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Abstract

We analyze the spectral distribution of symmetric random matrices with correlated
entries. While we assume that the diagonals of these random matrices are stochas-
tically independent, the elements of the diagonals are taken to be correlated. De-
pending on the strength of correlation, the limiting spectral distribution is either the
famous semicircle distribution, the distribution derived for Toeplitz matrices by Bryc,
Dembo and Jiang (2006), or the free convolution of the two distributions.
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1 Introduction

Historically, the theory of random matrices is fed by two sources. They were in-
troduced in mathematical statistics by the seminal work of Wishart [20]. On the other
hand, Wigner used random matrices as a toy model for the energy levels and excitation
spectra of heavy nuclei [19]. From these two roots random matrix theory has grown
into an independent mathematical theory with applications in many areas of science.

A central role in the study of random matrices with growing dimension is played by
their eigenvalues. To introduce them let, for any n ∈ N, {an(p, q), 1 ≤ p ≤ q ≤ n} be a
real valued random field. Define the symmetric random n× n matrix Xn by

Xn(q, p) = Xn(p, q) =
1√
n
an(p, q), 1 ≤ p ≤ q ≤ n.

We will denote the (real) eigenvalues of Xn by λ(n)1 ≤ λ(n)2 ≤ . . . ≤ λ(n)n . Let µn be the
empirical eigenvalue distribution, i.e.

µn =
1

n

n∑
k=1

δ
λ
(n)
k

.
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A phase transition in Random Matrix Theory

Wigner proved in his fundamental work [19] that, if the entries an(p, q) are inde-
pendent Bernoulli variables, the expected empirical eigenvalue distribution converges
weakly to the so called semicircle distribution (or law), i.e. the probability distribution
ν on R with density

ν(dx) =
1

2π

√
4− x21|x|≤2.

Quite some effort has been spent in investigating the universality of this result.
Arnold [2] showed that the convergence to the semicircle law is also true if one replaces
the Gaussian distributed random variables by independent and identically distributed
(i.i.d.) random variables with a finite fourth moment. Also the identical distribution
may be replaced by some other assumptions (see e.g. [9]). Recently, it was observed by
Erdös et al. ([10]) that the convergence of the spectral measure towards the semicircle
law holds in a local sense. More precisely, it can be proved that on intervals with width
going to zero sufficiently slowly, the empirical eigenvalue distribution still converges to
the semicircle distribution.

This result therefore interpolates between the global and the local behavior of the
eigenvalues in the bulk of the spectrum, which was rather recently proved to be univer-
sal as well in the so-called ”four-moment-theorem” ([18]).

Other generalizations of Wigner’s semicircle law concern matrix ensembles with
entries drawn according to weighted Haar measures on classical (e.g., orthogonal, uni-
tary, symplectic) groups. Such results are particularly interesting since such random
matrices also play a major role in non-commutative probability (see e.g. [13], or the
very recommendable book Anderson, Guionnet, and Zeitouni [1]).

A slightly different approach to universality was taken in [14], [12], [16] and [11].
Here, matrices with correlated entries are studied. In [11] it is shown that, if the
diagonals of Xn are independent and the correlation between elements along a diagonal
decays sufficiently quickly, again the limiting spectral distribution is the semicircle law.

Universality, however, does have its limitations. As was shown by Bryc et al. [5]
the limiting spectral distribution of large random Toeplitz or Hankel matrices is not the
semicircle law. In fact, not much is known about the limiting measures, apart from their
moments (which are the result of the proof by a moment method, a technique, that will
also be employed by the present paper).

The present note tries to explore the borderline between the weak correlations stud-
ied in [11] and the strong correlations that lead to a limiting spectral distribution that
is not of Wigner type. We will again assume that Xn has independent diagonals and
we will see, which quantity determines whether the limiting measure of the empirical
eigenvalue distribution is a semicircle law or not. A particularly nice example is bor-
rowed from statistical mechanics. There the Curie-Weiss model is the easiest model
of a ferromagnet. Here a magnetic substance has little atoms that carry a magnetic
spin, that is either +1 or −1. These spins interact in cooperative way, the strength of
the interaction being triggered by a parameter, the so-called inverse temperature. The
model exhibits phase transition from paramagnetic to magnetic behavior (the standard
reference for the Curie-Weiss model is [8]). We will see that this phase transition can
be recovered on the level of the limiting spectral distribution of random matrices, if
we fill their diagonals independently with the spins of Curie-Weiss models. For small
interaction parameter, this limiting spectral distribution is the semicircle law, while for
a large interaction parameter we obtain a distribution similar to the Toeplitz case.

The rest of this paper is organized as follows. Section 2 contains the technical
assumptions we have to make together with the statement of our main results. Section
3 characterizes the various limiting distributions we obtain. Section 4 contains some
interesting examples, while Sections 5 and 6 are devoted to the proofs of the two main
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A phase transition in Random Matrix Theory

theorems.

2 Main Result

This section contains the general theorem that describes the various limiting spec-
tral distributions for the matrices Xn introduced above. In order to be able to state the
theorem we will have to impose the following conditions on Xn:

(C1) E [an(p, q)] = 0, E
[
an(p, q)

2
]
= 1 and

mk := sup
n∈N

max
1≤p≤q≤n

E
[
|an(p, q)|k

]
<∞, k ∈ N. (2.1)

(C2) the diagonals of Xn, i.e. the families {an(p, p+ r), 1 ≤ p ≤ n− r}, 0 ≤ r ≤ n − 1,
are independent,

(C3) the covariance of two entries on the same diagonal depends only on n, i.e. for any
0 ≤ r ≤ n− 1 and 1 ≤ p, q ≤ n− r, p 6= q, we can define

Cov(an(p, p+ r), an(q, q + r)) =: cn,

(C4) the limit c := limn→∞ cn exists.

Remark 2.1. Note that the assumptions above imply that 0 ≤ c ≤ 1. Indeed, take the
process {an(p, p), 1 ≤ p ≤ n} on the main diagonal, and calculate

0 ≤ V

(
n∑
p=1

an(p, p)

)
=

n∑
p=1

V(an(p, p)) +

n∑
p,q=1,
p 6=q

Cov(an(p, p), an(q, q))

= n+ n(n− 1)cn,

implying that cn ≥ −(1/(n − 1)). Since the right hand side tends to zero, we can
conclude that c = limn→∞ cn ≥ 0. On the other hand, Hölder’s inequality yields cn ≤ 1

since E
[
an(p, p)

2
]
= 1 by (C1). Thus, we have c ≤ 1.

With these notations and conditions we are able to formulate the central result of
this note.

Theorem 2.2. Assume that the symmetric random matrix Xn as defined above satisfies
the conditions (C1), (C2), (C3) and (C4). Then, with probability 1, the empirical spectral
distribution µn of Xn converges weakly to a nonrandom probability distribution νc which
does not depend on the distribution of the entries of Xn.

Since the proof of Theorem 2.2 relies on the so-called moment-method, we will de-
scribe νc in terms of its moments in Section 3. However, to give an idea of the kind of
measure we deal with, we first want to recall the notion of the free convolution. There-
fore, let µ1 and µ2 be two probability measures on R which are uniquely determined by
their moments. Let A be a unital C∗-algebra over C and ϕ : A → C a unital linear func-
tional satisfying ϕ(a∗a) ≥ 0 for any a ∈ A. Then, (A, ϕ) is a C∗-probability space. We
say that two elements x1, x2 ∈ A are freely independent if for any k ∈ N, polynomials
P1, . . . , Pk, and i(1), . . . , i(k) ∈ {1, 2} with i(1) 6= i(2) 6= . . . 6= i(k), we have

ϕ(Pj(xi(j))) = 0 for any j = 1, . . . , k =⇒ ϕ(P1(xi(1)) · · ·Pk(xi(k))) = 0.
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Assume that x1, x2 ∈ A are selfadjoint and freely independent with distributions µ1

and µ2, respcectively, i.e.

ϕ
(
xki
)
=

∫
R

tkdµi(t), i = 1, 2, k ∈ N.

Then the distribution of the sum x1 + x2 is called the free convolution of µ1 and µ2

and is denoted by µ1 � µ2. For more details, we refer to [15]. Returning to the measure
νc, we now have the following statement.

Theorem 2.3. For any 0 ≤ c ≤ 1, we have νc = ν0,1−c � ν1,c with ν0,1−c denoting
the rescaled semicircle law with variance 1 − c, and ν1,c the rescaled Toeplitz law with
variance c. In particular, νc is a symmetric measure with a bounded density. If c > 0, νc
has an unbounded support, and if 0 < c < 1, the density is smooth.

3 The Limiting Distribution νc

It is not surprising that νc is some combination of the semicircle distribution and the
limiting distribution of Toeplitz matrices as described in [5]. Indeed, c = 0 covers the
case of independent entries implying that ν0 is the semicircle law. On the other hand,
considering symmetric Toeplitz matrices, we have c = 1, and thus ν1 is the correspond-
ing limiting distribution we want to introduce in the following (cf. [5]). Therefore, we
have to start with some notation. For any even k ∈ N, let PP(k) denote the set of all
pair partitions π of {1, . . . , k}. If i and j are in the same block of π, we also write i ∼π j.
The measure ν1 can be defined with the help of Toeplitz volumes. Thus, we associate to
any partition π ∈ PP(k) the following system of equations in unknowns x0, . . . , xk:

x1 − x0 + xl1 − xl1−1 = 0, if 1 ∼π l1,
x2 − x1 + xl2 − xl2−1 = 0, if 2 ∼π l2,

...

xi − xi−1 + xli − xli−1 = 0, if i ∼π li,
...

xk − xk−1 + xlk − xlk−1 = 0, if k ∼π lk.

(3.1)

Since π is a pair partition, we in fact have only k/2 equations although we have listed
k. However, we have k + 1 variables. If π = {{i1, j1}, . . . , {ik/2, jk/2}} with il < jl for
any l = 1, . . . , k/2, we solve (3.1) for xj1 , . . . , xjk/2 , and leave the remaining variables
undetermined. We further impose the condition that all variables x0, . . . , xk lie in the
interval I = [0, 1]. Solving the equations above in this way determines a cross section of
the cube Ik/2+1. The volume of this will be denoted by pT (π).

Returning to the measure ν1, we can use the results in [5] to see that all odd mo-
ments of ν1 are zero, and for any even k ∈ N, the k-th moment is given by∫

xkdν1(x) =
∑

π∈PP(k)

pT (π).

The expression above is bounded by (k−1)!!. Hence, Carleman’s condition is satisfied
implying that the distribution ν1 is uniquely determined by its moments. Moreover, it
has an unbounded support as verified in [5]. To describe νc for general c ∈ [0, 1], we
need a further definition which was introduced in [5] to analyze Markov matrices.
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Definition 3.1. Let k ∈ N be even, and fix π ∈ PP(k). The height h(π) of π is the
number of elements i ∼π j, i < j, such that either j = i + 1 or the restriction of π to
{i+ 1, . . . , j − 1} is a pair partition.

Note that the property that the restriction of π to {i+ 1, . . . , j − 1} is a pair partition
in particular requires that the distance j − i − 1 ≥ 1 is even. To give an example how
to calculate the height of a partition, take π = {{1, 6}, {2, 4}, {3, 5}}. Considering the
block {1, 6}, we see that the restriction of π to {2, 3, 4, 5} is a pair partition, namely
{{2, 4}, {3, 5}}. However, this is not true for both remaining blocks. Hence, h(π) = 1.

In the following, we say that a pair partition π is crossing if there are indices i < j <

l < m with i ∼π l and j ∼π m. Otherwise, we call π non-crossing. We will denote the
set of all crossing pair partitions of {1, . . . , k} by CPP(k), and the set of non-crossing
pair partitions of {1, . . . , k} by NPP(k). Note that for π ∈ NPP(k), we have the height
h(π) = k/2 and the Toeplitz volume pT (π) = 1.

In Section 5, we will see that all odd moments of νc vanish, implying that νc is
symmetric. The even moments are given by∫

xkdνc(x) = C k
2
+

∑
π∈CPP(k)

pT (π)c
k
2−h(π) =

∑
π∈PP(k)

pT (π)c
k
2−h(π), (3.2)

where Ck = (2k)!
k!(k+1)! denotes the k-th Catalan number. Note that the number of

elements in NPP(k) coincides with the Catalan number Ck/2. The latter is exactly the
k-th moment of the semicircle distribution. As for the limiting distribution in the Toeplitz
case, we can verify the Carleman condition to see that νc is uniquely determined by its
moments.

4 Examples

In this section, we want to give some examples of processes satisfying the assump-
tions of Theorem 2.2.

4.1 Toeplitz Matrices

Consider a symmetric Toeplitz matrix. The limiting spectral distribution calculated
in [5] can be deduced from Theorem 2.2 as well. Indeed, assuming that the entries are
centered with unit variance and have existing moments of any order, we see that all
conditions are satisfied with c = cn = 1. Thus, we get

∫
xkdν1(x) =


C k

2
+

∑
π∈CPP(k)

pT (π) =
∑

π∈PP(k)

pT (π), if k is even,

0, if k is odd.

4.2 Exchangeable Random Variables

In [6], it was shown that symmetric matrices with exchangeable entries above the
main diagonal, and an appropriate scaling, still obey the semicircle law. In our situation,
we suppose that for any n ∈ N, we have a family {xn(p), 1 ≤ p ≤ n} of exchangeable
random variables, i.e. the distribution of the vector (xn(1), . . . , xn(n)) is the same as
that of (xn(σ(1)), . . . , xn(σ(n))) for any permutation σ of {1, . . . , n}. In this case, we can
conclude that for any 1 ≤ p < q ≤ n, we have

Cov(xn(p), xn(q)) = Cov(xn(1), xn(2)) =: cn.

Now assume that cn → c ∈ R as n→∞. Define for any n ∈ N, r ∈ {0, . . . , n− 1}, the
process {an(p, p+ r), 1 ≤ p ≤ n− r} to be an independent copy of {xn(p), 1 ≤ p ≤ n− r}.
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Then, all conditions of Theorem 2.2 are satisfied if we ensure that the moment condition
(C1) holds. The resulting limiting distribution for different choices of c is depicted in
Figure 1.
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Figure 1: Histograms of the empirical spectral distribution of 100 realizations of 1000×
1000 matrices X1000 with standard Gaussian entries.

An example for a process with exchangeable variables is the Curie-Weiss model with
inverse temperature β > 0. Here, the vector xn = (xn(1), . . . , xn(n)) takes values in
{−1, 1}n, and for any ω = (ω(1), . . . , ω(n)) ∈ {−1, 1}n, we have

P(xn = ω) =
1

Zn,β
exp

 β

2n

(
n∑
i=1

ω(i)

)2
 ,

where Zn,β is the normalizing constant. Since P(xn(1) = −1) = P(xn(1) = 1) = 1
2 ,

we obtain E[xn(1)] = 0. Further, we clearly have E[xn(1)2] = 1. It remains to determine
c = limn→∞ cn. Therefore, we want to make use of the identity

cn = Cov(xn(1), xn(2)) = E[xn(1)xn(2)] =
n

n− 1
E[m2

n]−
1

n− 1
,

where mn := 1
n

∑n
i=1 xn(i) is the so-called magnetization of the system. Since |mn| ≤

1, we see that (m2
n)n∈N is uniformly integrable. Thus, mn converges in L2 to some

random variable m if and only if mn → m in probability. In [7], it was verified that
mn → 0 in probability if β ≤ 1, and mn → m in probability with m ∼ 1

2δm(β) +
1
2δ−m(β)

for some m(β) > 0 if β > 1. The mapping β 7→ m(β) is monotonically increasing on
(1,∞), and satisfies m(β)→ 0 as β ↘ 1 and m(β)→ 1 as β →∞. We now obtain

c = lim
n→∞

cn =

{
0, if β ≤ 1,

m(β)2, if β > 1.

Thus, the limiting spectral distribution of Xn is the semicircle law if β ≤ 1, and ap-
proximately the Toeplitz limit if β is large. This is insofar not surprising as the different
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sites in the Curie-Weiss model show little interaction, i.e. behave almost independently,
if the temperature is high, or, in other words, β is small. However, if the temperature is
low, i.e. β is large, the magnetization of the sites strongly depends on each other. The
phase transition at the critical inverse temperature β = 1 in the Curie-Weiss model is
thus reflected in the limiting spectral distribution of Xn as well.

5 Proof of Theorem 2.2

The main technique we want to apply is the method of moments. The idea is to first
determine the weak limit of the expected empirical spectral distribution. Therefore,
the similar structure of the matrices under consideration allows us to repeat some con-
cepts presented in [11]. However, we need to develop new ideas when calculating the
expectations of the entries.

5.1 The expected empirical spectral distribution

To determine the limit of the k-th moment of the expected empirical spectral distri-
bution µn of Xn, we write

E

[∫
xkdµn(x)

]
=

1

n
E
[
tr
(
Xkn
)]

=
1

n
k
2+1

n∑
p1,...,pk=1

E [an(p1, p2)an(p2, p3) · · · an(pk−1, pk)an(pk, p1)] .

The main task is now to compute the expectations on the right hand side. How-
ever, we have to face the problem that some of the entries involved are indepen-
dent and some are not. To be more precise, an(p1, q1), . . . , an(pj , qj) are independent
whenever they can be found on different diagonals of Xn, i.e. the distances |p1 −
q1|, . . . , |pj−qj | are distinct. Hence, a first step in our proof is to consider the expectation
E [an(p1, p2)an(p2, p3) · · · an(pk−1, pk)an(pk, p1)], and to identify entries with the same dis-
tance of their indices. Therefore, we want to adapt some concepts of [16] and [5] to our
situation.

To start with, fix k ∈ N, and define Tn(k) to be the set of k-tuples of consistent pairs,
that is multi-indices (P1, . . . , Pk) satisfying for any j = 1, . . . , k,

(i) Pj = (pj , qj) ∈ {1, . . . , n}2,
(ii) qj = pj+1, where k + 1 is cyclically identified with 1.

With this notation, we find that

1

n
E
[
tr
(
Xkn
)]

=
1

n
k
2+1

∑
(P1,...,Pk)∈Tn(k)

E [an(P1) · · · an(Pk)] .

To reflect the dependency structure among the entries an(P1) . . . an(Pk), we want to
make use of the set P(k) of partitions of {1, . . . , k}. Thus, take π ∈ P(k). We say that an
element (P1, . . . , Pk) ∈ Tn(k) is a π-consistent sequence if

|pi − qi| = |pj − qj | ⇐⇒ i ∼π j.

According to condition (C2), this implies that an(Pi1), . . . , an(Pil) are stochastically
independent if i1, . . . , il belong to l different blocks of π. The set of all π-consistent
sequences (P1, . . . , Pk) ∈ Tn(k) is denoted by Sn(π). Note that the sets Sn(π), π ∈ P(k),
are pairwise disjoint, and

⋃
π∈P(k) Sn(π) = Tn(k). Consequently, we can write

1

n
E
[
tr
(
Xkn
)]

=
1

n
k
2+1

∑
π∈P(k)

∑
(P1,...,Pk)∈Sn(π)

E [an(P1) · · · an(Pk)] . (5.1)
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In a next step, we want to exclude partitions that do not contribute to (5.1) as n→∞.
These are those partitions satisfying either #π > k

2 or #π < k
2 , where #π denotes the

number of blocks of π. We want to treat the two cases separately.

First case: #π > k
2 . Since π is a partition of {1, . . . , k}, there is at least one singleton,

i.e. a block containing only one element i. Consequently, an(Pi) is independent of
{an(Pj), j 6= i} if (P1, . . . , Pk) ∈ Sn(π). Since we assumed the entries to be centered, we
obtain

E [an(P1) · · · an(Pk)] = E
[∏
j 6=i

an(Pj)
]
E [an(Pi)] = 0.

This yields
1

n
k
2+1

∑
(P1,...,Pk)∈Sn(π)

E [an(P1) · · · an(Pk)] = 0.

Second case: r := #π < k
2 . Here, we want to argue that π gives vanishing contri-

bution to (5.1) as n→∞ by calculating #Sn(π). To fix an element (P1, . . . , Pk) ∈ Sn(π),
we first choose the pair P1 = (p1, q1). There are at most n possibilities to assign a value
to p1, and another n possibilities for q1. To fix P2 = (p2, q2), note that the consistency
of the pairs implies p2 = q1. If now 1 ∼π 2, the condition |p1 − q1| = |p2 − q2| allows at
most two choices for q2. Otherwise, if 1 6∼π 2, we have at most n possibilities. We now
proceed sequentially to determine the remaining pairs. When arriving at some index
i, we check whether i is in the same block as some preceding index 1, . . . , i − 1. If this
is the case, then we have at most two choices for Pi and otherwise, we have n. Since
there are exactly r = #π different blocks, we can conclude that

#Sn(π) ≤ n2nr−12k−r ≤ C nr+1 (5.2)

with a constant C = C(r, k) depending on r and k.
Now the uniform boundedness of the moments (2.1) and the Hölder inequality to-

gether imply that for any sequence (P1, . . . , Pk),

|E [an(P1) · · · an(Pk)]| ≤
[
E |an(P1)|k

] 1
k · · ·

[
E |an(Pk)|k

] 1
k ≤ mk. (5.3)

Consequently, taking account of the relation r < k
2 , we get

1

n
k
2+1

∑
(P1,...,Pk)∈Sn(π)

|E [an(P1) · · · an(Pk)]| ≤ C
#Sn(π)

n
k
2+1

≤ C 1

n
k
2−r

= o(1).

Combining the calculations in the first and the second case, we can conclude that

1

n
E
[
tr
(
Xkn
)]

=
1

n
k
2+1

∑
π∈P(k),
#π= k

2

∑
(P1,...,Pk)∈Sn(π)

E [an(P1) · · · an(Pk)] + o(1).

Now assume that k is odd. Then the condition #π = k
2 cannot be satisfied, and the

considerations above immediately yield

lim
n→∞

1

n
E
[
tr
(
Xkn
)]

= 0.

It remains to determine the even moments. Thus, let k ∈ N be even. Recall that we
denoted by PP(k) ⊂ P(k) the set of all pair partitions of {1, . . . , k}. In particular, #π = k

2

for any π ∈ PP(k). On the other hand, if #π = k
2 but π /∈ PP(k), we can conclude
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that π has at least one singleton and hence, as in the first case above, the expectation
corresponding to the π-consistent sequences will become zero. Consequently,

1

n
E
[
tr
(
Xkn
)]

=
1

n
k
2+1

∑
π∈PP(k)

∑
(P1,...,Pk)∈Sn(π)

E [an(P1) · · · an(Pk)] + o(1). (5.4)

We have now reduced the original set P(k) to the subset PP(k). Next we want to
fix a π ∈ PP(k) and concentrate on the set Sn(π). The following lemma will help us to
calculate that part of (5.4) which involves non-crossing partitions.

Lemma 5.1 (cf. [5], Proposition 4.4.). Let S∗n(π) ⊆ Sn(π) denote the set of π-consistent
sequences (P1, . . . , Pk) satisfying

i ∼π j =⇒ qi − pi = pj − qj

for all i 6= j. Then, we have

#(Sn(π)\S∗n(π)) = o
(
n
k
2+1
)
.

Proof. If (P1, . . . , Pk) ∈ Sn(π)\S∗n(π), we can find some i ∼π j, i 6= j, such that qi − pi 6=
pj − qj . However, i ∼π j implies |pi − qi| = |pj − qj |. We can thus conclude that
qi − pi = qj − pj .

To fix (P1, . . . , Pk) ∈ Sn(π)\S∗n(π), we first choose a π-block {i, j} satisfying qi − pi =
qj − pj , and then fix the signs of the differences ql − pl, l = 1, . . . , k. The number of
possibilities to accomplish this depends only on k and not on n. Now we choose one of
n possible values for pi, and continue with assigning values to the distances |ql − pl| for
all l ∈ {1, . . . , k}\{i, j}. The fact that π is a pair partition ensures that we have at most
nk/2−1 possibilities for the latter. Since

∑k
l=1 ql − pl = 0 by consistency, we find that

2(qi − pi) = qi − pi + qj − pj =
∑

l∈{1,...,k}\{i,j}

pl − ql.

Since we have already chosen the signs of the differences ql − pl, l 6= i, j, as well as
their absolute values, we know the value of the sum on the right hand side. Hence, the
difference qi − pi = qj − pj is fixed. We thus made C nk/2 choices to obtain the index
pi and all differences ql − pl, l ∈ {1, . . . , k}. Starting at Pi, we can use the consistency
property and go systematically through the whole sequence (P1, . . . , Pk) to see that it is
indeed uniquely determined. Consequently, our considerations lead to

#(Sn(π)\S∗n(π)) ≤ C n
k
2 = o

(
n
k
2+1
)
.

A consequence of Lemma 5.1 and relation (5.3) is the identity

1

n
E
[
tr
(
Xkn
)]

=
1

n
k
2+1

∑
π∈PP(k)

∑
(P1,...,Pk)∈S∗n(π)

E [an(P1) · · · an(Pk)] + o(1). (5.5)

As already mentioned, the sets S∗n(π) help us to deal with the set NPP(k) of non-
crossing pair partitions.

Lemma 5.2. Let π ∈ NPP(k). For any (P1, . . . , Pk) ∈ S∗n(π), we have

E [an(P1) · · · an(Pk)] = 1.
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Proof. Let l < m with l ∼π m. Since π is non-crossing, the number l − m − 1 of el-
ements between l and m must be even. In particular, there is l ≤ i < j ≤ m with
i ∼π j and j = i + 1. By the properties of S∗n(π), we have an(Pi) = an(Pj), and the
sequence (P1, . . . , Pl, . . . , Pi−1, Pi+2, . . . , Pm, . . . , Pk) is still consistent. Applying this ar-
gument successively, all pairs between l and m vanish and we see that the sequence
(P1, . . . , Pl, Pm, . . . , Pk) is consistent, that is ql = pm. Then, the identity pl = qm also
holds. In particular, an(Pl) = an(Pm). Since this argument applies for arbitrary l ∼π m,
we obtain

E [an(P1) · · · an(Pk)] =
∏
l<m,
l∼πm

E [an(Pl)an(Pm)] = 1.

By Lemma 5.2, we can conclude that

1

n
k
2+1

∑
π∈NPP(k)

∑
(P1,...,Pk)∈S∗n(π)

E [an(P1) · · · an(Pk)] =
1

n
k
2+1

∑
π∈NPP(k)

#S∗n(π).

The following lemma allows us to finally calculate the term on the right hand side.

Lemma 5.3. For any π ∈ NPP(k), we have

lim
n→∞

#S∗n(π)

n
k
2+1

= 1.

Proof. Since π is non-crossing, we can find a nearest neighbor pair i ∼π i + 1. Now
fix (P1, . . . , Pk) ∈ S∗n(π), and write Pl = (pl, pl+1), l = 1, . . . , k, where k + 1 is identified
with 1. Then the properties of S∗n(π) ensure that (pi, pi+1) = (pi+2, pi+1). Hence, we can

eliminate Pi, Pi+1 to obtain a sequence (P
(1)
1 , . . . , P

(1)
k−2) := (P1, . . . , Pi−1, Pi+2, . . . , Pk)

which is still consistent. Denote by π′ the partition obtained from π by deleting the
block {i, i + 1}, and relabeling any l ≥ i + 2 to l − 2. Since π is non-crossing, we

have π′ ∈ NPP(k − 2). Moreover, (P
(1)
1 , . . . , P

(1)
k−2) ∈ S∗n(π

′). Thus we see that any

(P1, . . . , Pk) ∈ S∗n(π) can be reconstructed from a tuple (P
(1)
1 , . . . , P

(1)
k−2) ∈ S∗n(π′) and a

choice of pi+1. The latter admits n− k−2
2 possibilities since {i, i+1} forms a block on its

own in π. Consequently,
#S∗n(π)

n
k
2+1

=
#S∗n(π

′)

n
k
2

+ o(1). (5.6)

Now if k = 2, we get S∗n(π) = {((p, q), (q, p)) : p, q ∈ {1, . . . , n}}, implying #S∗n(π)
n2 = 1.

For arbitrary even k ∈ N, the statement of Lemma 5.3 follows then by induction using
the identity in (5.6).

Taking account of the relation #NPP(k) = C k
2
, we now arrive at

1

n
E
[
tr
(
Xkn
)]

= C k
2
+

1

n
k
2+1

∑
π∈CPP(k)

∑
(P1,...,Pk)∈S∗n(π)

E [an(P1) · · · an(Pk)] + o(1), (5.7)

with CPP(k) being the set of all crossing pair partitions of {1, . . . , k}. Since we
consider only pair partitions, we know that the expectation on the right hand side is of
the form

E [an(p1, q1)an(p1 + τ1, q1 + τ1)] · · ·E [an(pr, qr)an(pr + τr, qr + τr)] ,
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for r := k
2 and some choices of p1, q1, τ1, . . . , pr, qr, τr ∈ N. In order to calculate

this expectation, assumption (C3) indicates that we only need to distinguish for any
i = 1, . . . , k, whether we have τi = 0 or not. In the first case, we get the iden-
tity E [an(pi, qi)an(pi + τi, qi + τi)] = 1, and in the second case, we can conclude that
E [an(pi, qi)an(pi + τi, qi + τi)] = cn. Now fix some pair partition π ∈ PP(k), and take
(P1, . . . , Pk) ∈ S∗n(π). Motivated by these considerations, we put Pi = (pi, qi), and define

m (P1, . . . , Pk) := #{1 ≤ i < j ≤ k : (pi, qi) = (qj , pj)}.

Note that for any (P1, . . . , Pk) ∈ S∗n(π), we have (pi, qi) = (qj , pj) if and only if the
random variables an(Pi) and an(Pj) are equal. Obviously, we have 0 ≤ m (P1, . . . , Pk) ≤
k
2 . With this notation, we find that

1

n
k
2+1

∑
(P1,...,Pk)∈S∗n(π)

E [an(P1) · · · an(Pk)] =
1

n
k
2+1

k/2∑
l=0

c
k
2−l
n #A(l)

n (π) , (5.8)

where
A(l)
n (π) := {(P1, . . . , Pk) ∈ S∗n(π) : m (P1, . . . , Pk) = l}.

The following lemma states that if a pair Pi, Pj contributes to m(P1, . . . , Pk), then we
can assume that the block {i, j} in π is not crossed by any other block.

Lemma 5.4. Let π ∈ PP(k) and fix i ∼π j, i < j. Define

S∗n(π; i, j) := {(P1, . . . , Pk) ∈ S∗n(π) : Pi = (pi, qi), Pj = (pj , qj), pi = qj , qi = pj}.

Assume that there is some i′ ∼π j′ such that i < i′ < j, and either j′ < i or j < j′. Then,

#S∗n(π; i, j) = o
(
n
k
2+1
)
.

To illustrate Lemma 5.4, we want to give an example. Therefore, take k = 4 and
π = {{1, 3}, {2, 4}}. Let i = 1 and j = 3. Here, the set S∗n(π; i, j) consists of all multi-
indices ((p1, p2), (p2, p2), (p2, p1), (p1, p1)) with p1, p2 ∈ {1, . . . , n}, p1 6= p2. In particular,
we have #S∗n(π; i, j) = O(n2) implying the statement of Lemma 5.4 in this case.

Proof. To fix some (P1, . . . , Pk) ∈ S∗n(π; i, j), we first choose a value for pi = qj and
qi = pj . This allows for at most n2 possibilities. Hence, Pi and Pj are fixed. Now
consider the pairs Pi+1, . . . , Pi′−1. pi+1 is uniquely determined by consistency. For qi+1,
there are at most n choices. Then, pi+2 = qi+1. If i + 2 ∼π i + 1, we have one choice
for qi+2. Otherwise, there are at most n. Proceeding in the same way, we see that we
have n possibilities whenever we start a new equivalence class. Similarly, we can assign
values to the pairs Pj+1, . . . , Pi′+1 in this order. Now Pi′ is determined by consistency.
When fixing Pi−1, . . . , P1, Pk, . . . , Pj+1, we again have n choices for any new equivalence
class. To sum up, we are left with at most

n2n
k
2−2 = n

k
2

possible values for an element in S∗n(π; i, j).

Recall Definition 3.1 where we introduced the notion of the height h(π) of a pair
partition π. Lemma 5.4 in particular implies that only those (P1, . . . , Pk) ∈ S∗n(π) with

0 ≤ m (P1, . . . , Pk) ≤ h(π)
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contribute to the limit of (5.8). Indeed, if m(P1, . . . , Pk) > h(π), we can find some
i ∼π j, i < j, such that (P1, . . . , Pk) ∈ S∗n(π; i, j) and neither j = i+1 nor is the restriction
of π to {i + 1, . . . , j − 1} a pair partition. Hence, the crossing property in Lemma 5.4 is
satisfied, and (P1, . . . , Pk) is contained in a set that is negligible in the limit. The identity
in (5.8) thus becomes

1

n
k
2+1

∑
(P1,...,Pk)∈S∗n(π)

E [an(P1) · · · an(Pk)] =
1

n
k
2+1

h(π)∑
l=0

c
k
2−l
n #B(l)

n (π) + o(1),

where

B(l)
n (π) := {(P1, . . . , Pk) ∈ S∗n(π) : m (P1, . . . , Pk) = l;

(pi, qi) = (qj , pj), i < j ⇒ j = i+ 1 or π|{i+1,...,j−1} is a pair partition
}
.

In the next step, we want to simplify the expression above further by showing that
B

(l)
n (π) = ∅ whenever 0 ≤ l < h(π). This is ensured by

Lemma 5.5. Let π ∈ PP(k). For any (P1, . . . , Pk) ∈ S∗n(π), we have

m(P1, . . . , Pk) ≥ h(π).

To give a simple example, consider k = 4 and π = {{1, 2}, {3, 4}}. Thus, π is a
non-crossing partition with h(π) = 2. Further, the set S∗n(π) contains all multi-indices
(P1, P2, P3, P4) = ((p1, p2), (p2, p1), (p1, p3), (p3, p1)) with p1, p2, p3 ∈ {1, . . . , n} and p2 6= p3.
In particular, we have m(P1, P2, P3, P4) = 2 = h(π).

Proof. If h(π) = 0, there is nothing to prove. Thus, suppose that h(π) ≥ 1 and take some
i ∼π j, i < j, such that either j = i + 1 or j − i − 1 ≥ 2 is even and the restriction of π
to {i+ 1, . . . , j − 1} is a pair partition. Fix (P1, . . . , Pk) ∈ S∗n(π), and write Pl = (pl, pl+1)

for any l = 1, . . . , k. We need to verify that pi+1 = pj . If we achieve this, the definition of
S∗n(π) will also ensure that pi = pj+1. As a consequence, the π-block {i, j} will contribute
to m(P1, . . . , Pk). Since there are h(π) such blocks, we will obtain m(P1, . . . , Pk) ≥ h(π)

for any choice of (P1, . . . , Pk) ∈ S∗n(π).
If j = i + 1, we immediately obtain pi+1 = pj . To show this property in the second

case, note that the sequence (Pi+1, . . . , Pj−1) solves the following system of equations:

pi+2 − pi+1 + pl1+1 − pl1 = 0, if i+ 1 ∼π l1,
pi+3 − pi+2 + pl2+1 − pl2 = 0, if i+ 2 ∼π l2,

...

pi+m+1 − pi+m + plm+1 − plm = 0, if i+m ∼π lm,
...

pj − pj−1 + plj−i−1+1 − plj−i−1 = 0, if j − 1 ∼π lj−i−1.

Start with solving the first equation for pi+2 which yields

pi+2 = pi+1 − pl1+1 + pl1 .

Then, insert this in the second equation, and solve it for pi+3 to obtain

pi+3 = pi+1 − pl1+1 + pl1 − pl2+1 + pl2 .
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In the j − i − 1-th step, we substitute pj−1 = pi+(j−i−1) in the j − i − 1-th equation,
and solve it for pj = pi+(j−i−1)+1. We then have

pj = pi+1 −
j−i−1∑
m=1

(plm+1 − plm).

Since the restriction of π to {i+1, . . . , j− 1} is a pair partition, we can conclude that
the sets {l1, . . . , lj−i−1} and {i+1, . . . , j−1} are equal. Hence, we obtain

∑j−i−1
m=1 (plm+1−

plm) = pj − pi+1, implying pj = pi+1.

With the help of Lemma 5.5, we thus arrive at

1

n
k
2+1

∑
(P1,...,Pk)∈S∗n(π)

E [an(P1) · · · an(Pk)] =
#B

(h(π))
n (π)

n
k
2+1

c
k
2−h(π)
n + o(1).

Note that any element (P1, . . . , Pk) ∈ S∗n(π) satisfying the condition

(pi, qi) = (qj , pj), i < j ⇒ j = i+ 1 or π|{i+1,...,j−1} is a pair partition, (5.9)

fulfills the condition m(P1, . . . , Pk) = h(π) as well. Indeed, (5.9) guarantees that
m(P1, . . . , Pk) ≤ h(π), and Lemma 5.5 ensures that m(P1, . . . , Pk) ≥ h(π). Thus, we can
write

B(h(π))
n (π) = {(P1, . . . , Pk) ∈ S∗n(π) :

(pi, qi) = (qj , pj), i < j ⇒ j = i+ 1 or π|{i+1,...,j−1} is a pair partition
}
.

Now any element in the complement of B(h(π))
n (π) satisfies for some i ∼π j the cross-

ing assumption in Lemma 5.4. This yields

#
(
B

(h(π))
n (π)

)c
n
k
2+1

= o(1).

Since B(h(π))
n (π) ∪

(
B

(h(π))
n (π)

)c
= S∗n(π), we obtain that

1

n
k
2+1

∑
(P1,...,Pk)∈S∗n(π)

E [an(P1) · · · an(Pk)] =
#S∗n(π)

n
k
2+1

c
k
2−h(π)
n + o(1). (5.10)

To calculate the limit on the right-hand side, we have

Lemma 5.6 (cf. [5], Lemma 4.6). For any π ∈ PP(k), it holds that

lim
n→∞

#S∗n(π)

n
k
2+1

= pT (π),

where pT (π) is the Toeplitz volume defined by solving the system of equations (3.1).

Proof. Fix π ∈ PP(k). Note that if P = {(pi, pi+1), i = 1, . . . , k} ∈ S∗n(π), then we have
x0, x1, . . . , xk with xi = pi+1/n is a solution of the system of equations (3.1). On the other
hand, if x0, x1, . . . , xk ∈ {1/n, 2/n, . . . , 1} is a solution of (3.1) and pi+1 = nxi, then either
{(pi, pi+1), i = 1, . . . , k} ∈ S∗n(π) or {(pi, pi+1), i = 1, . . . , k} ∈ Sn(η) for some partition
η ∈ P(k) such that i ∼π j ⇒ i ∼η j, but #η < #π.
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In (3.1), we have k + 1 variables and only k/2 equations. Denote the k/2 + 1 un-
determined variables by y1, . . . , yk/2+1. We thus need to assign values from the set
{1/n, 2/n, . . . , 1} to y1, . . . , yk/2+1, and then to calculate the remaining k/2 variables from
the equations. Since the latter are also supposed to be in the range {1/n, 2/n, . . . , 1},
it might happen that not all values for the undetermined variables are admissible. Let
pn(π) denote the admissible fraction of the nk/2+1 choices for y1, . . . , yk/2+1. By our
remark at the beginning of the proof and estimate (5.2), we have that

lim
n→∞

#S∗n(π)

n
k
2+1

= lim
n→∞

pn(π),

if the limits exist. Now we can interpret y1, . . . , yk/2+1 as independent random vari-
ables with a uniform distribution on {1/n, 2/n, . . . , 1}. Then, pn(π) is the probability
that the computed values stay within the interval (0, 1]. As n → ∞, y1, . . . , yk/2+1 con-
verge in law to independent random variables uniformly distributed on [0, 1]. Hence,
pn(π)→ pT (π).

Applying Lemma 5.6 and assumption (C4) to equation (5.10), we arrive at

lim
n→∞

1

n
k
2+1

∑
(P1,...,Pk)∈S∗n(π)

E [an(P1) · · · an(Pk)] = pT (π)c
k
2−h(π).

Substituting this result in (5.7), we find that for any even k ∈ N,

lim
n→∞

1

n
E
[
tr
(
Xkn
)]

= C k
2
+

∑
π∈CPP(k)

pT (π)c
k
2−h(π).

To obtain the alternative expression in (3.2) for the even moments of the limiting
measure νc, note that the considerations above were not restricted to crossing parti-
tions. In particular, we can start from identity (5.5) instead of (5.7) to see that

lim
n→∞

1

n
E
[
tr
(
Xkn
)]

= lim
n→∞

∑
π∈PP(k)

#S∗n(π)

n
k
2+1

c
k
2−h(π)
n =

∑
π∈PP(k)

pT (π)c
k
2−h(π).

5.2 Almost Sure Convergence

The almost sure convergence of the empirical distribution is a consequence of the
following concentration inequality proven in [5] and [11].

Lemma 5.7. Suppose that conditions (C1) and (C2) hold. Then, for any k, n ∈ N,

E
[(
tr
(
Xkn
)
− E

[
tr
(
Xkn
)])4] ≤ C n2.

From Lemma 5.7 and Chebyshev’s inequality, we can now conclude that for any ε > 0

and any k, n ∈ N,

P

(∣∣∣∣ 1n tr (Xkn)− E
[
1

n
tr
(
Xkn
)]∣∣∣∣ > ε

)
≤ C

ε4n2
.

Applying the Borel-Cantelli lemma, we see that

1

n
tr
(
Xkn
)
− E

[
1

n
tr
(
Xkn
)]
→ 0, a.s.. (5.11)

Let Y be a random variable distributed according to νc. The convergence of the
moments of the expected empirical distributions and relation (5.11) yield

1

n
tr
(
Xkn
)
→ E[Y k], a.s..

Since the distribution of Y is uniquely determined by its moments, we obtain almost
sure weak convergence of the empirical spectral distribution of Xn to νc.
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6 Proof of Theorem 2.3

We want to give a proof of Theorem 2.3. Therefore, we start with showing that the
free cumulants of the free convolution of rescaled versions of ν0 and ν1 coincide with the
free cumulants of νc. Since the involved distributions are uniquely determined by their
moments, and hence by their cumulants, we conclude that νc is the free convolution of
rescaled versions of ν0 and ν1. Therefore, we want to adapt some concepts of Bożejko
and Speicher [4] which were picked up by Bryc, Dembo and Jiang [5]. Hence, let π ∈
PP(2k). We say that η 6= π is a sub-partition of π if for some i, j ∈ {1, . . . , k}, η is a pair
partition of {i, i + 1, . . . , j}, and any block of η is also a block of π. Further, we denote
by η̃ the pair partition which consists of all blocks of π not contained in η, i.e. π is the
disjoint union of η and η̃.

Definition 6.1. We say that p : PP(2k) → R is pyramidally multiplicative, if for every
π ∈ PP(2k) and any sub-partition η of π, we have p(π) = p(η)p(η̃).

In the following, we denote by PP0(2k) ⊂ PP(2k) the set of all pair partitions with-
out sub-partitions.

Lemma 6.2 ([4], page 152, [5], Lemma A.4). Suppose that the moments of some ditri-
bution are given by

mk =


∑

π∈PP(k)

p(π), if k is even,

0, if k is odd.

If p(π) is pyramidally multiplicative, then the free cumulants satisfy

κk =


∑

π∈PP0(k)

p(π), if k is even,

0, if k is odd.

Note that the weights ck−h(π), π ∈ PP(2k), are pyramidally multiplicative since the
height h(π) satisfies the relation h(π) = h(η) + h(η̃) for any sub-partition η of π. More-
over, pT is pyramidally multiplicative as well. Indeed, pT (π) is the volume of the cross
section of the cube [0, 1]k+1 defined by the system of equations (3.1). If η is a sub-
partition, we can decompose the system of equations into two parts corresponding to
η and η̃, respectively, and calculate the volumes pT (η) and pT (η̃). Since η ∪ η̃ = π, we
conclude that pT (π) = pT (η)pT (η̃). As a consequence of Lemma 6.2, we now have that
the even free cumulants of νc are given by

κ2k(νc) =
∑

π∈PP0(2k)

pT (π)c
k−h(π).

For k = 1, the set PP0(2k) contains exactly one partition, namely π = {{1, 2}}. Here,
we have h(π) = 1 and pT (π) = 1, implying that κ2(νc) = 1 = κ2(ν1). If k ≥ 2, any
partition π ∈ PP0(2k) has no sub-partition so that h(π) = 0. Thus,

κ2k(νc) = ck
∑

π∈PP0(2k)

pT (π) = ckκ2k(ν1), k ≥ 2.

In particular, we obtain for the semicircle law ν0 that κ2k(ν0) = δ1(k). Consequently,

(1− c)kκ2k(ν0) + ckκ2k(ν1) = κ2k(νc).
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Recall that according to Remark 2.1, we have c ≥ 0. Assuming that X ∼ ν0, Y ∼ ν1
and Z ∼ νc, we thus see that Z is the free convolution of

√
1− c X and

√
c Y .

In [17], it is shown that ν1 has a bounded density. By [3], Corollary 2, the free con-
volution of any measure with the semicircle distribution ν0 has a density, in particular
νc for c < 1. Moreover, for c < 1, the density is smooth and bounded by Corollary 4 and
Proposition 5 in [3]. To see that νc has an unbounded support for 0 < c < 1, recall that
ν1 has an unbounded support, and the moments satisfy

c
k
2

∫
xkdν1(x) ≤

∫
xkdνc(x), k ∈ N.

Finally, νc is symmetric for any 0 ≤ c ≤ 1 since all odd moments vanish. This proves
Theorem 2.3.
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