish metric space (Z, dZ). Note that equation (2.5) actually defines
a metric on the set of isometry classes of compact metric spaces.

Now, let us introduce the Gromov-Hausdorff-Prokhorov metric on the class of com-
pact metric spaces. Let X = (X, d,∅, µ) and X ′ = (X ′, d′,∅′, µ′) be two compact rooted
weighted metric spaces, and define

dcGHP(X ,X ′) = inf
Φ,Φ′,Z

(
dZ(Φ(∅),Φ′(∅′)) + dZH(Φ(X),Φ′(X ′)) + dZP (Φ∗µ,Φ

′
∗µ
′)
)
, (2.6)

where the infimum is taken over all isometric embeddings Φ : X ↪→ Z and Φ′ : X ′ ↪→ Z

into some common Polish metric space (Z, dZ).
Note that equation (2.6) actually defines a semimetric, since dcGHP(X ,X ′) = 0 if X and

X ′ are GHP-isometric. Therefore, we will considerK, the set of GHP-isometry classes of
compact rooted weighted metric spaces and identify a compact rooted weighted metric
space with its class in K. Then the function dcGHP is finite on K2.

Theorem 2.5. (i) The function dcGHP defines a metric on K.

(ii) The space (K, dcGHP) is a Polish metric space.

This metric (the compact Gromov-Hausdorff-Prokhorov metric) extends the Gromov-
Hausdorff metric on compact metric spaces, see [4] section 7, as well as the Gromov-
Hausdorff-Prokhorov metric on compact metric spaces endowed with a probability mea-
sure, see [12]. See also [10] for another approach.

We end this section by a pre-compactness criterion on K.

Theorem 2.6. Let A be a subset of K, such that

(i) We have sup(X,d,∅,µ)∈A diam (X) < +∞.

(ii) For every ε > 0, there exists a finite integerN(ε) ≥ 1, such that for (X, d,∅, µ) ∈ A,
there is an ε-net of X with cardinal less than N(ε).

(iii) We have sup(X,d,∅,µ)∈A µ(X) < +∞.

Then, A is relatively compact: every sequence in A admits a sub-sequence that con-
verges in the dcGHP topology.

Note that we could have defined a Gromov-Hausdorff-Prokhorov metric without ref-
erence to any root. However, the introduction of the root is necessary to define the
Gromov-Hausdorff-Prokhorov metric for locally compact spaces, see next section.

2.3 Gromov-Hausdorff-Prokhorov metric for locally compact spaces

To consider an extension to non-compact weighted rooted metric spaces, we will
consider complete and locally compact length spaces.

We recall that a metric space (X, d) is a length space if for every x, y ∈ X, we have

d(x, y) = inf L(γ),
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where the infimum is taken over all rectifiable curves γ : [0, 1] → X such that γ(0) = x

and γ(1) = y, and where L(γ) is the length of the rectifiable curve γ. We recall that
(X, d) is a length space if and only of it satisfies the mid-point condition (see Theorem
2.4.16 in [4]): for all ε > 0, x, y ∈ X, there exists z ∈ X such that

|2d(x, z)− d(x, y)|+ |2d(y, z)− d(x, y)| ≤ ε.

Definition 2.7. Let L be the set of GHP-isometry classes of rooted, weighted, complete
and locally compact length spaces and identify a rooted, weighted, complete and locally
compact length spaces with its class in L.

If X = (X, d,∅, µ) ∈ L then for r ≥ 0 we will consider its restriction to the closed
ball of radius r centered at ∅, X (r) = (X(r), d(r),∅, µ(r)), where X(r) is defined by (2.2),
where the metric d(r) is the restriction of d to X(r), and where the measure µ(r) is
defined by (2.3). Recall that the Hopf-Rinow theorem implies that if (X, d) is a complete
and locally compact length space, then every closed bounded subset of X is compact.
In particular if X belongs to L , then X (r) belongs to K for all r ≥ 0.

We state a regularity lemma of dcGHP with respect to the restriction operation.

Lemma 2.8. Let X and Y be two elements of L. Then the function defined on R+ by
r 7→ dcGHP

(
X (r),Y(r)

)
is càdlàg.

This implies that the following function (inspired by (2.4)) is well defined on L2:

dGHP(X ,Y) =

∫ ∞
0

e−r
(

1 ∧ dcGHP

(
X (r),Y(r)

))
dr.

Theorem 2.9. (i) The function dGHP defines a metric on L.

(ii) The space (L, dGHP) is a Polish metric space.

The next result implies that dcGHP and dGHP define the same topology on K ∩ L.

Proposition 2.10. Let (Xn, n ∈ N) and X be elements of K ∩ L. Then the sequence
(Xn, n ∈ N) converges to X in (K, dcGHP) if and only if it converges to X in (L, dGHP).

Finally, we give a pre-compactness criterion on L which is a generalization of the
well-known compactness theorem for compact metric spaces, see for instance Theorem
7.4.15 in [4].

Theorem 2.11. Let C be a subset of L, such that for every r ≥ 0,

(i) For every ε > 0, there exists a finite integer N(r, ε) ≥ 1, such that for any
(X, d,∅, µ) ∈ C, there is an ε-net of X(r) with cardinal less than N(r, ε).

(ii) We have sup(X,d,∅,µ)∈C µ(X(r)) < +∞.

Then C is relatively compact: every sequence in C admits a sub-sequence that converges
in the dGHP topology.

3 Application to real trees coded by functions

A metric space (T, d) is a real tree (orR-tree) if the following properties are satisfied:

(i) For every s, t ∈ T , there is a unique isometric map fs,t from [0, d(s, t)] to T such
that fs,t(0) = s and fs,t(d(s, t)) = t.

(ii) For every s, t ∈ T , if q is a continuous injective map from [0, 1] to T such that
q(0) = s and q(1) = t, then q([0, 1]) = fs,t([0, d(s, t)]).
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Note that real trees are always length spaces and that complete real trees are the only
complete connected spaces that satisfy the so-called four-point condition:

∀x1, x2, x3, x4 ∈ X, d(x1, x2) + d(x3, x4) ≤ (d(x1, x3) + d(x2, x4)) ∨ (d(x1, x4) + d(x2, x3)).

(3.1)
We say that a real tree is rooted if there is a distinguished vertex ∅, the root of T .

Definition 3.1. We denote by T the set of (GHP-isometry classes of) rooted, weighted,
complete and locally compact real trees, in short w-trees.

We deduce the following corollary from Theorem 2.9 and the four-point condition
characterization of real trees.

Corollary 3.2. The set T is a closed subset of L and (T, dGHP) is a Polish metric space.

Let f be a continuous non-negative function defined on [0,+∞), such that f(0) = 0,
with compact support. We set

σf = sup{t; f(t) > 0},

with the convention sup∅ = 0. Let df be the non-negative function defined by

df (s, t) = f(s) + f(t)− 2 inf
u∈[s∧t,s∨t]

f(u).

It can be easily checked that df is a semi-metric on [0, σf ]. One can define the equiva-
lence relation associated with df by s ∼ t if and only if df (s, t) = 0. Moreover, when we
consider the quotient space

T f = [0, σf ]/∼

and, noting again df the induced metric on T f and rooting T f at ∅f , the equivalence
class of 0, it can be checked that the space (T f , df ,∅f ) is a rooted compact real tree.
We denote by pf the canonical projection from [0, σf ] onto T f , which is extended by
pf (t) = ∅f for t ≥ σf . Notice that pf is continuous. We define mf , a Borel measure on
T f as the image measure on T f of the Lebesgue measure on [0, σf ] by pf . We consider
the (compact) w-tree T f = (T f , df ,∅f ,mf ).

We have the following elementary result (see Lemma 2.3 of [7] when dealing with
the Gromov-Hausdorff metric instead of the Gromov-Hausdorff-Prokhorov metric). For
a proof, see [1].

Proposition 3.3. Let f, g be two compactly supported, non-negative continuous func-
tions with f(0) = g(0) = 0. Then

dcGHP(T f , T g) ≤ 6‖f − g‖∞ + |σf − σg|. (3.2)

This result and Proposition 2.10 ensure that the map f 7→ T f (defined on the space
of continuous functions with compact support vanishing at 0, with the uniform topology)
taking values in (T ∩K, dcGHP) or (T, dGHP) is measurable.

4 Gromov-Hausdorff-Prokhorov metric for compact spaces

4.1 Proof of (i) of Theorem 2.5

In this section, we will prove that dcGHP defines a metric on K.
First, we will prove the following technical lemma, which is a generalization of Re-

mark 7.3.12 in [4]. Let X = (X, dX ,∅X , µX) and Y = (Y, dY ,∅Y , µY ) be two elements
of K. We will use the notation X t Y for the disjoint union of the sets X and Y . We
will abuse notations and note X,µX ,∅X and Y, µY ,∅Y the images of X,µX ,∅X and of
Y, µY ,∅Y respectively by the canonical embeddings X ↪→ X t Y and Y ↪→ X t Y .
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Lemma 4.1. Let X = (X, dX ,∅X , µX) and Y = (Y, dY ,∅Y , µY ) be two elements of K.
Then

dcGHP(X ,Y) = inf
d

{
d(∅X ,∅Y ) + ddH(X,Y ) + ddP(µX , µY )

}
, (4.1)

where the infimum is taken over all metrics d on X t Y such that the canonical embed-
dings X ↪→ X t Y and Y ↪→ X t Y are isometries.

Proof. We only have to show that

inf
d

{
d(∅X ,∅Y ) + ddH(X,Y ) + ddP(µX , µY )

}
≤ dcGHP(X ,Y), (4.2)

since the other inequality is obvious. Let (Z, dZ) be a Polish space and ΦX and ΦY be
isometric embeddings of X and Y in Z. Let δ > 0. We define the following function on
(X t Y )2:

d(x, y) =


dZ(ΦX(x),ΦY (y)) + δ if x ∈ X, y ∈ Y,
dX(x, y) if x, y ∈ X,
dY (x, y) if x, y ∈ Y.

(4.3)

It is obvious that d is a metric on X t Y , and that the canonical embeddings of X
and Y in X t Y are isometric. Furthermore, by definition, we have d(∅X ,∅Y ) =

dZ(ΦX(∅X),ΦY (∅Y )) + δ. Concerning the Hausdorff distance between X and Y , we
get that

ddH(X,Y ) ≤ dZH(ΦX(X),ΦY (Y )) + δ.

Finally, let us compute the Prokhorov distance between µX and µY . Let ε > 0 be
such that dZP (ΦX∗ µ

X ,ΦY∗ µ
Y ) < ε. Let A be a closed subset of X t Y . By definition,

µX(A) = µX(A ∩X) = ΦX∗ µ
X(ΦX(A ∩X))

< ΦY∗ µ
Y ({z ∈ Z, dZ(z,ΦX(A ∩X)) < ε}) + ε

= ΦY∗ µ
Y ({z ∈ ΦY (Y ), dZ(z,ΦX(A ∩X)) < ε}) + ε

≤ µY ({y ∈ Y, d(y,A ∩X) < ε+ δ}) + ε

≤ µY ({y ∈ X t Y, d(y,A) < ε+ δ}) + ε.

The same result holds for (X,Y ) replaced by (Y,X) and therefore we get ddP(µX , µY ) <

ε+ δ. This implies

ddP(µX , µY ) ≤ dZH(ΦX∗ µ
X ,ΦY∗ µ

Y ) + δ.

Eventually, we get

d(∅X ,∅Y ) + ddH(X,Y ) + ddP(µX , µY )

≤ dZ(ΦX(∅X),ΦY (∅Y )) + dZH(ΦX(X),ΦY (Y )) + dZH(ΦX∗ µ
X ,ΦY∗ µ

Y ) + 3δ.

Thanks to (2.6) and since δ > 0 is arbitrary, we get (4.2).

We now prove that dcGHP does indeed satisfy all the axioms of a metric (as is done in
[4] for the Gromov-Hausdorff metric and in [12] in the case of probability measures on
compact metric spaces). The symmetry and positiveness of dcGHP being obvious, let us
prove the triangle inequality and positive definiteness.

Lemma 4.2. The function dcGHP satisfies the triangle inequality on K.
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Proof. Let X1,X2 and X3 be elements of K. Let us assume that dcGHP(Xi,X2) < ri for
i ∈ {1, 3}. With obvious notations, for i ∈ {1, 3}, we consider, as in Lemma 4.1, metrics
di on Xi tX2. Let us then consider Z = X1 tX2 tX3, on which we define

d(x, y) =

{
di(x, y) if x, y ∈ (Xi tX2)2 for i ∈ {1, 3},
infz∈X2

{d1(x, z) + d3(z, y)} if x ∈ X1, y ∈ X3.
(4.4)

The function d is in fact a metric on Z, and the canonical embeddings are isometries,
since they are isometries for d1 and d3. By definition, we have

ddH(X1, X3) =

(
sup
x1∈X1

inf
x3∈X3

d(x1, x3)

)
∨
(

sup
x3∈X3

inf
x1∈X1

d(x1, x3)

)
.

We notice that

sup
x1∈X1

inf
x3∈X3

d(x1, x3) = sup
x1∈X1

inf
x2∈X2, x3∈X3

d1(x1, x2) + d3(x2, x3)

≤ dd1H (X1, X2) + inf
x2∈X2, x3∈X3

d3(x2, x3)

≤ dd1H (X1, X2) + dd3H (X2, X3).

Thus, ddH(X1, X3) ≤ dd1H (X1, X2) + dd3H (X2, X3).
As far as the Prokhorov distance is concerned, for i ∈ {1, 3}, let εi be such that

ddiP (µi, µ2) < εi. Then, if A ⊂ Z is closed,

µ1(A) = µ1(A ∩X1) < µ2({x ∈ X1 tX2, d1(x,A ∩X1) < ε1}) + ε1

≤ µ2(Aε1 ∩X2) + ε1

< µ3({x ∈ X3 tX2, d3(x,Aε1 ∩X2) < ε3}) + ε1 + ε3

≤ µ3(Aε1+ε3) + ε1 + ε3,

where Aε = {z ∈ Z, d(z,A) < ε}, for ε = ε1 and ε = ε1 + ε3. A similar result holds with
(µ1, µ3) replaced by (µ3, µ1). We deduce that ddP(µ1, µ3) < ε1 + ε3, which implies that
ddP(µ1, µ3) ≤ dd1P (µ1, µ2) + dd3P (µ2, µ3).

By summing up all the results, we get

d(∅1,∅3) + ddH(X1, X3) + ddP(µ1, µ3) ≤
∑

i∈{1,3}

ddi(∅i,∅2) + ddiH (Xi, X2) + ddiP (µi, µ2).

Then use the definition (2.6) and Lemma 4.1 to get the triangle inequality

dcGHP(X1,X3) ≤ dcGHP(X1,X2) + dcGHP(X2,X3).

This proves that dcGHP is a semi-metric on K. We now prove the positive definiteness.

Lemma 4.3. Let X ,Y be two elements of K such that dcGHP(X ,Y) = 0. Then X = Y (as
GHP-isometry classes of rooted weighted compact metric spaces).

Proof. Let X = (X, dX ,∅X , µX) and Y = (Y, dY ,∅Y , µY ) in K such that dcGHP(X ,Y) = 0.
According to Lemma 4.1, we can find a sequence of metrics (dn, n ≥ 1) on X t Y , such
that

dn(∅X ,∅Y ) + dnH(X,Y ) + dnP (µX , µY ) < εn, (4.5)

for some positive sequence (εn, n ≥ 1) decreasing to 0, where dnH and dnP stand for dd
n

H

and dd
n

P . For any k ≥ 1, let Sk be a finite (1/k)-net of X, containing the root. Since X is
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compact, we get by Definition 2.1 that Sk is in fact an ( 1
k −δ)-net of X for some δ > 0.

Let Nk + 1 be the cardinal of Sk. We will write

Sk = {x0,k = ∅X , x1,k, ..., xNk,k}.

Let (Vi,k, 0 ≤ i ≤ Nk) be Borel subsets of X with diameter less than 1/k, that is

sup
x,x′∈Vi,k

dX(x, x′) < 1/k,

such that
⋃

0≤i≤Nk
Vi,k = X and for all 0 ≤ i, i′ ≤ Nk, we have Vi,k

⋂
Vi′,k = ∅ and

xi,k ∈ Vi,k if Vi,k 6= ∅. We set

µXk (dx) =

Nk∑
i=0

µX(Vi,k)δxi,k
(dx),

where δx′(dx) is the Dirac measure at x′. Notice that

dXH (X,Sk) ≤ 1

k
and dXP (µXk , µ

X) ≤ 1

k
·

We set y0,k = yn0,k = ∅Y . By (4.5), we get that for any k ≥ 1, 0 ≤ i ≤ Nk, there
exists yni,k ∈ Y such that dn(xi,k, y

n
i,k) < εn. Since Y is compact, the sequence (yni,k, n ≥

1) is relatively compact, hence admits a converging sub-sequence. Using a diagonal
argument, and without loss of generality (by considering the sequence instead of the
sub-sequence), we may assume that for k ≥ 1, 0 ≤ i ≤ Nk, the sequence (yni,k, n ≥ 1)

converges to some yi,k ∈ Y .

For any y ∈ Y , we can choose x ∈ X such that dn(x, y) < εn and i, k such that
dX(x, xi,k) < 1

k −δ. Then, we get

dY (y, yni,k) = dn(y, yni,k) ≤ dn(y, x) + dX(x, xi,k) + dn(xi,k, y
n
i,k) ≤ 1

k
−δ + 2εn.

Thus, the set {yni,k, 0 ≤ i ≤ Nk} is a (2εn + 1/k − δ)-net of Y , and the set SYk = {yi,k, 0 ≤
i ≤ Nk} is an 1/k-net of Y .

If k, k′ ≥ 1 and 0 ≤ i ≤ Nk, 0 ≤ i′ ≤ Nk′ , then we have

dY (yi,k, yi′,k′) ≤ dY (yni,k, yi,k) + dY (yni,k, y
n
i′,k′) + dY (yni′,k′ , yi′,k′)

≤ dY (yni,k, yi,k) + dY (yni′,k′ , yi′,k′) + 2εn + dX(xi,k, xi′,k′),

and, since the terms d(yni,k, yi,k) and d(yni′,k′ , yi′,k′) can be made arbitrarily small, we
deduce

d(yi,k, yi′,k′) ≤ d(xi,k, xi′,k′).

The reverse inequality is proven using similar arguments, so that the above inequality
is in fact an equality. Therefore the map defined by Φ(xi,k) = (yi,k) from ∪k≥1Sk onto
∪k≥1S

Y
k is a root-preserving isometry. By density, this map can be extended uniquely to

an isometric one-to-one root-preserving embedding from X to Y which we still denote
by Φ. Hence the metric spaces X and Y are root-preserving isometric.

As far as the measures are concerned, we set

µY,nk =

Nk∑
i=0

µX(Vi,k)δyni,k and µYk =

Nk∑
i=0

µX(Vi,k)δyi,k .
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By construction, we have dnP (µY,nk , µXk ) ≤ εn. We get

dYP (µYk , µ
Y ) = dnP (µYk , µ

Y ) ≤ dYP (µYk , µ
Y,n
k ) + dnP (µY,nk , µXk ) + dXP (µXk , µ

X) + dnP (µX , µY )

< dYP (µYk , µ
Y,n
k ) + εn +

1

k
+εn.

Furthermore, as n goes to infinity, we have that dYP (µYk , µ
Y,n
k ) converges to 0, since the

yni,k converge towards the yi,k. Thus, we actually have

dYP (µYk , µ
Y ) ≤ 1/k.

This implies that (µYk , k ≥ 1) converges weakly to µY . Since by definition µYk = Φ∗µ
X
k

and since Φ is continuous, by passing to the limit, we get µY = Φ∗µ
X . This gives that X

and Y are GHP-isometric.

This proves that the function dcGHP defines a metric on K.

4.2 Proof of Theorem 2.6 and of (ii) of Theorem 2.5

The proof of Theorem 2.6 is very close to the proof of Theorem 7.4.15 in [4], where
only the Gromov-Hausdorff metric is involved. It is in fact a simplified version of the
proof of Theorem 2.11, and is thus left to the reader.

We are left with the proof of (ii) of Theorem 2.5. It is in fact enough to check that if
(Xn, n ∈ N) is a Cauchy sequence, then it is relatively compact.

First notice that if (Z, dZ) is a Polish metric space, then for any closed subsets
A,B, we have dZH(A,B) ≥ |diam (A)− diam (B)|, and for any µ, ν ∈ Mf (Z), we have
dZP (µ, ν) ≥ |µ(Z)− ν(Z)|. This implies that for any elements of K, X = (X, dX ,∅X , µ)

and Y = (Y, dY ,∅Y , ν),

dcGHP(X ,Y) ≥ |diam (X)− diam (Y )|+ |µ(X)− ν(Y )| . (4.6)

Furthermore, using the definition of the Gromov-Hausdorff metric (2.5), we clearly have

dcGHP(X ,Y) ≥ dcGH((X, dX), (Y, dY )). (4.7)

We deduce that if A = (Xn, n ∈ N) is a Cauchy sequence, then (4.6) implies that
conditions (i) and (iii) of Theorem 2.6 are fulfilled. Furthermore, thanks to (4.7), the
sequence ((Xn, d

Xn), n ∈ N) is a Cauchy sequence for the Gromov-Hausdorff metric.
Then point (2) of Proposition 7.4.11 in [4] readily implies condition (ii) of Theorem 2.6.

5 Extension to locally compact length spaces

5.1 First results

First, let us state two elementary lemmas. Let (X, d,∅) be a rooted metric space.
Recall notation (2.2). We set

∂rX = {x ∈ X; d(∅x, x) = r}.

Lemma 5.1. Let (X, d,∅) be a complete rooted length space and r, ε > 0. Then we
have, for all δ > 0

X(r+ε) ⊂ (X(r))ε+δ.

Proof. Let x ∈ X(r+ε)\X(r) and δ > 0. There exists a rectifiable curve γ defined on [0, 1]

with values in X such that γ(0) = ∅ and γ(1) = x, such that L(γ) < d(∅, x)+δ ≤ r+ε+δ.
There exists t ∈ (0, 1) such that γ(t) ∈ ∂rX. We can bound d(γ(t), x) by the length of the
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fragment of γ joining γ(t) and x, that is the length of γ minus the length of the fragment
of γ joining ∅ to γ(t). The latter being equal to or larger than d(∅X , γ(t)) = r, we get

d(γ(t), x) ≤ L(γ)− r < ε+ δ.

Since γ(t) ∈ X(r), we get x ∈
(
X(r)

)ε+δ
. This ends the proof.

Lemma 5.2. Let X = (X, d,∅, µ) ∈ L. For all ε > 0 and r > 0, we have

dcGHP(X (r),X (r+ε)) ≤ ε+ µ(X(r+ε) \X(r)).

Proof. The identity map is an obvious root-preserving embedding X(r) ↪→ X(r+ε). Then,
we have

dcGHP(X (r),X (r+ε)) ≤ dH(X(r), X(r+ε)) + dP(µ(r), µ(r+ε)).

Thanks to Lemma 5.1, we have dH(X(r), X(r+ε)) ≤ ε.
Let A ⊂ X be closed. We have obviously µ(r)(A) ≤ µ(r+ε)(A). On the other hand, we

have

µ(r+ε)(A) ≤ µ(r)(A) + µ(A ∩ (X(r+ε) \X(r))) ≤ µ(r)(A) + µ(X(r+ε) \X(r)).

This proves that dP(µ(r), µ(r+ε)) ≤ µ(X(r+ε) \X(r)), which ends the proof.

It is then straightforward to prove Lemma 2.8.

Proof of Lemma 2.8. Let X = (X, dX ,∅X , µX) and Y = (Y, dY ,∅Y , µY ) be two elements
of L. Using the triangle inequality twice and Lemma 5.2, we get for r > 0 and ε > 0,

|dcGHP(X (r),Y(r))− dcGHP(X (r+ε),Y(r+ε))| ≤ dcGHP(X (r),X (r+ε)) + dcGHP(Y(r),Y(r+ε))

≤ 2ε+ µX(X(r+ε) \X(r)) + µY (Y (r+ε) \ Y (r)).

As ε goes down to 0, the expression above converges to 0, so that we get right-continuity
of the function r 7→ dcGHP(X (r),Y(r)).

We write X (r−) for the compact metric space X(r) rooted at ∅X along with the
induced metric and the restriction of µ to the open ball {x ∈ X; dX(∅X , x) < r}. We
define Y(r−) similarly. Similar arguments as above yield, for r > ε > 0,

|dcGHP(X (r−),Y(r−))− dcGHP(X (r−ε),Y(r−ε))|

≤ dcGHP(X (r−),X (r−ε)) + dcGHP(Y(r),Y(r−ε))

≤ 2ε+ µX({x ∈ X, r − ε < dX(∅X , x) < r}) + µY ({y ∈ Y, r − ε < dY (∅Y , y) < r}).

As ε goes down to 0, the expression above also converges to 0, which shows the exis-
tence of left limits for the function r 7→ dcGHP(X (r),Y(r)).

The next result corresponds to (i) in Theorem 2.9.

Proposition 5.3. The function dGHP is a metric on L.

Proof. The symmetry and positivity of dGHP are obvious. The triangle inequality is not
difficult either, since dcGHP satisfies the triangle inequality and the map x 7→ 1 ∧ x is
non-decreasing and sub-additive.

We need to check that dGHP is definite positive. To that effect, let X = (X, dX ,∅X , µ)

and Y = (Y, dY ,∅Y , ν) be two elements of L such that dGHP(X ,Y) = 0. We want to prove
that X and Y are GHP-isometric. We follow the spirit of the proof of Lemma 4.3.
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By definition, we get that for almost every r > 0, dcGHP(X (r),Y(r)) = 0. Let (rn, n ≥ 1)

be a sequence such that rn ↑ ∞ and such that for n ≥ 1, dcGHP(X (rn),Y(rn)) = 0. Since
dcGHP is a metric on K, there exists a GHP-isometry Φn : X(rn) → Y (rn) for every n ≥ 1.
Since all the X(r) are compact, we may consider, for n ≥ 1 and for k ≥ 1, a finite 1/k-net
of X(rn) containing the root:

Snk = {xn0,k = ∅X , xn1,k, ..., xnNn
k ,k
}.

Then, if k ≥ 1, n ≥ 1, 0 ≤ i ≤ Nn
k , the sequence (Φj(xni,k), j ≥ n) is bounded since the Φj

are isometries. Using a diagonal procedure, we may assume without loss of generality,
that for every k ≥ 1, n ≥ 1, 0 ≤ i ≤ Nn

k , the sequence (Φj(xni,k), j ≥ n) converges to
some limit yni,k ∈ Y . We define the map Φ on S :=

⋃
n≥1, k≥1 S

n
k taking values in Y by

Φ(xni,k) = yni,k.

Notice that Φ is an isometry and root-preserving as Φ(∅X) = ∅Y (see the proof of
Lemma 4.3). The set Φ(Snk ) is obviously a 2/k-net of Y (rn), so that Φ(S) is a dense
subset of Y . Therefore, the map Φ can be uniquely extended into a one-to-one root
preserving isometry from X to Y , which we will still denote by Φ. It remains to prove
that Φ is a GHP-isometry, that is, such that ν = Φ∗µ.

For n ≥ 1, k ≥ 1, let (V ni,k, 0 ≤ i ≤ Nn
k ) be Borel subsets of X(rn) with diameter less

than 1/k, such that
⋃

0≤i≤Nk
V ni,k = X(rn) and such that for all 0 ≤ i, i′ ≤ Nk, we have

V ni,k
⋂
V ni′,k = ∅ and xni,k ∈ V ni,k if V ni,k 6= ∅. We then define the following measures:

µnk =

Nn
k∑

i=0

µ(V ni,k)δxn
i,k

and νnk =

Nn
k∑

i=0

µ(V ni,k)δyni,k .

Let A ⊂ X be closed. We obviously have µnk (A) ≤ µ(rn)(A1/k), and µ(rn)(A) ≤ µnk (A1/k)

that is

dXP (µnk , µ
(rn)) ≤ 1

k
· (5.1)

For any n ≥ 1, k ≥ 1, we have by construction νnk = Φ∗µ
n
k and ν(rn) = Φj∗µ

(rn) for any
j ≥ n ≥ 1. We can then write, for j ≥ n,

dYP (νnk , ν
(rn)) = dYP (Φ∗µ

n
k ,Φ

j
∗µ

(rn))

≤ dYP (Φ∗µ
n
k ,Φ

j
∗µ

n
k ) + dYP (Φj∗µ

n
k ,Φ

j
∗µ

(rn))

≤ dYP (Φ∗µ
n
k ,Φ

j
∗µ

n
k ) +

1

k
,

where for the last inequality we used dYP (Φj∗µ
n
k ,Φ

j
∗µ

(rn)) = dXP (µnk , µ
(rn)) and (5.1). Since

the two measures Φ∗µ
n
k and Φj∗µ

n
k have the same masses distributed on a finite number

of atoms, and the atoms Φj(xni,k) of Φj∗µ
n
k converge towards the atoms yni,k of Φ∗µ

n
k , we

deduce that

lim
j→+∞

dYP (Φ∗µ
n
k ,Φ

j
∗µ

n
k ) = 0.

Hence, (νnk , k ≥ 1) converges weakly towards ν(rn). According to (5.1), the sequence
(µnk , k ≥ 1) converges weakly to µ(rn). Since we have νnk = Φ∗µ

n
k and Φ is continuous,

we get ν(rn) = Φ∗µ
(rn) for any n ≥ 1, and thus ν = Φ∗µ. This ends the proof.

We are now ready to prove Proposition 2.10. Note that we will not use (ii) of Theorem
2.9 in this section as it is not yet proved.
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Proof of Proposition 2.10. By construction, the convergence inK∩L for the dGHP metric
implies the convergence for the dcGHP metric. We only have to prove that the converse
is also true.

Let X = (X, dX ,∅, µ) and Xn = (Xn, d
Xn ,∅n, µn) be elements ofK∩L and (εn, n ∈ N)

be a positive sequence converging towards 0 such that, for all n ∈ N,

dcGHP(Xn,X ) < εn.

Using Lemma 4.1, we consider a metric dn on the disjoint union Xn tX, such that we
have for n ∈ N, and writing dnH and dnP respectively for dd

n

H and dd
n

P ,

dn(∅n,∅) + dnH(Xn, X) + dnP (µn, µ) < εn.

If xn ∈ X
(r)
n , by definition of the Hausdorff metric, there exists x ∈ X such that

dn(xn, x) ≤ dnH(Xn, X). Then

dn(∅, x) ≤ dn(∅,∅n) + dn(∅n, xn) + dn(xn, x) ≤ dn(∅n,∅) + r + dnH(Xn, X) < r + εn.

We get that x belongs to X(r+ε′n) for some ε′n < εn and thus, according to Lemma
5.1, it belongs to (X(r))εn , since X is a complete length space. Therefore we have

X
(r)
n ⊂ (X(r))εn . Similar arguments yield X(r) ⊂ (X

(r)
n )εn . We deduce that

dnH(X(r)
n , X(r)) ≤ εn. (5.2)

If A ⊂ Xn tX is closed, we may compute

µ(r)
n (A) = µn(A ∩X(r)

n ) ≤ µ(Aεn ∩ (X(r)
n )εn) + εn

≤ µ(r)(Aεn) + µ((X(r)
n )εn \X(r)) + εn

≤ µ(r)(Aεn) + µ(X(r+2εn) \X(r)) + εn,

since (X
(r)
n )εn ⊂ (X(r))2εn ⊂ X(r+2εn). Similarly,

µ(r)(A) ≤ µ(A ∩X(r−2εn)) + µ(X(r) \X(r−2εn))

≤ µn(Aεn ∩ (X(r−2εn))εn) + µ(X(r) \X(r−2εn)) + εn

≤ µ(r)
n (Aεn) + µ(X(r) \X(r−2εn)) + εn,

since (X
(r−2εn)
n )εn ⊂ X(r). Hence, we finally deduce

dnP (µ(r)
n , µ(r)) ≤ εn + µ(X(r+2εn) \X(r−2εn)).

This and (5.2) yield

dcGHP(X (r)
n ,X (r)) ≤ 3dcGHP(Xn,X ) + µ(X(r+2εn) \X(r−2εn)).

Therefore, if µ(∂rX) = 0, we have limn→+∞ dcGHP(X (r)
n ,X (r)) = 0. Since µ is by definition

a finite measure, the set {r > 0, µ(∂rX) 6= 0} is at most countable. By dominated
convergence, we get limn→+∞ dGHP(Xn,X ) = 0.

In order to prove Theorem 2.11 on the pre-compactness criterion, we will approx-
imate the elements of a sequence in C by nets of small radius. The following lemma
guarantees that we can construct such nets in a consistent way. We use the convention
that X(r) = ∅ if r < 0. In the sequel, if r > 0 and k ≥ 0, we will often use the notation
Ar,k(X) for the annulus X(r) \X(r−2−k).
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Lemma 5.4. If X = (X,∅, d, µ) ∈ L satisfies condition (i) of Theorem 2.11, then for any

k, ` ∈ N, there exists a 2−k-net of the annulus A`2−k,k(X) = X(`2−k) \X((`−1)2−k) with at
most N(`2−k, 2−k−1) elements.

Proof. Let S′ be a finite 2−k−1-net of X(`2−k) of cardinal at most N(`2−k, 2−k−1). Let
S′′ be the set of elements x in S′ ∩ A(`−1)2−k,k+1(X) such that there exists at least one
element, say yx, in A`2−k,k(X) at distance at most 2−k−1 of x. The set(

S′ ∩A`2−k,k

)⋃
{yx, x ∈ S′′}

is obviously a 2−k-net of A`2−k,k(X), and its cardinal is bounded by N(`2−k, 2−k−1).

5.2 Proof of Theorem 2.11

Note that we will not use (ii) of Theorem 2.9 in this section as it is not yet proved.
The proof will be divided in several parts. The idea, as in [4], is to construct an

abstract limit space, along with a measure, and to check that we can get a convergence
(up to extraction). Let (Xn, n ∈ N) be a sequence in C, with Xn = (Xn, d

Xn ,∅n, µn). For
`, k ∈ N, we will write `k for `2−k.

5.2.1 Construction of the limit space.

Let `, k ∈ N. Recall that, by Lemma 5.4, we can consider Sn
`k,k

a 2−k−1-net of the

annulus A`k,k(Xn) with at mostN(`k, 2
−k−2) elements. In order to have a finer sequence

of nets, we will consider

Sn`k,k =
⋃

0≤k′≤k

(
A`k,k(Xn) ∩Sn

d`k2k′e2−k′ ,k′

)
.

By construction Sn`k,k is a 2−k−1-net of A`k,k(Xn) with cardinal at most

N̄(`k, 2
−k−2) =

k∑
k′=0

N(d`k2k
′
e2−k

′
, 2−k

′−2).

Let U`k,k = {(k, `, i); 0 ≤ i ≤ N̄(`k, 2
−k−2)} and U =

⋃
k∈N,`∈N U`k,k. We number the

elements of Sn`k,k in such a way that

Sn`k,k ∪ {∅n} = {xnu, u = (k, `, i), u ∈ U`k,k}, (5.3)

where (xnu, u ∈ U) is some sequence in Xn and xn(k,`,0) = ∅n. Notice that Sn`k,k is empty
for `k large if Xn is bounded. For u, u′ ∈ U , we set

dnu,u′ = dXn(xnu, x
n
u′).

Notice that the sequence (dnu,u′ , n ∈ N) is bounded. Thus, without loss of generality
(by considering the sequence instead of the sub-sequence), we may assume that for
all u, u′ ∈ U , the sequence (dnu,u′ , n ≥ 1) converges in R to some limit du,u′ . We then
consider an abstract space, X ′ = {xu, u ∈ U}. On this space, the function d defined by
(xu, xu′) 7→ du,u′ is a semi-metric. We then consider the quotient space X ′/ ∼, where
xu ∼ xu′ if du,u′ = 0. We will denote by xu the equivalent class containing xu. Notice
that du,u′ = 0 for any u = (k, `, 0) and u′ = (k′, `′, 0) elements of U and let ∅ denote
their equivalence class. Finally, we let X be the completion of X ′/ ∼ with respect to the
metric d, so that (X, d,∅) is a rooted complete metric space.
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5.2.2 Approximation by nets

We set

U+
`k,k

=
⋃

0≤j≤`

Uj2−k,k,

Sn,+`k,k
=

⋃
0≤j≤`

Snj2−k,k = {xnu, u ∈ U+
`k,k
},

S+
`k,k

= {xu, u ∈ U+
`k,k
}.

By construction Sn,+`k,k
is a 2−k−1-net of X(`k)

n and Sn,+`k,k
⊂ Sn,+`′

k′ ,k
′ as well as S+

`k,k
⊂ S+

`′
k′ ,k

′

for any k ≤ k′ and `k ≤ `′k′ .

Remark 5.5. Also, v ∈ U\U+
`k,k

, either xnv = ∅n or dXn(∅n, xnv ) > `k and either xv = ∅
or d(∅, xv) ≥ `k. Notice that the former inequality is strict but the latter is not.

A correspondence R between two sets A and B is a subset of A × B such that the
projection of R on A (resp. B) is A (resp. B). It is clear that the set defined by

Rn,+`k,k
= {(xnu, xu), u ∈ U+

`k,k
} (5.4)

is a correspondence between Sn,+`k,k
and S+

`k,k
. The distorsion δn(`k, k) of this correspon-

dence is defined by

δn(`k, k) = sup{|dXn(xnu, x
n
u′)− d(xu, xu′)|; u, u′ ∈ U+

`k,k
}. (5.5)

Notice that for k ≤ k′ and `k ≤ `′k′ , we have

δn(`k, k) ≤ δn(`′k′ , k
′). (5.6)

Since U+
`k,k

is finite, for all `, k ∈ N, we have by construction limn→+∞ δn(`k, k) = 0.

Lemma 5.6. The set S+
`k,k

is a 2−k-net of X(`k).

Proof. Let x ∈ X(`k). There exists v = (k′, `′, j) ∈ U such that d(x, xv) < 2−k−3. Notice
that d(∅, xv) < `k + 2−k−3. We may choose n large enough, so that δn(`k ∨ `′k′ , k ∨
k′) < 2−k−3. As xnv ∈ Sn,+`k∨`′k′ ,k∨k

′ , we have |dXn(∅n, xnv ) − d(∅, xv)| < 2−k−3 and thus

dXn(∅n, xnv ) < `k + 2−k−2. Thanks to Lemma 5.1 and since Xn is a length space, we get

that xnv belongs to (X
(`k)
n )2−k−2

. As Sn,+`k,k
is a 2−k−1-net of X(`k)

n , there exists u ∈ U+
`k,k

such that dXn(xnu, x
n
v ) < 2−k−1 + 2−k−2. Furthermore, we have that xnu and xnv belongs

to Sn,+`k∨`′k′ ,k∨k
′ . We deduce that

d(x, xu) ≤ d(x, xv) + d(xv, xu) ≤ 2−k−3 + δn(`k ∨ `′k′ , k ∨ k′) + dXn(xnu, x
n
v ) < 2−k.

This gives the result.

We give an immediate consequence of this approximation by nets.

Lemma 5.7. The metric space (X, d) is a length space.

Proof. The proof of this lemma is inspired by the proof of Theorem 7.3.25 in [4]. We
will check that (X, d) satisfies the mid-point condition.

Let k ∈ N and x, x′ ∈ X. According to Lemma 5.6, there exists ` ∈ N large enough
and u, u′ ∈ U+

`k,k
such that d(x, xu) < 2−k and d(x′, xu′) < 2−k. For n large enough, we

get that δn(`k, k) < 2−k. Since (Xn, d
Xn) is a length space, there exists z ∈ Xn such that

|2dXn(z, xnu)− dXn(xnu, x
n
u′)|+ |2dXn(z, xnu′)− dXn(xnu, x

n
u′)| ≤ 2−k.
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There exists u′′ ∈ U+
`k,k

such that dXn(xnu′′ , z) ≤ 2−k. Then, we deduce that

|2d(xu′′ , x)− d(x, x′)|+|2d(xu′′ , x
′)− d(x, x′)|

≤4d(x, xu) + 4d(x′, xu′) + |2d(xu′′ , xu)− d(xu, xu′)|
+ |2d(xu′′ , xu′)− d(xu, xu′)|

≤8 · 2−k + 6δn(`k, k) + |2dXn(xnu′′ , x
n
u)− dXn(xnu, x

n
u′)|

+ |2dXn(xnu′′ , x
n
u′)− dXn(xnu, x

n
u′)|

≤19 · 2−k.

Since k is arbitrary, we get that (X, d) satisfies the mid-point condition and is therefore
a length space.

5.2.3 Approximation of the measures

Let (V nu , u ∈ U`k,k) be Borel subsets of A`k,k(Xn) with diameter less than 2−k such that⋃
u∈U`k,k

V nu = A`k,k(Xn) and for all u, u′ ∈ U`k,k, we have V nu
⋂
V nu′ = ∅ and xnu ∈ V nu as

soon as V nu 6= ∅. We set U∞,k =
⋃
`∈N U`k,k and we consider the following approximation

of the measure µn:

µn,k =
∑

u∈U∞,k

µn(V nu )δxn
u
.

Notice that µ(`k)
n,k =

∑
u∈U`k,k

µn(V nu )δxn
u
. The measures µn,k are boundedly finite Borel

measures on Xn. It is clear that the sequence (µn,k, k ∈ N) converges in the weak-#

sense towards µn as k goes to infinity, since we have for any r ∈ N, dd
Xn

P (µ
(r)
n,k, µ

(r)
n ) ≤

2−k. On the limit space X, we define

νn,k =
∑

u∈U∞,k

µn(V nu )δxu
and ν

{`k}
n,k =

∑
u∈U`k,k

µn(V nu )δxu
.

Notice that ν{`k}n,k ≤ ν
(`k)
n,k but they may be distinct as ν(`k)

n,k may have some atoms on ∂`kX

which are in S+
(`+1)k,k

but not in S+
`k,k

, as indicated in Remark 5.5.

Let us show that the sequence (νn,k, k ∈ N) converges, up to an extraction, towards
a boundedly finite measure ν on X. For m ∈ 2−kN, we have

νn,k(X(m)) =
∑

u∈U∞,k

µn(V nu )1{d(xu,∅)≤m} ≤
∑

u∈U∞,k

µn(V nu )1{dXn (xn
u,∅n)≤m+δn(m,k)}

≤ µn(X(m+δn(m,k)+2−k)
n ), (5.7)

where for the first inequality we used (5.5). Recall that for all `, k ∈ N, we have
limn→+∞ δn(`k, k) = 0. We define ηk = δnk

(k, k). Using a diagonal argument, there
exists a sub-sequence (nk, k ∈ N) such that

ηk ≤ 2−k. (5.8)

By (5.6), we have δnk
(m, k) ≤ ηk for k ≥ m. Thanks to property (ii) of Theorem 2.11, we

get that µnk
(Xnk

)(m+δnk
(m,k)+2−k) is uniformly bounded in k ∈ N for m fixed. From the

classical pre-compactness criterion for weak-# convergence of boundedly finite mea-
sures on a Polish metric space (see Appendix 2.6 of [5]), we deduce that there exists an
extraction of the sub-sequence (nk, k ∈ N), which we still note (nk, k ∈ N), such that
(νnk,k, k ∈ N) converges in the weak-# sense towards some boundedly finite measure ν

EJP 18 (2013), paper 14.
Page 17/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2116
http://ejp.ejpecp.org/


Gromov-Hausdorff-Prokhorov distance on locally compact spaces

on X. This implies the weak convergence of the finite measures (ν
(r)
nk,k

, k ∈ N) towards

ν(r) as soon as ν(∂rX) = 0. Since ν is boundedly finite, the set

Aν = {r ≥ 0; ν(∂rX) > 0} (5.9)

is at most countable. Thus, we have limn→+∞ dP(ν
(r)
nk,k

, ν(r)) = 0 for almost every r > 0.

5.2.4 Convergence in the Gromov-Hausdorff-Prokhorov metric.

We set X = (X, d,∅, ν). Notice that X ∈ L thanks to Lemma 5.7. We will prove that
dGHP(Xnk

,X ) converges to 0.
Let r > 0. For any k ∈ N, set ` = d2kre and recall `k = 2−kd2kre. We set

Ynk = (Sn,+`k,k
, dXn ,∅n, µ(`k)

n,k ), Znk = (S+
`k,k

, d,∅, ν{`k}n,k ) and Wn
k = (X(`k), d,∅, ν{`k}n,k ).

The triangle inequalities give

dcGHP(X (r)
n ,X (r)) ≤ B1

n +B2
n +B3

n +B4
n +B5

n +B6
n, (5.10)

with

B1
n = dcGHP

(
X (r)
n ,X (`k)

n

)
, B2

n = dcGHP

(
X (`k)
n ,Ynk

)
, B3

n = dcGHP (Ynk ,Znk ) ,

B4
n = dcGHP (Znk ,Wn

k ) , B5
n = dcGHP

(
Wn
k ,X (`k)

)
, B6

n = dcGHP

(
X (`k),X (r)

)
.

Lemma 5.2 implies that

B1
n = dcGHP

(
X (r)
n ,X (`k)

n

)
≤ 2−k + µn(X(`k)

n \X(r)
n ). (5.11)

Since Sn,+`k,k
is a 2−k−1-net of X`k

n and by definition of µn,k,

dd
Xn

H (X(`k)
n , Sn,+`k,k

) ≤ 2−k−1 and dd
Xn

P (µ(`k)
n , µn,k1Sn,+

`k,k
) ≤ 2−k.

By considering the identity map from Sn,+`k,k
to X(`k), we deduce that

B2
n = dcGHP

(
X (`k)
n ,Ynk

)
≤ 2−k+1. (5.12)

Recall the correspondence (5.4). It is easy to check that the function defined on(
Sn,+`k,k

t S+
`k,k

)2

by

dn(y, z) =


dXn(y, z) if y, z ∈ Sn,+`k,k

,

d(y, z) if y, z ∈ S+
`k,k

,

inf{dXn(y, y′) + d(z, z′) + 1
2δn(`k, k); (y′, z′) ∈ Rn,+`k,k

} if y ∈ Sn,+`k,k
, z ∈ S+

`k,k

(5.13)
is a metric. For this particular metric, we easily have dn(∅n,∅) ≤ 1

2 δn(`k, k) as well as

ddnH (Sn,+`k,k
, S+
`k,k

) ≤ 1

2
δn(`k, k) and ddnP (µ

(`k)
n,k , ν

{`k}
n,k ) ≤ 1

2
δn(`k, k).

We deduce that

B3
n = dcGHP (Ynk ,Znk ) ≤ 3

2
δn(`k, k). (5.14)

Since S+
`k,k

is a 2−k-net of X`k , thanks to Lemma 5.6,

B4
n = dcGHP (Znk ,Wn

k ) ≤ 2−k. (5.15)
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Concerning B5
n, we only need to bound the Prokhorov distance between ν

{`k}
n,k and

ν
(`k)
n,k . Recall that ν{`k}n,k ≤ ν

(`k)
n,k and that ν(`k)

n,k may differ only on ∂`kX. If A is closed,

ν
{`k}
n,k (A) ≤ ν(`k)

n,k (A) and ν
(`k)
n,k (A) ≤ ν{`k}n,k (A) + νn,k(∂`kX).

Recall (5.9). Let ρ(r) ≥ r + 3 such that ρ(r) 6∈ Aν and

εn,k = 2dP(ν
(ρ(r))
n,k , ν(ρ(r))). (5.16)

Since `k ≤ r + 2−k,

νn,k(∂`kX) ≤ ν((∂`kX)εn,k) + εn,k ≤ ν(X(r+2−k+εn,k)\X(r−2εn,k)) + εn,k.

We deduce that

B5
n = dcGHP

(
Wn
k ,X (`k)

)
≤ ν(X(r+2−k+εn,k)\X(r−2εn,k)) + εn,k. (5.17)

Lemma 5.2 and the fact that X is a length space gives

B6
n = dcGHP

(
X (`k),X (r)

)
≤ 2−k + ν(X(`k)\X(r)). (5.18)

Putting (5.11), (5.12), (5.14), (5.15), (5.17), (5.18) in (5.10), we get

dcGHP(X (r)
n ,X (r)) ≤ 5 · 2−k + µn(X(`k)

n \X(r)
n )

+
3

2
δn(`k, k) + ν(X(r+2−k+εn,k)\X(r−2εn,k)) + εn,k + ν(X(`k) X(r)). (5.19)

We give a more precise upper bound for µn(X
(`k)
n \X(r)

n ). Using arguments similar to
those used to get (5.7), we find

µn(X(`k)
n \X(r)

n ) ≤ µn(X(`k)
n )− µn(X(`k−2−k)

n )

≤ νn,k(X(`k+δn(`k,k)+2−k))− νn,k(X(`k−δn(`k,k)−4·2−k)).

For k ≥ r+ 1, we have δn(`k, k) ≤ δn(k, k) thanks to (5.6). Then, using the sub-sequence
(nk, k ∈ N) defined at the end of Section 5.2.3 with (5.8),

µnk
(X(`k)

nk
\X(r)

nk
) ≤ νnk,k(X(`k+2·2−k))− νnk,k(X(`k−5·2−k))

≤ ν(X(`k+2·2−k+εnk,k))− ν(X(`k−5·2−k−εnk,k)) + 2εnk,k.

Note that the sub-sequence (nk, k ∈ N) does not depend on r: it is the same for all r ≥ 0.
Using (5.19), we get for k ≥ r + 1:

dcGHP(X (r)
nk
,X (r)) ≤ 5 · 2−k +

3

2
ηk + 2ν(X(`k+2−k+εn,k)\X(`k−5·2−k−2εn,k)) + 3εnk,k.

As limk→+∞ `k = r and limk→+∞ εnk,k = 0, we get using (5.8), that for r 6∈ Aν ,

lim
k→+∞

dcGHP(X (r)
nk
,X (r)) = 0.

By dominated convergence, we get that limk→+∞ dGHP(Xnk
,X ) = 0. Thus we have a

converging sub-sequence in C.
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5.3 Proof of (ii) of Theorem 2.9

We need to prove that the metric space (L, dGHP) is separable and complete.

Lemma 5.8. The metric space (L, dGHP) is separable.

Proof. We can notice that the set K ∩ L is dense in (L, dGHP), since for X ∈ L and
for all r > 0 we have X (r) ∈ K and dGHP(X (r),X ) ≤ e−r. Every element of K can be
approximated in the dcGHP topology by a sequence of metric spaces with finite cardinal,
rational edge-lengths and rational weights. Hence, (K ∩ L, dcGHP) is separable, being a
subspace of a separable metric space. According to Proposition 2.10, (K ∩ L, dGHP) is
also separable. As K∩L is dense in (L, dGHP), we deduce that (L, dGHP) is separable.

Lemma 5.9. The metric space (L, dGHP) is complete.

Proof. Let (Xn, n ∈ N), with Xn = (Xn, d
Xn ,∅n, µn), be a Cauchy sequence in (L, dGHP).

It is enough to prove that it is relatively compact. Thus, we need to prove it satisfies
condition (i) and (ii) of Theorem 2.11.

Assume there exists r0 ∈ R+ such that supn∈N µn(X
(r0)
n ) = +∞. By considering a

sub-sequence, we may assume that limn→+∞ µn(X
(r0)
n ) = +∞. This implies that for any

r ≥ r0, limn→+∞ µn(X
(r)
n ) = +∞. Thus, we have for any m ∈ N,

lim
n→+∞

∫ +∞

0

e−r
(

1 ∧
∣∣∣µn(X(r)

n )− µm(X(r)
m )
∣∣∣) dr ≥ e−r0 .

Then use (4.6) to get that (Xn, n ∈ N) is not a Cauchy sequence. Thus, if (Xn, n ∈ N) is
a Cauchy sequence, then (ii) of Theorem 2.11 is satisfied.

Let gn,m(r) = dcGH((X
(r)
n , dX

(r)
n ), (X

(r)
m , dX

(r)
m )). On the one hand, use (4.7) to get

lim
min(n,m)→+∞

∫ +∞

0

e−r (1 ∧ gn,m(r)) dr = 0. (5.20)

On the other hand, using (4.7) and Lemma 5.2, and arguing as in the proof of Lemma
2.8, we get that for any r, ε ≥ 0,

|gn,m(r)− gn,m(r + ε)| ≤ 2ε.

This implies that the functions gn,m are 2-Lipschitz. We deduce from (5.20), that for all

r ≥ 0, limmin(n,m)→+∞ gn,m(r) = 0. Thus the sequence ((X
(r)
n , dX

(r)
n ), n ∈ N) is a Cauchy

sequence for the Gromov-Hausdorff metric. Then point (2) of Proposition 7.4.11 in [4]
readily implies condition (i) of Theorem 2.11.
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